L^p Estimates for Degenerate Elliptic Equations

Antonio Sánchez-Calle

Dedicated to the memory of J. L. Rubio de Francia

Introduction

In this note we are going to address the question of when is a second order differential operator «controlled» by a subelliptic second order differential operator.

By a second order subelliptic operator on a compact manifold M we mean an operator L that in local coordinates is of the form

$$L = \sum a^{ij}(x)\partial x_i \, \partial x_j + \sum b^j(x) \, \partial x_j + c(x),$$

with a^{ij} , b^j , c all real and C^{∞} , $(a^{ij})^T = (a^{ij})$ positive semidefinite, and L satisfies a subelliptic estimate: for some $\epsilon > 0$

$$||u||_{H^{\epsilon}} \le c(||Lu||_2 + ||u||_2), \qquad u \in C^{\infty}(M)$$

where H^s denote the classical Sobolev spaces and $\| \|_p$ stands for the norm in $L^p = L^p(M, d\mu)$ for some smooth positive measure μ on M (fixed from now on).

Let now P be a second order differential operator on M. We want to know under which conditions an a priori inequality

(*)
$$||Pu||_p \le C_p(||Lu||_p + ||u||_p), \quad u \in C^{\infty}(M), \quad 1 holds.$$

If $P = \sum b^{ij}(x) \partial x_i \partial x_j + \cdots$ in local coordinates, then testing with $u(x) = e^{itx \cdot \xi} \phi(x)$ with $\phi \in C_0^{\infty}$ and letting $t \to +\infty$, we see that if the inequality (*) holds for some p, 1 , then

$$|\Sigma b^{ij}(x)\xi_i\xi_i| \leqslant C \Sigma a^{ij}(x)\xi_i\xi_i,$$

i.e. the principal symbol for P is bounded by a constant times the principal symbol of L.

We will show in this article that if P is selfadjoint (with respect to μ), then this condition is also sufficient.

We will also state a more technical necessary and sufficient condition for first order operators, much on the flavor of the results of Fefferman an Phong [1], where some sufficient conditions for the L^2 estimates are given.

For prior results see [3, 4].

2. Background

We are going to review some facts about subelliptic operators that will be needed, specially the results of [3] on which this paper relies.

Assume first that L is self-adjoint, $L = \sum a^{ij}(x) \partial x_i \partial x_j + \cdots$ in local coordinates. We say a tangent vector at x, $\sum \alpha^i \partial x_i$, is subunit if $(\sum \alpha^i \xi_i)^2 \leq \sum a^{ij}(x) \xi_i \xi_j$ for all ξ .

With this, one can associate a distance d to L whose corresponding balls are given by [2]:

$$B_L(x; \lambda) = \{ y \in M : \text{there exists } \phi : [0, \lambda] \to M \text{ Lipschitz with } \phi(0) = x, \\ \phi(\lambda) = y \text{ and } \phi'(t) \text{ subunit at } \phi(t) \text{ for a.e. } t \}.$$

Observe that $B_L(x; \lambda) = B_{\lambda^2 L}(x; 1)$.

In the case of a general L, write $L = L^{sa} + X_0$, with L^{sa} selfadjoint and X_0 a vector field we set

$$B_L(x;\lambda) = B_{\lambda^2 L^{sa} + \lambda^4 X_0^* X_0}(x;1)$$
 $(= B_{\lambda^2 L}(x;1)).$

(a) Standard balls. We are going to recall the construction of the «standard» balls $B_{\lambda}(x) = B_{\lambda}^{L}(x)$ as in [1], [3]. These balls are equivalent to the metric balls in the sense that

$$B_L(x; c\lambda) \subseteq B_L(x) \subseteq B_L(x; C\lambda).$$

Assume for simplicity that x = 0 and L is selfadjoint. Let $L = \sum a^{ij}(x) \partial x_i \partial x_j + \cdots$ in local coordinates and consider

$$\lambda^2 L + \lambda^{2N} \Delta = \lambda^2 \Sigma a_{\lambda}^{ij}(x) \, \partial x_i \, \partial x_j + \cdots,$$

where Δ is the Laplacian $\partial_{x_1}^2 + \cdots + \partial_{x_n}^2$ and $N > 1/\epsilon$ (as in [2] the $\lambda^{2N}\Delta$ term is introduced for technical reasons, mainly to assume we are dealing with polynomials when convenient).

From all the cubes Q_{δ} with center 0 and side $\delta = 2^{-k}$ take the biggest one for which

$$\max_{i} \max_{Q_{\delta}} \lambda^{2} a_{\lambda}^{ii}(x) \geqslant K\delta^{2}$$

where K is a constant much bigger than a bound on the a^{ij} , and their derivatives up to order 2. It is no restriction to assume the maximum is reached for i = 1.

Since $Q_{2\delta}$ was not chosen, $\lambda^2 a_{\lambda}^{ii}(x) \leqslant 4K\delta^2$ for $x \in Q_{2\delta}$, i.e. $a_{\lambda}^{ii}(x) \leqslant 4K(\delta/\lambda)^2$ in $Q_{2\delta}$. Since $|\partial^{\alpha} a_{\lambda}^{ij}| < K$ if $|\alpha| \leq 2$ and $a_{\lambda}^{11} \geqslant 0$ then

$$\begin{split} a_{\lambda}^{11}(x) \geqslant c(\delta/\lambda)^2 & \text{in} \quad Q_{\delta/\lambda} \\ a_{\lambda}^{ii}(x) \leqslant 10K(\delta/\lambda)^2 & \text{in} \quad Q_{\delta/\lambda} \\ |a_{\lambda}^{ij}(x)| \leqslant [a_{\lambda}^{ij}(x)a_{\lambda}^{ii}(x)]^{1/2} \leqslant 10K(\delta/\lambda)^2 & \text{in} \quad Q_{\delta/\lambda} \,. \end{split}$$

Also $|\partial^{\alpha}a_{\lambda}^{ij}(x)| \leqslant C_{\alpha}(\delta/\lambda)^{2-|\alpha|}$ in $Q_{\delta/\lambda}$ since that is clearly true for $|\alpha| = 0$, $|\alpha| \ge 2$ and so for $|\alpha| = 1$ by interpolation. After scaling by δ/λ and a change of variables (with bounds independent of δ/λ) we can assume

$$\lambda^2 L + \lambda^{2N} \Delta \approx \lambda^2 \left(\partial_{u_1}^2 + \sum_{i,j \geq 2} r^{ij} (u_1, \bar{u}) \partial u_i \partial u_j + \cdots \right),$$

 $\bar{u} = (u_2, \dots, u_n)$. (Here $\sum c^{ij} \partial_i \partial_j + \dots \approx \sum d^{ij} \partial_i \partial_j + \dots$ means $s(c^{ij}) \leq (d^{ij})$ $\leq (1/s)(c^{ij})$ as matrices, s independent of the parameters). Also one has bounds for r^{ij} and its derivatives independent of δ , λ and $\sum_{i,j\geq 2} r^{ij} (u_1,\bar{u}) \eta_i \eta_j \geqslant \lambda^{2N'} |\bar{\eta}|^2$ so a Taylor expansion around $u_1=0$ allows us to assume r^{ij} is a polynomial in u_1 (if $|u_1| \le C\lambda$, λ small).

In these coordinates

$$B_{\lambda}^{L}(0) = (-\lambda, \lambda) \times B_{\lambda}^{\bar{L}}(0)$$

where

$$\bar{L} = \sum_{i,j\geq 2} \frac{1}{2\lambda} \int_{-\lambda}^{\lambda} r^{ij}(u_1,\bar{u}) du_1 \, \partial u_i \, \partial u_j + \cdots$$

The process is completed by using induction on the dimension.

Composing all the changes of variables and scaling to the unit cube gives a map $\Phi: Q_1 \to B_{\lambda}(0)$. This map is of the form $\Phi = \Phi_1 \circ \cdots \circ \Phi_n$, where

$$\Phi_j(u) = \left(u_1, \dots, u_{j-1}, \frac{\delta_i}{\lambda} \phi_j(\lambda u_j, u_{j+1}, \dots, u_n)\right)$$

with ϕ_j and its inverse ψ_j having bounds for its derivatives independent of λ . As a consequence $|\partial^\alpha \Phi(u)| \leq C_\alpha \lambda^{|\alpha|}$ and the Jacobian $|\Phi'|$ satisfies $|\Phi'(z)| = \mu(B_\lambda(0))g(z)$, with $c \leq g(z) \leq C$, $|\partial^\alpha g(z)| \leq C_\alpha \lambda^{|\alpha|}$. Also the scaling Φ is defined in a much larger cube and the estimates above hold in $Q_s = \{z: |z_i| \leq s\}$ with constants depending on s too, of course (see [3] for more properties).

(b) Fundamental solution for L. In [3] an approximate solution for L was constructed, that is, an operator K such that LKu = u + Eu + Su with S smoothing and E a singular integral with respect to d(x, y) whose L^p operator norm can be made arbitrarily small (for p fixed). In particular, it is not difficult to see that to prove an estimate of the form

$$||Pu||_p \leqslant C(||Lu||_p + ||u||_p)$$

it suffices to show that PK is bounded in L^p .

The operator K is of the form ΣK_j with

$$K_{j}f(x)=\int K_{j}(x,y)f(y)\,d\mu(y);$$

here $K_i(x, y)$ is smooth and satisfies

- (1) supp $K_j \subseteq \{(x, y): d(x, y) \leqslant CR^{-j}\}.$
- $(2) \int K_j(x,y) d\mu(y) = 0.$
- (3) If $\Phi: Q_1 \to B_{R-j}(x)$ is one of the scalings then

$$|\partial_{\omega}^{\alpha}K_{j}(\Phi(w),y)| \leq C\alpha \frac{R^{-2j}}{\mu(B_{L}(x;R^{-j}))},$$

$$(3.2) \quad \left|\partial_{\omega}^{\alpha} K_{j}(\Phi(w), y) - \partial_{\omega}^{\alpha} K_{j}(\Phi(w), y')\right| \leq C\alpha \frac{R^{-j}}{\mu(B_{L}(x; R^{-j}))} d(y, y')$$

if
$$d(y, y') \leq cR^{-j}$$
.

(3.3) Similarly for $K_i(y, \Phi(w))$.

(see [3] for these properties; (3) is not stated explicitly but it follows easily from the results there).

3. L^p Bounds for the Self-Adjoint Case

Assume P is a smooth, selfadjoint second order differential operator in M. Assume also that P has no zeroth order term. In local coordinates $d\mu = h(x) dx$, $P = (1/h)\Sigma \partial_i (hb^{ij}\partial_j)$ and $L = \Sigma a^{ij}(x)\partial_i \partial_j + \cdots$, where $b(x, \xi) = \Sigma b^{ij}(x)\xi_i\xi_j$ and $a(x, \xi) = \Sigma a^{ij}(x)\xi_i\xi_j$ are the principal symbols of P and L respectively.

The basic ingredient in the proof of the estimates in the following

Lemma. Assume $|b(x,\xi)| \leq Ca(x,\xi)$ and that $\Phi: Q_1 \to B_{\lambda}(y)$, λ small, is one of the scalings described above. Then the pullback of P by Φ satisfies

$$\Phi^*(\lambda^2 P) = \Sigma d^{ij} \partial_i \partial_j + \Sigma d^j \partial_j$$

where the d's and their derivatives have bounds independent of λ , Φ .

PROOF. Assume for simplicity of notation that y = 0. Under Φ , h is transformed into $h(\Phi(w))|\Phi'(w)|$, and this is of the form $\mu(B_{\lambda}(0)) f(w)$, with $0 < c \le f(w) \le C$ and $|\partial_w^\alpha f| \leq C_\alpha$. Since the constant $\mu(B_\lambda(0))$ cancels out, we only need to check how the b^{ij} 's transform. We will do that by induction on the dimension, so assume the lemma holds in dimension n-1 (the initial case of dimension 1 is done as the induction step).

Recall that in the construction of Φ we have first a change of variables $x = \delta \phi(u)/\lambda$ followed by a scalling by λ in u_1 (with bounds for ϕ , $\psi = \phi^{-1}$ and their derivatives independent of λ). The change

$$x = \frac{\delta}{\lambda} \phi(u)$$

sends $(\lambda^2 b^{ij}(x))$ to

$$(\lambda^2 \hat{b}^{ij}(u)) = \lambda^2 \frac{\lambda^2}{\delta^2} \psi'(\phi(u)) \left(b^{ij} \left(\frac{\delta}{\lambda} \phi(u) \right) \psi''(\phi(u)) \right).$$

Claim. $|\partial^{\alpha} \hat{b}^{ij}| \leq C_{\alpha}$.

To see this, it suffices to prove that $|\partial_x^{\alpha} b^{ij}| \leq C_{\alpha}(\delta/\lambda)^{2-|\alpha|}$ in $Q_{\delta/\lambda}$. Since this is clearly true for $|\alpha| \ge 2$, it suffices to show $|b^{ij}| \le C(\delta/\lambda)^2$ (the derivatives of order one follow by an easy interpolation argument). Now

$$|\Sigma b^{ij}(x)\xi_i\xi_i| \leq C \Sigma a^{ij}(x)\xi_i\xi_i$$

SO

$$|b^{ii}(x)| \le Ca^{ii}(x)$$
 and $|b^{ij}(x)| \le C(a^{ii}(x) + |a^{ij}(x)| + a^{ji}(x))$.

Since by construction $|a^{ij}(x)| \leq C(\delta/\lambda)^2$ in $Q_{\delta/\lambda}$, that proves the claim. Now, in the u-coordinates

$$\left| \sum_{i,j\geq 2} \delta^{ij}(u_1,\bar{u})\eta_i\eta_j \right| \leqslant C \sum_{i,j\geq 2} r^{ij}(u_1,\bar{u})\eta_i\eta_j$$

$$\leqslant C \sum_{i,j\geq 2} \frac{1}{2\lambda} \int_{-\lambda}^{\lambda} r^{ij}(u_1,\bar{u}) du_1\eta_i\eta_j$$

(the principal symbol of \bar{L}) since

$$\sum_{i,j\geq 2} r^{ij}(u_1,\bar{u})\eta_i\eta_j \geqslant 0$$

is a polynomial in u_1 .

If we now change variables $u_1 = \lambda w_1$, $\bar{u} = \bar{\Phi}(\bar{w})$, where $\bar{\Phi}: \bar{Q}_1 \to B^{\bar{L}}_{\lambda}(0)$ is the map corresponding to \bar{L} and we call $(\bar{b}^{ij}(w))$ the matrix that $(\lambda^2 \hat{b}^{ij}(u))$ is transformed into, we want to show that $|\partial_{\alpha}^{w} b^{ij}| \leq C_{\alpha}$.

By the induction hypothesis $|\partial_{\bar{w}}^{\bar{\alpha}}\bar{b}^{ij}| \leq C_{\alpha}$ if $i,j \geq 2$, so $|\partial_{w}^{\alpha}\bar{b}^{ij}| \leq C_{\alpha}$ for $i,j \geq 2$. Also $\bar{b}^{11}(w) = \lambda^2 \hat{b}^{11}(\lambda w_1, \bar{\Phi}(\bar{w}))$, so $|\partial_{w}^{\alpha}\bar{b}^{11}| \leq C_{\alpha}$. We are left with \bar{b}^{1j} , $2 \leq j \leq n$. To deal with them, recall that $\bar{\Phi}$ is a composition of maps of the form

$$u \rightarrow (u_1, \ldots, u_j, (\delta_i/\lambda)\phi_j(\lambda u_{j+1}, u_{j+2}, \ldots, u_n)).$$

It is not difficult then to see that $|\partial^{\alpha} \bar{b}^{1j}| \leq C_{\alpha} (\lambda^{|\alpha|+2}/(\delta_1 \cdots \delta_n)) \leq C_{\alpha}^*$ if $|\alpha|$ is large enough $(\delta_1 \cdots \delta_n \geq c \lambda^{n+1/\epsilon})$ as a consequence of [2]). Again it suffices then to get the estimates for $|\alpha| = 0$, *i.e.* to prove the

Claim. $|\bar{b}^{1j}| \leq C$.

To see this, observe that if $(\bar{r}^{ij}(w))$ is the matrix for

$$\sum_{i,j\leq 2} \lambda^2 r^{ij}(\lambda w_1, \bar{u}) \,\partial u_i \,\partial u_j + \cdots$$

after the change of variables $\bar{u} = \bar{\Phi}(\bar{w})$ then we know that

$$\left| \sum_{i,j=1}^{n} \bar{b}^{ij}(w) \zeta_i \zeta_j \right| \leq C \left(\zeta_1^2 + \sum_{i,j \leq 2} \bar{r}^{ij}(w) \zeta_i \zeta_j \right)$$

SO

$$|\bar{b}^{1j}(w)| \le C(1 + \bar{r}^{jj}(w) + |\bar{b}^{11}(w)| + |\bar{b}^{jj}(w)|)$$

From those terms we only have to worry about checking that $\bar{r}^{,ij}(w)$ is bounded. However that is a consequence of the induction hypothesis applied to $\sum_{i,j\geq 2} r^{ij}(\lambda w_1, \bar{u}) \partial u_i \partial u_j + \cdots$, since as it was mentioned

$$\left|\sum_{i,j\geq 2} r^{ij} (\lambda w_1, \bar{u}) \eta_i \eta_j \right| \leqslant C \sum_{i,j\geq 2} \frac{1}{2\lambda} \int_{-\lambda}^{\lambda} r^{ij} (u_1, \bar{u}) \, du_1 \eta_i \eta_j.$$

Thus finishes the proof of the Lemma.

With the notation used above we can now state

Theorem. Let L be a subelliptic second order operator, P a smooth selfadjoint second order differential operator and 1 . Then the estimate

$$||Pu||_p \le C(||Lu||_p + ||u||_p), \quad u \in C^{\infty}(M)$$

holds if and only if $|b(x, \xi)| \leq Ca(x, \xi)$ where $b(x, \xi)$, $a(x, \xi)$ are the principal symbols of P and L respectively.

PROOF. To show that $|b(x, \xi)| \le Ca(x, \xi)$ is a necessary condition, take, in local coordinates, u of the form $u(x) = e^{itx \cdot \xi} \phi(x)$, $\phi \in C_0^{\infty}$, real. If the estimate $||Pu||_p \le C(||Lu||_p + ||u||_p)$ holds, we have

$$t^{2p} \int |\Sigma b^{ij}(x)\xi_i\xi_j|^p \phi(x)^p h(x) dx \leqslant C \left(t^{2p} \int (\Sigma a^{ij}(x)\xi_i\xi_j)^p \phi(x)^p h(x) dx + O(t^p)\right)$$

for all t, so

$$\int (|b(x,\xi)|^p - Ca(x,\xi)^p) \phi^p(x) h(x) dx \le 0$$

for all $\phi \in C_0^{\infty}$ and hence $|b(x, \xi)|^p \leqslant Ca(x, \xi)^p$.

To prove the converse we can clearly assume that P has no zeroth order therm and, as it was mentioned, we only need to show that PK is bounded in L^p . Now $PK = \Sigma PK_i$, and PK_i is given by integration against a kernel $F_i(x,y) = P^x K_i(x,y).$

The L^p estimate follows by classical arguments if we show that PK is a singular integral, i.e. if we prove that

(s.i.1) $F_i(x, y)$ is supported in $\{(x, y): d(x, y) \leq cR^{-j}\}$ and

$$\int F_j(x,y) d\mu(x) = \int F_j(x,y) d\mu(y) = 0.$$

(s.i.2)
$$|F_i(x, y)| \le c/\mu(B_I(x; R^{-j}))$$

and

$$|F_j(x,y) - F_j(x,y')| + |F_j(y,x) - F_j(y',x)| \le C \frac{R^j}{\mu(B_L(x;R^{-j}))} d(y,y').$$

But (s.i.1) is a consequence of the properties (1), (2) of $K_i(x, y)$ and the fact that P(1) = 0. The estimates (s.i.2) follow from the property (3) of $K_i(x, y)$ and the lemma applied to the scaling $\Phi: Q_1 \to B_{R-j}(x)$.

4. First Order Operators

Consider now the case of a smooth vector field Y on M. In local coordinates $Y = \Sigma y^j(x) \partial x_j$ and its symbol is $y(x, \xi) = i \Sigma y^j(x) \xi_j$. If $\Phi: Q_1 \to B_{\lambda}(m)$ is a scaling map then the symbol of $\Phi^*(Y)$, the pullback of Y by Φ , is given by $y(\Phi^c(z, \eta))$, where $\Phi^c(z, \eta) = (\Phi(z), \eta(\Phi'(z))^{-1})$ is the induced map on the cotangent space. We can now state

Theorem. Let 1 . The estimate

$$||Yu||_p \le C(||Lu||_p + ||u||_p) \qquad u \in C^{\infty}(M)$$

holds if and only if there is a constant C_0 such that

$$\max_{\eta \in Q_1} \max_{z \in Q_1} |y(\Phi^c(z, \eta))| \leq C_0 \lambda^{-2}$$

for all scalings $\Phi: Q_1 \to B_{\lambda}(m)$, λ small.

PROOF. To show that the L^p estimate holds under the symbol condition we can argue as we did for P. We need to prove then that $\Phi^*(\lambda^2 Y) = \sum d^j(z) \, \partial z_j$ with $|\partial^{\alpha} d^j| \leq C_{\alpha}$, the C_{α} 's independent of the scaling $\Phi: Q_1 \to B_{\lambda}(m)$. Assume m = 0. Recalling that Φ is a composition of maps

$$u \to (u_1, \ldots, u_{k-1}, (\delta_k/\lambda)\phi_k(\lambda u_k, \ldots, u_n))$$

it is not difficult to check that

$$|\partial_z^{\alpha} d^j(z)| \leqslant C_{\alpha} \frac{\lambda^{|a|+2}}{\delta_1 \cdots \delta_n}$$

so if $|\alpha|$ is large $\partial^{\alpha} d^{j}$ is bounded. Since by assumption $d^{j}(z)$ is bounded, it follows that $\partial^{\alpha} d^{j}$ is bounded for all α .

To prove the converse, observe that applying the L^p inequalities to $v \circ \Phi^{-1}$ we get

$$\|\tilde{Y}v\|_{p} \leq C(\|\tilde{L}v\|_{p} + \lambda^{2}\|v\|_{p}), \quad v \in C_{0}^{\infty}(Q_{2})$$

where \tilde{Y}, \tilde{L} are the pullbacks of $\lambda^2 Y$, $\lambda^2 L$ by the scaling of $B_{\lambda}(m)$ and $\| \|_p$ now denotes L^p norm with respect to Lebesgue measure (we can do that since the Jacobian $|\Phi'|$ is of the order of magnitude of $\mu(B_{\lambda}(m))$ in Q_2 , so we can divide by it).

Taking now $v(z) = e^{z \cdot \eta} \phi(z)$ with $\eta \in Q_1$ and $\phi \in C_0^{\infty}(Q_2)$ a function with $\phi \equiv 1$ on Q_1 and using the fact that the coefficients of \tilde{Y} have bounds independent of Φ and λ we get

$$\int_{Q_1} \left| \Sigma d^j(z) \eta_j \right|^p dz \leqslant C$$

where $\tilde{Y} = \sum d^{j}(z)\partial_{z_{i}}$. This, in turn, implies

$$|\lambda^2 y(\Phi^c(z,\eta))| = |\Sigma d^j(z)\eta_j| \leqslant C_0 \quad \text{for} \quad z \in Q_1.$$

In fact, using that $|\partial^{\alpha}(\Sigma d^{j}(z)\eta_{i})| \leq C_{\alpha}$ if $|\alpha|$ is large and that

$$\max_{Q_1} |f(z)| \leq C \left(\int_{Q_1} |f(z)|^p dz \right)^{1/p}$$

for polynomials of some fixed degree, we get

$$\max_{Q_1} |\Sigma d^j(z)\eta_j| \leqslant C_1 \left(\int_{Q_1} |\Sigma d^j(z)\eta_j|^p \right)^{1/p} + C_2 \leqslant C_0.$$

This finishes the proof.

5. Final Remarks

The same results hold if L^p is replaced by the Hölder spaces

$$\Gamma^{\alpha}(M) = \{ f \text{ continuous in } M: |f(x) - f(y)| \le Cd(x, y)^{\alpha} \}, \qquad 0 < \alpha < 1.$$

Also, by reducing it to the case of a compact manifold, one can get similar results for bounded open sets in \mathbb{R}^n .

References

- [1] Fefferman, C. The uncertainty principle, Bull. Amer. Math. Soc. 9(1983), 129-206.
- [2] Fefferman, C. L. and Phong, P. H. Subelliptic eigenvalue problems, Proceedings of the Conference on Harmonic Analysis in Honor of Antoni Zygmund, Wadsworth Math. Series (1981), 590-606.
- [3] Fefferman, C. L. and Sánchez-Calle, A. Fundamental solutions for second order subelliptic operators, Annals of Math. 124(1986), 247-272.
- [4] Rothschild, L. and Stein, E. M. Hypoelliptic differential operators and nilpotent Lie groups, Acta Math. 137(1977), 247-320.

Antonio Sánchez-Calle* Department of Mathematics Massachusetts Institute of Technology Cambridge, Massachusetts 02139, U.S.A.

^{*} Research supported in part by a NSF grant.