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1. Introduction

Let 6 € (0, 1), and suppose that K C R is a closed set which is §-dense in the
sense that

(1.1) IKNI| =6

for every interval I C R with || = length I = 1. Suppose also that every point
of K is regular for the Dirichlet problem on the domain C\K. Then there
exists a function u = u(+, K): C— [0, ) with the following properties:

(1) u is harmonic in C\K and continuous on C.
(i) u=0on K.

(iii) u(z) = u(z), zeC.

v) fim YEED)

y— 4+

1, xeR.

Such functions were constructed by A. E. Schaeffer [S], who applied them to
extend Bernstein’s theorem about sup | f’(x)| for entire functions of exponential
type. More recently, Benedicks [Be] has studied a class of functions which
includes u(+, K), and has proved, among other things, a conjecture of Kjellberg.
From results in [Be] it follows that u(e, K) is unique.
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B. Ya. Levin [L] posed the extremal problem of finding a 6-dense K which
maximizes sup  #(x, K). Define

oo

1 1
Ka— Uw[n—-§»5,n+‘2~6:|-

n=—

Levin’s conjecture. For each xe R,

1 5
(12) ux,Kys<u _’Kb = 1 log Cot,zl:.m .
2 T 4
We show in Section 3 how to calculate this value of u(1/2, Kj;).

In this paper we shall prove Levin’s conjecture in stronger form, by show-
ing that for every convex nondecreasing function  on [0, ), y € R, and
interval 1 C R with || =1,

(1.3) jl d(ux + iy, K)) dx < L(b(u(x + iy, Ky)) dx.

Then (1.2) follows by taking y = 0, ®&(¢) = ¢#, and letting p — o0,
The functions u(-, K') may be regarded as limiting cases of certain harmonic
measures. For B > 0 define

QB,K) = {z:|Imz| < B,z ¢K}.

Let u(-, B, K) be the function which is harmonic in Q(B, K') and takes the
boundary value zero on K, one on Im z = +B. In Section 3 we will show that
locally uniformly in C,

(1.4) lim Bu(z, B, K) = u(z,K).

B—o

Thus, (1.3) is a consequence of the following theorem.

Theorem 1. [If K satisfies (1.1), then for every interval I C R with |I| =1,
every y € [—B, B], and every convex non-decreasing function ® on [0, o),

(1.5) [ @@ix + iy, B, K) dx < [ ®(utx + iy, B, Ky) dx.
We can also prove a strong uniqueness theorem.

Theorem 2. Suppose that, with the situation of Theorem 1, equality holds
in (1.5) for some ® with ®(0) = 0, some y € (—B, B) and some I. Then either
K is translation of K; or both sides are zero. Moreover, if K is not a translation
of K; then for every xe R and y e (—B, B),
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1
(1.6) ulx+iy,B,K) < u(i + iy, B, K5>-

The corresponding uniqueness theorem also holds for u(+, K) and u(e, Kj).
It may be proved by the same argument used to prove Theorem 2.
In [L] Levin offers the uniqueness conjecture that

1
max u(x, K) = u<7,K5>

implies K is a translation of K. Our inequality (1.6), which holds for u(+, K)
and u(e, K;), confirms this when K is a set of period 1. When K is a
nonperiodic set, for example, if K = K;U|[0, 1], then it is easy to see that the
maximum need not exist, and that

sup u(x, K) = u<%, K5>

can occur. In any case, if K is not a translation of K then (1.6) holds for
u(e, K) and u(+, Ky).

Theorem 1 is a close relative of a theorem in [Ba2, p. 167] about the behavior
of harmonic measure under circular symmetrization. Suppose that Q is a
subdomain of an annulus R, < |[{| < R,, 0< R, < R, < . Let Q* be the
domain obtained from Q by circular symmetrization, and # be the function
harmonic in @ with boundary value zero on 32N {R, < |¢| < R, }, and one on
{I¢] = R;}U {|§] = R,}. Let v be the corresponding function for Q*.

Theorem A. For re€[R;, R,] and convex nondecreasing ® on [0, =),

[ @wuee®ydi < [* @(re) db.

In [Ba2] the theorem is stated for subdomains of a disk. The annulus case
is proved exactly the same way. When K has period 1 Theorem 1 follows
directly from Theorem A via conformal mapping. The chief novelty of
Theorem 1 is that we are able to compare a nonperiodic K with the periodic
K. The methods used here to do this can be applied to solve various other
extremal problems in which the data are essentially one-dimensional.

It would be interesting to prove results of this type involving higher dimen-
sional periodicities. Suppose, for example, that K C R? is 6-dense in the sense
that area (KN A) > 6 for every disk A with area (A) = 1. For B > 0 define

UK, B) = {(x1, %, %3) € R*: (x1, ;) ¢ K, |x3] < B}

and let u(+, K, B) be the harmonic measure, for the Laplacian in R3, of
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X3 = +B with respect to Q(K, B). Lemma 8 of [Be, p. 63] implies existence of
a constant C(6, B) such that

sup u(x;,x,,0,K, B) < C(6, B).
(,rl,xz)en?z

One can pose the problem of finding the extremal configuration K.
Theorems about packing and covering in the plane, see, e.g. [FT, Chap. 4],
suggest that the extremal K should be associated with the decomposition of
R? into regular hexagons. The conjecture of Ahlfors and Grunsky, see, e.g.
[M], according to which the extremal case for the theorem of Bloch involves
the plane punctured at the centers of these hexagons, provides another ques-
tion of this type.

The main tool used to prove Theorem A was the subharmonicity of a cer-
tain maximal function #*. See Theorem B in Section 2. In order to adapt this
proof we introduce in Section 2 certain variants #§, whose subharmonicity
under appropriate hypotheses is established in Theorem 3.

Essén and Shea [ES] proved a uniqueness theorem associated with Theorem
A. For annuli, it states that if equality holds for some r € (R, R,) and some
strictly convex ® then Q* is a rotation of Q. Our Theorem 2 has a stronger
conclusion, in that «strictly» is not assumed. The method also works for suffi-
ciently regular domains 2, and gives a slight extension of the Essén-Shea
theorem for those domains. Probably with more effort it could be made to
work for all domains.

It is a pleasure to acknowledge discussions of Levin’s problem I had with
J.L. Fernandez in Zaragoza while visiting Spain under the auspices of the
Hispano-American accord.

In sadness I dedicate this paper to the memory of José Luis Rubio de Fran-
cia. I met him on only a few occasions, but his penetrating mind, cheerful
demeanor, and strength of character made a vivid impression that I will carry
with me always.

2. A Variant of the *-function

Suppose that —co < A; < A, < oo and that f'is a real valued integrable func-
tion on [A4,, A4,]. Let

1
L=7 (4~ A4).

Define the symmetric decreasing rearrangement f:[—L,L]— R and the
=-function f*:[0,L] = R by
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feo =inf (£ |{y: f(») >1}| <2x}, |x| <L,
f(£L) = lim f(x) = essinff,

x—=L -
2.1) S*0) =sup [ f(ydt,

where the supremum is over all E C [4,, 4,] with |E| = 2x. These functions
were studied in [Ba2, 3] where the following properties were proved.

(2.2) For each x € [0, L] there exists E C [A4,, A,] for which the supremum in
(2.1) is attained.

2.3) S =" Joyd,  0<x<L.
(2.4) For f,ge L'[A,, A,] the following two statements are equivalent:
(@) SH) < g*(x), for every xe]0, L],
A Ay
®) [ e @ar < [ (e ax,

for any convex non-decreasing function ¢ on (—o0, c0).

These results were stated for A, = —m, A, = 7 in [Ba2]. The more general
versions considered here can be reduced to that one. The argument which
proves (2.4) gives also a statement about strict inequality.

(2.5) For non-negative f,ge L'[4,, A,], with g not the zero function, the
following two statements are equivalent:

(@) f*(x) < g*(x), for every xe(0,L],

(b) for each convex non-decreasing ® on (0, ) with $(0) = 0, either
A A
20 dx < |72 ®(e() dx,

or both integrals are zero.

Suppose next that u is a real function defined in the annulus R, < [{| < R,
for which u(re’®ye L'[—, 7], R, <r < R,. Then u* is defined in the semi-
annulus S = {re’”:R1 <r<R,,0<0<}.

Theorem B. Suppose that u is subharmonic in R, < |{| < R,. Then

(@) u* e C(S).

(b) u* is subharmonic in the interior of S.

(c) Foreach 6 € [0, ] the function r — u*(re'’) is a convex function of log r
on (R, R,).



204 ALBERT BAERNSTEIN Il

For (a) and (b) see [Ba2, pp. 141, 147] and for (c) [Ba3, p. 85].
Let us return now to f€ L'[A,, A,]. For E C R write diam E = sup E — inf E.
For 0 <\ < L define f#:[0,\] @ R by

(2.6) S300) = sup [_f()d

where the supremum is over all E C [A4;, A,] with |E| = 2x and diam E < 2\.
Relatives of f3* appear in [Bal]. It is easy to see that again a set E = E(x,\)
exists for which the supremum in (3.6) is attained.

We adopt the following notation for open rectangles:

R(A,,A,,B;,B)={x+iy:A; <x<A,,Bi<y<B,}.

The closure of such an R will be denoted by R.

Suppose that u is defined in R(A4,, 4,, B;, B,) and that u(x + iy) e L'[A,, A4,]
for each y e (B,, B,). Then uj is defined in R(0, \, By, B,). In general, sub-
harmonicity of # does not imply subharmonicity of #§. Consider, for example,
u(x,y) = x*—y*in R(—A, A, —o, «), with A € (1, ©). Take \ = 1/2, then
for x + iye R(0,1/2, —, ),

uF(x + iy) = fj_“(tz —y)dt, Auf=12x—84 <0.

To get a positive result we need to impose a condition which prevents the
maximal sets E from hitting the left or right hand boundary of R. This is the
role of (2.7) in the theorem below. Recall that L = (4, — 4,)/2.

Theorem 3. Suppose that u is subharmonic in R(A,, A,, B, B,) and belongs
to L'[A,, A,] for each y € (B,, B,), that 0 < \ < L/2, and that, as 7 — ¢ from
inside R(A,, Ay, B, B,),

2.7) limu(z) < limu(z + 2\),  lim u(z) < lim u(z — 2)N),

z=¢ z=¢ z—¢ z=¢
where in the first inequality { = A, + iy and in the second { = A, + iy, B; <
Y <B,. Then

(@) ufe C[R(0,\,B;,B,)U{N+iy: B, <y < B,}].
(b) ut is subharmonic in R(0,\, B;, B,).
(c) For each x € [0,\), the function y = uj(x + iy) is convex on (By, B,).

For the proof we need two lemmas about sets £ C R. For e € R write E, =
E+e= {x+ exeFE}. Equivalence of two sets means that they differ by a
set of measure zero. Also, we will write sup E, inf E, and diam F instead of
esssup E, ess inf E, ess diam E to denote the essential supremum, infimum and
diameter of E.
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Lemma 1. Suppose that E is bounded, |E| > 0, and that E is not equivalent
to an interval. Then for all sufficiently small e >0, |[E,NE_ | < |E| — 4e.

Proor. If E is equivalent to a pair of disjoint closed intervals the lemma
follows by direct verification. Suppose that E is equivalent to neither a single
interval nor a pair. Then there exist points a, < b; < a, < b, < a; < b; such
that the a; are density points of R\ £ and the b; are density points of E. Take
¢ €(by, @), ¢, €(by, a;3). Then for e >0 and x = X,

ENE_| =" xtt+oxt—odi=[" + [+

€y €2
Take » > 0. The proof on page 146 of [Ba2] shows that for e sufficiently
small

[ X+ eoxt—di< [ xt+edt— @~ .

The same inequality holds when (— o, ¢,) is replaced by (¢, ¢,) and (c,, «).
Hence

|E.NE_,| < jf X(t + €)dt — (6 — 3x)e < |E| — 4e,
provided » < 2/3.

Lemma 2. Let E satisfy the hypotheses of Lemma 1. Then for each suffi-
ciently small € > 0 there exist sets E’', E” C R such that

(@) EVUE_,=E'UE" and ENE__=E'NE".
(b) |E’| = |E| — 2¢ and |E"| = |E| + 2e.
(¢) diam E’ < diam E and diam E” < diam E.

Proor. Let F=(E,UE_)\(E.NE_,). Then |F| > 4¢, by Lemma 1. Let G
be a set of the form G = FN[a, o) for which

‘G| = ]El - lEemE—-e] — 2e.

Then, by Lemma 1, G exists and |G| = 2¢. Define E' = (E,NE_,)UG,
E" = (E.NE_J)U(F\G). Then (a) is true. Also, |E’| = |E| — 2¢. Now (a) can
be restated as

Xg + Xp_ = Xg + Xgo-

Hence 2|E| = |E’| + |E"|, so that |E"”| = |E| + 2¢ and (b) is proved.
Suppose that inf G < € + inf E. (Recall that inf means essential infimum.)
Then, since (F\G) C [—¢ + inf E, inf G], we would have |F\ G| < 2e, so that
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|E"| < |E| + 2¢, a contradiction, Similarly, sup (F\G) > —e + sup E would
imply |G| < 2¢, contradicting an earlier inequality. Hence

inf G > e + infE, sup (F\G) < —e+ supkE.

Thus E' C [e + infE,e + supE], E" C[—e + infE, —e + sup E], and (¢) is
proved.

PRrOOF OF THEOREM 3. Suppose first that u € C? (R(4,, A,, B;, B,)) and that
ue C(R(A,, A,, B, B,). Then continuity of u follows from a straightforward
argument, and we omit it. Let us prove subharmonicity. Take z, = x, + iyy €
RO, \, By, B,) and E; C [A;, A,] with diam E, < 2\, |E,| = 2x, and

(2.8) u(zo) = on u(t + iyo) dt.

From (2.7) it follows that there exists » > 0 such that

u(t + iyy) < u(t + 2\ + iyy), u(t + iyg) < u(t — 2\ + iyy),
when, respectively,
A <t<A;+x or A,—x<t<A,.

I claim that E is essentially contained in [4, + x, A, — x]. Let

b = sup E, = (ess sup Ey), a=infE,, and F=E,N[A, — x,A,].
If |F| >0 then be (A, — x,A,] and hence @ > b — 2\ > A, — » — 2\. Let

E, = (E)\\F)U(=2\ + F).

Then |E,| = |E,|, diam E; < 2\, and the integral in (2.8) strictly increases
when E, is replaced by E,, contradicting the definition of uj. Similarly,
|EoN[A, A, + x]| = 0. Thus, after possible deletion of a null set,

(2.9) E,C A, + %, A, — x].
For 0<p < x, —7/2 < ¢ < 7/2, define a function Q by

Op, ¢) = JE [u(t + pcos ¢ + i(y, + psing))
Ut — pcosé + i(yy + psin ¢))] dt.

Using (2.8) and subharmonicity of u, we have

2100  2mutG) < [ dt [T utt+ivo + pe)do = [ 0(o, 9) do.

— 7/
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Fix p, ¢ and write y = y, + psin¢, e = pcos ¢. Then

O(p, ¢) = j(E) u(t + iy)dt + LE) u(t + iy)dr.

If E, is not equivalent to an interval, then, for small enough p, we can find
sets E’, E" for E, satisfying the conclusions of Lemma 2, and (2.9) guarantees
that these sets are contained in [A,, A,]. From Lemma 2(a) it follows that

Olp, ) = [ ult+ iyt + | utt +iy)ar,
and from Lemma 2(b), (c) we obtain
@2.11) Olp, $) < u(zo — pe™®) + uii(zy + pe').

If Ey=[a,b], then b —a=2x, <2\ and we achieve (2.11) by taking
E'=la—e,b—¢€], E"=[a+¢b+ €] (assumming p <\ — X;). Inserting
(2.11) in (2.10), we arrive at

2.12) 2mui(zo) < [ _ui@o + pe'®) do,

so that u§¥ is subharmonic in R(0,\, By, B,).
Turning now to the proof of convexity in the C? case, let u,(z) = u(z) + ey>.
It will suffice to prove that (u,)#(x + iy) is convex in y for each € > 0.
Take z5 = xo + iy, with 0 < x, < 2\, y, € (B}, B,), and let E, be a maximal
set for u¥ as in (2.8). Then (2.9) holds. Since #§ and (u,)f have the same maxi-
mal sets, (2.8) holds also with u replaced by u,. Define

L = [ ueti+iydt,  HO)= [ e+ iy,
(] 0

Then J; is C? in a neighborhood of 0, J, is C? in a neighborhood of y,,
and J; has a local maximum at x = 0. Hence

02 J{(0) = |, W)l + iy dt
= [ LU + ivo) = @y (¢ + o)l dt
> 2¢[Ey| — J5(30).

Thus J5(y,) > 0, and J, is convex in a neighborhood of y,. Hence, for small
7> 0,

1
(u)3(z0) = J2()o) < E[JZ(yO + 1)+ S (¥ — 7)]

1
S 5 LRG0 + 1) + W — 1l
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which proves (c) in the C? case.

It remains to prove Theorem 3 in the nonsmooth case. Take B;, B, with
B, < B; < B, < B,. By (2.7), there exists A; € (A, A; + N\), A, € (4, — \, 4,)
such that u(z) < u(z + 2\N), u(z) < (z — 2\) when z = x + iy with y € [B;, B,]
and, respectively, x € (4,, A;) or x € (44, A,). As in the C? case any maximal
set for uF(x + iy) will be essentially contained in [4;, A,] when y € (B;, By).

Let K >0 be a radial C? function on C such that K(|z|) decreases as |z]
increases, K(z) =0 for |z| >1/2, and [ K(z)dxdy = 1. Let u, be the R2-
convolution of u with e 2K(ze ™ !). Then u, is defined on a slightly smaller
rectangle than u, and satisfies a boundary condition like (2.7) when ¢ is small.
For each z€e R (A, A,, B,, B,) we have u,(z) { u(z). Moreover, using continuity
of the mean value

Ay —
ad

as in the proof of (11) on page 145 of [Ba2], one can show that for each 7 > 0,

Tu(x + y)dx, 7>0,

Ay =1
lim sup f |u.(x + iy) — u(x + iy)| dx = 0.
e—0 yE[Bs,B4] A +7
Using this, it is not hard to prove that (u,)f — u$ uniformly on R[0, \, B;, B,].
Then the general case of Theorem 3 follows from the C? case.

3. Other Preliminaries

There are also versions of u§ and of Theorem 3 in the periodic case. Suppose
that f is an integrable real valued function on the unit circle T and that
0 <\ < 7. Define f#:[0,\] @ R by

3.1 J3©) = sup | fee")at,

where the supremum is over all £ C T with |E| =26 and E contained in
some arc [ of T with |I| = 2\. This f} differs from the one defined in Sec-
tion 2 for the function 6 — f(e’®) on [—, «], since in (3.1) sets like E =
{e': 7 — e < < 7 + €} are permitted in the competition, when 2¢ < 2.
Suppose that u is defined in the annulus R, < |z| < R, and is integrable on

each r circle, R, <r < R,. Then u} is defined in the annular sector

S={re:R, <r<R,0<0<N\].

Theorem 4. Suppose that u is subharmonic in R, < |z| < R,. Then
(@) ufeC(S).
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(b) uj is subharmonic in the interior of S.
(c) Foreach0e|[0,\], r— u*(re'®) is a convex function of logr on (R,, R).

When \ = = this theorem reduces to Theorem B. Note that in the periodic
case we do not need any extra conditions such as (2.7). The proof of Theorem
4 follows the same pattern as that of Theorem 3, with a few simplifications.
We will not use Theorem 4 in this paper, except for the previously known case
N = w. It is recorded here for possible use in other contexts.

Next, we examine the extremal function u(z, B, K;). For fixed é € (0, 1) and
0 < B < o define

(32) U(Z) = u(z, B’ Ké)
Then
v@)=v(z+1) for zeR (—,, —B,B).

Thus there is a well defined function V in the annulus e™>™® < |{| < e*™®
given by

U(Z) — V(_e27rl'Z)'

This function is harmonic in the annulus with the slit {e’®: 7 — 76 < ¢
< 7+ w6} deleted, takes the value zero on the slit and the value one when
|¢| = e*>™8. The argument in Proposition 5 of [Ba2, p. 153] is applicable,
and one finds that V(re’®) is a symmetric decreasing function of ¢, for
|log r| < 27B. Equivalently, for z = re® in the upper half of the annulus,

vage®) = 1 Vire®)de

where V* is the usual periodic *-function (with A = 7). Moreover, V* is con-
tinuous in the closed half-annulus, harmonic in the open half-annulus with
{e®: 1 — w6 < ¢ < 7} deleted and, since V*(re’™) is the mean value over the
circle |¢| = r, it is a linear function of logr for 1 < r < 5.

Returning to v, define, for ze R(0, 1/2, —B, B),

3.3) v¥(z) = jx v(—; +1+ iy> dt.

Define also

(3.4) o= %-(1 5.

Then v*(z) = V*(e*™%) and the properties of V* translate to the following
properties of v*.
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Proposition 1. For v defined by (3.2),

(@) v¥eC(R(0,1/2, —B, B)),
(b) v* is harmonic in R(0,1/2, =B, B)\ [«, 1/2),
(¢) y—v*(1/2 + iy) is linear on [0, B].

d) sup v(x) = v(é)

Next, we shall show that

I 1
(3.5) lim Bu< BK, ) = L log(cot ™).
2 T 4

B— o

Let

. 1/ . =6 -
F,(z) = sin 7z, Fy(w) = ) sin 5 w+w ).
Then F, conformally maps the half strip R(—1/2,1/2,0, ) onto the upper
half plane, and F, conformally maps the exterior of the unit disk onto

o 0
C\[—Sinz ,sing]-

_ ! (csc m >e”"
P=y 2 ‘

Then, for large B, F; ' o F, maps the half disk 1 < |w| < p, Imw > 0, into
R(—1/2,1/2,0, B). Let hy(w) = u(Fy Y(F,(w)), B, K;). Then h,, is harmonic in
the half disk, 4, = Oon |w| =1, h, < 1on |w| = pand dh,/dn = 0onImw = 0,
1 < |Im w| < p, except perhaps at the points F; ' o F,(%1/2), where h remains
bounded. Extend 4, to the annulus 1 < [w| < e™ by hy(W) = hy(w). Then hy
is harmonic in the annulus and

Let

log [w|
logp

b=

hy(w) < 1 < |w| <op.

Now

Hence, as B — o,

)
. log <cot 4 )
(3.6) u(z > Bs Ké) < .
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Choosing instead

)
=4 a7 7B
0 (csc 5 )e ,

then F; ' o F, maps the half disk onto a super-domain of R(—1/2,1/2,0, B).
One obtains the inequality opposite to (3.6), and (3.5) follows.

Proor oF (1.4). This can easily be derived by the methods of [Be], but is par-
ticularly simple if one uses Theorem 1 and (3.5). These results imply existence
of C = C(8) such that Bu(x,B,K) < C for all B> 0, xe R. Hence, by the
maximum principle, for 0 <y < B, and z = x + iy,

3.7 Y<Bu(z,B,K)<y+C.

Thus, the symmetric functions Bu(e, B, K') possess a subsquence which con-
verges locally uniformly on C\ K to a harmonic function u, which satisfies
|yl <u(@) < |y + C. So, for xeR,

y'—‘DO
It remains to show that for each { e K,
(3.3) lim u(z) = 0,

when z - ¢, ze K.

Fix {eK and let S = {z: A; < Rez < A,} be a strip with { €S. Let H be
the solution of the Dirichlet problem in S\ K with boundary data H = 0 on
KNS, H(z) = C + |y| on 8S. Since the boundary function is integrable with
respect to the harmonic measure on S\ K and each point of K is Dirichlet
regular, potential theory shows that such an H exists, and that lim _, . H(z) = 0.
From (3.7) we deduce u(z) < H(z) in S\ K, and (3.8) follows.

For the proof of Theorems 1 and 2 it will be convenient to have a special
form of the maximum principle. Suppose that 0 < o < @ and b > 0. Write
R = R(0,a, —b, b), and let w be a function defined on R.

Proposition 2. Suppose that

(3.9) w is subharmonic in R\[«, a) and continuous on R,
(3.10) y » w(a + iy) is convex on [0, b],
(3.11) w(z) = w(Z), z€R,
(3.12) w(iy) =0 for |y| < b, and w(x + ib) <0 for 0<x<a,
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(3.13) w(x) = w(a) for a <x<a, and

lim w(e) — w(x) _
X o— o —X

0.

Then
(3.149) w<0inR.
Moreover, if either
(3.15) w is not harmonic in R\[a, a)
or
(3.16) wa+iy) <0 for 0<y<b,

then w(z) <0 for ze RU {a + iy: |y| < b}.

Proor. Let M = sup, w. Then M > 0, by (3.12). The hypotheses imply that
M = w(z,) for some z, with Rez, =0, Imz, = b or z; = . In the first two
cases we have M = 0, which is (3.14). If M > 0 then z, = o, w is non-constant,
and hence w < M everywhere in R(0, o, —b, b). From Hopf’s lemma (see, e.g.
[GT, p. 34]), it follows that dw(«)/dx > 0 (derivative from the left). This
contradicts (3.13), and therefore (3.14) holds.

If either (3.15) or (3.16) holds, then w < 0 in R\ [«, @). Hopf’s lemma shows
again that w(a) <0, and thus w(x) <0 for xe€[a,a], by (3.13). Thus
w(a) < 0, while w(a + ib) < 0, by (3.12). Hence w(a + iy) < 0 for |y| < b, by
(3.10), and the proof is complete.

4. Proof of Theorem 1

We may assume that K contains no interval (@, ) or (— o, @), since otherwise
we can replace K by a closed subset with this property which still satisfies the
6-density condition. The corresponding u(e, B, K') pointwise dominates the
original one.

Choose sequences A, | —o, AT +oosuchthat1 + 4, ¢K, —1 + A, ¢K.
Let u, be the function harmonic in R(A4,, A,;, —B, B)\ K with boundary values
zeroon KU(Rez = A, or A})), oneon Imz = +B. Then u, T u(-, B, K) locally
uniformly in |y| < B, so it suffices to prove Theorem 1 with u, in place of
u(-,B,K), and I C [A4,, A}].

When A, — A}, > 1, Theorem 3, with X\ = 1/2, is applicable to u,. Moreover,
it is easy to see that (u,)f¥e C[R(0, 1/2, —B, B)]. Let w = (u,)f — v*, where v*
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is defined by (3.3) and v by (3.2). Take a set E, with |Ey| =2 =1 — 6 for
which

u)i(a) = u,(t)dt

(@) = [, w,(0)

and E, C I, where I is an interval of length 1. Define
u¥(x) = sup LE u,(t) dt

where the supremum is over E C I with |E| = 2x. By the §-density condition
and (2.3),

4.1 lim ﬂ?‘)__f‘j(xl =
) x> o— a—X

0.

Now uj(a) = (u,)#(a), and uF(x) < (u,)¥(x) for 0 < x < . Thus (4.1) holds
with (u,)¥ in place of u}, and by (3.3) it holds for v. Hence w satisfies (3.13).
From Theorem 3 and Proposition 1 it follows that w satisfies the other
hypotheses of Proposition 2 in R(0, 1/2, — B, B), so that w < 0 there. By (2.4),
this proves Theorem 1.

5. Proof of Theorem 2. Periodic case

Assume in this section that there exists a closed set K’ < [0, 1] such that

K= U (m+K)).
n= —
Fix B > 0 and write u(z) = u(z, B, K). Then u(z + 1) = u(z). _
Define U in the annulus e~ 2™ < |¢| < e*™® by the formula U(e*™) = u(z).
Then u is the function harmonic in the annulus with the set e*™X" deleted,
which takes the values one on || = e**™® and zero on e*™X". Define

.1 U*(re'®) = sup j U(re™) dt, u*(z) = sup j u(t + iy) dt,
E E E E

where in the first case the supremum is over subsets of the unit circle with
|E| = 260 and in the second over E C R with |E| = 2x and diam E < 1. Then
u*(z) = U*(e*™%). By Theorem B, u* is subharmonic in the rectangle

R =R(0,1/2, -B, B),

continuous on its closure, and the function y = u*(1/2 + iy) is convex on
[-B, B].
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Let w = u* — v*, where v is defined in (3.2) and v* by (3.3). Then w <0
in R, by Theorem 1 and (2.4). By (2.5), the strict ®-inequality statement of
Theorem 2 is equivalent to w(z) < 0 forze RU {1/2 + iy: |y| < B}. By proposi-
tions 1 and 2, it is sufficient to show that w fails to be harmonic in R\ [«, 1/2),
unless ™K’ is a single arc on the unit circle with length exactly 278.

Leta'= (1 — |K'|)/2. Then0 < o’ < & = (1 — 8)/2. Let H = > X' If His
a single arc then o’ < «, and consideration of the function U shows that u*
is harmonic in R\[a’, 1/2) but not in R\ [«, 1/2). Hence w fails to be har-
monic in R\[«, 1/2), and we are done.

Assume, then that H is not a single arc. We are going to show that for X,
slightly smaller than o’ and for all small enough p,

(5.2) u*(x,) < R r u*(x, + pe'®) de.
27 J-=»

Since v* is harmonic at x;, this will show that w is not harmonic in R\ [¢, 1/2),
as required.

Suppose that f is a continuous real function on the unit circle for which
[{pe[—m, 7l:f(e®) =t} =0 for each ¢>0. Let E(t) = {¢:f(e™) > t}.
Then the function ¢— |E(f)| is strictly decreasing and continuous for
0 < t<supf, and for each 6 € (0, |E(0)|/2) there is an essentially unique set
E for which the supremum

sup j fe®ds, EC]i=1,
|E\=20 JE
is attained. This set is £ = E(f) with ¢ chosen so that |E(¢)| = 26.

The function U is harmonic in e~ *™ < |¢| < ™ except on H and is not
constant on |¢| = 1. It follows that for ¢ > 0 the sets E(¢) = {¢: U(e™) > t}
have only finitely many components. Thus, when » = 1 and 0 < § < 27a’ each
maximal set £ in (5.1) can be taken to consist of finitely many open arcs, or
of finitely many disjoint closed arcs. We work with the latter, and note that
U is constant on dE. Since H is not a single arc, the equation U(e’®) = ¢ will
have at least four solutions when ¢ is close to zero, and hence the closed maxi-
mal set E will consist of at least two disjoint closed arcs, when 6 is close to
2wa’.

Return now to the function u. For x; € (0, «') and sufficiently close to «’
there is, by the above discussion, a set

N

Ey,= U la;, b}

i=1
with
a,~<b,~<a,-+1, i=1,...,N,
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by — a; < 1 (note the strict inequality), |Ey| = 2x5, and 2 < N < o, for which
u*(x) = u(t)dt.
Je,

Moreover, u(a;) = u(b;) = t, for some ¢, u(t) > t, for t e E,, and u(t) < ¢,
for 7 slightly to the left of an @; or to the right of a ;.
For € > 0 define sets E' = E'(¢) and E” = E"(¢) by

N
E’=[a1+e,b1—e]U<U[a,~+e,b,-+e]>’
i=2

N
Eu=[al—6,b1+6]U<U[ai—e,bi—e]>.
i=2

When ¢ is small enough these sets satisfy the conclusion of Lemma 2 in Sec-
tion 2, with diam E’ < 1, diam E” < 1. Furthermore,

[ utydt <ure, + o),

since the integral strictly increases when E” is replaced by

N
[al — €, bl -+ E]U<U [a,-,b,-]>~
i=2

Let Q(p, ¢) be defined as in (2.10). The analysis which led to (2.11) shows
that, for small enough p, Q(p, ¢) will be strictly smaller than

u*(x, — pe’®) + u*(x, + pe®) for ¢ =0.

By continuity this is true in a neighborhood of ¢ = 0, and the argument used
to establish (2.12) proves (5.2). The proof of the & inequality in Theorem 2
is complete.

To prove (1.6), suppose again that K is not translation of K. Fix x, € R and
define for ze R(0,1/2, —B,B) = R,

ul(z)=Jx_xu(x0+t+iy)dt, Z=x+iy.

Then u, is subharmonic in 7, and we proved above that ¥, (z) < u*(z) < v*(2)
there. Applying Hopf’s lemma, as in the proof of Proposition 2, Section 3,
in R(0, o, —B, B) to w; = u; — v* at z = iy, we obtain for |y| < B,

2<u(xo +iy) — v(% + iy>> = lim &(}H—_ly) <0,

x—0+ X

which gives (1.6).
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6. Proof of Theorem 2. Nonperiodic case

Suppose that u(z) = u(z, B, K) is not a 1-periodic function. For z € R(—0, o,
—B, B) define, for z =x + iy,

h(z) = j;u(x+t+iy)dt, H(z) = j;v(x+z+iy)dt,

where v is defined by (3.2).

Then H is actually a function of the form a|y| + b, since v is 1-periodic,
while 4 is subharmonic in R(—e0, 0o, —B, B). By Theorem 1 we have h < H
inR=R(—x,0, —B,B). Thus, either Ac<HinRorh=H.If h=HinR
then A(x) = H(x) is constant for x € R and hence

0=Hhx =ulx+ 1) — ulx).
This violates our non-periodicity assumption. Hence, for all
Z€R(—x,,0,B), 7=x+ iy,
6.1) [Jutc+ 1+ e < [Loee+ 1+ ipydr.

Let us suppose that the ®-inequality statement in Theorem 2 is false. Then
from Theorem 1 and (2.5) it follows that there exists z, € R(0, 1/2, —B, B)
U{l/2+iy: —B<y< B} and E, C R with diam E, < 1, |Ey| = 2x,, such
that

6.2) jE u(t + ivo) dt = v*(zo), 20 = Xo + IVp.
1]

The rest of the proof will consist of showing that no such E, can exist.
Assuming that it does, let 7 C R be an interval with £, C I and || = 1. Define

f@) =u+ 1+ iyy) — u(t + iyy).
I claim that f(¢) < 0 for some € E,. Suppose not. Then
j u(t + iy + 1)dt > j u(t + iyy) dt = v*(zy),
EO EO

with strict inequality unless f= 0 on E,. The strict inequality is ruled out by
(2.4) and Theorem 1. Hence

u(t +iyy+ 1) =u(t +iy,) forall tekE,.

Now u is harmonic in (|Imz| < B)\K, constant on y = =B, and satisfies
u(z) = u(z). Moreover, E, has positive measure, and it cannot be contained
in K if (6.2) holds. One can easily show that under these conditions we must
have in fact u(z) = u(z + 1) for every z with |Im z| < B. Since this contradicts
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non-periodicity our claim is established, and thus there exists #; € E, C I with
u(ty + iyg + 1) < u(t; + iyy).-

Similarly, there exists ¢, € E, with u(t, + iy, — 1) < u(t, + iy,). For e > 0 let
R =R(, - 1,t; + 1, —¢, ). By continuity, when e is small enough the func-
tion u(z + iy,) satisfies the hypotheses of Theorem 3 in R with A = 1/2. Write
u* = u¥,, for the corresponding *-function, let v, v* be as in Sections 4, 5,
and define

w(Z) = u*(Z + iyg) — v¥( + iyy).

Suppose first that y, # 0. We may assume that y, > 0, € < y,, and then, by
Theorem 3 and Proposition 1, w is subharmonic in R, = R(0, 1/2, —¢, €) and
continuous on the closure. It follows from Theorem 1 that w < 0 in R, and,
by (6.1), w(1/2 + iy) < 0 for |y| < e. Hence w < 0 in R. But since E, C I C
[t, — 1,¢ + 1], (6.2) implies w(x,) = 0, and (6.1) implies x, < 1/2, so that
X € R. These contradictions show that y, # 0 is impossible.

If y, = 0 then w is subharmonic in R\ [a, 1/2), where a is defined by (3.4).
The argument of the preceding paragraph rules out the possibility that
0 < X, < . Suppose that x, = «, so that w(a) = 0. For our interval I define

u¥(x) = sup fE u(r) dt
where the supremum is over E with |E| = 2x and E C I. Then
uia) = u*(e) = v*().
Hence
0 <u*(a) — u*(x) < ufa) — uix).

Using (2.3) with 7 = [A;, A4,] and the §-density condition (1.1), we deduce
that

. u¥(o) — ur(x)
hm _— =
Xx—o— oa—X

0.

It follows that w satisfies all the conditions of Proposition 2 in R(0, 1/2,
—e,€). By (6.1) we have w(1/2 + iy) < 0 for 0 < y < ¢, and Proposition 2
implies that w(a) < 0, a contradiction.

The last remaining possibility is that o < x5 < 1/2, y, = 0. But the é-density
condition and (2.3) imply that if (6.2) holds for such a z, and E, then it also
holds for some E; with |E;| = 2« and y, = 0. By the previous paragraph this
is impossible. Thus, there are no circumstances under which (6.2) can hold.
The & inequality for Theorem 2 is now established. The inequality u(x + iy)
< v(1/2 + iy) is proved exactly as in the periodic case.
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Note

After this paper was typeset I learned that Theorem 1 had already been obtained by A. E. Fryn-
tov, (Dokl. Akad. Nauk USSR, Tom 300 (1988), No. 4, English Translation in Soviet Math.
Dokl. 37(1988), 754-755). His proof is similar to the one given here. Fryntov’s article makes no
mention of uniqueness questions. I learned also about a result related to Levin’s conjecture which
had been proved by E. V. Gleizer and A. A. Gol’dberg (Analysis Matematica 11(1985), 23-28).
I thank Professor Havin for telling me about the Gleizer-Gol’dberg result, and Professor
Gol’dberg for telling me about Fryntov’s.



