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Abstract

In this paper we deal with several characterizations of the Hardy-Sobolev
spaces in the unit ball of C", that is, spaces of holomorphic functions in the
ball whose derivatives up to a certain order belong to the classical Hardy
spaces. Some of our characterizations are in terms of maximal functions, area
functions or Littlewood-Paley functions involving only complex-tangential
derivatives. A special case of our results is a characterization of H? itself
involving only complex-tangential derivatives.

1. Introduction. Statement of Results
Let B" denote the unit ball of C". For a holomorphic function f on B" with

homogeneous expansion f(z) = 2, f;(z), the radial fractional derivative of
order s > 0 is defined

Rf(2) = ;(k + 1))
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(so for s=1, Rf(z) = f(z) + Nf(z), where N = sz(a/azj) is the normal
field). The Hardy-Sobolev space H? is defined )

H? = [f: sup j RFGo)|Pdo(6) = | 715, < +°°}-

Here S denotes the boundary of B” and do its normalized Lebesgue measure.
It is a well-known general principle that holomorphic functions in B"
behave twice as well in the complex-tangential directions. Our first goal is to
make precise how this principle applies to the Hardy-Sobolev spaces HZ. To
state our results we need to introduce some definitions. A vector field

n a _
T= (2)—> . *(B"
j=Zl a;(z) z, a;e C(B™)

is called complex-tangential if
n
j;l a;(2)z; = 0.

If T is a complex-tangential vector field and f is holomorphic then Tf is
generally no longer holomorphic. For this reason it is more natural to deal
with real-variable characterizations of H? itself. These are in terms of the
following quantities, defined for a smooth function f:

(a) The radial maximal function
fr@) =sup {|frm]:0<r<1}, neSs.
(b) The admissible maximal function

SEm) =sup {|f@)|:ze D, ()}.

Here D, (1) denotes the admissible approach region
n = o 2
D.(n) = jzeB|1 - 2| <5 (1~ |z

with a > 1.
(¢) The admissible area function
A = ([, IRF@PA - |2 ~"dm @],

(d) The Littlewood-Paley g-function

(N = [ [, IRArn)*(1 = rdr}”.
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It will be convenient to introduce the notations, for fe R* and v > 0
Ao S = (], CIRF@PA - 2" dm @]

gy f () = U; IR (rp)|*(1 - ,-)27—1dr}1/2

(so that A, = A} , and g = g}).

If ¢(f) denotes any of the functions in (a)-(d), then fe H” if and only if
o(f) e LP(S), (see [8]). It then follows by standard techniques (see [7, pp.
214-216] and Lemma 3.6 below) that the area function

Afx.,_sf(n) = UD o |R’f(z)|2(1 - lz|)2t—2s—n—ldm (z)]vz

with any ¢ > s, characterizes H?, i.e., fe H? if and only if A, ,_,fe L"(S).
In a similar way, the g-function

g fln) = ”; |Rtf(’?7)|2(1 _ r)Z’_zs_ldr}Vz

characterizes H? if ¢ > s.
Our first result states that if # > s, if &k is a positive integer with k < 2¢ and
Ty, ..., T, are complex-tangential vector fields, then fe H? implies

@ UD P |T;- - TRR*"™**f@)>A = |z))* >~ "~ 'dm (z)]meL”(S)

) U; T, - - TR (rm) (1 — r)ZI—Zs—ldr] 2 1m(s).

Also, if fe H? and k < 2s, the radial and admissible maximal functions of
T,--- T,R*~*2f are in L?(S). That is, one can formally replace each R** by
one complex-tangential vector field and still get a function in L?(S).

In case of the area function, this result again follows by the standard tech-
niques in [7, pp. 214-216] and [6, Th. 12], but for the g-function and the two
maximal functions it depends on some special properties of complex-tangential
derivatives. We comment briefly on these. Each complex-tangential vector
field is a linear combination of the T;

d ad
T,=Z%— -
% Bzi

y azJ

’ i,j=1,...,n, l#_]

&

If fis holomorphic, then T,.j fis no longer holomorphic, but on every complex
line is annihilated by 8. In the same way, if the T}, . . ., T} are chosen among
the T, (which we may assume without loss of generality), then T - - T fis
annihilated by 3% * ! on every complex line. We show that such functions share
many properties of holomorphic functions, such as mean-value inequalities,
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Cauchy inequalities for derivatives etc., which are on the basis for the transi-
tion from the area function to the others.

Our second result states that the above property gives in fact a characterization
of H?. Namely, with k fixed, if (1) or (2) holds for all possible choices of T --- T}
among the 7}, then fe H%. In the same way, if (T - - - T,R*~*/*f)* € L” for
all Ty - - - Ty, (k fixed, k < 25), then fe H?. Choosing k such that £ > 2s and
t = k/2 we thus obtain characterizations of H? in terms of area functions or
g-functions involving only complex-tangential derivatives. For instance, as a
particular case we obtain that fe H” if and only if for all Tij

{Jo| Tl m [ dr} e L2(S).

Also, when s = k/2, fe H? if and only if (T} --- T, f)* fe LP(S). We point
out that these characteri_zations do not involve the T‘u The same result but
allowing as well T;; and T,; would be much easier to prove because the normal
derivative appears as the Lie bracket of T;; and T;;’s.

We want to point out a basic difference that occurs, as in the real variable
theory of Hardy spaces, between the area functions and the others. Indeed,
for the area functions there are pointwise estimates, in the sense that the
integral appearing in (1) and the A, ,_, are pointwise equivalent, (up to
replacement of the aperture «), but there are no such estimates for the others,
e.g. it is not possible to bound (Tfj )T by (Rf)* or (Rf)*, pointwise.

For example, with n = 2, let f(z, w) = w?log (1 — z) then Rf is bounded in
B? but T*fis not (here T = Z(3/dw) — w(3/9z)). For this reason it is easier to
deal with the area functions.

We also obtain analogous results for the Bergman-Sobolev spaces

B? = {f holomorphic: fm IR*f(2)|”(1 — |z])"dm (z) < +oo},

p>0, v> —1. Namely, one can replace R*’? by k complex-tangential vec-
tor fields to define these spaces. The paper [1] deals with one aspect of this.

This paper is organized as follows. In the second section we collect all prop-
erties that will be needed of functions annihilated by some power of d on every
complex line. In the third section we prove our results for the case of area
functions and in the fourth section we deal with the g-functions and maximal
functions. The fifth section is more technical and deals with the following
question, in case s = k/2: if R¥’> € HP then it has a distribution boundary
value which belongs to the space H?%, of [4]. Is this also true for T; - - - T} f?
We show in Section 5 that this is the case, in spite of the fact that T, - - - T f
is not holomorphic. Finally in section 6 we prove our result on Bergman-
Sobolev spaces.

In the remaining of this section we introduce some more notations. First,
as it is easily checked, the operators T,; commute with the ordinary Laplacian
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A, so that the functions T - - - T} f are harmonic. It will be then convenient
to consider R? as defined in the class of harmonic functions. If u is harmonic
and u = 2}, P, is its expansion in spherical harmonics, then we define as well
Ru =2, (k+ 1)°Py.

The operator I* of fractional integration is defined

s 1 1 1 s—1
I'f(z) =W . (log7> f(t2)dt.

Then
I’'P, =(k+ 1) °P,

if P, is homogeneous of degree k. Thus 7° is the inverse of R®. This simple
expression of the inverse of R’ is the technical reason for which we use R in-
stead of N. When s = 1 we will write simply 7. It is easily checked that 7 com-
mutes with the 7}; and the 7j;.

We will consider differential operators X appearing as composition

Xf=X1"'ka

where each X; is R, a T,ora T’u For such an operator its weight is defined
to be X ¥ w(X,), the weight of R being 1 and 1/2 the weight of each T, and

Tij. The functions Xf are most easily estimated in terms of d*f(X,, . .., X}).
This is the function whose value at z e B” is
akf
— @)
vy - - - vy

with v, = X;(2). It is easi}y checked by induction that Xf can be written as a
linear combination of d’f(Y1, ..., Y) with j < &, and

Jj k

; w(Y) < 21: w(X),
so that when proving estimates on Xf involving its weight we will instead
estimate d*f(X. 1» - - - » Xx), Which is simpler because the XJ are «frozen» at z.

One final remark is in order. As said before some of our results depend on

the special properties that the T; f have for an holomorphic f in the ball and
thus do not generalize to other domains. It is probably the case that our results
hold for more general domains, but this would require other methods, as
maybe the «freezing coefficient» technique. The technical difficulty involved
would be similar as the one encountered when trying to generalize the
Fefferman-Stein paper on real H? spaces to a general smooth domain.
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2. On Functions Annihilated by Powers of 3

If fis holomorphic.in B” and T3, . .., T} are complex-tangential vector fields
then of course F=T;--: T, f is no longer holomorphic. Indeed if we fix
Zo € B", £, €C" then the function u(\) = F(z, + A\{,) need not be harmonic
not even subharmonic. Nevertheless we will see that the function # does
satisfy some mean value inequalities that we can exploit to obtain «non-
isotropic» mean value estimates for the function F. It is clear that u does
satisfy the differential equation (8%/dX**)u = 0.

Definition. Let U < C be an open set; by H,(U) we mean the set of func-
tions u defined on U so that (3% /oN)u(\) = 0 in U. By HE(U) we mean those
u in H,(U) so that

[ lul?dm = Ju]} < oo

It is easily proved, by induction on k, that if u € H,(U) and A\, € C, then
u has a unique expression

k-1

uN = 3, (x = R),0)

j=0

where fj is holomorphic in U.

Lemma 2.1. Given non-negative integers I, m there is a constant C = C(l, m)
such that if ue Hy(D(\y, r)), then

al+m

90
angnm M)

c
€ u(\)| dm (N).
o |, OO dmO)

Proor. By a translation and dilation it is enough to prove this when \; = 0
and r = 1. Moreover we may assume that u € H, (D(0, R)) for some R > 1. For
a given /, m we will find a polynomial p = p, ,, so that

I+m

NG u(0) = J;M - u(Np(N) dm (N).

The result will follow with
C=sup, ., PO

As observed above we have

k-1

uN = 3 M0,

Jj=0
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with fJ holomorphic. Clearly we may assume that m < k — 1. Then

l+m

a)\l a)\m u(o) = m’f(l)(o).

We try

k-1

N = >\’")\'Z o [N,

where the numbers ¢, are to be determined.

jm u(NpN) dm (\) = Z » | MNP o (0 dm (V).
<1

Jv=0

Each fj has a power series expansion
LN = 3 fen
If we insert this above we obtain, after using polar coordinates,

k-1 1 . 27 . i R . do
Z avj rl+_1+m+l+2vj ex(m—_;—l)ozfi(n)rnemoz_dr
0 ™

J,v=0 0

k-1 1
= Z avj;(j"‘l—m)j rl+1+m+1+2v+_1+[_mdr
. 0

J,v=0

k-1 (k-1 o -
-5 (S -m

So, we wish to choose the numbers {«,} so that

2m!l! when j=m,
1+j+V+1 0 Jj# m.

Z
For a fixed / > 0, the finite Hilbert matrix
H)=(—"
(JV) <1+_]+V+l>],,0
is always invertible so this is possible. The proof of the lemma is complete. []
As a simple consequence of the lemma we get a boundary growth estimate.

Corollary 2.2. There is a constant C = C(l, m) so that if ue Hy(U) and
N € U then
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al+mu
I (o)

N o™

< P lu]y
where 6 = dist (\y, U).
Proor. Just apply the lemma to a disc of radius 6 about A,. [

Next we prove an analogue of a well-known theorem of Hardy and Little-
wood. In fact with the above lemma and its corollary we can use their proof.
We include the details for completeness.

Lemma 2.3. Suppose 0 < p < «; then there is a constant C, such that if
u € H (D(\y, r)) then

C
W00 < [ a0yl amov.

Proor. The case p =1 is just the lemma with / = m = 0. The case p > 1
follows from the case p = 1 by Holder’s inequality. For the case 0 < p < 1 we
may assume that

Ao =0, r=1 and ueH,(D(@,R)), R>1.
Also assume that
p —

jm(l luNPdm (N = 1

and |u(0)| > 1. Similarly to [3] we let
myr) = [, _, 1)) dm )
and my(r) = supmS,Iu()\)l. Since 0<p<1,
my(r)= [ _ [y dm )
p 1-p
< [y <, OO =2 dm (0

< my,~P(rym5(r)
<myP(r).
Now if we apply Corollary 2.2 with /=m =0 to D(0,r) with r <1 we

obtain

my(r) ,
(r — p)*

my(p) < C O<p<r<li.
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So we have

mL=2(r)

My (p) < C(r——p)z’

O<p<r<l.

We take p = r* with o > 1 to be determined, take logarithms and integrate

1 d 1
J‘ logmw(r"‘)—r <logC + ZJ log;& ﬂ
172 r 172 r—r% r

1
+1-p) j log m(r) 2L
172 r

Letting ¢ = r® in the left hand side and rearranging we get

1 ! 1 ! 1 d
{——(l—p)]j logmw(r)drs—logC+2J‘ log- . a7,
o 172 2 172 r—=r*r

Now choose « so close to 1 that the coefficient on the left hand side is
positive. Then we get

logm.(1/2) <4 logm.()dr<C=C,. O

Next we see that there is a version of Lemma 2.1 valid for all p.

Lemma 2.4. If m,l are non-negative integers and 0 < p < o are given then
there is a constant C such that if ue H}(D(\,,r)) then

al+m p C
————u(\ € u(N)|Pdm(N).
’ a)\[a)\m ( 0) r2+p([+m) JD(XO,r)| ( )l ( )
l+m
Proor. Let Du denote ———,-u and » = [+ m. By Lemma 2.1, (the case
p = 1) we have 2N
C
Du(N\)| € —z2355 u(\)| dm (N).
| ( O)I (r/2)2+ jD()\o,r/Z)i ( )i ( )

For each A € D(\,, r/2) we have by Lemma 2.3

C
(r/2y?
c

<— |u(w)|? dm (w).
r~ JD(,n

[uM[? < j‘ |u(w)|” dm (w)
DO\ 1/2)
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If we- insert this into the above estimate for Du(\,) we have

C 1 /P

1
DU < 555 j (—2 f |u(w)|” dm (w)> dm (N)
D, 1/2) \ T JD(Ny, 1)

C » 1/p
=W<jD()\o,r)|u()\)| dmO\)) ,

which completes the proof of the lemma. [

We want to point out that what the above arguments actually show is the
following: Suppose u is defined in a domain U and there is a constant C such
that whenever D(\,, r) € U we have

C
00l <75 [ 10 am O3,
D(xg, 1)

0

Then for each p,0 < p < o, there is a constant C, such that
P CF p
lu(ho)|” < — [u)|? dm (N)
r° Jpeg.n

whenever D(\y, r) € U.

We let H,(B") be the class of C* functions in B” that are annihilated by
d% on every complex line. More precisely we say that u € H,(B") if for every
ze€B" and every 0 # { € C" we have

k
—d—u(z +A)=0.

dN*
Let u be a C® function in B". Take ze B", and ¢ e C". Then we may
calculate that

k
—d:k— [u@z + AN =o= 2 DPu(z)¢".
dx 8l=k
From this we deduce that a C* function u lies in H,(B") if and only if D®u = 0
in B" for all multi-indexes 8 with | 3| = k. If follows that if u € H;(B™) then
DPD"u e H,(B™) for any § and 7.

In the next lemma, for ze€ B” and 6 > 0 the polydisc P(z, 6) is defined as
follows. If z = r¢, pick ¢,..., &, so that {{, ¢5,..., ¢,} is an orthonormal
basis for C". Then

Pt = =t on St <oy <0 = 20n].
Jji=2
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Lemma 2.5. Suppose 0 < p < o, 1< k and a differential operator X of
weight m are given. Then there is a constant C such that

C

| Xu(z)|” < FEsET j |u(w)|” dm (w)
P(z,8)

Sfor all ue H,(B"), as long as P(z,6) C B".

Proor. For convenience we assume z = (r,0,...,0). By the discussion in

the introduction it is enough to obtain the above estimate with Xu replaced by
aN

0z519z7 - - - 9z5 07

~u(\, 0)

where

J

(k;+1)=N
Jj=1

and
l n
ky+ 1, +3,-§2(kf+ 1)< m.

Recalling that if u € H;(B") then the same is true of any partial derivative of
u we may apply Lemma 2.4 successively, one variable at a time, to obtain the
desired result. [

3. Characterizations of H% in Terms of Area Functions

The main purpose of this section is to obtain characterizations of H? in terms of
area functions, some of them involving only complex-tangential derivatives.
Our starting point for this and next section is the following account of different
characterizations of H? itself, already mentioned in the introduction.

Theorem 3.1 ([8]). The following are equivalent, (with an aperture a fixed):

(@) feH".

(b) A, (f)eL”(S).
© g(f)eL”(S).
(d) fxeL”(S).

(e fa eL”(S).

The Theorem is well-known. The equivalence of (a), (d) and (e) is Koranyi’s
result. The conditions (b) and (c) are also known (see [8]), though a detailed



134 PATRICK AHERN AND JOAQUIM BRUNA

proof seems to be lacking in the literature. A proof can be obtained by adapt-
ing the methods of Fefferman and Stein. This requires as in [3] the use of a
version of Green’s theorem for regions that appear as unions of admissible
aproach regions, particularly in the equivalence of (b) and (d). We point out
that for the particular case of the ball an easy proof can be obtained as
follows. That (b) implies (c) is a consequence of a pointwise estimate (see
Lemma 4.3 below), (c) implies (@) can be obtained by slice integration of the
same result in dimension 1 and (@) = (b) can be proved using the atomic
decomposition of Garnett and Latter ([4]).

To state our result we need to introduce some more notations. For an operator
X as in the introduction

Xf=X1"'ka

and ¥ > 0 we define the area function

AL S = ([, IX@PA - |2 dm @]

We will consider in particular operators T = T; - - - T, where the Ty, ..., T
are chosen among the T,.j (not the T,.j’s). We denote by {T;}, 6 € Cy, the col-
lection of such operators and define the k-th complex-tangential gradient as

V,;f = Z | 7511
seCp
In this section we will prove

Theorem 3.2. Let fe H? and let X be a differential operator as above of
weight m > s. Then AX _ fe LP(S) for any a.

o, m—S

Theorem 3.3. If! > 0and k € Z are such that | + k/2 > s, then f € H? if and
only if

{[o o [VFRI@PA = [2)*72 1" dm @)} € L7(S).

We will need a version of Hardy’s inequality for which we have not found
a reference so we include it here.

Lemma34. Ifa,B>0,1<p< <« thereisa constant C so that forall f >0
we have,

j;(l - r)“-l(j; r— 8- 1@) dt)Pdr < cj;(l — )1+ BPF()P dr.
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Proor. We give a sketch. After changing variables the left hand side of the
above becomes

1 o1/ (1 - ; /
.[Or 1<jr(t r)ﬂ lf(l t) t)p &
Letting ¢ = rs, this becomes

jlra-l([l/’rﬁ(s - 1D — rs) ds)"dr. ‘

0 1

If we now use the continuous form of Minkowski’s inequality and change
variables again we have that the above is at most

w (.  1\8-1 1
[[es2a] [(amm e
(i}

1

The integral occurring in the first factor is convergent since o, 3> 0. [

In the next geometric lemma, for an approach region D, (n) and 0 < r < 1,
S, (r, ) denotes the region

Sa(rsm) = {zeDa(n):%(l -r)<1-|z)*<2(1 - rz)} :

Lemma 3.5. For each «,8, 1 < a <p, there is an ¢ = e(c, §) such that if
neS and z =r¢ eD,(q) then the polydisc P(z, e(1 — r?)) (as defined before
Lemma 2.5) is contained in Sg(r, 1).

Proor. Take
n
w=(@+NE+ 2N EPR8),0=ell —r?);
ji=2
then
W= 1r+ M2+ 2 NP2+ NP+ 2N + (1= DI+ (4 208
j=2

Also
W22 (r— [N)?>=r2 = 27|\ + N2 2% = 2|\ = r? - 26.
So

A-r)-—m+28<1—|w2r<U-r*+28
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so we have
1 2 2 2
E(l-r)<1—|W| <2(1-r9
for sufficiently small e. Next we calculate

J=
<SA-r)+s+ 251/2|<§',,11>|
=%(1 )+ 6+ 2 8V2K8,m - o)
i=2

s%(l ~ %) + 8 + né'?|y — r¢|

<L)+ 8+ m2V21 - r¢g, |2
o 172
7(1—r2)+<s+n\F<—(1—r)> 812

= <% +e+ na1/251/2>(1 - r?).

Also from the first part of the proof

Ba-mpzln-e+va0 -

and so
1= nml < Sa = wp)
for all we P(z, e(1 — r?)) for e sufficiently small. [
Lemma 3.6. Fix1<a<pB,q>=1,120,v>0andlet X be an operator of

weight m. Then there is a constant C such that for all fe H,(B") and all n€ S
we have

3) L—)a(ﬂ) |I’Xf(z)|2(1 - lzl)Zv—n—ldm @

C o S@IA = 12D 177" dm ).
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PROOF. As already mentioned, the proof follows the same lines as in [7, pp.
214-216]. Combining Lemma 2.5 with Lemma 3.5 we see that if r{ € D, ()
then

c

172
©) IXfro)l < {_——TmZ_m j | fW)|* dm (W)} =J,.
1-n Sg(rim)
Assume /> 0. In this case,
II'Xf(re)| < —i-j (r=t'"',dt, r>o0.
0

Having obtained a bound for I'Xf(r¢) which just depends on r, we integrate in
polar coordinates in D,(y), using the fact that for fixed r,

offeS:rteDy ()} <c(l—r).
This gives that the left hand side of (3) is bounded by
1 2y—1( (T -1 2
cjo(l — P (jo(r — ) J,dt) dr
and, using Lemma 3.4, by
) o j;(l — Pty
Inserting the definition of J, we obtain the bound
1 N2@+l-m-1)-n 2
[ja-n jsﬁm | f(w)|? dm (w) dr.

If we Sg(r, 1), then 1 — |w| is comparable to 1 — r hence the above integral
is dominated by

JDB@(I = |2?H =M £ dm (2).

For / = 0 we use the same argument to pass directly from (4) to (5). O

Proor oF THEOREM 3.2. If X is as in Theorem 3.2, we apply Lemma 3.6 to
R'**finstead of f,/ = 1 + sand v = m — s to obtain (recall that I’ commutes
with the T})

A o S @) S AR T () = cAgRS) ().

By Theorem 3.1, A4z(R%f) € L?(S) and so part (@) is proved. [

Proor oF THEOREM 3.3. Now, taking in Lemma 3.6 as X powers of R it is
easily checked by symmetry the following
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Corollary 3.7. For teR and v > 0, recall the notation

A;ﬂf(n) = UD[,@) IR'f@)|*1 — |z))* " 'dm (z)]l/z_

(where R'=1"" if t<0). Then if, t,leR and v,r>0 are such that
| —t=r-—", the area functions Af,,,7 fand AL [ are pointwise equivalent, up
to replacement of the apertures.

Now, by Theorem 3.1, fe H? is equivalent to 4, (R*f) = A’ w1 (f) being in
LP(S). By Corollary 3.7, it follows that fe H? if and only if Afx JSeLA(S),
for each a and /, 7, 7> 0, with / — 7 = 5, which proves Theorem 3.3 in case
k=0. To finish the proof of Theorem 3.3 we must show that in this
characterization we can replace R¥2 by T, - - - T},. This will be a consequence of

Theorem 3.8. Fix v > 0 and let E be the space of all functions such that

{J.Da(n) f@PA - |2~ dm @)} e L7(S)

Sor all a. Let k be any positive integer. Then, if fe H,(B") for some q, f
belongs to E if and only V&I*/*feE.

Note that we just need this lemma for an holomorphic f, but one is lead
to the above statement by the non-analyticity of the T, - - - T,.J*/*f.

Choosing X = T, - - - T, and I' = I*/? in Lemma 3.6, we obtain that fe E
implies T, - - - T, I*/*f € E. For the reverse implication, we need in turn several
Lemmas. In the first one, H(p, q) denotes the space of harmonic polynomials
of bidegree (p, q).

Lemma3.9. X T,T,= -2p(g + n— 1)Id on H(p, q), the sum being extended
over all pairs (i,j) 1 <i,j<n.

Proor. It is convenient for the proof nof to exclude the case i = j, even
though T; = 0. With this in mind we calculate that

, 82 ) 2 8% 3’
T,Ty=lail az,07, T 19 aan, T a0y, Y v,
3 AP PR

S % oz, U a 7 oz;

Now if we add on all i and j we have

2

a n ] n )
2|Z|2A 2 Z Zi Jg—a—_—znigzi_az+2i§zia—zi.
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Now if we apply this to a function in H(p, g) the part involving A is zero so
we need only check the action of the rest of the terms on an element of
H(p, g). Now each element of H(p, q) is a linear combination of terms of the
form z°z® where |8| = p, | 8] = g. Applying the terms not involving A to z°z°
yields

{—2 _ _il @B —2n — 1) _21 a,}z"‘zﬂ = —2(|a| |8] + 2(n — D|al)z°Z?

i,j=
= -2p(g+n-1)z°z°. O

In the statement of next Lemma, if T; = T;- - - T, we define Ty = Ty - - - T;.

Lemma 3.10.

_ p! @+k+n-2)!
= TsTs = (-2)F
Tk agk L= DT e n-2)!

on H(p,q).

Proor. We do induction on k. The case kK = 1 is just Lemma 3.9.
Take u € H(p, q), then

reu=_ 2 T2 T,T,Tsu.

8eCp _ i,j
Now Ts;ue H(p —k +1,q+ k — 1) and so
2T, T;Tsu= -2(p—k+1)@+k+n—1)Tsu,
ij

by Lemma 3.9. We see that
nu=-2p—-k+1)g+k+n—-1r_qu

D! @+k+n-2)
p—k-D) (g+n-2)

D! g+ k+n-2)
(p— k) (g+n-2)

as promised. [

=(-2)¢"1(~-2) (p—k+1)g+ku

= (-2*

Lemma 3.11. For f holomorphic in B" we have

k
> T T,I = 3 d)I'f
8eCy, Jj=0

for some constants d,, . . ., d, depending only on k, d, # 0.
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Proor. Take an holomorphic monomial z* € H(p,0), p = |a| > k. Then

D! k+n-=-2) _ D! N

-k n-20 ° "% p-m

Now p!/(p — k)! is a polynomial of degree k in p whose coefficients depend
only on k. If we express this polynomial as a function of p + 1 we obtain

2% = (—Z)k

k
2% = Cr(p+ 1)z + Co_1(p+ D129+ - + Cpz® = ( >, chf>z“.
Jj=0
This shows that
k .
wf= 2 ¢;Rf, e #0
Jj=0

for an holomorphic function f. We now just apply 7* to both sides, using
again the fact that the I¥ commute with the 7;. O

Lemma 3.12. Let
k .
Px) = >, c;x’
j=1
be a polynomial and denote
k .
P f= E} cJ.I’f.
J =

Then there are c, ry depending on o and P, c, ry < 1 such that for f holomor-
Dphic
201 _ 2y-n-1
Jo o @ = [z ™" dm @)
<c[, 1+ POI@IPA - 2" dm ()
M)

+ csup {|f@)|*: |z] <10

Proor. Notethat { f:f+ P(I)f= 0} is a finite dimensional subspace, hence
all norms are equivalent on it and thus it really does not matter what norm
is considered in the last term. We will prove that

201 _ 2y—-n-1 201 _ 2y—n
© |, o /T@OFA = 2P " dm@ < e, 1@ - 1P dm @),
This implies by iteration that associated to P there is a constant M such that

o, PDS@PA — 2P " Hdm@ <M, 1f@FA - |2~ dm @)
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Hence

I, F@0 = I2h* ="~ dm @)
<ef, oI/ +POI@PA - 207" dm @)
~+ Mesup (| @) [z] < 7o)

+ M(1 - rp) jD o | f@1(1 - |z)* """ 1dm (2).

and the lemma will follow choosing r, such that M(1 — ry) < 1.

Note that (6) is similar to (3) but the aperture of the admissible approach
region is not changed in (6). To prove it, we use polar coordinates in D ()
and

[LFrd)? < —i— L | F@)|? dt

to bound the left hand side of (6) by

[Ja-prr=ten=2ar(  do) [l |fus) .

r,m

Here A(r,n) = {{ €S:r{ € D,(n)}. Now we use Fubini’s theorem: denoting

160 =], —|fe)do)

and using that I(¢, r) < I(¢, t) for t < r (because A(r, ) C A(, 1)), we obtain
the bound

1 2y-n-1 r _ ! _ n2v-n

Q) . fo(l - " ldr L)I(t, f)dt = cjol(t, (1 - >~ "dt.
On the other hand by the same argument, the right hand side equals

1 2y—ng2n-1

cj (1 — 2~ "2~ 11t ) dt.

0
Thus the part of (7) corresponding to the integral for ¢ far from 0 is right. The
other part, for ¢ <, is harmless: we bound it by sup {|f(z)|*: |z| < €}, that
is in turn bounded by the right-hand side of (6), choosing € so that D, (5) con-

tains the ball |z] <2e. O

As a consequence of the above, we note that if

9
N=Xz>
;zf 3z,

J
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is the true radial derivative, then, since Nf = Rf — f = Rf — IRF, we see

INF@))*(1 = 2> """ 'dm(z) < CID o IRf@)|’(1 = |z))* "~ 'dm (2)

Sef, o N@F = 2"~ dm @)

+ sup {| f@)|: |z| <ro}.

j D,

(The first inequality is elementary and the second is a particular case of Lem-
ma 3.12.) Thus, it does not matter to use R or N in the definitions of the area
functions.

END oF Proor oF THEOREM 3.8 (AND THEOREM 3.3). We have to show that
if T,1**f e E for all 6 € C; then fe E. Applying Lemma 3.6 to T,I*/%f (this
is why we need Lemma 3.6 for functions more general than holomorphic)
X = T;, | = k/2, we obtain

\I¥2T, T, 1¥f@)12(A - |z))** ="~ dm (2)

<Cl, IVEF@PA - |2 dm @).

IDO, )

Adding on 6 € Cy, using Lemma 3.11 and then Lemma 3.12 the proof of
Theorem 3.8 is finished. [I

4. Characterizations of H? in Terms of Littlewood-Paley
Functions and Maximal Functions

In this section we will obtain criteria for fe H? is terms of g-functions and
maximal functions, some of them just depending on complex-tangential
derivatives.

For an operator X and v > 0 we consider the g-function

1 -
gy fm) = { [ [Xferm*ad - =t dr] 2,
In this section we will prove results corresponding to Theorems 3.2 and 3.3.
Theorem 4.1. If fe H? and X has weight m > s, then g _ . fe L”(S).

Theorem 4.2. The following are equivalent:
(@) feH?.
) U.; |V§-le(r17)|2(1 _ r)21+k+25"1dr]1/zeLp(S), for some I, k, I + k/2

> s ( and hence for all).
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(©) (VEI*?R*f)* e LP(S), k < 2s.
d) (VEI*2R*fy* e LP(S), k < 2s.
© [ IVEI°Rf(rm)dom) <C, 0<r<l.

The proof of Theorem 4.1 (and part (@) = (b) of Theorem 4.2) is a conse-
quence of the next Lemma and Theorem 3.2.

Lemma 4.3. Let fe H,(B") for some q, let v > 0, and let  be an aperture.
Then

flfenPa i tdr<ef 17@PA = |27 " dm ).
0 D,
Proor. We combine Lemma 2.5 (with p = 2) with Lemma 3.5 to obtain
lfen? s nnj |f@*dm @) =c(1 —r)~""1J,.
(1 - r) S, (r,m)
Recall that
1
Sa(r,m) = {ZEDa(n): FA-r)<1-lz*<20- rZ)} :
Hence
j; | frm) 21 = )" * " dr < cj;(l — )" J,ar.
and Fubini’s theorem finishes the proof. [

That (c) implies (d) follows from the next Lemma applied to each T;1*2R*f,
6eCy.

Lemma 4.4. Let ue H,(B") for some q. Then |u}|,<clu*|,.

ProoF. The proof is very much alike the corresponding real variable result
in [3], and depends on the Hardy-Littlewood result, Lemma 2.5. For z € D ()
let P, be a polydisc as in Lemma 3.5, with any 8 > «. By Lemma 2.5,

@7 < e =)™ [ (u(w)|? dm ().

If we use now polar coordinates, w = r¢, and bound |u(w)| by u*({) we
obtain

u@)|”? <t —r)~ "1 L’repz} u* ()P drdo ().
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If K(9, r) denotes the Koranyi ball K(y,r) = {{ € S: |1 — £3| < r}, the pro-
jection of P, on S is contained in K(n, c(1 — r)), because z € D(n), for some
constant ¢. Hence

u@)|”* < el = r)~ |u* ()72 do (§).

J’K(rl,v(l -n)
Since a(K(n, c(1 — r))) = (1 — r)", this shows that

[u(@)|P"* < cMI(u* ) *](9).

i.e. W*)?’? < cM[(u™*)P?], where M denotes the Hardy-Littlewood maximal
operator (defined with Koranyi balls). The fact that M is bounded in L? then
finishes the proof. [

For the remaining implications we need to recall some facts from the real
variable theory of Hardy spaces, which we state as follows for the reader’s
convenience.

Lemma 4.5. Let u be harmonic in B" and for L€ R, v > 0 recall the notation
1 -
ghutm = { | IRuGrn)*1 = ™" dr}"”.

Then, if ,me R, v,r >0 and m — 7 = { — v, the conditions g'u € L(S) and
g"u e LP(S) are equivalent. In case £ = v, they are equivalent to u* € L?(S).

Proor. The proof depends on a result like Corollary 3.7 for the area func-
tions in the real variable theory

Seoutn) = { [ IRU@PA - 2" dm @}, >0,

(3

Here I' ,(n) is the cone of aperture « and vertex 5. Namely, for v,r > 0 and
m—-r={-—1, Sfx, ,and S, are pointwise equivalent up to replacement of the
apertures. This is proved as in [7, pp. 214-216] (the proof of Lemma 3.6 was
precisely an adaptation of this).

Now, there is a pointwise estimate

gy u(n) < CoSq,,1(n)

proved as in Lemma 4.3. On the other hand, the same argument as in [3, Cor.
3 p. 171], but usig the Hilbert space L*(0,1) with the measure (1 — r)? dr,
shows that if g’ u € L”(S) then S.'.}, ;u € LP(S), which proves the first part of
the Lemma. (We remark that in this case there are no pointwise estimates
among the g’.)
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In case £ = v, one can assume { = v = 1 and then we have the situation of
the real Hardy spaces described in [3]. [

PROOF OF (b) = (c). According to Lemma 4.5, condition (b) is equivalent to
(recall that T - - - T, R’ are harmonic)

1
([, IROVERF ()1 = r)dr})'”? e L7(S)
with2g—-1=1+2s—-20—k,ie. g=1+s—{— k/2. Writing
RIVIR'= RI'"9ViR'= RV{I*’R®

(note that ¢ — 1 < 0 and recall that I* commutes with the T;) and applying
last part of Lemma 4.5 we conclude that (¢) holds.
For the implication (d) = (a) we need

Lemma 4.6. Let u be an harmonic function in the ball and assume that
u e L?(S). Then, if B < a, and

Agu(n) = UDB(n) |Ru(z)|2(1 — |ZI)]"’dm (Z)}l/z
then Agu € L7(S).

Proor. This is proved exactly as in the first part of [3, Thm. 8], but replac-
ing the regions appearing as unions of cones by regions which are unions of
admissible approach ones, and using Green’s theorem (also as in [7]). [

We notice that the lemma has somewhat an unnatural statement, because
the notion of harmonicity, a real variable one, is mixed with complex variable
notions such as the one of admissible approach region. It simply says that
among harmonic functions, maximal functions control area functions. The
converse would not be true for a general harmonic function. The lemma is
most easily understood when p = 2. In this case it does no matter which kind
of area function, the non-tangential Su or the admissible Au is used, because
as it is easily checked their L?>-norms are comparable to the L>-norm of u if
u is harmonic, and their finiteness is thus equivalent to the non-tangential
maximal function being in L2. So it is clear that u* e L? is a strictly stronger
condition.

PRrOOF OF (d) = (a). By the lemma just proved, from (d) we conclude that

{J'D ()lel}Ik/ZR&:f(Z)lZ(l _ lzl)l——ndm (z)}l/Z
g\
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belongs to LP(S). For 8 € Cy, RT;I*?R* = T,R'**~ %2 and thus we get that
the condition in Theorem 3.3 holds with £=1 + s — k/2, and hence fe H%.

It remains to prove the equivalence of (c) and (e). Obviously (c) implies (e). We
prove the converse for kK = 1 showing that if g is holomorphic and T;;g(ry),
0 < r < 1 have bounded L”? norms, then their supremum is in L”, once again
as if T,g were holomorphic. If 1 < p this is clear because leg is harmonic and
for p <1 it is shown as follows. We may assume that g is holomorphic in
a neighbourhood of the closed ball. Let A(n) = sup [[Tijg(rn)l:o <r<1j.
Then

g
on;

27 . 27 ag . . D
j |h(e™n)|? db < I sup ﬁiﬁ(ew”?) — ;= (e"rn)| db.
0 j

0 r

By the one variable result for H? applied to the function in the last integral,
which is holomorphic in re’®, this is less than some constant times the same
integral but without the supremum and with » = 1. Now the result follows
integrating in n on the sphere. The proof for k¥ > 1 is similar. [

We also point out here that if s = k/2 where k is an integer then we have
proved

sup L IV £ro)|P do () < j RE2£(6)|? do?).

This will be used in Section 6.

5. The Boundary Distribution of Complex Tangential
Derivatives

One consequence of the results of the previous sections is the following: if k£
is a positive integer and if f is holomorphic in B" with R*%fe HP(B™) then
T;f, 6 € C, has admissible maximal function in L?(S). For 0 < p < 1 we may
inquire more closely about the boundary behaviour of T;f, 6€C,. If
0 < p < 1, since Ty fis harmonic it follows that T f has a boundary distribu-
tion which lies in the real Hardy space, Re H?(S) and hence has an atomic
decomposition as a sum of Re H” atoms. We have seen however that the func-
‘tions T, f share many properties with holomorphic functions (non-isotropic
mean value inequalities for example). We see here that the boundary distribu-
tion of T;f also has a «holomorphic nature» by showing that it also lies in
the non-isotropic Hardy space H%, of Garnett and Latter [4]. We do this by
showing that the mapping K = T;I*? which leads from R*?fto T, f can be
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realized as a non-isotropic singular integral operator. Then we apply the
method of Coifman and Weiss [2] to show that it maps the non-isotropic Har-
dy space H”%, to itself. Then we just have to check that the boundary distribu-
tion of the harmonic function T} fis the same as the distribution KR*/2f deter-
mined by the singular integral theory.

We will prove the following

Theorem 5.1.  There is a singular integral operator K which maps H”, to H?,
Sor all 0 < p such that if f € H?(B"), then Kf = T;I*"*f in the followmg sense
we regard f as an element of H”, and apply K to obtain a distribution Kf in
H? ; on the other hand the harmonic function T;I*'*f also has a boundary
distribution; these distributions are the same.

Proor. First we show that V’}I k/2 can be realized as a singular integral. To
see this let T}, . .., T, be complex-tangential operators and take F e H'(B").
If we use the definition of the operator 7¥/? and the Cauchy integral formula
for F we see that

1)1
I*?F j F ~ 1-Hz, ¢ " .
TF)0) = 17y | FO) | (logy) (1 -z mdrdo
If we now apply T; - - - T, and differentiate under the integral sign we find that

(KF)@) = [ FKG, ) do (),

where

1 g—l
Kz, $)=Cyi(z, ) (z, §) L <10g%> (A -z, &))" "tk ar.

Here C is a constant and each of the factors ¢, ..., ¥y is of the form
Z§1 = % §y for some / # k. In particular we have ¥,(¢, {) = 0. Now it is not
hard to see that the integral factor in the expression for K(z, {) behaves essen-
tially like (1 — ¢z, £)) ™"~ %2. However, rather than getting an asymptotic
development of this integral and keeping track of the error terms it seems
easier to deal with it directly.

We state now some elementary lemmas.

Lemma 5.2. There are constants C, A such that if |1 — {{, {oY| < 6 and
|1 — <&y, $o0) = C8, then for 0 <r< 1, we have

@) [1-<rey, €] =6, and
() 1/A |1 = <rey, 0] < 11— <rg, $od| S A1 =gy, 0.
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Lemma 5.3. Suppose a, 3> 0 and 8 < o. Then there is C such that for all
N < 1 we have

1 1 B-1
j(log?> 11— e\~ 2dt < CJ1 — A|F-e.

0

Lemma 5.4. If ¢, ¢o€S and z€ B" then
<z, & — £od| 2|1 = (& £ |V2H1 = <&, Eod |2 + |1 = (2, £00] V2.

Lemma 5.5. If z, we B", then

|z — w| < V2|1 - <z, w)|"2

At first we will assume that n/(n + %) <p < 1.
In order to apply the results of Coifman and Weiss we need to show that:
() f~ [K(z, ) f(§)do () is bounded on L*(S), and
(ii) There is a constant C such thatif |1 — ({, §)| <dand |1 — (§y, &o)| = C
then

1= <8 el
Il _ (g-l’ §-0>|n+1/2

[K(§1, ) — K(§1, S0 < C

Actually, our strategy will be to let K,(¢, ) = K(r¢, ) and show that K,
satisfies (i) and (ii) with bounds that are independent of r and then take a
limit.

First we discuss (i). Fix 0 < r < 1. Note that the kernel K, (4, ) is holomor-
phic in ¢ and hence we have, for fe L?, K, f = K,F, where F is the orthogonal
projection of f onto H*(B). From the previous discussion we know that
(K, F)(n) = (T, - - - T I*?F)(ry). Or, K,F = (T, - - - T, J*/*F),. 1t follows from
the results of Section 3 that | (T - -+ T, I**F)* | 125, < C|F| g2 < C| f| 12,
and in particular j |K,F(n)|*da(n) < C| f]| 12, Where the constant C is indepen-
dent of r and of f.

We now show that (ii) holds for K, with constants independent of r. We
write

k
K(z,§) = ¥z, )Lz, §) where Y(z,$)=C H1 ¥;(z, %)
j=

and L(z, ¢) is the integral. We have

Kr(?ly gﬂ) —Kr(ilv g.o) = [1//("?1, g‘) - llb(rg-l’ IO)]L(’.;I’ g-)
+ ey, SOIL(ry, ) — L(rey, $o)l
=1+ 1I.
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Note that

! 1\z"!
|L(l'§'1,§')|SCJ\O (10g7> |1_tr(§-l,§->l—n—kdt

SO =rs, 017"
SCIL =, 8777

[NENTEN

because of the assumptions in (ii) concerning ¢{, ¢, ¢; and Lemmas 5.2 and
5.3.
Next note that

I¢("§'1s ) — ey, fo)l
k-1

! k
C > L ¥ (r$ ) .=]71+2¢i(r§.1: Soldrs1(r$1, §) — Y1 (réy, $0)l

[=0 | j=

N

SO = ey, O = Creg, E)|* 70211 = Ky eod M2
< CI1 = r{Ey, $od %7 P721 = (8, Eod| V2

It follows that

1= <650
Il _ (g‘l, §.0>|n+1/2

7| <cC

Now we turn to II. Note that

|L(r§‘1’ g-) '_L(r?h g‘O)I

1 1 k/2 -1
<[ frt)
0 t

Now, |(1 =N~*0 — (1 = \g) " ®*®| < C|]\ — \o|M where M is the max-
imum of |1 — z| ~“***D where z lies on the line segment joining \ to Ay. A
point on the segment joining rt{{;, $o) to re{ ¢y, ¢ is of the form re( ¢y, )
where |1 — ({’, {o)| < 6. It follows from Lemma 5.2 that |1 — re{z, §')| is
essentially equal to |1 — red§y, §o)|. It follows that

1 1

- — | dt.
(L= e, O (= rtE, Ed)

IL(rfx,f)_L("fl, §'0)|

k

1 1 X1
S C\(?Is g- - §—0>‘ jo <10g7>2 |1 - )‘t(g_l, g_0>l——(n+k+1)dt

1 =<5 602

= |1 - r ¢y, §-0>|n+k/2+1/2 '
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We also have |Y(r¢y, &o)| < C|1 — r(¢y, $o)|¥/% and hence

ClL = (5, 8
|1 _ ({1, §0>|n+1/2

VIR

as required.

Now we may proceed to apply the method of Coifman and Weiss [2] and
the atomic decomposition of Garnett and Latter [4]. We refer to these papers
for the relevant definitions. Since

> n 2
g n+1_2+1
2 n

we may find ¢,0 < e < 1/n so that p > 2/(2 + €). Now if we let

2-p

Y= o2 +e-2

then it follows from the above estimates for K, that

{j |K,a(§)|2da(§)}{j |K,a($)[1 = (&, §od|" 09 da(f)}’ <C

whenever g is a p-atom centered at {,. Here the constant C is independent
of both r and a. Now by a straightforward modification of the proof of
Theorem C on page 594 of [2] we see that | K,a| He, < C, where C is indepen-
dent of r and a.

If follows that we may define K,(f) = 2\ K,a;, whenever f = > \,a, € H?,
and we have ”Krf"Hg, < C"f“Hg,- Now if f= 2 Mare H? and r,s < 1 we
have

“Krf—st”;'{p < Z I)‘klp”Krak _Ksak”ﬁ{p +C Z l)‘klp'
a k<N at k>N

Now for an atom a
uKra - Ksa” g{gt S "Kra - Ksa" 1 0

as r,s = 1. So we see that for each fe HY,, Kf =1lim__ K, f exists in H?,.
Now suppose fe HP(B"), and let u be the harmonic function

u=T, - T JI"*f

defined in B". We know that u* e L” from Section 2. Hence the functions #,,
where u,(¢) = u(r¢) have a distribution limit U as r — 1. We will identify U
with the distribution Kf. First note that if fis holomorphic in a neighborhood
of B™ then
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Kf=T,--- T I¥*f=U on 8.

Also if fe H”(B") then f, = fin H%, and so Kf, = Kfin H? , and hence in the
sense of distributions. But Kf, = u, and this shows that

U=Kf

as desired.

We will only say a few words about the case p < n/(n + %). In this case the
definition of H” atoms involves some cancellation. In this case the estimate
(ii) above must be replaced by an estimate of the type

1 -8, 80)|”
|l - <771 §_0>|n+a

|K,(T], g') - P(’fl, KO)‘ g C

where a is some positive number depending on p and P(y, {,) is a certain non-
isotropic Taylor polynomial expansion of K, about {,.

6. Bergman-Sobolev Spaces

In this section we give an application of the results and techniques of the
previous sections to the Bergman-Sobolev spaces B‘s’w defined in the introduc-
tion. In some ways these spaces are much easier to deal with than the spaces
H?®(B"). The reason is that this family of spaces (Bf, M) is stable under differen-
tiation, a property not shared by the Hardy-Sobolev spaces. More precisely,
we have Bf, = B"H as long as sp — v =tp — B, (and v, 3 > —1, of course).
This is immediate in the case of the unit ball B” since the case n = 1 is a well-
know theorem of Hardy and Littlewood and the general case follows by slice
integration.

The fact that each radial derivative controls two tangential derivatives in the
context of the spaces B" has been proved in [1], even for general domains.
In the theorem below we show how this follows immediately from the results
of Sections 3-4. We also show that the converse holds. This does not seem to
follow directly from the statements of our earlier results but it is a simple con-
sequence of the techniques developed in the previous sections.

Theorem 6.1. Suppose that k/2 < s, k is an integer; then fe B‘;”y if and
only if

[ VAR K21 @[2(1 ~ [zl dm @) < .
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Proor. We may assume that k/2 = s. One direction follows from the ine-
quality, (see Section 4)

[194£06)17 do (1) < € [ [R21(r)|? do (5),

upon multiplying by (1 — r)” and integrating on r. For the other direction, by
the remarks above it suffices to prove that

[IRY @170 — |2 %2 dm @) < [ [VE/@)I7(01 - |2)) dm ).

It was proved in Lemma 3.11 that

k
.Z;)dek—Jf= Z T5T5f'
Jj=

seCy
Fix 6 € C, then from Lemma 2.5 we have

- C
| p
|Ts T f(r$)|” < A=y ik L(rr,s(l_rz» | T f(2)|” dm (z)

where e is chosen as in Lemma 3.5 so that P(r¢, e(1 — r%) C S, (r, ¢) for some
a > 1. So we have

T, T/ O17 < CA =)™ [T, f@)PX(E, 2) dm (2)

where X is the characteristic, function of S,(r, {). Now we integrate this in-
equality over S and use Fubini’s theorem to obtain

(LT e1P do6) <€A = N™" =22 [T, @) [ x5, 2) do () dm (2).

Now [x(§,2)do($) =0 unless zeL, = {z:(1-r)/2<1-|z] <2(1 - )}
and in any case jxda < C( - r)" so we obtain

[\ TTse) do ) < CU = 1)~ =2 [ | T, f@) dm 2).

Now we multiply this inequality by (1 — r)Y**/2) integrate on r and use
Fubini’s theorem once more. If we now add on é € C; we obtain

J|Zd R @ =z dm @ < € [ |95/ - (<) dm ).

To replace the function in the integral on the left hand side by R¥f above we
note that for j > 0 we have

[ IR I7@)17(1 = |2y **7"2 dm @) < C [ IR*/(@)|7(1 = |2|y"* /27 dm (2)

and proceed as in the proof of Lemma 3.12. [
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