Inversion in Some Algebras of Singular Integral Operators

Michael Christ

To the memory of José Luis Rubio de Francia

Let g be a finite dimensional nilpotent Lie algebra. Suppose that g decomposes as a direct sum $g = \bigoplus_{\alpha \in (0,\infty)} g_{\alpha}$ where the Lie brackets of the summands satisfy $[g_{\alpha}, g_{\beta}] \subset g_{\alpha+\beta}$ for all $\alpha, \beta \in (0,\infty)$. Let G denote the associated connected, simply connected nilpotent Lie group. Identify elements of g with left-invariant vector fields on G, so that the exponential map $\exp : g \mapsto G$ identifies G with \mathbb{R}^N for some N. Define dilations $\{\delta_r : r > 0\}$ on G by $\delta_r \exp\left(\sum X_{\alpha}\right) = \exp\left(\sum r^{\alpha}X_{\alpha}\right)$ for all $X_{\alpha} \in g_{\alpha}$. These are group automorphisms. Denote the homogeneous dimension of G by $d = \sum \alpha \cdot \text{dimension}(g_{\alpha})$; of course all but finitely many of the g_{α} have dimension zero. Denote by S the Schwartz class of functions and by S the unit sphere in G, identified with \mathbb{R}^N . Any $x \in G \setminus \{0\}$ may be expressed uniquely as $\delta_r \theta$ for some r > 0, $\theta \in S$. Define |x| = r, and of course |0| = 0. In the exponential coordinates S is the group identity element, and $x^{-1} = -x$ for all $x \in G$. All integration over G will be with respect to Haar measure, which is unimodular and agrees with Lebesgue measure in exponential coordinates. Let S denote the identity operator.

A tempered distribution $K \in S'$ is said to be homogeneous of degree -d if

$$\langle K, f' \rangle = \langle K, f \rangle$$

for all $f \in S$, r > 0, where f'(x) denotes $f(\delta_r x)$. To any distribution ψ acting on test functions on S and annihilating constants we may assign a distribution $K \in S'(G)$ as follows: For r > 0 and $f \in S(G)$ write $f_r(\theta) = f(\delta_r \theta)$. Then define

$$\langle K, f \rangle = \int_0^\infty \langle \psi, f_r \rangle \frac{dr}{r}.$$

The integral converges absolutely because $f \in S$ and $\langle \psi, 1 \rangle = 0$. We denote by PV the class of all such distributions on G; they are homogeneous of degree -d. In fact any $K \in S'$ homogeneous of degree -d is necessarily of the form $K = a\delta + K'$ for some $K' \in PV$ and $a \in \mathbb{C}$, where δ denotes the Dirac mass at $0 \in G$. See [C2, Lemma 2.4] for a proof. The decomposition is unique.

For $q \in (1, \infty)$ let A_q denote the set of all operators $T: S(G) \mapsto S'(G)$ of the form Tf = f * K = af + f * K' where $K' \in PV$ and K' restricted to S belongs to L^q . Define $|T|_q = |a| + ||K'||_{L^q(S)}$.

Proposition 1. For all $q \in (1, \infty)$, any $T \in A_q$ extends to an operator bounded on $L^p(G)$, for all $p \in (1, \infty)$.

Proposition 2. A_q is a Banach algebra for all $q \in (1, \infty)$.

By virtue of Proposition 1, $S \circ T$ is defined for all $S, T \in A_q$, as a bounded operator on L^2 . What must be proved here is that

$$S \circ T \in A_a$$
 and $|S \circ T|_a \leq C_a |S|_a |T|_a$.

(Consequently there exists an equivalent norm $|\bullet|'_q$ on A_q , such that $|I|'_q = 1$ and $|S \circ T|'_q \leq |S|'_q |T|'_q$ for all $S, T \in A_q$, cf. [K, p. 197].)

Let \mathfrak{B} denote the algebra of all bounded linear operators on $L^2(G)$, and let $|\cdot|_{\mathfrak{B}}$ be the operator norm. For any algebra A and element $T \in A$, let

$$\operatorname{spec}_A(T) = \{\lambda \in \mathbb{C}: T - \lambda I \text{ is not invertible in } A\}.$$

The point of this article is

Theorem 3. For all $q \in (1, \infty)$, for all $T \in A_q$, $\operatorname{spec}_{A_q}(T) = \operatorname{spec}_{\mathfrak{B}}(T)$.

Proposition 1 implies one inclusion, $\operatorname{spec}_{\mathfrak{B}}(T) \subset \operatorname{spec}_{A_{\mathfrak{G}}}(T)$.

In the Euclidean case, that is when $G = \mathbb{R}^N$ with the Euclidean group law and $\{\delta_r\}$ are the usual dilations, these results were obtained by Calderón and Zygmund [CZ1], [CZ2]. This class of operators was further studied by Duoandikoetxea and Rubio de Francia [DR]. In the nilpotent case Proposition 1 is a corollary of the main theorem of [C1] and the Calderón-Zygmund method of rotations if K is odd, and in general is a direct consequence of the method of proof in that paper. The question was asked of us by J. Duoandikoetxea. Proposition 2 is a corollary of the proof of Proposition 1.

Our main result, Theorem 3, answers a question posed by A. Carbery. In the Euclidean case A_q is a commutative Banach algebra, the Fourier transform sets up a natural identification of its maximal ideal space with the unit sphere in \mathbb{R}^N , and the result follows from Plancherel's theorem [CZ2]. However in the nilpotent case commutativity is lost.

We were led to this issue in the nilpotent case in studying the regularity of solutions of $\bar{\partial}_b$ [C4], a partial differential operator which arises in complex analysis in several variables. A principal step in that work was an analogue of Theorem 3, in which the condition $K' \in L^q(S)$ was replaced by the stronger condition $K' \in L^q_\beta$ in an annular neighborhood of S, where L^q_β was a certain type of Sobolev space with exponent q and order of differentiability $\beta > 0$. The set of all associated operators T is still an algebra, and we showed that the spectrum in that algebra agrees with the spectrum in B. Thus Theorem 3 is the limiting case $\beta = 0$ of the earlier result, and our first proof of it was by the same technique. The purpose of the present article is instead to present a considerably simpler proof which emphasizes the Banach algebraic point of view. This argument could also be used to give a simpler proof in the case $\beta > 0$, but we shall not give the details here.

The proof relies on estimation of the spectral radius in A_q . L. Carleson has pointed out that it is related to Beurling's proof [B] of the Wiener Tauberian Theorem. I am indebted to A. Carbery, L. Carleson, and A. McIntosh for helpful conversations concerning this work.

To begin let $A \subset B$ be two Banach algebras with different norms. Suppose $|x|_B \le C|x|_A$ for all $x \in A$, and that $|xy|_B \le |x|_B|y|_B$ for all $x, y \in B$. Define the spectral radius of an element of A by

$$\rho_A(x) = \lim_{n \to \infty} |x^n|_A^{1/n}.$$

The limit always exists [K, p. 208] and is finite.

Lemma 4. Suppose that there exist $C < \infty$ and $\theta \in (0, 1]$ such that for all $x, y \in A$

$$|xy|_A \le C(|x|_A |y|_A^{1-\theta} |y|_B^{\theta} + |y|_A |x|_A^{1-\theta} |x|_B^{\theta}).$$

Then $\rho_A(x) \leq |x|_B$ for all $x \in A$.

Proof. The hypothesis gives

$$|x^{2k}|_A^{1/2k} \leq (2C)^{1/2k} (|x^k|_A^{(2-\theta)/2k}|x^k|_B^{\theta/2k}).$$

for all $x \in A$, k > 0. Passing to the limit gives

$$\rho_A(x) \leqslant \rho_A(x)^{1-\theta/2} |x|_B^{\theta/2}.$$

This simplification due to Carleson replaces the author's slightly longer proof. Now suppose that $B = \mathbb{G}$, and denote by x^* the adjoint of $x \in \mathbb{G}$.

Lemma 5. Suppose that $A \subset \mathbb{B}$ satisfy the hypothesis of Lemma 4 and that A is closed under adjoints. Then

$$\operatorname{spec}_{A}(x) = \operatorname{spec}_{\mathfrak{B}}(x)$$

for all $x \in A$.

PROOF. What must be demonstrated is that if $x \in A$ is invertible in \mathfrak{B} , then it is also invertible in A. It suffices to invert both x^*x and xx^* in A, for then x will have both a left and a right inverse. If $\epsilon > 0$ is chosen sufficiently small, then $|I - \epsilon xx^*|_{\mathfrak{B}} < 1$ because x is invertible in \mathfrak{B} . Set $y = I - \epsilon xx^* \in A$. Then $\rho_A(y) \le |y|_{\mathfrak{B}} < 1$ by Lemma 4, so I - y may be inverted in A by summing the series $I + y + y^2 + \cdots$. But $I - y = \epsilon xx^*$. The reasoning for x^*x is the same. This argument was pointed out to us by J. L. Journé.

Introduce an auxiliary function $\zeta \in C_0^{\infty}(G)$, with $\zeta(x)$ a function of |x| alone, identically one in a neighborhood of 0 and supported in a small neighborhood of 0. Denote by $\|\cdot\|_{q,q}$ the operator norm on $L^q(G)$.

Lemma 6. Suppose that $T \in \mathfrak{B}$ is of the form Tf = f * K where $K = a\delta + K'$, $K' \in PV$. Then $|a| \leq C \|T\|_{\mathfrak{B}}$.

PROOF. Fix $\phi \in C_0^\infty(G)$, identically one in a neighborhood of 0. If the support of ζ is chosen to be sufficiently small then $\phi * (\zeta K') \equiv 0$ in some neighborhood of 0, since $\zeta K'$ annihilates constants by the definition of PV and the fact that ζ is itself radial. But $(1 - \zeta)K' = (1 - \zeta)K$ and the L^2 operator norm of $f \mapsto f * (1 - \zeta)K$ is majorized by $C_{\zeta} ||T||_{\mathfrak{B}}$ [C2, Lemma 2.10]. In a neighborhood of 0, $T\phi = a\phi + \phi * ((1 - \zeta)K)$. So $||T(\phi)||_{L^2} \ge C_1|a| - C_2|T|_{\mathfrak{B}}$.

Assume for now the validity of Proposition 1. To complete the proof of Theorem 3 we show that $A=A_q$, $B=\mathfrak{B}$ satisfy the hypothesis of Lemma 4. Suppose $q \neq 2$. Let $S, T \in A_q$ be given by convolution on the right with $K=a\delta+K'$ and by $L=b\delta+L'$ respectively, where $a,b\in\mathbb{C}$ and $K',L'\in PV$. Set $K_\infty=(1-\zeta)K=(1-\zeta)K'$ and similarly define L_∞ . Since $S\circ T$ is well-defined as a bounded operator on $L^2(G)$, L*K is a well-defined element of S', manifestly homogeneous of degree -d. Furthermore

(1)
$$L*K = (\zeta L)*(\zeta K) + [(1-\zeta)L]*K + L*[(1-\zeta)K] + [(1-\zeta)L]*[(1-\zeta)K].$$

Since L * K is homogeneous of degree -d, its restriction to S will be in L^q if and only if its restriction to $\{x \in G : |x| \ge 1\}$ is in L^q with respect to Haar measure on G. If we choose ζ to be supported sufficiently near 0, then $(\zeta L) * (\zeta K)$ will be supported in $\{|x| < 1\}$, so may be neglected.

For the second term of (1), $\|(1-\zeta)L\|_{L^{q}(G)} \leq C|T|_{q}$ so that

$$\begin{split} \| \, [(1-\zeta)L] *K \, \|_{L^q} & \leq \| \, (1-\zeta)L \, \|_q \, \|S \, \|_{q,\,q} \\ & \leq C |T|_q \, \|S \, \|_{r,\,r}^{1-\theta} \, \|S \|_{2,\,2}^{\theta} \\ & \leq C |T|_q \, \|S \, \|_{r,\,r}^{1-\theta} \, \|S \|_{6}^{\theta} \\ & \leq C |T|_q \, |S|_q^{1-\theta} |S|_{68}^{\theta} \end{split}$$

where $r \in (1, \infty)$ is chosen so that q lies in the open interval with endpoints r, 2. The second-to-last inequality then follows from the Riesz-Thörin interpolation theorem, and the last from Proposition 1.

The fourth term in (1) may be estimated in the same way since again by Lemma 2.10 of [C2], the L^q operator norm of $f \mapsto f * [(1 - \zeta)K]$ is majorized by $C_{\xi} ||S||_{q,q}$. As for the third, it will be no loss of generality to assume that K' is real, and ζ may be chosen to be real also. Then $L * [(1 - \zeta)K](-x)$ is the complex conjugate of $T^*(h)(x)$ where $h(y) = (1 - \zeta(-y))K'(-y)$ and T^* denotes the adjoint of T. Inversion about 0 leaves the $L^{q}(G)$ norm invariant, so the reasoning of the last paragraph applies.

For any $S, T \in A_q$, $S \circ T$ is given by convolution with a distribution homogeneous of degree -d, which must have the form $a\delta + K'$ for some $a \in \mathbb{C}$, $K' \in PV$. The argument just completed shows that $K' \in L^q(S)$ with bound $O(|S|_q|T|_q)$, so Proposition 2 is also proved.

To prove Proposition 1 suppose that $K \in PV$ restricts to an L^q function on S. Introduce an auxiliary function $\eta \in C_0^{\infty}(G)$, depending only on |x| and vanishing identically in some neighborhood of 0. Thus ηK annihilates constants. Choose it so that

$$\int_0^\infty \eta(\delta_s(x)) \, ds/s \equiv 1$$

on $G\setminus\{0\}$. Set $K_t(x)=\eta(\delta_t^{-1}x)K(x)$. Then $\int_0^\infty K_t dt/t$ converges in S' and equals K. Set $T_t f = f * K_t$ for all $f \in S$.

Lemma 7. There exist $C < \infty$ and $\epsilon > 0$ such that for all s, t > 0,

$$||T_t T_s^*||_{2,2} + ||T_t^* T_s||_{2,2} \le C \min(s/t, t/s)^{\epsilon}.$$

 L^2 boundedness of $f \mapsto f * K$ then follows from the Cotlar-Stein almostorthogonality lemma.

Sketch of Proof. Consider $T_s T_t^*$ in the case when $t \leq s$; the case s < t as well as $T_s^*T_t$ may be handled by the same method. Rescaling via the dilation δ_s then reduces matters to the case s=1. Since $K_t \in L^1$ uniformly in t, the issue

is the factor of t^{ϵ} as $t \to 0$. Let $\tilde{K}_s(x)$ be the complex conjugate of $K_s(-x)$. As in [C1] it suffices to prove that

(2)
$$\|\tilde{K}_{t}*(K_{1}*\tilde{K}_{1}*K_{1}*\tilde{K}_{1}*\cdots)\|_{L^{q}} \leqslant Ct^{\epsilon}$$

where the convolution product has a total of N factors of K_1 , \tilde{K}_1 . This holds with $\epsilon = 0$ when q = 1, so by interpolation it will suffice to prove it for some $\epsilon > 0$ when $q = \infty$.

Consider N points $\theta_1, \ldots, \theta_N \in S$, and regard S as a subset of the Lie algebra g. Write $s = (s_1, \ldots, s_N) \in \mathbb{R}^N$ and $\theta = (\theta_1, \ldots, \theta_N) \in S^N$. Consider the map from $\mathbb{R}^N \times S^N$ to G given by $F(s,\theta) = \exp(s_1\theta_1) \exp(s_2\theta_2) \cdots \exp(s_N\theta_N)$, where the product is taken with respect to the group structure on G. Denote by $J(s,\theta)$ the determinant of the $N \times N$ matrix of first partial derivatives of F with respect to s, a real analytic function of both variables. Whenever $\theta_1, \ldots, \theta_N$ are linearly independent elements of g, $J(0,\theta) \neq 0$. Therefore J is real analytic and not identically zero. Now $K_1 * \tilde{K}_1 * \cdots * (x) dx$ is the pushforward by F of the measure $\prod_{j=1}^N (\Omega_j(\theta_j))\phi(s_j) d\theta_j ds_j$, for a certain function $\phi \in C_0^\infty(\mathbb{R}^+)$, where Ω_j denotes the restriction of either K_1 or \tilde{K}_1 to S, with the choice alternating in j. Since \tilde{K}_t annihilates constants and is supported on $\{x \in G: |x| \leq Ct\}$, (2) now follows directly from a combination of the proofs of [C1, Lemma 5.4] and [C3, Lemma 2.2]. See also [RS] and [C5] for arguments of this type.

Inequality (2) remains valid, with the same proof, if K_l is replaced by any measure supported on $\{x \in G : |x| \leq Ct\}$ which annihilates constants; the constant on the right-hand side of (2) depends only on the total mass of the measure. Therefore the boundedness of any element of A_q on L^p , for any $p, q \in (1, \infty)$, follows from the methods of Duoandikoetxea and Rubio de Francia [DR] and the author [C1].

References

- [B] Beurling, A. Sur les intégrales de Fourier absolument convergentes et leur applications à une transformation fonctionelle, in *Nionde skandinaviska Matematikerkongressen* (1938), Mercators Tryckeri, Helsinki, 1939.
- [CZ1] Calderón, A. P. and Zygmund, A. On singular integral operators, Amer. J. Math. 78(1956), 289-309.
- [CZ2] —, Algebras of certain singular integral operators, Amer. J. Math. 78(1956), 310-320.
- [C1] Christ, M. Hilbert transforms along curves, I. Nilpotent groups. Annals of Math. 122(1985), 576-596.
- [C2] —, On the regularity of inverses of singular integral operators, *Duke Math. J.*, 57(1988), 459-484.
- [C3] —, Weak type (1,1) bounds for rough operators, Annals of Math., 128(1988), 19-42.

- [C4] —, Regularity properties of the $\bar{\partial}_b$ equation on weakly pseudoconvex CR manifolds of dimension three, *Journal Amer. Math. Soc.*, 1(1988), 587-646.
- [C5] —, The strong maximal function on a nilpotent group, Trans. Amer. Math. Soc., to appear.
- [DR] Duoandikoetxea, J. and Rubio de Francia, J. L. Maximal and singular integral operators via Fourier transform estimates, Invent. Math. 84(1986), 541-561.
- Katznelson, Y. An Introduction to Harmonic Analysis, Dover Publications, New York, 1976.
- [RS] Ricci, F. and Stein, E. M. Harmonic analysis on nilpotent groups and singular integrals. II: Singular kernels supported on submanifolds, preprint.

M. Christ* University of California Los Ángeles, Ca. 90024, U.S.A.

^{*} Mathematical Sciences Research Institute. Berkeley, Calfornia.