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Let g be a finite dimensional nilpotent Lie algebra. Suppose that g decomposes
as a direct sum g = @ ,c(,«)&, Where the Lie brackets of the summands
satisfy [g,, &l C g, s for all «, B € (0, ). Let G denote the associated con-
nected, simply connected nilpotent Lie group. Identify elements of g with left-
invariant vector fields on G, so that the exponential map exp : g — G identifies
G with RY for some N. Define dilations {5,:7> 0} on G by 8,exp (X X,)
= exp (Z r"‘Xa) for all X, € g, . These are group automorphisms. Denote the
homogeneous dimension of G by d = >} « - dimension (g,); of course all but
finitely many of the g, have dimension zero. Denote by 8 the Schwartz class
of functions and by S the unit sphere in G, identified with RY. Any x € G\ {0}
may be expressed uniquely as 6,6 for some r > 0, 6 € S. Define |x| = r, and of
course |0| = 0. In the exponential coordinates 0 is the group identity element,
and x~! = —xfor all x € G. All integration over G will be with respect to Haar
measure, which is unimodular and agrees with Lebesgue measure in exponen-
tial coordinates. Let I denote the identity operator.

A tempered distribution K € 8’ is said to be homogeneous of degree —d if

(K, [T =<K, [)

for all fe 8, r > 0, where f'(x) denotes f(6,x). To any distribution y acting on
test functions on S and annihilating constants we may assign a distribution
K € 8'(G) as follows: For r > 0 and fe 8(G) write f,(0) = f(6,6). Then define

~ d
(K, f) = j G fy oL
0 r
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The integral converges absolutely because fe 8 and (¢, 1) = 0. We denote by
PV the class of all such distributions on G; they are homogeneous of degree
—d. In fact any K € 8’ homogeneous of degree —d is necessarily of the form
K = ad + K’ for some K’' € PV and a € C, where 6 denotes the Dirac mass at
0 e G. See [C2, Lemma 2.4] for a proof. The decomposition is unique.

For g (1, ) let A, denote the set of all operators T: §(G) -~ 8'(G) of the
form Tf = f+ K = af + f* K’ where K’ € PV and K’ restricted to S belongs to
LY. Define |T|q = |a| + | K'[ Lq(s)-

Proposition 1. For all g €(1, »), any T € A, extends to an operator bounded
on LP(G), for all pe (1, «).

Proposition 2. A, is a Banach algebra for all g € (1, «).

By virtue of Proposition 1, S o T is defined for all S, T€ A,, as a bounded
operator on L?. What must be proved here is that

SoTeA, and |SoT|,<CS[,IT|,.

(Consequently there exists an equivalent norm |+|; on 4,, such that ||, =1
and |[So T|, < |S[|T|, for all §,TeA,, cf. [K, p. 197].)

Let ® denote the algebra of all bounded linear operators on L%(G), and let
|*| be the operator norm. For any algebra 4 and element T€ A4, let

spec,(T) = {AeC: T — NI is not invertible in 4}.
The point of this article is
Theorem 3. For all ge (1, «), for all Te A,, spec, (T) = specg(T).
q

Proposition 1 implies one inclusion, specg(T) C spec, (7).

In the Euclidean case, that is when G = R" with the Ezlclidean group law
and {4,} are the usual dilations, these results were obtained by Calderén and
Zygmund [CZ1], [CZ2]. This class of operators was further studied by
Duoandikoetxea and Rubio de Francia [DR]. In the nilpotent case Proposi-
tion 1 is a corollary of the main theorem of [C1] and the Calderén-Zygmund
method of rotations if K is odd, and in general is a direct consequence of the
method of proof in that paper. The question was asked of us by J. Duoan-
dikoetxea. Proposition 2 is a corollary of the proof of Proposition 1.

Our main result, Theorem 3, answers a question posed by A. Carbery. In
the Euclidean case 4, is a commutative Banach algebra, the Fourier
transform sets up a natural identification of its maximal ideal space with the
unit sphere in RY, and the result follows from Plancherel’s theorem [CZ2].
However in the nilpotent case commutativity is lost.
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We were led to this issue in the nilpotent case in studying the regularity of
solutions of d, [C4], a partial differential operator which arises in complex
analysis in several variables. A principal step in that work was an analogue
of Theorem 3, in which the condition K’ € LY(S) was replaced by the stronger
condition K’ € L} in an annular neighborhood of S, where L} was a certain
type of Sobolev space with exponent g and order of differentiability 8 > 0.
The set of all associated operators 7T is still an algebra, and we showed that
the spectrum in that algebra agrees with the spectrum in ®. Thus Theorem 3
is the limiting case 3 = 0 of the earlier result, and our first proof of it was by
the same technique. The purpose of the present article is instead to present a
considerably simpler proof which emphasizes the Banach algebraic point of
view. This argument could also be used to give a simpler proof in the case
B > 0, but we shall not give the details here.

The proof relies on estimation of the spectral radius in 4,. L. Carleson has
pointed out that it is related to Beurling’s proof [B] of the Wiener Tauberian
Theorem. I am indebted to A. Carbery, L. Carleson, and A. Mclntosh for
helpful conversations concerning this work.

To begin let A C B be two Banach algebras with different norms. Suppose
|x| 5 < Clx|, forall x e A, and that |xy|, < |x||»|, for all x, y € B. Define the
spectral radius of an element of A by

n| 1/n

p,(x) = lim |x"| "
n—+o

The limit always exists [K, p. 208] and is finite.

Lemma 4. Suppose that there exist C < « and 0 € (0, 1] such that for all
X,yeA,

Iy, < C(lx], IyiAl_ 0‘ylg + ‘y|A|xI,}1—0

0
X|p).

Then p,(x) < |x|, for all xe A.

Proor. The hypothesis gives

!x2k|jl/2k < (ZC)I/Zk(kaL(‘lZ - 9)/2k|xk|g/2k).

for all xe A4, k > 0. Passing to the limit gives

1-6/2 6/2
0,00 < p, ()1~ 2 |x| %2,

This simplification due to Carleson replaces the author’s slightly longer
proof. Now suppose that B = ®, and denote by x* the adjoint of xe ®.
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Lemma 5. Suppose that A C ® satisfy the hypothesis of Lemma 4 and that
A is closed under adjoints. Then

spec, (x) = specg (x)
forall xe A.

Proor. What must be demonstrated is that if x € A is invertible in &, then
it is also invertible in A. It suffices to invert both x*x and xx* in 4, for then
x will have both a left and a right inverse. If e > 0 is chosen sufficiently small,
then |I — exx*|, < 1 because x is invertible in ®. Set y = I — exx* € A. Then
p,4(») < |y|g < 1 by Lemma 4, so I — y may be inverted in A by summing the
series 7 + y + y* + - - .. But ] — y = exx*. The reasoning for x*x is the same.
This argument was pointed out to us by J. L. Journé.

Introduce an auxiliary function ¢ e Cg(G), with {(x) a function of |x|
alone, identically one in a neighborhood of 0 and supported in a small
neighborhood of 0. Denote by ||, , the operator norm on LYG).

Lemma 6. Suppose that T € & is of the form Tf = f+ K where K = aé + K',
K'ePV. Then |a| < C|T|.

Proor. Fix ¢ € C3(G), identically one in a neighborhood of 0. If the support
of ¢ is chosen to be sufficiently small then ¢ * ({K') = 0 in some neighborhood
of 0, since {K' annihilates constants by the definition of PV and the fact
that ¢ is itself radial. But (1 — {)K’ = (1 — ¢)K and the L? operator norm of
S fx(1 = K is majorized by C; | T | 5 [C2, Lemma 2.10]. In a neighborhood
of 0, T = a + ¢+ ((1 — OK). So [ T(@)|,2 > Cyla| — G|T .

Assume for now the validity of Proposition 1. To complete the proof of
Theorem 3 we show that 4 = 4,, B = ® satisfy the hypothesis of Lemma 4.
Suppose g # 2. Let S,TeA, be given by convolution on the right with
K =aé + K’ and by L = b6 + L' respectively, where ¢, beC and K', L' € PV.
Set K, = (1 - )K= (1 - K’ and similarly define L. Since S o T is well-
defined as a bounded operator on L*(G), L+K is a well-defined element of
8’, manifestly homogeneous of degree —d. Furthermore

(1) L+K=(L)«(K)+ [(1 = L] =K + L=*[(1 - HK]

+ [(1 = HLI=[(1 = HK].
Since L * K is homogeneous of degree —d, its restriction to S will be in L7 if
and only if its restriction to {xe G:|x| > 1} is in LY with respect to Haar

measure on G. If we choose ¢ to be supported sufficiently near 0, then
(¢L) = (¢K) will be supported in {|x]| <1}, so may be neglected.



INVERSION IN SOME ALGEBRAS OF SINGULAR INTEGRAL OPERATORS 223

For the second term of (1), [(1 — {)L| ¢, < C|T|, so that

[ - L=k | <[ -90L],IS],,
< CITly 1S4,
<CIT|,I81:7°1813.2
< CIT|, 18157 °ISlG

where r € (1, ) is chosen so that q lies in the open interval with endpoints r, 2.
The second-to-last inequality then follows from the Riesz-Thorin interpola-
tion theorem, and the last from Proposition 1.

The fourth term in (1) may be estimated in the same way since again by
Lemma 2.10 of [C2], the L? operator norm of f~ f*[(1 — {)K] is majorized
by C;|S|,,,- As for the third, it will be no loss of generality to assume that
K’ is real, and ¢ may be chosen to be real also. Then L *[(1 — )K](—X) is
the complex conjugate of T*(h)(x) where A(y) = (1 — ¢(—»))K'(—y) and T*
denotes the adjoint of 7. Inversion about 0 leaves the L(G) norm invariant,
so the reasoning of the last paragraph applies.

For any §,Te€A,, SoT is given by convolution with a distribution
homogeneous of degree —d, which must have the form aé + K’ for some
aeC, K'e PV. The argument just completed shows that K'e L%(S) with
bound O(|S|,|T|,), so Proposition 2 is also proved.

To prove Proposition 1 suppose that K € PV restricts to an L? function on
S. Introduce an auxiliary function 5 € Cg(G), depending only on |x| and
vanishing identically in some neighborhood of 0. Thus »K annihilates con-
stants. Choose it so that

[nG,conas/s=1

on G\ {0}. Set K,(x) = n(5; 'x)K(x). Then j:K,dt/t converges in 8’ and
equals K. Set 7,f = f=K, for all fe€8.

Lemma 7. There exist C < oo and e¢ > 0 such that for all s,t > 0,
I T, T2+ [ TFT |2, < Cmin(s/1,t/s)".

L? boundedness of f~ f*K then follows from the Cotlar-Stein almost-
orthogonality lemma.

SKeTCH OF PROOF. Consider 7,7} in the case when ¢ < s; the case s < ¢ as
well as 7¥T, may be handled by the same method. Rescaling via the dilation
8, then reduces matters to the case s = 1. Since K, € L' uniformly in #, the issue
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is the factor of ¢ as £ = 0. Let K,(x) be the complex conjugate of K,(—x). As
in [C1] it suffices to prove that

2) | K, # (K Ky« K+ K+ )| e < CE

where the convolution product has a total of N factors of K, , K 1 - This holds
with e = 0 when g = 1, so by interpolation it will suffice to prove it for some
e >0 when g = .

Consider Npoints 0y, ..., 0, €S, and regard S as a subset of the Lie algebra
g. Write s =(s;,...,s,)€R" and 6 = (9,,...,0,)eS". Consider the map
from RV x S to G given by F(s,0) = exp (s;6,) exp (5,0,) - - - €xp (5p0,),
where the product is taken with respect to the group structure on G. Denote
by J(s, ) the determinant of the N X N matrix of first partial derivatives of
F with respect to s, a real analytic function of both variables. Whenever
0y, ...,0, are linearly independent elements of g, J(0, 6) # 0. Therefore J is
real analytic and not identically zero. Now K, * K, * - - - * (x) dx is the push-
forward by F of the measure ][] i=1 (Q j(H_l.))qS(sj) dGJ. dsj, for a certain function
¢ e Cy(R™"), where Q2; denotes tk~1e restriction of either K, or K, to S, with the
choice alternating in j. Since K, annihilates constants and is supported on
{x € G: |x| < Ct}, (2) now follows directly from a combination of the proofs
of [C1, Lemma 5.4] and [C3, Lemma 2.2]. See also [RS] and [C5] for arguments
of this type.

Inequality (2) remains valid, with the same proof, if K, is replaced by any
measure supported on {x € G: |x| < Ct} which annihilates constants; the con-
stant on the right-hand side of (2) depends only on the total mass of the
measure. Therefore the boundedness of any element of 4, on L?, for any
D,qe (1, o), follows from the methods of Duoandikoetxea and Rubio de
Francia [DR] and the author [C1].
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