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In recent years the study of interpolation of Banach spaces has seen some
unexpected interactions with other fields. Some of these interactions ori-
ginated from work of Coifman, Cwickel, Rochberg, Sagher, and Weiss
[CRSW] on the extension of the complex method of Calderén to infinite
families of Banach spaces. This extension is important because some relation-
ships with the rest of mathematics are too trivial in the classical two-space case
to be seen. Examples of this include the extremal problems studied by Szeg6
and the theorem of Masni and Weiner on factorization of matrix-valued func-
tions. Both of these can be viewed as special cases of the interpolation method
of [CRSW].

Since then, R. Rochberg has initiated the study of interpolation from
the viewpoint of curvature on vector bundles. In particular, he characterized
the interpolation families in [CRSW] in terms of a vanishing curvature condi-
tion.

Also, Z. Slodkowski [S1] has shown the interpolation families of [CRSW]
to be examples of analytic multifunctions, and he applied [CRSW] to prob-
lems concerning polynomial hulls in C".

In this paper I shall discuss some more interactions of interpolation theory
with the rest of mathematics, beginning with some joint work with Coifman
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[CS]. Our basic idea was to look for the methods of interpolation that had
interesting PDE’s arising as examples. The Hilbert space case of the interpola-
tion method of [CRSW], for example, gives solutions for the Dirichlet prob-
lem on the disk for the equation

0.1) Q" 19Q) =0,

where Q(z) is a positive-definite matrix-valued function.

In the course of our work we found that it is very natural to view interpola-
tion theory as the study of the geometry of the space 9(V) of all norms on
a vector space V. It later became clear how to make some of these formal
analogies precise and thereby make sense of differential geometry on (V).
This has led to some new methods of intepolation, which are defined and
analyzed via differential equations.

(Let me emphasize that the reader is not assumed to have any expertise
in differential geometry. The situations in this paper in which differential
geometry is discussed are quite concrete, and the relevant facts are reviewed.)

These topics are discused in more detail in the sections below. At the end
I shall indicate other ways that interpolation theory relates to PDE, in par-
ticular to equations of Monge-Ampére type. I would like to conclude this
introductory section with some philosophical comments.

One of the main conceptual points I wish to make in this paper is that
there are many ways of looking at interpolation of Banach spaces. In par-
ticular, we should not tie ourselves too tightly to interpolation estimates for
operators.

An example of a natural problem in the open-minded theory of interpola-
tion of Banach spaces is the following. Suppose we are given two convex
bodies B; and B, in R". What is an optimal way of connecting B; to B, by
a curve of convex bodies in R"? What should «optimal» mean?

In the case of norming bodies —i.e., convex bodies that are symmetric
about the origin— we could use an interpolation method to give us a curve
of norms, and hence a curve of bodies. Are there natural notions of optimality
in this context?

We can also ignore classical interpolation theory altogether in our search
for natural notions of optimality. We could approach this physically: what
happens when we try to deform B, into B, in a way that minimizes the work
done, or the total strain, or something like that? We can think of slowly
squeezing one body in a maximally efficient way until we get the other body.

There are undoubtedly many natural ways to make sense of «optimal»
here.

We must be more adventurous in the theory of interpolation of Banach
spaces.
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1. Interpolation Via Perron Processes

This section is devoted to the interpolation method in C? defined in [CS].

Z. Slodkowski [S2, 3] has also considered the problem of extending the
complex method of interpolation to several complex variables. His point of
view is quite different than ours, and comes from his earlier work on analytic
multifunctions. He works in more generality than we do, but in the case we
work in, our definition is equivalent to his.

Let V be a complex vector space. We require that V be finite-dimensional
to avoid technicalities, but of course we want estimates that do not depend
on the dimension. Let D be a domain in C¥. Suppose we are given some norms
| [;on ¥ foreach { € dD. We want to extend | |, to a norm-valued function
| | in D that satisfies nice properties. For example, we may want this exten-
sion to satisfy interpolation estimates for operators.

By an interpolation method we mean, roughly speaking, some method of
assigning to | |, an extension | |,. We would like to find interpolation
methods that are related to interesting PDE’s.

This motivation provides one of the basic ideas of our approach. If we want
to have a PDE floating around, then we want our interpolation method to be
«local». In particular, the reiteration theorem should hold: if we start with
| | on aD, apply the interpolation method to get | |, on D, restrict | |,
to the boundary of a subdomain D, of D, and then repeat the interpolation
method on D, again, we should get | |, back again.

This localness does not work out if we extend the ideas of Calderén and
[CRSW] naively to the higher-dimensional case; their approach relies too
heavily on miracles of one complex variable in the unit disk. There are prob-
lems already for multiply-connected domains in the plane.

To get the desired localness feature we must therefore take a different
tack.

Let N,(+) be a norm function defined in some region in C?. By a «norm
function» we mean a function that takes values in the set of all norms on V.
We say that NV, is subharmonic if N, (f(z)) is a subharmonic function of z for
all holomorphic V-valued functions f. (It suffices to consider only affine
holomorphic functions.) This property played an important role in [CRSW].
It is clearly local.

We define our interpolation method using a Perron process based on this
notion of subharmonicity. Let | |., { €dD, be a given family of norms on
aD. Set

(1.1) @ = {N;: N, is a subharmonic norm function defined on D such that

limsup N,(v) < |v|, forall {edD,ve V}-
z=¢



158 STEPHEN SEMMES

We define | |, in D by

(1.2) [v], = sup N,(v).
NZEQ

There are two main issues to address for this interpolation procedure: does
it have nice abstract properties, and what are the examples? I discuss first
some of the abstract properties.

If D is regular for the Dirichlet problem for the usual Laplacian, then it is
regular for the construction above, in the sense that if | |, is continuous on
aD, then | |, is continuous on D, and coincides with | |, on dD. (A norm
function N, is called continuous if N,(v) is continuous in z for each ve V.)
One fact used in the proof of this is that if 4(z) is subharmonic on D and if
P(v) is some norm on V, then N, = e"@P is a subharmonic norm function on
D. This allows us to build barriers for the above Perron process.

If T, is a family of linear operators on V, T, defined and continuous on D
and holomorphic in z on D, then log | T, . , is subharmonic in z, where | |, .
denotes the operator norm with respect to | |,. Let me indicate the proof of
a special case of this: if |7;|; <1 when ¢{€dD, then |T,|,.<1 on D.
Indeed, under these hypotheses, if N, € @, then N,(T,(-)) also lies in @. The
desired conclusions now follow easily from the definitions.

One can prove the reiteration theorem for the above interpolation method
by a straightforward chasing of definitions. Thus, if we call a norm function
| |;harmonic on D if it can be recovered from its boundary values as in (1.1)
and (1.2), then any norm function that is harmonic on D is also harmonic on
all subdomains of D. Moreover, being harmonic is a local property: | |, is
harmonic on D if for each z € D there is a neighborhood U of z on which | |,
is harmonic. There is in fact a reasonable notion of a superharmonic norm
function. This notion is local, and a norm function is harmonic if and only
if it is both subharmonic and superharmonic.

Let us consider some examples. If D is the unit disk, then this interpolation
construction agrees with the one in [CRSW]. If D < C% but V = C, so that
[v]; = a()|v| for some positive function a({), then |v|, = a(z)|v|, with
log a(z) harmonic. (Although this example is rather trivial, it is a good test
case. If we tried to extend the method of [CRSW] directly to several variables,
we would have problems computing even this case.)

Suppose now that we take ¥ = C" and we let | | be the #”®’ norm on V, where
p:3dD — [1, =] is given. Then | |, is the ##® norm, with 1/p harmonic in D.

For our last example we assume that each | |, is a Hilbert space norm. Let
us identify ¥ with C" and let {, ) denote the standard inner product there.
Thus | | is given by [v|? = (w({)v, v) for some positive matrix-valued func-
tion w(¢) on dD. Then |v|2= (Q(z)v, v), where Q(z) is a positive matrix-
valued function that satisfies Q| ap = w, & is smooth in D, and
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d
(1.3) >, 5j(9"16j9) =0 on D.
i=1

This, of course, generalizes (0.1).

Equation (1.3) arises in complex differential geometry and Yang-Mills
theory. In particular, when d = 2, this is essentially a reformulation of the
anti-self-dual Yang-Mills equation.

Thus our interpolation procedure gives a Perron process for (1.3), as well
as reasonable notions of sub- and supersolutions for it. This is remarkable
because these things usually do not make sense for systems. This also gives
a precise sense in which the potential theory for (1.3) is controlled by the
potential theory for the Laplacian.

Solving the Dirichlet problem for (1.3) with smooth solutions is a serious
issue. We can rewrite (1.3) as

d
AR~ 3 (0,M07'0,2) =0.
Jj=1

Thus there are lower-order terms that are quadratic in the gradient. This is the
critical case: if the growth were less than quadratic, then there are general
methods for dealing with regularity issues, while on the other hand, there are
well-known simple examples of second-order elliptic systems, with the leading
term given by the Laplacian an lower-order terms that are quadratic in the
gradient, for which regularity fails.

It turns out that one can solve the Dirichlet problem for (1.3) with, say, con-
tinuous boundary data and get smooth solutions in D. What saves us are very
strong maximum principles for (1.3) that come from the Perron process. One
can solve (1.3) using the continuity method, and the natural function spaces
to work with involve quadratic Carleson measure conditions on V{, exactly
like the usual conditions on Vu when u is a harmonic function that is bounded
or has BMO boundary values.

This is another manifestation of how the potential theory for (1.3) is con-
trolled by the potential theory for the Laplacian: the natural notions of
Carleson measures are the same in both places. Carleson measures seem to be
a natural tool for treating other second-order elliptic systems with quadratic
terms in the gradient as well.

Let me emphasize that although (1.3) is defined for matrix-valued func-
tions, to define the Perron process for (1.3) we had to fatten up the target
space and work with norm-valued functions. This is unavoidable; the problem
is that the maximum of two Hilbert space norms is no longer a Hilbert space
norm, but just a norm.

The fact that our interpolation procedure leads to a Perron process for (1.3)
is interesting by itself, quite apart from its other features. This is a good example
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of comments I made in the introduction, about how we should view interpola-
tion theory broadly, without retricting ourselves unduly to interpolation
estimates for operators or other standard viewpoints.

Much of what we have done in this section can be recast very naturally in
terms of curvature on holomorphic vector bundles, following Rochberg [R].
I shall not discuss this. Instead, I shall discuss a different way of bringing
geometry into the picture, which is described in [CS].

2. Geometry of the Space of all Banach Spaces

Let 9%(V') denote the space of all norms on V. The idea is to view (V') as some
sort of infinite dimensional manifold, and to recast interpolation theory into
the study of the geometry of N(V).

We would like to think of (V) as being like a Riemannian manifold,
although it is not at all clear how to put a natural Riemannian structure on
(V). However, interpolation theory gives (V') some geometric structure so
that it behaves in many ways like a Riemannian manifold.

For example, given any two points | « |, and |+ | in %(V"), we can use the Cal-
derén method to join them by a curve in R(V): we set |=|g=1[]*]o> | *]1ls>
0 < 60 < 1. We call such a curve a Calderdn curve, and we decide to view the
Calderdn curves as being the geodesics of N(V).

There is a natural sense in which these geodesics minimize length. Given two
norms N and M on V, define

B M(V)
o M) = log S0 N

v#E0Q
and
d(M, N) = max (6(M, N), (N, M)).

This defines a metric on 9¥(V'), a variant of the Banach-Mazur distance. Given
a curve N, in J(V), 0 < ¢ < 1, we define its length to be

Sup Z d(thv th+ 1)’

where the supremum is taken over all partitions {¢;} of [0, 1].

It can be shown that if N, is a Calderdn curve, then its length is equal to
d(Ny, N;). (This is not hard, using (2.1) below.) Unlike the situation for a
Riemannian manifold, however, the converse is not true: it is easy to cook up
a curve of norms M,, 0 < ¢ < 1, that is not a Calderdn curve but whose length
is d(M,, M,).
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Calderdén curves also have the following nice property. If N, and M, are
both Calderén curves, then

2.1) d(N,, M)) is a convex function of ¢.

In the Riemannian case, where d(-, ) is replaced by the geodesic distance,
(2.1) means that the manifold has nonpositive sectional curvature.

Not only is (2.1) natural geometrically, but it is also natural from the point
of view of interpolation. For example, it is also true that 6(V,, M,) is convex,
and this contains the interpolation of operators theorem for Calderdn curves.
For let T be a linear operator, and assume a priori that 7 is invertible. If N,
is a Calderén curve, then so is M,(s) = N,(T(¢)), and the convexity of
8(N,, M) is exactly the same as the convexity of the log of the operator norm
of T relative to N,.

Let me give another example of how interpolation theory can be recast into
the study of the geometry of 9%(¥). In Section 18 of [CS] a new proof of
Wolff’s 4-space reiteration theorem is given (due to R. Rochberg and the
authors) that uses only (2.1), the fact that any two points of 9%(¥") can be joined
by a Calderdn curve, and elementary geometry. This argument does require
substantial a priori assumptions —dim V' < oo is enough— but in cases of con-
crete function spaces this can usually be taken care of by suitable approxima-
tion arguments. (Yves Meyer’s wavelet basis can be particularly useful in this
regard.)

[The proof of Wolff’s theorem given in [CS] gives strong evidence that
there should be a version for quasibanach spaces, but nothing rigorous has
been obtained for the Calderon method.]

These ideas from [CS] on viewing interpolation theory as the study of the
geometry of N(V') make sense independently of the Perron process business,
but there is a relationship between the two.

There is an important generalization of geodesics in Riemannian manifolds,
namely, harmonic mappings. A mapping from a domain in R” into a Riemann-
ian manifold is called harmonic if it is a critical point for the energy norm, which
is just the L2-norm of its first derivatives. When #n = 1, harmonic mappings
are geodesics. In general harmonic maps are solutions of a nonlinear second-
order system whose leading term is given by the Laplacian and whose lower-
order terms are quadratic in the gradient.

Consider the following example. Let X} denote the set of all £ X k positive-
definite matrices over C. There is a natural Riemannian metric on X} that is
invariant under the action @ » T*QT, T e GL(k, C). (In fact, X, is a negatively
curved symmetric space.)

If Q(x) is defined on some region R < R? and takes values in X, then Q is
harmonic if and only if
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d
2.2) >, 8,(2719,2) = 0.
j=1

This equation is of course very similar to (1.3). Matrix-valued functions on
R < RY can be identified with matrix functions on D = R x iR? < C? that are
independent of the imaginary variables. Solutions of (2.2) correspond exactly
to solutions of (1.3) which are independent of the imaginary variables.

This suggests that we define harmonic maps into (V') as follows. If N, is
a norm function defined on R S R?, we say that N, is a harmonic map into
N(V) if the corresponding norm function on D = R X iR? < C? is harmonic
in the sense of our Perron process.

If we identify X with the subset of (C*) consisting of all Hilbert space
norms, then we see that these two notions of harmonic maps of R € R into
X, —the Riemannian and interpolation definitions— coincide. In particular,
the geodesics of X are just the Calderon curves that lie in X . This cor-
responds to d =1 and R = (0, 1).

There is a version of (2.1) for harmonic mappings. If N, and M, are two
harmonic maps of R € R? into 9, then

2.3) d(N,, M,) is subharmonic in x.

The obvious analogue of (2.3) for Riemannian manifolds is true when the
manifold has nonpositive sectional curvature and other conditions hold, e.g.,
if the manifold is complete and simply-connected. For example, X} has these
properties for each k. Thus harmonic maps into X} satisfy (2.3) when d(e, «
is the Riemannian distance or when d(e, ) is the distance on (V).

Norm functions defined in a domain in C? that are harmonic in the sense
of Section 1 also satisfy (2.3). Harmonic norm functions in the sense of Sec-
tion 1 have a lot in common with harmonic maps into %(¥), and in particular,
solutions of (1.3) have a lot in common with harmonic maps into Xj.

When I mentioned in Section 1 the importance of certain strong forms of
the maximum principle for (1.3) for obtaining smooth solutions of the
Dirichlet problem, what I had in mind was (2.3). The methods used in [CS]
for treating the Dirichlet problem for (1.3) can also be used for harmonic
maps into Riemannian manifolds which are, say, complete, simply connected,
and have nonpositive sectional curvature. (These hypotheses can be weakened
to those used in [H].) The analogue of (2.3) again plays an important role.

Incidentally, I have restricted myself in this section to harmonic maps defined
on some domain in R? —rather than on a general Riemannian manifold with
boundary— only for convenience.

In this section I have outlined a number of formal analogies between Rieman-
nian geometry and the geometry of (V) that comes from interpolation. In
the next section I describe a way of making these formal analogies precise.
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3. Differential Geometry on the Space of all Banach Spaces

There is a way to endow a manifold with geometric structure similar to that
of a Riemannian manifold, but without having a Riemannian metric. This is
done by specifying a connection on that manifold. The precise definition of
a connection can be rather confusing, so instead to giving the definition I shall
try to motivate and explain it in a more limited way that suits our context.

To do this we first look more closely at how the notion of a geodesic is
determined by a Riemannian metric. Let us work in local coordinates, that is,
we identify a piece of a given Riemannian manifold with an open subset U
of R”, with the Riemannian metric given by some matrix-valued function (g;)
on U. A curve v(¢) in U is a geodesic relative to g if

Ye(®) + L TEO@) @)1, = 0,
L,J

where the dots denote derivatives in ¢. The functions FZ(x) can be expressed
explicitely in terms of g and its first derivatives, but the specific formula is not
relevant for the present purpose.

On a Riemannian manifold there is a globally-defined object called the
Levi-Cevita connection, which in local coordinates is given in terms of the
l"f;’s above. This object encodes a great deal of the geometry of the Riemann-
ian manifold without actually giving the metric. As in (3.1), the class of
geodesics on the manifold is determined by the connection, and t his is true
for harmonic maps into the manifold as well. The Riemann curvature tensor
is also given in terms of the connection, without recourse to the metric.

We can also consider connections on a manifold that do not come from a
Riemannian metric. A connection can be determined by specifying I"f.‘j’s in
local coordinates in a coherent way. By choosing a connection we endow the
manifold with a lot of the same geometric structure as in the Riemannian case
—geodesics, harmonic maps into the manifold, and curvature— without ac-
tually having a metric.

It turns out that there is a natural choice of connection on 9(V’), whose
geodesics are the Calderdn curves, and such that harmonic maps from a domain
in R” into N(V') are the same as the harmonic maps defined in Section 2. This
allows us to ask new questions about the geometry of R(V), e.g., what is its
curvature?

The task of defining this connection is simplified by the existence of a
natural choice of global coordinates on (V’), so that choosing a connection
reduces to choosing I‘fj in that one coordinate system. Before describing how
this choice is made, let me reformulate slightly the I"f;.’s in a way that is more
convenient in infinite dimensions. Given a point X, Fg.(x) defines a bilinear
operator I',: R” X R” = R”" given by ¢ = I',(a, b),
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Cr = ZI‘ffj(x)a,.bj, a,b,ceR".
ij

Thus in local-coordinates a connection is determined by a function I' that
takes values in bilinear operators.

To see how to choose our connection on 9(V), we must first find a differen-
tial equation for Calderdn curves; then we choose the connection so that the
Calderdn curves are geodesics.

It is a beautiful fact due to Rochberg [R] that there is a PDE that
characterizes Calderén curves. Let N,, 0 <t < 1, be a Calderén curve of
norms on ¥ = C%, and set F(¢, v) = N,(v)®. Then N, is a Calderén curve if and
only if

(3.2) F— 2 F*F Fg = 0.
Jjk
Here F;, Fz, and Fj; denote the various complex derivatives of F in v e C?,

e.g.

aZ
F=- )
30,00,

and F* denotes the inverse of Fj,;, so that
;FfEF,; =8.

The dots denote derivatives in #.

To be honest, Calderén curves may not satisfy (3.2) in the usual sense,
because F may not be smooth enough, or F;z may not be invertible. There are
reasonable senses in which Calderdn curves are generalized solutions of (3.2).
I shall not discuss this here. The main point is that (3.2) tells us how to choose
a connection on (V).

Let us first set some preliminaries. Let CZ(V) denote the Banach space of
real-valued functions on ¥ that are C? except at the origin and also complex
homogeneous of degree 2, i.e., h(av) = |a|*(v) for any a € C, he C5(V). Let
9N(V) denote the open subset of C3(V) of positive functions that are strictly
convex. (For some purposes —such as making sense of (3.2)— strict plurisub-
harmonicity would suffice.) For the discussion below we work with 3%,(V)
instead of N(V) so that everything is well defined.

We view R,(V) S C3(V) as playing the same role as U < R” did before.
In this context I' is now a function on %,(¥’) that takes values in bilinear
operators defined on C3 x C3: Given Fe R,(V) and A, B e C3(V), we define

(3.3) T'.(A,B) = -Re%}Fﬂ?A ;Bx.
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This defines our connection on 9,(¥). By definition, the geodesics for I" are
precisely the solutions of (3.2), i.e., Calderdn curves.

Notice that I'(A4, B) is symmetric in A and B. This property is natural and
useful, and it is one of the defining properties of the Levi-Cevita connection
on a Riemannian manifold. (In technical jargon, this symmetry means that
the connection is torsion-free.) Notice also that the definition of I' is forced
on us once we decide that it should be symmetric and that its geodesics should
be Calderén curves.

As I promised, the class of harmonic maps of a domain in R” into N, (V)
defined by I' corresponds exactly to the definition given in Section 2.

Now that we have found the connection on 9%,(¥) that corresponds to inter-
polation theory, let us consider its properties from the point of view of
elementary differential geometry.

Let us start with a very simple question. What can we say about the initial-
value problem for geodesics on %, (V)? Given F, € %ty (V), Ay € C5(V), when
can we find a solution F(¢, v), 0 < t < ?, of (3.2) such that F = F, and F= Ay
at t =07

If Fy and A, are real-analytic except at v = 0, then we can solve the initial
value problem for short time using the Cauchy-Kowalevsky theorem. I don’t
think one can do much better. I can prove the following: Given F;, € #,(V),
if we can solve the initial value problem whenever A,(v) is a quadratic form,
and with reasonable bounds, then F must be in the Gevrey class of order 2,
i.e., Fis C* (except at v = 0), and its n™ derivative grows in n no worse that
C"(n!)*.

Let us now address a more interesting issue: what can we say about the cur-
vature? The curvature associated to I' can be expressed in terms of I" and its
first derivatives exactly as in the Riemannian case. I will not give the formula
for it, but it can be found in most texts on differential geometry.

Let me describe three examples of how we can learn something from look-
ing at the curvature.

The curvature of I' is rather a mess. One reason is that the complex con-
jugations and the «Re» make the algebra more complicated. This suggests
that we first consider a model situation without these problems.

Let W = R?, and let %' (W) denote the set of all norms on W. Let C3(W) and

o(W) be as before, but with real homogeneity replacing complex homogeneity.
Define T' for Ng(W) by
(3.4) T(A,B) = - gFj"A Br,

Js
FeNy(W), A,BeC3(W).

Thus T is exactly like T', except that we have removed all vestiges of the com-
plex numbers.
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The curvature of T' is much simpler that that of I': it vanishes identically.
General nonsense says that there is a change of variables under which T
transforms to 0. (The way I" transforms under a change of variables is a little
complicated.) A good guess and some calculation show that the desired
change of variables is given by 6(|«|) = | < | *, i.e., the map that takes a norm
to its dual norm. (We view |+|* as a norm on W, via the standard pairing
on W=R"%)

More calculation allows one to show that I' is preserved by this same change
of variables. This contains in particular the duality theorem for the Calderon
method. Still more calculation of the same type allows one to prove a duality
theorem for the interpolation method described in Section 1. This result was
obtained first by Slodkowski [S2, part I], and in fact he proved a much more
general theorem.

A better real-variable model for I' on Ng(W) is I'’, defined by

1 .
(3.5 I‘I’E(A,B)=—E»EF"‘AJ.B,€, FeRo(W), A,BeCi(W).

The same calculations that show that I is trivialized by & also give that I'’
is invariant under 6. In particular, the class of geodesics associated to I'' is
invariant under 6, just like for the Calderén method.

Let me briefly describe a computation that arises when computing how I,
', and '’ transform under 6 and which is interesting in its own right. To com-
pute these transformations, we must first compute the differential of é.
Because we are working in a somewhat unusual situation, let me spell out
what I mean by this. Fix Fe R,(W). Given A € C3(W), define

O(F + tA) — 6(F)

(3.10) dé(A) = lim
t—0 t

i.e., the directional derivative of é at F in the direction of A.

It turns out that there is a nice formula for do.(A4). Let J be the duality
map associated to F, that is, if N is the norm such that N> = F, then
N*(J(v)) = N(v) and (v, J(v)) = N(v) - N*(J(v)). Here (., ) denotes the
standard pairing on R?, which is used to define the dual norm. Our formula
for dé is

(3.11) dd(A)= —-AoJ .

The proof of (3.11) is not infinitely difficult. First we recall the well-known
fact that

J(V) = %VF(U).



INTERPOLATION OF BANACH SPACES, DIFFERENTIAL GEOMETRY AND DIFFERENTIAL EQUATIONS 167

Indeed, by definition the linear functional w — {w, J(v)) attains its maximum on

the F-sphere S = {w: F(w) = F(v)} at v, so that the hyperplane {w: {(w, J(v))

= (v, J(v)) } must be tangent to S at v, which implies that J(v) is proportional

to VF at v. The constant 1/2 is determined by the relation F(v) = F*(J(v)).
Next, we differentiate the relation

(3.12) F=F*o],

viewing J as a function of F, and apply the chain rule. When we differentiate
both sides of (3.12) in the direction of A4, just as in the right side of (3.10),
we get

0
(3.13) A = (dé(A)) o J + ; <<371F*> ° J) - (d(A)),.

Let me explain the right side of (3.13). By definitions, dé.(A4) is a function
on W (homogeneous of degree 2), and when we compose that function with
J, we get the first term on the right. The second term on the right comes from
the chain rule. Because J is a map from W to W for each F, so is dJ.(A), and
(dJ(A)), denotes the / " component of this vector-valued function.

We can simplify this considerably. Because

J= %VF, dJ(A) = %VA.
Also,
K= 1 VF*
2
is just the duality map for F*, so that K = J~!, and thus

1
—(VF*
5 (VF*) o)

is the identity. If we write out the last term in (3.13) as a function of v using
these remarks, we get

1 9
; 20[ . E 5’1‘)714(0)

Because A is homogeneous of degree 2, one can show that this equals 2A(v).
Plugging this into (3.13) gives (3.11).

Once we have computed db, it is not difficult to compute the effect of the
change of variables 6 on I* and I''. The case of I' is more complicated, but
in the same spirit.
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This concludes the discussion of the first example of how we can learn so-
mething from computing the curvature of these connections. We have seen
that it has led us to important formulae, which helps us compute the ac-
tion of duality on I'. It also led to an interesting real-variable model for T,
to wit, I''.

The second example deals with the following question: Is there some natu-
ral sense in which 9,(¥) is negatively curved? Usually «negatively curved» is
defined to mean that the sectional curvatures are negative, and the definition
of sectional curvature involves both the curvature tensor and the Riemannian
metric. In the case of R,(V), it is not clear how «negatively curved» should
be interpreted.

Let me give two pieces of evidence that suggest that 9%,(?) is negatively curved
in some reasonable sense. First, we have seen that if M,, N, are two Calderén
curves, then d(N,, M,) is convex. In the Riemannian case this means that the
sectional curvature is nonpositive.

Second, %,(V’) contains the space of all Hilbert space norms on ¥ as a sub-
manifold, which we identify with the manifold of all d X d positive-definite
matrices. This manifold has a natural Riemannian structure with nonpositive
sectional curvature, and the corresponding connection is the same as what you
get by restricting I" to it.

There are in fact natural senses in which I and I'’ have nonpositive curvatu-
re. Understanding how this works leads to a better knowledge of the
maximum principles for geodesics and harmonic maps of I"' and I'’, and the
relationship between the curvature and these maximum principles.

For the third example we start with the following question: is there a Rie-
mannian structure on Ny (V) or Ng(W) compatible with I" or I'’?

Let me begin by explaining how this relates to curvature. I shall restrict the
discussion to the specific example of Ry(W), equipped with I''.

A Riemannian metric on R5(W) is a bilinear-form valued function g on
No(W); more precisely, for each FeNy(W), g.(+, ) should be a positive
bilinear form on C3(W). (I am also willing to consider g’s that are only defined
on subclasses of C3 with more smoothness, even real-analyticity.)

There are a number of ways of thinking of the curvature tensor R associated to
T''. I prefer to think of it as follows. For each Fe Ng(W) and every A, B
e C3(W),R (A, B) defines a linear operator on homogeneous functions of de-
gree 2 on W. Thus for each Ce C3(W), R r(A, B)C is a homogeneous function
of degree 2 on W. Also, R.(A,B) is linear in A and B, and R (A4, B)
= —R(B, A).

In the case of I'’, the formula for the curvature is not so bad:

1 o : .
(3.14) R(A,B)C = 7 2, (FXB,F'A,C, — FXA,F"B,C).
ijkl
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As usual, subscripts denote derivatives, and F*' denotes the inverse of Fj,.
(The curvature for I' is more complicated, but in the same spirit.)

If I'' is the canonical connection associated to a Riemannian metric g, then
the curvature tensor must satisfy some extra conditions. For example, if
FeNy(W)is given, and A, B, C, D € C3(W) are arbitrary, then we would ha-
ve to have

(3.15) g:(R-(A, B)C, D) = —g,(C, R,(A, B)D).

In other words, R.(4, B) should define an antisymmetric operator relative to
gp(' ,*).

Let us choose F to be the square of the ordinary Euclidean norm, and let
us denote by g, and R, the values of g, and R at this particular point. In this
case (3.14) reduces to

1
J!

Suppose now that dim W = 2. We can identify homogeneous functions of
degree 2 with functions on the circle. One can easily show that every tangent
vector field X on the circle arises as the scum of two operators of the form
Ry (A, B). Hence the compatibility condition (3.15) tells us that such X must
be antisymmetric with respect to g,(e, ¢). It is not hard to show that this
implies that

2(A,B)=a j;”A(t)B'(t) dr

for some a € R, where I have now identified functions on the circle with perio-
dic functions on [0, 27]. Because this bilinear form is never symmetric and
positive-definite, we conclude that I"’ is not compatible with any Riemannian
metric when dim W = 2.,

It does not seem reasonable to expect that in higher dimensions the linear
span of the operators R,(A, B) should give all tangent vector fields on the
sphere. It seems much more reasonable to hope that the Lie algebra generated
by these operators would give all such tangent vector fields. For the purposes
above, it would suffice if the Lie algebra generated by Ry(A4, B) and covariant
derivatives of the curvature operator gave everything. In any case, it is very
likely still true in higher dimensions that I'’ is never compatible with a Rie-
mannian metric, and that one can prove this using (3.15) and its variants.

The preceeding discussion can and should be phrased in terms of the holo-
nomy group of the connection I''. Let me briefly indicate some of the main
points.

The holonomy group of I'' can be naturally realized as a subgroup of the
group of all orientation-preserving diffeomorphisms of the unit sphere of
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W = R, no matter what dim W is. Calculations like those above show that
when dim W = 2 the holonomy group is in some moral sénse the group of all
the orientation-preserving diffeomorphisms on the circle. To be specific, the
Lie algebra of the holonomy group contains all real-analytic vector fields on
the circle. I do not know whether the analogue of this last fact is true in
higher-dimensions.

Although there is more to say about the behavior of I' and I'’ from the view-
point of differential geometry, and on the relationship of this to interpolation
theory, it is probable better to move on to the next topic.

4. Interpolation Theory Via Differential Equations

Since I'’ seems to be a good real-variable model for I', it is natural to ask whet-
her the geodesics for I'' —i.e., solutions F(¢, v) of

(4.1) Fol SF*FF, =0

2 Jjk J
— share many properties with Calderdn curves. For example, does (4.1) defi-
ne a good interpolation method?

I think that this is a fun question. We are starting with nothing but the
equation, and we want to analyze its interpolation-theoretic properties di-
rectly from the PDE.

One of the first questions is whether we can solve the boundary value prob-
lem for (4.1). We will not be able to get smooth solutions in general, but we
can look for generalized solutions via a Perron process.

Let me warn the reader from the outset that in this discussion I intend to
ignore all issues related to making sense of generalized solutions, and instead do
the computations as though everything is smooth. This will help me to convey
the essential ideas without getting bogged down in less interesting technicalities.

To define a Perron process we first need to have a good notion of suharmo-
nicity. It can be shown that F(¢, v) is a subsolution of (4.1) (i.e., the left side
is > 0) if and only if for each affine W-valued function f(¢), we have

(4.2) Ft,f@) = - ,z;ij(t,f(t»f;-fk.
Js

This should be compared with the notion of subharmonicity discussed in Sec-
tion 1. [Incidentally, subsolutions for the geodesic equation for I (which
amounts to replacing the 1/2 in (4.1) with a 1) are characterized by the pro-
perty that F(z, f(t)) > 0 for all affine functions f(¢). Also, F(t, v) is a geodesic
for I if and only if F* is affine. This is because I is trivialized by the change
of variables 6(| |) = | [*.]
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Notice that the subharmonicity condition (4.2) is equivalent to requiring
that F(¢, f(s + t)) be a subharmonic function of (s, ¢) for all affine functions
f. This helps make clear certain basic properties of this notion of a subhar-
monic norm function, for instance, that the maximum of two such things is
also subharmonic.

Using this notion of subharmonicity we can define a Perron process that
gives us generalized solutions of the boundary value problem for (4.1).

Just as in the case of Calderdn curves, if F(¢, v) and G(¢, v) are two solutions
of (4.1), then 8(F, G) and d(F, G) are convex functions of ¢, where 6 and d
are as defined in Section 2. One can derive from this an interpolation of
operators theorem: if | |, is a curve of norms such that F(z, v) = | v|?satisfies
(4.1), and if 7: W— W is linear, then log|T]|,, is convex, where | |, .
denotes the operator norm of T relative to | |,.

Thus (4.1) does define an interpolation method. There is a duality theorem
for this method because I'’ is invariant under the duality mapping on 3¢"(W),
as we saw in Section 3.

Let us now address the issue of computing examples for this interpolation
method. The Hilbert space case works out in essentially the same way as for
the Calderén method. The only difference is that now the Hilbert spaces are
real, and one computes with real symmetric positive-definite matrices instead
of their complex cousins.

The situation is quite different for L” spaces. If | |, is taken to be the (7@
norm on W = RY then F(t,v) = |v|? gives a solution of (4.1) if and only if
p(t) is constant.

This turns out to be not as bad as it may seem. If 1/p(¢) is affine, then F
gives a subsolution of (4.1) when p(¢) > 2, and it gives a supersolution when
p() <2

More generally, given any function p(¢), 1 < p(t) < o, with 1/p affine, we
can define another interpolation method using the equation

. -1 L 5\2
4.3) F- p—p—-ZF”‘Fij + <§> F=0.

Here F corresponds to a norm function | |, by F(f,v) = |v]|?®. As with
(4.1), we can find generalized solutions for the boundary-value problem for
(4.3) using a Perron process, based on a notion of subharmonicity that is
similar to (4.2), but more complicated. There is an interpolation of operators
theorem for (4.3), as well as a duality theorem: the dual of a solution of (4.3)
is again a solution of (4.3), but with p replaced by its conjugate exponent.

If 1/g(¢) is affine, then the £7¥) norm yields a solution of (4.3) if g(¢) = p(¢),
it gives a subsolution when g(¢) > p(¢), and it gives a supersolution when

q(t) < p(o).
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Using these interpolation methods we recover the theorem of Marcel Riesz,
which states that if 1/p(¢) and 1/q(¢) are affine, p(¢) < g(¢), and if T'is a linear
operator, then the log of the L?-L? operator norm of T is convex. Here L”
denotes the L”-space of real functions. I should emphasize that for real L”-
spaces this theorem is false if we do not assume that p < g.

These new interpolation methods seem to be natural versions of the com-
plex method for real Banach spaces. Although the method of analysis of (4.1)
and (4.3) is based on differential equations, and hence is quite different from
the usual approaches for the complex method, a very similar analysis can be
used for the complex method.

These new methods hold open the alluring prospect of being able to build
interpolation methods to suit your needs, by writting down a differential
equation.

Let me mention one other property of the interpolation methods defined by
(4.3), concerning the relationship between these methods and the classical real
method. Suppose we are given two norms A and B on W, and let [4, B], ,
denote the norms obtained from A4 and B by the real method. Let p(¢) be a
function such that 1/p(¢) is affine. Then given any e > 0 there is a constant
C< oo and a norm function N, defined for e<#<1 —¢, such that
F(t,v) = N,(v)*® is a generalized solution of (4.3), and N, is equivalent to
[A, Bl; pey On € < £ < 1 — ¢, with constant C. (Of course, C does not depend
on dim W.)

In other words, the classical real method generates interpolation families
for (4.3).

Let me sketch the proof of this. Let K(z,v) denote the K-functional
associated to the couple (4, B). Then the [A, B], ,) norm is equivalent

Ht,v) = (S @K, V)y©) o,
J

I claim that H(¢, v)*® is a subsolution of (4.3). Indeed, for any sequence of
norms | |;,

4.4 G@t,v) = 227" |v]p7®

is a subsolution of (4.3). This is because a sum of subsolutions is a subsolu-
tion, and one can simply compute that each of the individual terms is a sub-
solution.

Thus the K-functional definition of [4, Bl ,, gives a subsolution for (4.3).
One can show that the J-functional definition gives a supersolution in much
the same way (or you could use duality). From here it is not difficult to get N,.

From the point of view of nonlinear PDE, this is quite remarkable: we are
getting some sort of superposition principle for (4.3).
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Note that although G(z, v) as in (4.4) always gives a subsolution, in general
it need not be anywhere near a supersolution. In this particular case, where
all the | |/s come from the K-functional as above, what we get is also
equivalent to a supersolution.

Before leaving this section I should mention that we can also consider
higher-dimensional versions of the interpolation methods defined by (4.1) and
(4.3), just as in Section 1.

5. A Few Last Comments

It seems natural at this stage to reiterate my opinion (indicated in the introduc-
tion) that we should look for new ways of viewing interpolation theory and
new connections with other fields. To give an example of this I shall discuss
some observations of Coifman and myself.

Much of what we did in Section 3 still makes sense if we work with spaces
of convex functions instead of norms. For example, if we let H(W) denote
the space of strictly convex C? functions on W = R¢, then we can still define
connections I* and I'" on H(W) exactly as before, and we can define geodesics
associated to these connections, just as before. Similarly, we can also define
I on H(V), V=C"

The equation for geodesics for T is

5.1 F- Y F*FF.=0, F=F{tv), veW.

A little computation shows that (5.1) is equivalent to the real Monge-Ampére
equation, i.e., det (Hess F) = 0, where Hess F denotes the Hessian of F, that
is, the matrix of second derivatives of F in all variables (¢ and v).

In the context of the Monge-Ampére equation it is natural not to require
our functions to be defined on all of W, and even to allow their domains to
change with . Although this is a bit awkward, the formalism with connections
and such still makes sense, at least locally.

Even in this larger setting, the curvature of I* vanishes. There is also a nice
change of variables that trivializes I, analogous to duality in the context of
norms. Given a convex function F defined on some domain in W, its con-
jugate F* is defined by

5.2) F*(w) = sug{(v, wy — F(v)}.

Here ¢, ) is the standard pairing on W = R%. To be precise, the domain of
F* is defined to be those w € W such that the above supremum is finite. The
change of variables F — F* can be shown to trivialize I, just as the duality
function did in the norm case.
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The preceeding contains in particular the following well-known fact. If u is
a solution of Monge-Ampére in a domain in R”, with Rank (Hessu) = n — 1,
then u determines a foliation of its domain by lines, with Du constant on each
line. Note that this is a fact about individual solutions of Monge-Ampére,
while the above stuff about trivializing I is a property of the Monge-Ampére
operator.

[To be honest, to get this business about foliations by lines in full generality,
we have to have a version of the conjugate function F* when F is not convex
but satisfies det (Hess F) # 0. This can be done, but only locally, which is
good enough for the foliation story.]

Calderén curves, and more generally interpolation families in the sense of
[CRSW], give rise to solutions of the complex Monge-Ampére equation. If
|+|, is a family of norms on the unit disk, and F(z, v) = |v|Z2, then ||, is
an interpolation family in the sense of [CRSW] if and only if

(5.3) Fz?. - ZFjEF'J'zFEZ =0.

Here the z and Z subscripts denote d/dz and d/dZ derivatives.

This characterization is due to Rochberg [R]. (He does not write it in quite
this form, however.) Equation (3.2) is a special case of this, corresponding to
the case where F(z, v) is defined on the strip, instead of the disk, and where
F(z, v) does not depend on Im (¥).

A little calculation shows that (5.3) is equivalent to requiring that F(z, v)
satisfies the complex Monge-Ampére equation, as a function of both z and v.
The complex Monge-Ampére equation is defined by

62
(5.4) det < 55,55, u> =0,

for u(¢) defined in some domain in C”".

The relationship between complex Monge-Ampére and the interpolation
construction of [CRSW] is more fundamental than one sees at first glance. Let
me give some examples of this. If u satisfies (5.4) and also the rank of the
complex Hessian aiéju is n — 1, then it is well known that the domain of u
is foliated by a family of Riemann surfaces, such that u restricts to a harmonic
function on each of these surfaces. This should be compared with the foliation
by lines in the real case. In the case where u is given by |v|2, these Riemann
surfaces are just the graphs of the extremal functions given in [CRSW].
(Recall that these extremal fuctions are the holomorphic V-valued functions
f(2) such that | f(z)|, in constant.)

L. Lempert [L1, 2] has solved certain boundary-value problems for the
homogeneous complex Monge-Ampére equation on domains in C” using a set-
up that is strikingly similar to the interpolation method in [CRSW]. Lempert
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builds his solutions by first solving extremal problems for holomorphic func-
tions defined on the unit disc and taking values in the given domain. These
extremal problems are much like those in [CRSW]. The way that the solution
of Monge-Ampére is built out of the solutions of these extremal problems is
also very similar to the interpolation construction in [CRSW]. Convexity
assumptions on the given domain (in C") play an important role in [L1, 2],
just as convexity is important in [CRSW] (in obtaining the reiteration theorem,
for example).

It is not hard to see why extremal problems like those in [CRSW] and
[L1, 2] should be related to finding solutions of the homogeneous complex
Monge-Ampére equation. As I have mentioned, such a solution often has
associated to it a foliation of Riemann surfaces on which the solution is har-
monic. If you can find these Riemann surfaces, and if their boundaries lie
inside the boundary of the domain on which you are working, then you can
obtain the solution from its boundary values by solving the Dirichlet problem
for harmonic functions on these Riemann surfaces. In [L1, 2] and [CRSW],
these Riemann surfaces are analytic disks obtained by solving an extremal
problem.

These Riemann surfaces will always be associated to extremal problems. If
u is a plurisubharmonic solution to (5.4), then its restriction to any Riemann
surface is subharmonic, and the ones in the foliation are exactly those for
which the restriction is harmonic. If these good Riemann surfaces have their
boundaries contained in the boundary of the domain you are working on,
then the preceeding remark can be used to write down an extremal problem
in terms of the boundary values of u for which the good Riemann surfaces
are the solutions.

I should emphasize that the details of the analysis in [L] and [CRSW] are
quite different, despite the similarities in the set-up. The techniques Lempert
introduces are very interesting and should prove useful in interpolation theory.

The preceeding discussion gives another example of how interpolation theory
interacts with PDE in nontraditional ways.

Many of the questions that we asked at the end of the introduction in the
case of norms also make sense in the more general context indicated at the
beginning of the section. For example, is there a reasonable sense in which the
geodesics for I', T, or I'' give «optimal» curves of convex functions joining
a given pair of convex functions? What are natural notions of «optimality»
in this context, not necessarily related to these connections? Are there other
natural connections on the space of convex functions?

In the norm case we saw that I'' has more in common with I' than T
does. In what ways is this manifested in this more general setting? Perhaps
the geodesic equation for I'’ is interesting in the Monge-Ampére scheme of
things.
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