REVISTA MATEMATICA IBEROAMERICANA
VoL. 4, N.° 2, 1988

Fatou Theorems for
Some Nonlinear Elliptic
Equations

E. Fabes, N. Garofalo, S. Marin-Malave and S. Salsa

Introduction

A classical Fatou theorem states:

For any given nonnegative harmonic function u(x) defined in the unit ball
B of R" there exists a set of boundary points E,, with surface measure equal
to the surface measure of the entire boundary, such that for each point Pe E,,,

lim u(x) exists,
x—P
xeBNT,
where I', is any finite cone with vertex P and interior contained in B. This
behavior of u is often described by saying «u has a nontangential limit at
almost every (with respect to surface measure) boundary point».

The above Fatou theorem has been generalized in many directions. It
has been extended to nonnegative harmonic functions defined in nonsmooth
domains ([6], [7]) and to nonnegative solutions of general second order elliptic
equations with nonsmooth coefficients ([1], [2]). The statement of the Fatou
theorem in these situations remains the same except that surface measure must
be replaced by the harmonic measure associated with the governing partial
differential operator.

In this work we wish to extend the Fatou theory to several classes of second
order nonlinear elliptic operators. The primary motivating equation for us is
the p-Laplacian,

div(Vu|?"?>Vu)=0 (1 <p< =).
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Our Fatou theorem in this case takes the following form:

Let D be a bounded Lipschitz domain in R” and suppose u is a nonnegative
weak solution of div (|Vu|?” ~?Vu) = 0 in D. The set of boundary points E,, at
which # has a nontangential limit has Hausdorf dimension >@, a positive
number depending only on p, n, and the Lipschitz character of D. Recent
examples of T. Wolff [15] and J. Lewis [11] show that even when the domain
D is smooth the set E, could have surface measure zero. The positive result
at least guarantees that E, is somewhat far from being empty.

The above Fatou theorem for the p-Laplacian in smooth domains of R” and
with 1 < p <3+ (2/(n — 2)) was first proved by Manfredi and Weitsman in
[12]. Several ideas in their paper were very useful and we would like to thank
the authors for sharing them with us early on in their work. Also, while we
were preparing the present paper Manfredi and Weitsman communicated to
us a proof, different than the one presented here, of the above theorem in
smooth domains of R” and for any 1 < p < .

The same type of Fatou theorem remains valid for nonnegative solutions
of other classes of nonlinear elliptic equations. We illustrate this in the case
of a generalization of the p-Laplacian in the form

(S| Vul) 3
div <—|-VZ}|—Vu> =0

and in the case of solutions of a fully nonlinear equation of the type
F(D?u,x) = 0.

In both situations the Hausdorf dimension of the set of nontangential limits
is estimated from below by a positive number depending only on the structure
constants (properties of fand F), dimension n, and the Lipschitz character of
D. (See Sections II.2 and II.3.) Since the methods we employ for the general
classes of equations are minor modifications of those used for the p-
Laplacian, div (|Vu|” ~?Vu) = 0, we have decided to give a detailed proof of
the Fatou theorem only in this special case (Section II.1). The extension of the
result to the other classes is discussed briefly in the final two sections of the
paper.

Our technique for establishing a Fatou theory in the nonlinear setting is
itself linear in nature. It frequently occurs that results for linear equations if
achieved in sufficient generality can be successfully applied to nonlinear situa-
tions. The present work is one more example of this phenomenum. In order
to find a Fatou theorem in the nonlinear setting we first develop a potential
theory for linear uniformly elliptic equations in nondivergence form and for
the corresponding adjoint equations. The coefficients of the linear operator
are assumed to be smooth, but, more importantly for applications, all the
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constants involved in the basic estimates do not depend in any quantitative
manner on the smoothness of the coefficients. These constants depend only
on dimension, ellipticity, L®-bounds of the coefficients, and the Lipschitz
character of the domain. In this respect our work is a continuation and refine-
ment of Bauman’s paper [1].

The primary results in the linear theory are what we refer to as Comparison
Theorems for nonnegative solutions of either a nondivergence form elliptic
equation or of the associated adjoint equation. In brief terms these theorems
state that two nonnegative solutions of the equation (or adjoint equation)
which vanish on an open portion of the boundary must vanish there at the
same rate. For a precise statement of these results see Theorems 1.2.2 and
1.3.7.

The paper is divided into two parts. Part I is devoted to the potential theory
for second order linear nonvariational elliptic operators and their adjoints,
always aiming towards establishing the above mentioned Comparison Theorems.
Part II applies the linear theory to prove the previously mentioned Fatou
theorems for the p-Laplacian, its generalization, and for some fully nonlinear
elliptic equations. Part II may be read somewhat independently of Part I,
at least from the point of view of understanding how the linear theory enters
in establishing the positive Hausdorf dimension of the set of boundary points
at which the solution of the nonlinear problem has a nontangential limit.

I. POTENTIAL THEORY FOR NONDIVERGENCE FORM
OPERATORS AND THEIR ADJOINTS

Before we begin the main body of this paper we would like to recall the basic
definitions and introduce the primary notation which will be extensively used
throughout the work.

Definition A. A bounded domain D of R" is called a Lipschitz domain if

(i) for each Q €dD there exists a coordinate system (x',x,)€R""'X R, a
number r, and a function ¢: R" ™' = R satisfying | Vo| r=@n -1y S m such
that

(i) B, (Q)ND = {(x",x,): x, > ¢(x")} N B, (Q),
(B, (Q) is the ball in R" with center Q and radius ro) and
B, (Q)N4D = {(x', o(x)} N B, (Q).

We may assume the numbers m and r, are the same for each Q € 0D and we
will say that these numbers determine the Lipschitz character of D.
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Given the coordinate system about Q = (Q', Q,) € D, we define forr < ry,

T.(Q) = {(x'sx): |x — Q| <r,|x, — Qp| < mr}
A(Q)=T(Q)NaD, v (Q) =T .(Q)ND,

and A.(Q) = (Q', Q, + mr). When the point Q is understood and unimportant
in the discussion we will use the notation T,, A, y, and A,.

In Section 1 we consider elliptic operators of the form

n
Lu(x) = Z] aij(x)D,Ztixju(x) (xeR™.
i,j=
We assume the coefficients are smooth and the matrix a(x) = (a;;(x)) is bounded,
symmetric, and positive definite, uniformly in x, i.e. there exist positive
numbers A and A such that

MEP < 30 ayE < AlEP
i,j=

for all x and £ in R". We wish again to emphasize that the assumption of
smoothness of @;;(x) is only a qualitative one. In our estimates the dependence
of the constants on the coefficients will only be in terms of the ellipticity
parameters A and A and the dimension #.

Corresponding to the operator L we have the adjoint operator L* defined by

L) = 3 D5y, @(w0).
i,j=

For a given Lipschitz domain D we let g,,(x, y) = g, ; (%, y) be the Green’s
function corresponding to the operator L and domain D. In particular

L(gp(+,))x) =0 for xeD\{y},
L*(gp(x,+))(») =0 for yeD\({x}, and
20, y)=0=g(x,Q for QedD, xeD and yeD.

I.1. The Notion of a Normalized Adjoint Solution and the
Boundary Harnack Principle

Definition B. For a ball ® let t® denote the ball concentric with & and
radius equal to t times the radius of ®. Assume Y ® D D and fix a point
Pe¥% ®\ Y ®. A normalized adjoint solution for L* and D (briefly n.a.s.) is
any function ¥ of the form
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v(y)

Y0 =g P,y

where v is a solution of the adjoint equation L*v = 0 in D. (We shall see that
Jfor our purposes there is no quantitative dependence of v on & and g4 (P, ).
Therefore we do not highlight them in the name.)

The notion of a normalized adjoint solution was used extensively in [1]. The
main purpose of Part I is to refine the results there by dropping the
dependence on the modulus of continuity of the coefficients and to extend the
results to include a Comparison Theorem for two nonnegative solutions of the
adjoint equation vanishing on a portion of the boundary. (See Theorem 1.3.7.)
We begin by recalling some basic facts from [1] concerning these functions.

Theorem 1.1.1. (Interior Harnack Principle for n.a.s.) Suppose ¥ is a non-
negative n.a.s. in a ball B, of radius 2R. There exists a constant C depending
only on n,\ and A such that for all s <R

sup {9(»): ¥ € B} < Cinf {D(y):y € B,}.

(Bs and B, are assumed concentric.)

Theorem 1.1.2. (The Dirichlet Problem for n.a.s.) Given fe C(3D) there
exists a unique normalized adjoint solution, ¥, such that v € C(D) and v = f
on dD. Moreover the maximum and minimum values of ¥ occur on dD.

Definition C. Under the conditions of Theorem 1.1.2. for fixed y € D, the
map [~ B(p) is a positive continuous linear functional on C(0D). So by the
Riesz Representation Theorem

() = |, f(Q)&(dQ)

where & is a regular Borel measure on dD. We will call & the normalized
adjoint measure at y (corresponding to L* and D).

Notice that when D is a smooth domain
s 8
@(dQ) = - —8(2:Y)gx (P, Q)o(dQ)/g5 (P, y)
Q
where g denotes the Green’s function for L and D, U is the inward conormal

to dD at Q. (vQ = a(Q)(NQ) with a = (a;) and NQ is the unit inward normal
to aD at Q),
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3
v, 8(0,) = V.80, M), _ g Vo>

and a(dQ) is surface measure. The normalized adjoint measure &’ will play
an important role in the study of normalized adjoint solutions.

Lemma I.1.3. Let &} denote the normalized adjoint measure corresponding
to L* and a ball B,,. For Q € dB,,and 0 < 6 < 1 set A;, = 3B,, N B;,(Q). There
exists a positive constant ¢ depending only on the ellipticity parameters, n, and
6 such that

inf &% ,(A;) = ¢
Y€EB
(B, is assumed concentric with B,,.)

Proor. By a translation we may assume B,, is centered at the origin and by
a dilation we may assume r = 1,

a
@5 (4s) = j o 82(2:284 (P, Q)o(dQ)/gs (P, y)
o

A

where g,(x,y) is the Green’s function corresponding to B, and elliptic
operator L. Fix a point A € dB;,,. All the succeeding constants in this lemma
will depend at most on the dimension 7, the parameters of ellipticity, A\ and
A, for L, and 6.

From Hopf’s Lemma and Harnack’s Inequality [4], [9] there exists ¢; > 0
such that for all ye B,, and Q €dB,,

)
-5—gz(Q,y) =18,(A4,).
Yo

(See [1, Lemma 4.3, p. 166].) Hence, for y € B,

G585 2 ¢18:(A4,) [, 85(P, Qo(dQ)/85(P, ).

Let g;(x,y) denote the Green’s function for B; and L. Then Harnack’s
property for normalized adjoint solutions (Theorem I.1.1.) implies

8P Q) _  &:(P.))
24,0 7 7 g4,y

for all Qe dB, and y € B,. Hence

&A4,5)
g(A4,)) Ja,

@3(A;) = cicy

g3(A4, Q)o(dQ).
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Once again using Harnack’s inequality (for n.a.s.) we have for y e B;.

A
2,(4,) . jB,gZ( ,2)dz e s
g:(4,) } jB g3(A,2)dz —
1

We are now left to show

Lemma I.1.4. Let g5(x, y) denote the Green’s function for L and B;. For
Q€dB, and 0 < 6 < 1, set oy = 0B, N Bs(Q). There exists a positive constant
¢ depending only on n, \, A, and 6 such that for all A €0B;,,

[ &4, 000) > c>0.

Proor. Let D C B,\B,,, be a smooth domain such that a; C dD and D con-
tains a ball B’ whose radius depends only on 6. Now let D’ C B; be another
smooth domain containing D such that oy C D’ and 0D’ N3D = 0D\ ;. We
pick a point A’ € D'\ D so that the positive constants in the following chain
of inequalities depend only on the parameters of ellipticity, N and A, the
dimension », and 6:

[, 800D > ¢ [ g4, Q0@ > ¢, [, g5(A', Qo(dO).

In the final inequality above g, denotes the Green’s function for D" and L
and the inequality results from the fact g, < g; since D’ C B;.
Since dD\ oy = dDNOD’, g,,.(A’, Q) = 0 for Q € dD\ 5. Therefore

[ £p(4, Q0O = |, g, (4', Q)o(dO).
%
The function g,,.(4’, y), as a function of y, satisfies

L*(gp (A’ )(») =0 for yeD.
The function
W) = — jB,gD(x, »dy

satisfies LW = X,., the characteristic function of B’, and W|,, = 0. Hence,
an integration by parts gives

a
j g&p A,y dy = j gp (A" »LW(y)dy = J gp A, Q)6—~~ W(Q)o(dQ).
B’ D aD UQ

Again from [1, Lemma 4.3, p. 166] there exists C > 0 such that

ow -
N (Q) < Csup j gp(x,»)dy < C,
UQ D JB’
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C depending only on A\, A, n, and 6. We now have

| ep(4, Q0O > ¢ | 5,4 ) dy,

and using a maximum principle argument the last integral is bounded below
by a positive constant depending only \, A, n, and 8. (See [4, Proof of Lemma
3.3].) This concludes the proof of Lemma I.1.4 and so also the proof of Lem-
ma 1.1.3.

As a consequence of Lemma 1.1.3 we obtain the Holder continuity of a
nonnegative normalized adjoint solution at the open parts of the boundary
where it vanishes.

Theorem 1.1.5. Let D be a Lipschitz domain in R" with constants ry and m
determining the Lipschitz character of D. Let

n

L= Z aij(x)D,%-x.
P i=1 i

L=

be a uniformly elliptic operator with parameters of ellipticity \ and A. Fix
Qe dD, r < ry/2, and assume D is a nonnegative rormalized adjoint solution
Sfor L* and ¥, = ,,(Q) which continuously vanishes on A,, = A,.(Q). There
exists a ©, 0 < © < 1 depending only on \, A, n, and m such that

sup i < O sup D.

r 2r

As a consequence there exist positive constants C and a depending only on
the above parameters such that for all y € Y,,,

(Y < c<r |X—v}g—!~>a sup .

¢2r

Proor. We may assume sup v, v = 1. Let @}, denote the normalized adjoint

measure for L* and B,, = B,,(Q). We can find a positive number 6, depending
on m, and a point Q € dB,, such that

o, = Bs,(Q)N0B,, C 3B,,\D.
From the maximum principle for n.a.s. (Theorem 1.1.2)
1= 3(») = & ().
Therefore, using Lemma 1.1.4.

inf(l1-9(y)=c>0

r
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with ¢ depending only on \, A, n, and m. Then

supv<1—-c=6.
¥,
To conclude the Holder continuity we observe that the last inequality above
implies: for all y € ¥, — £,(Q),

b(y) <O *'supd, k=0,1,2,...
¢2r
This immediately gives the existence of positive numbers ¢ and « depending
only on A, A, n, m, such that for y € ¥,,(Q)

(y) < c<ILE—QI—>asup D.

"b2r

Theorems I.1.1 and I.1.5 allow us to repeat verbatim the arguments given
in [1, Lemma 2.4, p. 157], to prove a strengthened version of Theorem I.1.5.

Theorem 1.1.6. (Boundary Harnack principle for n.a.s.) Under the
hypotheses of Theorem 1.1.5. assume again U is a nonnegative normalized
adjoint solution for L* and y,,(Q) which vanishes continuously on A,.(Q),
Q € 0D. There exists positive constants C and o depending only on \, A, n,
and m, such that for y € y,(Q)

s < (222 sea 09

where, recall for Q = (Q', Q,), A,(Q) =(Q', Q, + mr).
A consequence of Theorem I.1.6 is the vaiidity of all the results in [1] with
constants depending only on the parameters of ellipticity of L, dimension, and

the Lipschitz character of D. In the next section we collect some of these
results.

I.2. Potential Theory for Solutions of Lu = 0; the Doubling
Property for L-Harmonic Measure

We remind the reader that

_ 2
L= . Z aij(x)Dxixj

i,j=1
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is an elliptic operator satisfying

NE? < a0k < Alg
LJ

for all x and £ in R". (\ and A are positive constants.) Also D is a Lipschitz
domain with m and r, describing the Lipschitz character. (See Definition A.)

Theorem 1.2.1. For r < r,/6 let g.(x,y) denote the Green’s function for L
and Y,4,(Q), Q € dD. Pick 6 > 0 such that B,;,(A,.(Q)) C D. There exists a con-
stant C depending on \, A, n, and m such that for all x € Y4,(Q)\ ¥»,(Q)

g, dy<C| g (x, ) dy.

J V(O B;,(4,(Q))

PrOOF. Let ® be a ball with ¥4 & D D, P a point in % ®\ % ®, and gg(x, »)
the Green’s function for L and &3. Also set

g (x,»)

20 (5) for yevy, (Q), Yy #£X.

o(y) =
Using Theorem 1.1.6, for x € ¥,,(Q)\ ¥»,(Q),

Jo @ 8062 dy < COAQ) [, 85(P.2)dy.

The (interior) doubling property for nonnegative solutions of the adjoint
equation [4] implies

gs(Py)dy<C|, g5 (P,y) dy

h@ or4,(Q)

Harnack’s inequality for o (Theorem I.1.1) gives

b(4(Q) |

B, (4,(Q)

for all x € Y4, (Q)\ ¥»,(Q).

%mww<0hm@@mww

Theorem 1.2.1. is the main result used by Bauman in [1] to pove a Com-
parison Theorem for solutions of Lu = 0. Her argument [1, p. 160-161], can
be repeated to obtain

Theorem 1.2.2. (Comparison Theorem for solutions of Lu = 0.) Let Q€dD
and assume u, and u, are positive solutions of Lu = 0 in ,,(Q) which vanish
on A(Q), r<ry. Then

Uy u (4,(9Q)

A<c
P, S U0
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where as usual C depends only on \, A, n, and the Lipschitz character of D.

Definition D. Given an elliptic operator

L= Z aij(x)Diin
i,J

with smooth coefficients and a bounded Lipschitz domain D, for any given
g€ C(dD) there exists a unique solution u to the Dirichlet problem

Lu=0 in D, ulyp =&

Fixing a point x € D, the maximum principle implies that the map g -~ u(x) is
a positive linear functional on C(0D). Hence there exists a unique regular
Borel measure »* on dD such that for every g € C(0D)

u®) = [, g(Quw*(dQ).

The measure w*(0D) is called the L-harmonic measure for D evaluated at x.
At times we will emphasize the dependence of w* on L and D by using the
notation wy , Or wy,.

Let us say that two objects A and B (numbers or functions) are equivalent
and write A ~ B if there exists a positive constant C depending at most on
ellipticity parameters, dimension, and the Lipschitz character of D such that

1

EASBSCA.

A consequence of the Comparison Theorem for solutions 1.2.2 is

Theorem 1.2.3. (Doubling property for L-harmonic measure.) Let w* denote
the L-harmonic measure for D evaluted at x. Take r < ry/4 (ro as in Definition
A). Then for all Q € 0D and x € D\ ¢,,(Q)

@ (A(Q) ~ & (A2,(Q)).

Proor. By applying Theorem 1.2.2 and the maximum principle to the func-
tions w*(4,,) and w*(4,) in the domain D\y,,, we obtain

w4r(Ay,)

@ (8y) < CW

w*(4,)

for all x e D\ y,,. There exists positive constants C and «, depending on A,
A, n, and m, such that for xe y,,,,
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osl—wm»<0<”_gwa

r
and

osl—wmm<c<ﬁggg-
(See [1, Lemma 2.3, p. 157].) This observation and Harnack’s inequality [4],
[9] imply w?#(A,,) and w?+(A,) are each equivalent to an absolute constant
depending on \, A, n, and m.

Other consequences of Theorem 1.2.2 are concerned with the so-called
kernel function. Proofs can be found in [2].

Definition E. The kernel function K(x, Q), normalized at x, € D, is defined
for xe D and Q € 0D by

. &px,»)
K(x, Q) = SDx 77
Q) ylgré &pXo,))

where g, denotes the Green’s function corresponding to L and D. This is the
same as

K& Q)= 220,

In fact we have the following characterization of the kernel function.

Theorem 1.2.4. The kernel function is uniquely determined by the condi-
tions

(@ L(K(s, Q)(¥) =0 for xeD.

(b) K(x9, Q) =1 for all Qe aD.
(c) If Q'€ dD and Q' # Q, then lim K(x, Q) = 0.
x—>Q'

The relationships between L-harmonic measure evaluated at x, and the
kernel function are given in the next theorem.

Theorem 1.2.5. Let K(x, Q) be the kernel function for L and D, normalized

at xy, and set w* = wj ,,. Then there exists a sequence of constants {C;} such
that C; depends only on \, A, n, m, ry, and the dist (xo, D), 2. Cj < o, and

() KAA(Q), Q) ~ w™(A Q)" <Q €dD,r< %)
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(ii) for t sufficiently small and all O € 0D

sup {K(4,(Q), 0): Q€ Ay, +1,(Q)\ 42 (Q)} < m;(ﬁ-

We conclude Section 1.2 by remarking that via the techniques in [8],
Theorems 1.2.1.-1.2.3. imply the Holder continuity of K(x, ) on 4D with x
fixed in D. The Holder exponent can be taken depending only on A, A, n, and
m, and the Holder norm can be bounded by a constant depending on these
numbers, r,, and the distances of x and x, to dD. This Holder continuity and
the properties described in Theorem 1.2.5 of K(x, Q) are main ingredients in
the proofs of the Fatou theorems for nonlinear equations described in Part
II. We approach the Holder continuity of the kernel function from a different
point of view than the one taken in [8]. We will prove that for fixed x and
X, € D the function

gp(x, /850, )

is Holder continuous in y near and up to the boundary of D. This is the sub-
ject of the next section.

I.3. A Comparison Theorem for Normalized Adjoint
Solutions

We begin Section 1.3 by establishing the doubling property for normalized
adjoint measure.

Lemma 1.3.1. Let Qe dD, 0<r<ry/2, and denote by & the normalized
adjoint measure corresponding to L* and {,(Q). Let

o, =0y, (QND and B,=B; /,(A4,(Q)N3Y,(Q),
where 6, = min {dist (4,(Q), 0D), r}. Then for y € y,,,(Q),

CB{(CY,) ~ 03};(6") .

Proor. Since B3, is a smooth portion of the boundary,

d
@7(B) = J‘ 30 8r(2: )8 (P Q)o(dQ)/gx (P, )
B, UQ

where g, is the Green’s function corresponding to L and ¢,(Q). For y € ¢,,,(Q),
Hopf’s Lemma [1, Lemma 4.3, p. 166], gives
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A, (A),
_‘g’(, r/Z( ) y) f ch(P’ Q)(T(dQ)

1.3.2) @7(B,) ~ e Pry) Js
@\ r

The remaining part of the proof is dedicated to showing that for y € v, ,,(Q)

() < C = P, dQ).
aa) S CEEES L,g“( 0)o(dQ)

Choose /& a smooth function in R” such that # =1 in T,(Q)\7,,3(Q), A =0
in 7,,,(Q), and 0 < h < 1 everywhere. Then

(1.3.3) &7 (o) < @7(h) = &7(h) — h(y) for yey,,.

The function gg(P, )@} (k) is a solution in i, of the adjoint equation
L*v = 0 with boundary values g5 (P, Q)h(Q). Hence

1.3.4) 8 (P, )&y (h) — h(y)] = j o L*18s (P, 9)h(2)]g (2, y) dz.

Now

L*[g4,(P, D)h(2)] = g5 (P, 2)Lh(2) + 2, D, (a()g5 (P, 2)D; h(z).
LJ

We may choose % so that

C C
|Lh| < 5> |Vh| < —>
r r

and V# is supported in 7,,5(Q)\ 7,,4(Q). Therefore, for y € ¥,,4(Q) the integral
in 1.3.4 can be written, after an integration by parts, as

2| £5(P, DLh()e,(2,) dz
¢r/3\ r/4
+2 8q (P, 2)a(x)Vh(z) - V g, (z,y)dz =1+ II.

“br/S\ “Lr/4

Applying to g,(+, ) the «boundary Harnack principle for positive solutions
of Lu=0", [1 Lemma 2.4, p. 157], g,(z,») < Cg,(A,»(Q),y) for all ze
Yr/3\V¥,/4 and y €, 5. Hence

o
|I| < _Zgr(Ar/Z(Q)a y) J‘ g@(P, Z) dZ, BAS ¢r/6'
r ¢r/3\“br/2

Again from the interior doubling property of the measure g4 (P, z) dz, [4],

l

gs(P,2)dz< C gg(P,2) dz.
3

(% B, /2(A(QD)
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Let gar(x, ») denote the Green’s function for L and BBI(A,(Q)). Then for
suitably chosen 7 > 0 and from Theorem I.1.1.,

g (P, A,(Q)
85,(A,,(Q), A(Q) Jz, 4,0

Using a dilation with center A4,(Q) we have

ga(P,2)dz< C 85, (4,,(Q), 2) dz.

La,n(A,(Q»

4 2
J‘Bér/z(A,(Q)) gar(A'ﬂ(Q)’ Z) dZ re.

With this same dilation and Lemma 1.1.4.
|, (4,40, Qo@Q) ~ .
Hence

g(B (P! Ar(Q))
2, (4,,(0), A,(0)

o)
1 <—-8(A4,2(D), ») L g5,(A4,,(Q), Q)a(dQ),

and from Theorem I.1.1
C
(1.3.5) 17l < Tgr(Ar/z(Q),y) L 8s(P, Qa(dQ) (V€ Yre)

We now handle

=2 [ 24P, 2)a(z)Vh(z) - V. £,(z, ) dz.

r/3 r/:
By Schwartz’s inequality

172

C 1/2
[ < —- < j gs(P,2) dz> < j 2 (P, 2)|V.2,z, »)| d2>
r "br\ "l’r/4 \ xjLr/d

Choose /(z) e C5(R™), 0 < /< 1, satisfying/=10on T,\ 7,4, /=0o0n T,/s,
|vI| < cr ' and |D§‘_zjl| < cr~ % for all i and j. For ze T,\T,,, and y € ¥, /5,

< ca(2)V,(I(2)g,(z, y) - V. (I(2)g,(z, )
< e L[((2)g,(z, »))] — 21(2)L((2)g(z, )
+ 22(z, »)a@VI()) - VI(2)
— 2U(2)g,(z, »)a(2)VI(z) - V. ((2)g,(z, V) } .

V(L) (z, »)|?

Since /(+)g,(+,y) = 0 on (¥, \¥,,s), for y € ¥,6

[y 2a®@ L@z )1 dz=0.

r/s
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Therefore, applying again to g,(+,») the «boundary Harnack principle for
positive solutions of Lu = 0» [1, Lemma 2.4, p. 157], it easily follows that for

Y€V

C
j 8s(P, 2)|V.(I(2)g,(z, ) |* dz < r_zgiz'(Ar/Z(Q)’y) L v 8q(P,2)dz.

r'vr/s

Finally from the arguments controlling 7

c
(1.3.6) | < — 28(A4,/2(2), ) j g8g(P,2)dz
r AN

C
< —r—gr(Ar/z(Q),J’) L gs (P, Qa(dQ).

The conclusion from 1.3.2-1.3.6 is: for y € y,,6(Q),

~ C gr(Ar/Z(Q),y) ~
@y(e) < " W B,g&(P’ Q)a(dQ) ~ @7(B)).

We are now in position to prove

Theorem I.3.7. (Comparison Theorem for adjoint solutions.) Let D be a
Lipschitz domain whose Lipschitz character is determined by the numbers r,
and m. Assume L is a uniformly elliptic operator with parameters of ellipticity
\ and A (and having smooth coefficients). Let v and w be two nonnegative
adjoint solutions, i.e. L*v=L*w=0, in ¢,.(0), QedD, continuously
vanishing on A, (Q) (r < ry/2).

Then

v(y)  v(A(Q)
w() ~ WA, ()

Sor all yey.(Q).

Proor. The functions

v(y) . w(y)
= d =\
g Py M TI=

v(y)

are normalized adjoint solutions satisfying the hypothesis of Theorem I.1.5.
From this theorem, Lemma 1.3.1, and the technique in [1, Proof of Theorem
2.1, p. 160], 1.3.7 follows for v and w replaced by » and w. Since §/W = v/w
the conclusion also holds for v and w.

Corollary 1.3.8. Lef v and w satisfy the hypotheses of Theorem 1.3.7 in
¢,0(Q), Q € dD. Then there exist positive constants C and a depending on \,
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A, n, and m such that

ve) w0

w(y)  w()
for all y and y' in ¢,0/2(Q)OD.

< VA ( =y >
Wi, @)\ 1

Proor. The proof follows the method of Moser who obtains Holder con-

tinuity from the uniform Harnack principle [12]. In fact that argument and

Theorem 1.1.5 give the above result when yeDﬂfﬁTo/-z"(@ and y’ € B, (),

with s = dist (¥, D). Hence it is enough to show the Holder continuity at a

boundary point Q, € A,O ,»2(Q). We may also assume v(A,O(Q)) = w(A,O(Q)) =1.
Set

_ v(y) |
M(s) = sup 5 m)w.y € %(Qo)}
and
m(s) = inf i Z)—Q})—:y ey (Qo)} :
w(y) :
Then for s < 74/4,
M) _v_ Misw—v
w w
and
v v m(s)w
WM =

are quotients of positive adjoint solutions in ¥,(Q,) which vanish on A (Q,).
By Theorem 1.3.7,

sup (M(S) - ;) =C inf <M(s) — —:/>

¥5,2(Qp) ¥5,2(Qy)
and
B ACRLOALE ACRLD)
ie.
M(s) — m(s/2) < C(M(s) — M(s/2))
and

M(s/2) — m(s) < C(m(s/2) — m(s)).
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Adding the final two inequalities we obtain
M(s/2) — m(s/2) < OM(s) — m(s))

where

0<oO= <1.

Iterating gives

M(s) — m(s) < ©~ ‘<ri> (M(ro) — m(ro))

0
with
o = _logz O.

This concludes the proof of the Corollary.

When v and w represent the Green’s function for an elliptic operator at two
fixed poles we obtain the following important

Theorem 1.3.9. Assume L = Zaij(x)Diixj, an elliptic operator, and D, a
Lipschitz domain, satisfy the hypotheses of Theorem 1.3.7. Let g(x, y) denote
the Green’s function corresponding to L and D. If x and x, are fixed points
of D there exist positive constants C and a, a depending only on \, A, n, m,
ro but C depending in addition on 6 = min {dist (x, D), dist (x,, D)}, such
that

g(x,») g(x,»")
— . S C 1 — y [+4
g(x0,y)  g(xo,¥") v |

forall y and y' belonging to {z € D: dist (z, 0D) < 6/2}. As a consequence, the
kernel function K(x, Q) corresponding to L and D and normalized at x,
satisfies

|K(x, Q) - K(x, Q)| < C|Q - Q']
Jor all Q and Q' on dD; C and o as above.

II. FATOU THEOREMS FOR SOLUTIONS OF
NONLINEAR EQUATIONS

In Part II, for the sake of simplicity but without any loss of generality, we
consider Lipschitz domains D starshaped with respect to the origin.



FaTou THEOREMS FOR SOME NONLINEAR ELLIPTIC EQUATIONS 245
II.1. The p-Laplacian

The first application we give of the potential theory developed in Part I is to
the boundary behavior of nonnegative p-harmonic functions.

Definition F. Fix 1 <p < . A function u(x), x € D, is a solution of the
equation

{I.1.1) Apu = div(|Vu|?"*Vu) =0 in D

ifue WhP(D) = {uel?

loc loc

(D):VueL? (D)} and

loc

JDIVuI"'ZVu Veodx =0

for all o € C3(D). A function u which is a solution of 11.1.1. is called a p-
harmonic function and A, is called the p-Laplacian.

Despite the degenerate character of I1.1.1. solutions belong to C!:*(D) with

loc

o = a(p,n) > 0. (See [3] and [10].) Concerning boundary behavior we have

Theorem I1.1.2. Let u be a nonnegative p-harmonic function in D. Then
{Q €dD: u has nontangential limit at Q} has Hausdorf dimension 2 3 > 0
where (3 depends only on p,n, and the Lipschitz character of D.

Proor. Since D is starshaped with respect to the origin, for 0 < r < 1, we set
u,(x) = u(rx) and obtain a p-harmonic function u, in D which is C*® in D,
the closure of D. Now consider the regularized p-harmonic operator

(I1.1.3) Asv = div (Vo> + ¥ P?V),  €>0,
and denote by v, , the unique solution of the Dirichlet problem
A,v=0 in D, Vlop = Ulyp-

Because of the nondegeneracy of A, v, , belongs to C*(D). Therefore we can
perform the differentiation in II.1.3 and, after dividing by (¢ + |Vv, |3)® =272,
we see that v, , is a solution of the linear equation

n

Lu _ Z 5 2 Dx‘-ve,erjve,r DZ -0

W= 25 g+ (o — )W xpxW = 0.
(We have added the superscript # to the operator to keep in mind the
dependence of the coefficients on the p-harmonic function u.) The operator
L¢ , has parameters of ellipticity \, A depending only on p; namely, \ =
min {1,p — 1} and A = min {1, p — 1}, and the coefficients belong to C*(D).
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A key property of v, , is that v, , > u, in W#(D) as ¢ — 0, [10]. Also as
e~ 0 v_,— u, uniformly on compact subsets of D.

We make one more dilation: the function v, ,(rx) satisfies an elliptic equa-
tion L? ,w = 0 of the same form as that defined by L¥ ,. The parameters of
ellipticity can be taken dependent only on p and the coefficients now belong
to C*(D). For v, ,(rx) we have the following representation formula:

(I.1.4) 0, 1) = [ v, (rORY (x, Q)&% (dQ)

where & , denotes the I:e", ,~harmonic measure for D evaluated at the origin
and K! ,(x, Q) denotes the kernel function associated with L¥ , and D, nor-
malized at the origin.

Since

[, 88 @0 =1,

we can select a sequence ej—"O such that &)Ej,,(dQ) converges weakly (as
J — ) to a regular Borel measure &X(dQ). Also, from the local uniform con-
vergence of v, . to u, in D,

lim v, ,(rQ) = u(r*Q)

jooo
uniformly on dD. Finally recall that each kernel function K ¢ (x,Q) is a solu-
tion in x of a second order elliptic equation with parameters of ellipticity
depending only on p. Since K 0,0 =1. K ¢.-(x, Q) is locally Hélder con-
tinuous in X with local Holder exponent and norm independent of Q, ¢, r, and
u. Also from Theorem 1.3.9 when x varies over a fixed compact subset of D.
K ¢ +(x, Q) is Holder continuous on 4D, with Holder exponent depending only
on p, n, and the Lipschitz character of D, and Holder norm bounded in-
dependently of ¢ and r. Hence we may assume the sequence {K ;‘j x, Q)
converges uniformly on dD for each fixed x € D. The function

Ki(x, Q) = lim K¢ ,(x, Q)
Jj— o

satisfies the same Holder continuity just described for each kernel function of
the sequence. We can now allow ¢; tend to zero in II.1.4 and obtain the
representation

(I1.1.5) u(r'x) = [ u(* QR (x, Q)5:(dQ).
We repeat once more the arguments of the previous paragraph:

u@0) = |, u(*QaidQ) and 1= adQ)
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imply there exists a sequence r; /1 and regular Borel measures x*(dQ) and
@"(dQ) such that as r; 7 1, u(rJZ.Q)o”:?j(dQ) converges weakly to u“(dQ) while
&:fj(dQ) converges weakly to @*(dQ). As already noted in the previous paragraph

K*(x, Q) is Holder continuous in x and Q for Q € dD and x restricted to a com-
pact subset of D. The Holder norm can be bounded and the Holder exponent
can be written independently of r. Hence as r; 7 1 we may assume

Ri(x,0)~ K, 0)

uniformly on 4D for each x € D. Letting r; / 1 we obtain the final representation

(1.1.6) ux) = |, K“(c,0"(dQ).

The measures & ,(dQ) enjoy the doubling condition of Theorem 1.2.3 (for
x = 0) with a doubling constant depending only on p, n, and the Lipschitz
character of D. The same property holds for the weak limits ¥ and &*. On
the other hand, the relationships between K, and &% , expressed in Theorem
1.2.5 carry over to K* and &“. These relationships and the doubling property
of @ allow us to apply the procedure in [2] obtaining the existence of non-
tangential limits of u at all points Q € D except for a set of @* measure zero.

In particular &*({Q € dD: u has nontangential limit at Q}) = &*(dD) = 1.
But the doubling property of &*; namely.

@"(8y) < Ca*(a)  (r<ry)

with C depending only on p, n, and the Lipschitz character of D implies there
exist positive constants C and 8 also depending only on these parameters such
that

a“ay<scer® (r<r.

In particular the Hausdorf dimension of the {Q e dD: u has nontangential
limit at Q} is >8.

In the next two sections we discuss two other classes of equations for which
one can obtain a Fatou theorem of the type of Theorem II.1.2. Since the pro-
ofs follow so closely the one for the p-Laplacian, we will only briefly indicate
the arguments.

I1.2. The Equation div (f'(|Vu|)Vu/|Vu|) =0

We begin with a function f(¢) defined for 7> 0, in C?(0, «), and which is
positive, increasing and convex in (0, «) see [5]. We also assume there exists
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C > 0 such that (I1.2.1)

1
(i) E(t" -D<SOSKCEP +1),t>0, pfixed 1 <p< oo,

S"'®
S SC >0

We note that I1.2.1 (ii) implies lim f'(¢) = 0.
t—=0+

1
i) L <
(11)C t

Definition G. We say that ue W"?(D) is a weak solution in D of

(11.2.2) div <ﬂi—vu—|) Vu> -0
|Vuu|
if
"(1V
L%‘lg?l)v“(") Vo) =0

Sor all o € C5(D). (The integrand in the integral is intepreted to be 0 at each
x where Vu(x) = 0.)

Theorem 11.2.3. Assume u is a nonnegative weak solution of 11.2.2 in a
(starshaped) Lipschitz domain D. There exists 3 > 0 depending only on the
constant C in (11.2.1) (i) and (ii), dimension, and the Lipschitz character of
D, such that the Hausdorf dimension of {Q €0D: u has nontangential limit
at Q}is 2.

Proor. We proceed in the manner of Theorem I1.1.2. For 0 < r < 1 set u,(x)
= u(rx)/r. This function is a solution of (II.2.2) with data u(rQ)/r. For ¢ > 0
let u, , be the solution to the Dirichlet problem

’ 2 72
div (f [(IVv]* + 9" Vv> 0,

(Vo|* + e'*

Vop = Urlap-

Again the nondegenerate nature of this problem implies #, , is smooth in D.
(u,,, at least belongs to W2 #(D) for all finite p.) u. . is itself a solution of the
nonvariational equation

n

0=L, W= 3 a*" (D7, w),

Lj=1
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where for ¢ = (|Vu, ,(¥)|*> + €2

(f @)t — f't)) Dithe,(X)Dy U, ,(x) '
S'@) (IVu, ,(0)]* + ¢)

Condition (I1.2.1)-(ii) implies L. , is uniformly elliptic with parameters of
ellipticity depending on the constant C in (II.2.1)-(ii).

The function u, , = u, as e = 0 uniformly on compact subsets of D and the
function u, ,.(x) = u, ,(rx)/r satisfies the same elliptic equation as u, , with
Vu, ,(x) in the coefficients replaced by Vu, ,(rx). We now repeat verbatim the
remaining arguments in the case of the p-Laplacian to conclude the proof of
Theorem I1.2.3.

ay(x) = b, +

I1.3. Fully Nonlinear Equations

As indicated in the introduction, a Fatou theorem holds for nonnegative solu-
tions of fully nonlinear equations. Specifically we consider equations of the type

(11.3.1) F(D*u(x),x) =0 in D,

where F(M, x) is smooth with respect to the n X n matrix variables M and n-
dimensional variable x in D. We further assume a uniformly ellipticity condition

2 : oF 2
NEP < 23 50 (M0 < Al

for all M e IR"Z, xeD, £eR".

Theorem I1.3.2. Assume u € C*(D) is a nonnegative solution of 11.3.1 in D,
a Lipschitz domain starshaped with respect to 0. There exists a positive
number (3 depending only on \, A, n, and the Lipschitz character of D such
that if F(0, x) € L"(D), then the Hausdorf dimension of {Q € dD: u has non-
tangential limit at Q) is 28.

Proor. Again the proof follows the techniques used for p-harmonic func-
tions. In fact, u satisfies the linear equation

Lv = 3 a;(0)D5 ; v(x) = f(x)
LJ

where

1
a;(x) = L aij (tD*u(x),x)dt and f(x) = —F(, x).

i
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The function
u,.(x) = u(rx), O<r<l,
satisfies
Lu,= %aij(rx)Dﬁixj u,(x) = f(rx)r?
and has the representation
u(rx) = [, ur QK (x, QwidQ) — [ r’gk(x, ) f(ry)dy
where K}, w¥, and g; denote respectively the kernel function (normalized
at 0), the L,-harmonic measure (evaluated at 0), and the Green’s function

corresponding to L, and D. Therefore the conclusions of Theorem II.3.2
follow if for every Q € dD

(I1.3.3) lim j g, ) fry)ydy =0
x—=Q JD
uniformly for Q € dD and r near 1. This follows easily from the observations
sup j g4, )™~V dy < C(\, A, n, diam D),
x D

[14] and for x € ¥,,,(Q),

<e(FLO) s,
s D\y,(©@

j g/, ») f(ry)dy
D\y(Q)

with 0 < C and 0 < « depending only on \, A, n, and the Lipschitz character
of D. The last observation results from an application to g¥(s,y) of the
«boundary Harnack principle» and Hoélder continuity for nonnegative solu-
tions of L,w = 0 ([1, Lemmas 2.3 and 2.4, p. 157]).
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