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Introduction

Classical HP-theory is the study of the boundary regularity of one particular
linear first-order differential operator: the Cauchy-Riemann d-operator. This
is an elliptic operator, but in applications to planar potential theory great use
is made of its analytic over-determinedness, meaning that the imaginary part
V of any solution F = U + iV of dF = 0 is essentially determined by its real
part U (and vice-versa). Put another way, every analytic function F can be
written locally as 0% with & real-valued harmonic function. Such analytic
over-determinedness is the basis for real HP-theory. The close relationship to
the Dirac operator that d and @ have been known to have for many years
(cf. [20]) has been used in more recent times to develop a theory of analytic
functions on Euclidean space of any dimension, complex-valued functions
being replaced by Clifford algebra-valued functions ([6]). A routine application
of Stokes theorem allows one to prove a Cauchy Integral Theorem, for instance,
in this more general context. In [15], we then used the L”-boundedness of the
principal-value Cauchy integral operator associated with Lipschitz domains in
R"*! to establish a boundary value theory for H”-spaces defined on such
domains by a family of first-order differential operators said to be of Dirac
type. These include not only the classical geometric differential operators,
but also the rotation-invariant systems 4, introduced in [9]. Such Dirac type
operators are virtually the only ones for which a Cauchy integral theorem can
exist ([16]). One purpose of the present paper is to outline these ideas in their
«ultimate form» by exploiting the theory of Clifford algebras and Clifford
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modules more fully than in the earlier paper. But more importantly we shall
formulate a class of boundary value problems for these Hardy spaces modelled
on the usual Riemann-Hilbert problem and its generalizations for 4. Just as
the latter contains the prototypical Dirichlet, Neumann and Oblique-derivative
problems, so this general class contains the well-known higher-dimensional
versions of these problems as special cases (cf. [22]). The point to be em-
phasized is that the splitting C = R @ iR used previously to write a complex-
valued function as F = U + iV has a natural interpretation in the context of
Clifford theory. Now classical H”-theory, representation theory for classical
Lie groups, and algebraic geometry questions concerning, say, compact
Riemann surfaces all fall within complex analytic function theory. Hence if
such operators of Dirac type as d, are to have a deeper meaning than being
merely analogues of (0, d) for higher-dimensional Euclidean space, they should
be defined on more general Riemannian manifolds, with elliptic boundary value
problems and H?-theory being just part of the analysis associated with them
in the case of Euclidean space. Indeed, as Seeley has so clearly pointed out ([29]),
the Riemann-Hilbert problem and its variants for d lead very naturally to elliptic
singular integral equations whose solution is the forerunner of the Atiyah-Singer
Index theorem for manifolds with or without boundary. These are the ideas
basic to [14] and to the series of papers beginning with [9], [10] and [13]; but
here we shall mention them only briefly. They have been formulated over a
long period of time during which many conversations with Kathy Davis and
Ray Kunze were immensely useful in helping fix the fundamental concepts.
More recent conversations with John Ryan were very helpful too.

1. Classical Case

Let Q be the interior of a Jordan curve in the complex plane or the region
{zeC:Im (z) > ¢(Rez)} above the graph of a function ¢: R — R; the unit disk
or upper half-plane are natural examples. We shall think of Q as being «flat»
when it is equipped with the Euclidean metric and «curved» when a Rieman-
nian metric on it gives it non-zero curvature as in the case of the hyperbolic
metric. More generally still, @ could be any Riemann surface. Geometrically,
the flat case arises from identifying C with the tangent space to a curved
at some base point w, € Q. In the flat case the Cauchy-Riemann d-operator has
constant coefficients, whereas it will have non-constant coefficients when Q
has curvature. Our principal focus, of course, is on the flat case where the
Hardy spaces form one natural family of spaces of analytic functions.

First let Q be the upper half-plane in C. The Hardy H?(Q)-spaces here con-
sist of all analytic functions on Q such that
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oo

1/p
(1.1) F | 9(ay = sup <f |F(x + iy)l”dx) (0<p< )
y> —

is finite. If © is any finite-dimensional complex Hilbert space, then corre-
sponding H?(Q)-spaces of $-valued analytic functions can be defined in exact-
ly the same way. All the HP-theory for scalar-valued functions carries over
component by component to the vector-valued case.

For p > 1 straightforward use of analyticity and weak*-compactness gives
(1.2)

(i) (characterization of boundary values) each F in HP(Q) has boundary
values F* (x) a.e. on dQ2 ~ R and the space

HP(Q) = (F":Fe H?(Q)}

coincides with the subspace of all complex-valued functions f in L”(3Q)
such that (I — i3C) f = 0 where
1
3Cf(x) = P.V. —J JO)
™ Jo y
is the Hilbert transform of f;
(i) (analytic overdeterminedness) the Cauchy integral

e L[ /@
f ef(z)_27rl' a0 X—Z2

dx (ze®)

is an isomorphism from the space of all real-valued functions fin L”(3%)
onto H?(Q).

In proving the existence of boundary values in L?(3Q), p > 1, harmonicity
of F rather than analyticity would have been sufficient. But when p = 1, the
requirement of analyticity is essential. Thus one role of 4 is to improve on the
boundary regularity of harmonic functions; in fact, boundary values F* exist
for every Fin H?(0Q), p > 0. Stein-Weiss ([31]) showed that this fundamental
boundary regularity property could be derived from the subharmonicity of
z— |F(z)|”; indeed,

(1.3) AFQI > { PP IF@IP FOF 20 0<p<2)

whenever F is analytic and non-zero, as one easily calculates using the fac-
torization A = 33 = 30.

For an arbitrary flat Q having Lipschitz (or smoother) boundary 92, there
is an analogous definition of HP?(dQ), replacing (1.1) with the usual non-
tangential maximal function norm
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(1.4) IF | gy = ( [ NE)sY ds) 1/

obtained by integrating along dQ with respect to arc-length measure. But now
the boundary regularity theory becomes decidedly more difficult as the
smoothness of dQ decreases. In his thesis Kenig used conformal mapping
techniques to reduce the study of a general H?(Q)-space to that of a weighted
HP-space on the upper half-plane ([21]), but the LP-boundedness of the
principal-value Cauchy integral operator on 9 can also be used (cf. Section 3).
Using such techniques it can be shown for each Q there is a constant p(f),
1 < p(2) < 2, such that properties (i) and (ii) in (1.2) still hold provided
p > p(Q). If 4Q is C'-smooth, then p(Q) = 1 as in the case of the upper half-
plane, but p(Q) > 1 if 02 has only Lipschitz smoothness. Results of Kenig and
Pipher suggest that there should be an atomic type decomposition of H?”(3Q)
for p < p(Q) and Lipschitz aQ ([23]).

One way of discovering the relationship between (3,9) and the Dirac
operator for R? is to identify the Clifford algebra for R? with the quaternions

(1.5) H = {xo + Xx1i + X,j + x3k: x;€ R}
where
(1.6) PP=j*=k*= -1, ij=k= —ji

Thus i, j, k are imaginary units; in particular,
(1.7) C = {x + jx;: x;€e R}, H={z+iw:z, weC}.
Under the embedding of R? into H given by

(x, ) = xi + yk = i(x + jy),

the standard Dirac operator takes the form

., 0 0 = ..
(1.8) D—zg+k$—za—az,
setting
, -~ 0 .0 _ 9 .0
(1.8) a_-a~x~ +J»b—y~, d= i Jay

Now let F = F(x,y) = ® + {¥ be an H-valued function on 2, where ®, ¥ are
complex-valued functions determined by the decomposition H = C @ iC of
H. Then

, OF oF

. =i— —— =i0® — JV.
(1.9) DF 16x+k8y i0od — 0
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Hence DF = 0 on Q if and only if & = 0, 3¥ = 0; and so 3 (resp. 9) arises
from restricting the Dirac operator to H-valued functions having range in C
(resp. iC). Notice that these range spaces C and iC are just the respective +1
and —1 eigenspaces of the involution z + iw — z — iw on IH; notice also that
if ® is C-valued, then D® is iC-valued, whereas D® is C-valued when & is iC-
valued, so that the effect of D is to interchange the eigenspaces of an involu-
tion. This is exactly how the important geometric differential operators
associated with the Dirac operator on more general manifolds are defined (cf.
[14, Chap. VI; [19]).

There is another interesting way of obtaining (3, 3) from the Dirac operator
by realizing IH as the real sub-algebra

(1.10) H = {[zl _?ZJIZI,ZZEC}

Va3 2
of C**? where

NI S R E

1 0 0 -/ -1 vV -1 0
For then
.0 0 0 -9

and if F = [3}] is a column vector of complex-valued functions, then

er[5 3] R)

Hence DF = 0 if and only if 3® = 0, ¥ = 0; once again the effect of D is to
interchange the eigenspaces of an involution, this time the involution being
defined by

(1.12) m*{é —?HZ] ) {—ﬂ

Generalizations of this derivation of (9,d) from D use the so-called Spin
representations of Clifford algebras and are valid on arbitrary spin manifolds
([14, chap. V]; [5, Section 51).

As a constant coefficient operator in the flat case, (0, d) commute with
translations; but, more importantly, they also commute with the rotation
operators F— F,, Fy(z) = F(e'’z), in the sense that

(1.13) A(Fy) = €°OF),,  3(Fy) = e "(3F),.
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These properties of invariance under the rigid motions of the complex plane
are the reason why analytic function theory can be incorporated so successfully
into Fourier series and Fourier Transform theory, and ultimately therefore for
the importance of H”-theory. On the other hand, when Q has curvature,
the Cauchy-Riemann operator is invariant with respect to the semi-simple
automorphism group G of Q, and hence is the reason for the extensive use of
analytic function theory in realizing representations of such G. Our emphasis
on the invariance properties of operators of Dirac type is thus well-founded.

Let us now study in greater detail the elliptic boundary value problems
associated with H7(Q) for a domain in C. Qualitatively, the classical Riemann-
Hilbert problem can be formulated as

Riemann-Hilbert Problem 1.14. Given real-valued functions a, b, and f on
d0Q, find a function F in QU 0Q such that

@) 0F=0o0n Q
(i) Lo(F) = Re ((a — ib)F) = f on 9Q.

The Dirichlet problem, of course, is the special case @ = 1, b = 0. In real
terms the general boundary condition Ly(F) = f'is

a(x)Uz) + bV (z) = f(2) (z€dQ)

when F = U + iV, and so (1.14)(ii) imposes a linear relation on the real and
imaginary parts of F at each point of 0Q. This was how Riemann first for-
mulated the problem. Thus from a conceptual point of view, the problem
must exploit the analytic over-determinedness of 4 if there is to be any hope
of a solution existing and having some degree of uniqueness. By allowing
more general boundary conditions in (1.14)(ii), we get other classical problems
as special cases. For instance, given complex-valued functions A4,, 4; on 02,
F can be required to satisfy the boundary condition

(1.14)(1y L,(F) = Re(4y(2)F(z) + A,(2) 0F)) = f(2) (z€0Q)

on 0Q; here OF denotes the boundary values of the derivative dF of F in Q.
The so-called Generalized Riemann-Hilbert problem imposes conditions such
as (1.14)(ii)) on F and dF, as well as possibly on higher order derivatives
9%F,...,8"F (and integral terms too) (cf. [12]; [26]).

To study the boundary condition L,(F) = f in detail, let ¢ = #(s) be the
parameterization of dQ by arc length, and let § = 6(s) be the angle between the
positive tangent to dQ at ¢ and the x-axis. Thus e*® = #'(s). In a famous study
of the theory of tides, Poincaré considered the following problem.
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Poincaré Problem 1.15. Given real-valued functions ¢, ¥, ¢ and f on 09,
find a real-valued function U on QU 0Q satisfying

(i) AU=0o0onQ
(i) ¢(S)£ + 1[/(3)ﬂ + ¢(s)U = f on 99
as on

where dU/ds is the tangential derivative and 0U/dn is the normal derivative
of U at t = ((s).

This contains both the Dirichlet and Neumann problems, as well as the
Oblique-derivative problem, as special cases. But on setting

1
Ap(s) =c(s), A(9) = Ee'o(s)(d> + 1)) (#s) €09),

it is easily checked that the Poincaré problem can be solved by finding an
analytic function F = U + iV satisfying L,(F) = f on 99Q.

In the Russian literature (cf. [12]; [26]) the Riemann-Hilbert problem and
its variants were most often studied quantitatively in the context of open sets
Q whose boundary is (possibly piecewise-) C! * ¢, with the boundary functions
being in Lip (a)-spaces. The extra smoothness on 9 ensured that Fredholm
theory could be applied and that the principal value Cauchy integral operator
was bounded on Lip(a) (Privalov’s theorem). As we now know, C!*<-
smoothness is not essential for this last property, but the Riemann-Hilbert
problem does not appear to have been studied for general Lipschitz domains.
For concreteness therefore, we shall assume that 42 is C* * ¢-smooth for some
e > 0 and replace Lip (o)-spaces by boundary LP-spaces, 1 < p < «©. We will
however assume that 4 = A(z) is a complex-valued function on dQ which is
in Lip (@) for some « > 0. In this setting (1.14) becomes what we shall call

Hardy-Riemann-Hilbert Problem 1.16. Given a real-valued function f in
LP(09), find F in HP(Q) such that Re (A(2)F(z)) = f(z) on 0Q.

In view of the boundary regularity theory for HP”-spaces, this problem
amounts to solving the equation

,F)=f
where
(1.17) 3, HP(0Q) = LP(39, R), (3,F)(2) = Re (AR)F(2)),

and L?(d9, R) is the Lebesgue space of real-valued functions on Q2. From the
well-known solution of (1.14) for Lip («)-spaces (cf. [12]; [26]) we obtain
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Theorem 1.18. If A = A(z) is non-vanishing on 3Q, then 3,: H?(3Q) -
LP(8Q, R) is a Fredholm operator with index

Index(3,) = 2w, +1

where w, is the winding number of A.

Since both the kernel and co-kernel of 3, are known explicitly, the Hardy-
Riemann-Hilbert problem is thus completely solved. Extensions to less
smooth domains and other function classes for A (4 € BMO(dQ2)?) would
clearly be of interest. The Riemann-Hilbert problem has been formulated and
extensively studied for $-valued functions also (cf., for instance, [35]). On the
other hand, the Riemann-Roch for compact Riemann surfaces relating the
index of 0 to the genus of the surface is another of the classical index problems
associated with analytic functions and was a particularly influential example
in the development of the Atiyah-Singer Index Theorem.

The study of Hardy spaces and Bergman spaces of analytic functions is also
the starting point for the realization of unitary representations of semi-simple
Lie groups. Indeed the group

SLQ2, R) = {g= [Z ﬂ - det (g) = 13

of 2 X 2 real matrices having determinant 1 acts on the compactified plane
CU {} by fractional linear transformations

a b b+zd
(1.19) g = I:C d].z'—»z-g——a-~+—éé— (ZEQ:).

Its orbits consist of the upper and lower half-planes Q_ in C together with
their compactified mutual boundary RU {0 }. There is also an induced action
of SL(2, R) on the Hardy H*(Q, )-space and on the Lebesgue space L*(R) of
complex-valued functions on R:

1
(1.20) @) (r(@F)z)= —-F(z-8 (z€Q,)
a+ zc
defines a unitary representation of SL(2, R) on H*(Q,), while
1
(1.20) (i) (@)= ——fv-8) (WeR)
a+ vc

defines a unitary representation on L*(R). There are several implications of
these results for Euclidean harmonic analysis:
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(i) the familiar transformations of translation, «rotation» and dilation on R
all arise as special cases of (1.19), as does inversion v = —1/v;
(ii) the Cauchy integral

IS B 0)
J2F@) = o) 2

dv = Cf(2)

intertwines the representations in (1.20) in the sense that w(g)F =
C(a(8)f);
(iii) the Hilbert transform

50f(x) = P.V. - r S@)
™ — X— VU

intertwines the representation in (1.20)(ii) in the sense that o(g)(3Cf) =

J(o(8).f)-

Hence all the familiar and important results in H2-theory have a group-
theoretic interpretation in terms of representations of SL(2, R). But SL(2, R)
is just the two-fold covering of the conformal group of R; in addition, if Q
is given the Poincaré metric, then SL(2, R) is just the two-fold covering of the
(identity component of the) isometry group of @, . A discussion of H>-theory
in higher dimensions, therefore, should naturally include corresponding
representations of the two-fold covering of the conformal group of R” and of
the isometry group of (n + 1)-dimensional hyperbolic space. This will be done
in Section 6 as part of a general development of Hardy H”-theory on Eucli-
dean space. But first a detailed analytic and algebraic study of the higher-
dimensional replacements for the Cauchy-Riemann (8, d)-operators has to
have been made. These are the Dirac D and D operators, and the dicussion
in Sections 2, 3 and 4 show that they are intrinsically associated with Eucli-
dean space. Then in Section 5 we show how the operators D and D lead to
operator 8, associated with any irreducible representation of the Euclidean
rotation group, before finally turning to aspects of the general theory in Sec-
tion 6.

2. The Dirac D-operator

Let $ be a finite-dimensional real or complex Hilbert space and let £(9) be the
usual C*-algebra of bounded linear operators on 9, the adjoint of an operator
a in £(9) being denoted by & (cf. [18]). The norm on 9 will be denoted by
|+|, the inner product by (e, ), and the operator norm by |«|; thus

@.1) (au,v) = (u,au), |aa| = |a|?
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hold for all @ in £(9) and u, v in $. Now fix skew-adjoint elements e;, ..., e,
in £(9) such that

(2.2) ejek + ekej = —26 keo (1 S‘], k < n)

where e, (= I) is the identity operator on §. For instance, $ could be the com-
plex numbers C or quaternions IH; then multiplication on C by the imaginary

unit i (= 1) or on |H by its imaginary units i, j, k defines skew-adjoint
operators satisfying (2.2). More generally still, scalar multiplication
2.3) iEmit  (Ee€9)

by i (=+ —1) on any finite-dimensional complex Hilbert space $ is skew-
adjoint.

Definition 2.4. The Dirac D-operator and its adjoint © are the first-order
systems of differential operators on C*(Q, ©) defined by

n 0
= 2%,

for any open set Q in R"*1,

When $ is any complex Hilbert space, for example, D and D are just the
classical Cauchy-Riemann operators d and d respectively, while D is the
Fueter operator when = IH ([6, Chap. 2]). As the notation and terminology
suggest, the skew-adjointness of the e; ensure that D and D are adjoint in the
sense that

(2.5) jn (DF (), ®(x)) dx = jﬂ (F(x), DP(x)) dx

when F, ® are compactly supported functions in C*(2, ). On the other hand,
since

_ "9\ -
2.6 DD = — ] =9DD,
@9 1';) < 3xj>
every solution of DF = 0 or DF = 0 has harmonic components. Consequently,
D and D are Generalized Cauchy-Riemann (GCR-) systems as introduced by

Stein-Weiss ([33, p. 231]); in particular, they are injectively elliptic meaning
that the symbol mappings

@.7) £ < > x,-e,-)»z, = < 5 x,e,-) £ (te9)
Jj=0 Jj=0
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are injective on § for every non-zero X = (A, . . ., \,,) in R *1 (cf. [10, p. 79];
[33, p. 231]). In fact, as we shall see, the algebraic structure in (2.2) forces
the mappings in (2.7) to be surjective as well as injective, and so D, D are
elliptic first-order systems in the usual sense of the term elliptic. But the conse-
quences of this algebraic structure go much deeper.

Denote by »: R**! — £(§) the linear embedding

(2.8) viX=(Xos- . » X)) > D X8, (xeR™Y)

j=o
of R"*! into £($). Then, because of (2.2),
v(x) " (%) = |x|’eq = vOr(x)~ (xeR"™* Y
where |x| = (Z;|x;|*)'/? is the Euclidean length of x; on the other hand,
2.9 [v@)1? = 17~ v@)] = |x|*|e] = |xI”

because of the C*-algebra norm property. Hence »: R"*!— £(9) is an
isometric embedding of R"* ! into £($); we shall therefore identify R”*! with
a subspace of £(9), regarding e, . .., e, simply as an orthonormal basis for
R”*! and omitting any mention of the mapping » in (2.8). With this conven-
tion, let A(H) be the (real) C*-subalgebra of £(9) generated by R™*! ([18]).
Now, in the special cases of = C or H,

(2.10) A®)=C~R?*, AP =H~R*
and
(2.11) [wz| = [w] |z = [wllz]  (w,z2€U9D);

consequently, in addition to the linear structure, there is a multiplicative struc-
ture on R? and R* with respect to which the metric is multiplicative, i.e.,
satisfies (2.11). Although this property characterizes R, C and IH as C*-
algebras ([18, p. 78]), it will be exceedingly important and highly instructive
to think of A(P) as being a sufficiently strong substitute for any §. Indeed,
by (2.2),

(2.12) () [wz| = [(w2)~(w2)| = [w|lz]  (w,zeR"™Y),
and more generally,
(2.12) (i) la---wz| =la|---|w||z|

for any finite product @ - - - wz in %(P) of elements a, . .., w, zin R"*!, What
fails in general is the multiplicativity on linear combinations of such finite
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products. Nonetheless, all of this and Adams’ solution of the vector fields on
spheres problem are much more than is needed to establish the following results.

Theorem 2.13.  The Dirac D- and D-operators are first-order elliptic systems
of differential operators on C*(Q, ) for any open set Q in R"*'; in particular,
ifn=8d+r, 0<r<7, then

(i) dimg () = (r + 1)16%
(ii) dimg (D) > 22167

Proor. Since

it is clear that the symbol mappings

£- < 2 )xje,->£, £E— < 2 >\j31> 3
Jj=0 Jj=0

are invertible on $ for each \ # 0. Hence O and D are elliptic. As a conse-
quence of this ellipticity, the dimension of $ cannot be too small in relation
to n (cf. [11, [30]). More precisely, if

dimg () = 2k + 1)2°16°  (0<c<3,k>0),
then

Hn+1<8+2 (F=R),
(i) n+1<8 +2c+2 (F=C0C).

Now suppose n =8d +r, 0<r<7. Then
dimg (§) = (r + D16,  dim. () = 21216,

completing the proof. [J

The significance of these estimates for dim, () will become clear later. Let

(2.14) Cx) = b <—;——> (xeR" !, x#0)

Wp 41

be the Cauchy kernel on R”*!. It is well-defined as an %($)-valued solution
of D® =0 on R"*1\ {0} since

1 _ 1
R :D<‘|x|"‘1>
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expresses the Cauchy kernel as a constant multiple of D(T, , ,), where T',, . ,
is the fundamental solution of the Laplacian on R”*!. Similarly,

(2.15) do(x) = 3 (—=1)e;dxoA-- - AdXIA - - - Adx,
Jji=0

is an A(P)-valued n-form on R”* !, The usual argument using Stokes theorem
(cf., for intance, [6, p. 51]; [14, Chap. II, Section 3]) then gives

Theorem 2.16. Let M be a compact set in Q having suitably smooth bound-
ary oM. Then the Cauchy integral

foefe) = ! L Y X eSO

Wpt+1 Jom |y—x|

of any f in C(OM, ©) satisfies D(Cf) = 0 on R"**\dM, while

1 y—x _ (F(x) (xeM\oM)
LMlT:XV’“ do(Y)F(y) = { 0 (e\M)

Wy 41

whenever DF = 0 on Q.

3. Hardy Spaces

In complete analogy with the classical case, the Cauchy integral results lead
naturally to Hardy spaces on domains in R”*'.

Let Q be a domain in R”*! which is either a bounded Lipschitz domain or
a special Lipschitz domain in the unbounded case. Thus for each x in 0 hav-
ing inward unit normal n(x), there is a cone

(3.1 T,(x0)=f{zeR" |z - x| <8, —x,1(x) > |z — x|}

having vertex at x and lying wholly inside Q for some choice of «, 6 indepen-
dent of x. Now denote by 3C?(Q, ) the harmonic Hardy space of all harmonic
functions in C*(Q, ) whose non-tangential maximal function

3.2) NF)x) = sup |F(z)| (xe0Q)

zel ,(x)

is LP-integrable on 4Q. Since the Laplacian is elliptic, JC?(Q, ©) is a Banach
space under the norm

3.3) IFl, = (], NEYxy dS)'” (1 <p<e)

defined with respect to scalar surface measure on 9.
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Definition 3.4. The Hardy H?(Q, ©) consists of all solutions of DF = 0 in
C=(Q, 9) for which (3.3) is finite.

There are corresponding spaces JCP(Q, $) and H?(Q, 9) when 0<p <1,
though they are not Banach spaces of course. Ellipticity and GCR-properties
of D ensure that H?(Q, O) is a closed subspace of JCP(Q, ).

The key to studying Hardy spaces is the L”-boundedness of the principal-
value Cauchy integral

j-Xx
y—xl”“

(3.5) Jf(x) = P. V.< 2 j do(y)f(y)> (xed)
Wns1 Joa |

for $-valued functions on 99. In the seminal work of Coifman, McIntosh and
Meyer ([7]) establishing this boundedness for complex-valued functions
through use of P,, Q,operator techniques, essential though unconscious use
is made of the multiplicativity property |wz| = |w| |z| for all w, zin C in con-
trolling the operator norm of iterated powers of P, and Q,. The fundamental
multiplicative norm property (2.12) for arbitrary $ maintains the same con-
trol on the corresponding operators in the general case; one then proves (cf.

[14])

Theorem 3.6. Let Q be a special Lipschitz domain in R"*'. Then for each
D, 1<p<oo,

(i) the principal-value Cauchy integral operator f— 3Cf is bounded on
LP(39, §);
(ii) the Cauchy integral f— Cf maps L*(09Q, ) boundedly into H?(Q, 9);
(iii) the Cauchy integral Cf of any fin L”(0Q, ©) has non-tangential boundary
values on 0Q such that

lim /(@) = — (/) + 3 ()

zox 2

almost everywhere on 90Q.

Because of the GCR-property enjoyed by D, the solution of the Dirichlet
problem for Q with scalar-valued L”-boundary data can be applied com-
ponentwise to the Hardy spaces in studying the boundary value behaviour of
functions in H?(Q, ©) (cf. [22]). Let p(Q) be the critical index for the scalar
Dirichlet problem with LP-data, i.e., for each real-valued function fin L?(3%),
p > p(Q), there is a function U so that

3.7 @) AU=0 in Q
(i) Ulan =f.
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In the case of any C'-domain, p(Q) = 1; but in general, p(Q) > 1. By a simple
adaptation of the proof of Theorem 3.19 in Chapter 2 in [33], one readily sees
that each Fin H”(Q, 9), p > p(Q), has non-tangential boundary values 7 * in
LP(0Q, D).

Definition 3.8. Denote by H(0Q, ) the subspace in LP(0Q, ) of the non-
tangential boundary values F* of all functions F in H?(Q, ), p > p(Q).

In [15] we proved the following result characterizing this space H?(3Q, )
of boundary values.

Theorem 3.9. Let Q be a special Lipschitz domain in R"* . Then, for each
p, pQ) <p <,

(i) the Cauchy integral f — Cf is a bounded mapping from LP(3Q, ) onto
H"(Q, 9);
(ii) every F in HP(Q, D) is the Cauchy integral CF* of its non-tangential
boundary values F* in H?(0Q, ©);
(iii) a function f in LP(0Q, 9) is in HP(0Q, ) if and only if f = ICf.

Two results are conspicuously absent from (3.9): the first dealing with
characterizations for p < p(Q), and the second with an analytic over-deter-
minedness characterization such as (1.2)(ii). Carlos Kenig has remarked to us
that the ideas in his joint work with Jill Pipher ([23]) may well yield characteriza-
tions of H?(3Q, ) below the critical index p(Q). As regards the second omis-
sion, let us assume that for each imaginary unit j in R"*?! (< %(9)) there is
a splitting 3C = H, @ jO, of $ for some subspace H, of H. We shall then say
that © has the splitting property. From the structural characterizations of
described in the next section, it likely follows that every $ has this property.
Notice that each such splitting determines an involution x + jy = x — jy on $.
The prototypical example of course is the splitting C = R @ v/ =1 R where the
involution is complex conjugation. For this reason we shall denote by Re,
Im:  — 9, the linear mappings

(3.10)0 z—x=Re(2), z—y=1Im(2), Z=x+jy (x,y € 9o)
that a splitting © = $, @ j, determines.

Conjecture 3.11. (Real H”-theory.) Suppose $ = 9, @ j9, is a splitting of
9. Then, for each p,p(Q) < p < oo,

(i) the Cauchy integral f— Cf is an isomorphism from LP(3Q, ,) onto
H?(Q, ©), and conversely,

(ii) the boundary operator F— Re(F|,,) is continuous from H”(Q, ©) onto
LP(39, $y).
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A Fourier Transform argument confirms this conjecture for special choices
of © when Q is the upper half-space

(3.12) Q, ={x+jy:xeR",y>0}

in R"*! (cf. [14, Chap. II]).

4. Clifford Algebras and %(9)

The definition of (D) ensures that it is always a C*-algebra representation
of the Universal Clifford algebra %, for R"; algebraically, therefore, $ is
simply an ungraded Clifford module ([4]). This makes available all the
algebraic constructions associated with both of these classes of algebras, and
we shall use freely results for these algebras established in [14] and [18] to
which the reader is referred for all unsubstantiated assertions (and omitted
references). The culmination of this section will be characterizations of %(9) and
9, but the algebraic details should not be allowed to obscure the fact that these
characterizations show that %($) and $ are intrinsically associated with R”.

Recall that a Clifford algebra for R” consists of a pair (A,, 3) where A,
is an associative algebra over R with identity 1 and 3: R" — A, is a linear
embedding of R” into A, such that

@) A, is generated by {B(x):xe R"} and {\l:\€e R},

@D (ii) B)? = —|x|*1 (xeR".

The algebra 2A(9), for instance, always has these properties because of hypothesis
(2.2). Clearly,

4.2) dim,, (A,) < 2".

Let (¥, @) be a Clifford algebra for R” having maximal dimension 2". It is
universal in the sense that for every (A,,(B) there is a unique algebra
homomorphism =: ¥, = A, such that (7 © )(x) = B(x), x € R". Hence ¥,,, the
so-called Universal Clifford algebra for R”, is unique up to isomorphism; we
shall regard R and R" as subspaces of ¥,, identifying R"*! with R @ R".
Universality also ensures that the mapping x = —x on R” extends to a unique
automorphism a — a’ of U,,, the principal automorphism of %, and a unique
anti-automorphism a — a of ¥,,, conjugation on ¥,, such that

(4.3) x'=-x=% (xeR"

(cf. [14, Chap. I]; [27, p. 245]). The composition a — a* = (@)~ = (@)’ of
conjugation and the principal automorphism is called the principal anti-
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automorphism of U, . Known basic structural properties of A($) are collected
together in the next theorem. We include its proof for convenience and clarity
of exposition.

Theorem 4.4. The algebra A(D) is a Clifford algebra for R” such that the
homomorphism =: %, = (D) satisfies

(i) = is always an isomorphism when n # 4l + 3, | > 0;
(ii) = fails to be an isomorphism if and only if e;---e, = xI;
(iii) if = is not an isomorphism, then there is a central idempotent E in Y, such
that = is an isomorphism from the ideal {aE: a € %,,} in U,, onto (D), and
kerm = {al — E):ae¥,}.

Furthermore, whether = is an isomorphism or not,
@iv) w(@)” ==n(@) (ae¥,).

Since algebraically-*isomorphic C*-algebras are always isometrically-*iso-
morphic ([18, p. 87]), the C*-algebras (D) are all isometrically-*isomorphic
when n#4/+ 3, />0, or when n =4/+ 3 and the generators ey,...,e,
satisfy e, - - - e, # 1. In fact, they are all C*-algebra realizations of U, in
which the adjoint operation on A(9) coincides with conjugation on Y,. The
example of A(H) = $ = H, with e, e,, e; multiplication by the imaginary units
i, j, k, is a case where e, e;e; = —1.

ProOF OoF THEOREM 4.4. Let ¢y, ...,¢€, be generators for U, such that

€€k + €Ex€; = _26_,‘](, W(ej) =€ (1 S.] < n)

with respect to the homomorphism =: %, = A($). Now the kernel of = is a
two-sided ideal in ,,, so w: 2, = A(H) will be an isomorphism if and only if
U, is simple. But ¥, is always simple when n # 4/ + 3; on the other hand,
when n = 4/ + 3, it is simple if and only if ¢, - - - ¢, ¢ R ([14, Chap. I, Cor-
ollary 3.6, Theorem 3.19]). This proves (i). It also proves the necessity half
of (ii) because

e - e, =mle - -€) =N Nel®
if ¢ - - - €, € R; note that A = %1 since
(e;---e) =(e;---e)e---e) = (=12 =
when n = 4/ + 3. On the other hand,

dim (A(P)) < 2" = dimy (U,)
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when e, ---e, = +I, for then e, = Fe, - - - e,_; this ensures that it is not an
isomorphism, completing the proof of (ii).
To establish (iii) set

“4.5) E=%([+51"’En) or E=%(I_51"'En)

according as e; - - -e, = I or —1. In either case, E is a central idempotent in
A, and

U, ={aE+a(l—-E):ae¥,)}

where I, = {aE:ae¥,} and I_ = {a(l — E):a€¥Y,} are two-sided ideals in
A, such that A, =T, @ I_ (cf. [14, Chap. I]). Now by the definition of E,

w(aE) = 7(a), m(a — E)) = 0.

Consequently, = maps 7, onto A(P), while ker (w) 2 7/_. But I, and I_ are
the only non-trivial, proper, two-sided ideals in %, ([14, Chap. I, Theorem
3.19]). Hence =: I, — A(P) is an isomorphism and ker () = I_ . This proves
(iii).

To prove (iv) observe first that

(g, g)” =(=DFEV 2 e
(cf. [14, Chap. I (2.25)]); a similar result
(ej Ce ejk)_ — (__l)k(k+ 1)/2ej1 e ejk

holds in A(D) since the adjoint operation is an anti-automorphism such that
“:e;—~ —e;. Thus

W((Ejl Tt ij)_) = (‘lf(fjl Tt fjk))_

holds whether or not = is an isomorphism. Now the products ¢; ---¢;,,
1 <j; < --- < Jji < ntogether with the identity are a basis for ¥,,. Hence this
last equality extends linearly to all of ¥,, i.e., w(@) = w(a)”, when w is an
isomorphism. If, however, 7 is not an isomorphism, then n = 4/ + 3 and

@)™ = (DD 2 =gy,
ensuring that E = E. Consequently,
7((@—aE) )=m@—-akE)=0 (ae ).

Hence the equality m(@) = w(a)~ continues to hold on all of %, even if 7 is not
an isomorphism. This completes the proof of (iv). [
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A failure of UA($) to be isomorphic te A, when n = 4/ + 3 is not serious
because A(PH) can then be embedded in a larger C*-algebra which is isomor-
phic to ¥,,. For suppose e, - - - e, = —1, say, and regard $ @ 9 as the Hilbert
space

. u
4.6) (i) @@@={[J:u,veﬂ}
of column vectors under the inner product
.. u u
4.6) (i) ([ I:I ’ |: 2:|> = (U, Up) + (U, V)
Uy %)
derived from that on $. Then
47 _|lee O _|en O
.7 7o i = o —e,
are skew-adjoint operators on @ 9 such that
. .. -1 0
@ YiYe + ViV = —20y1, ) vi---vn= |: 0 Ij| >

since n = 4/ + 3. Criterion (4.4) (ii) thus ensures that ¥, is isomorphic to the
C*-subalgebra generated in £(9 D 9) by v;,. .., ¥,. This clearly is

@.8) Hg ,‘j ca,be a«@)} = %($) @ AP,

acting on the Hilbert space (4.6).

Now every finite-dimensional real C*-algebra is the finite direct sum of full
matrix rings M(k, K) where K = R, C or H. Since each is of these is simple,
it follows that

4.9 @) A, = M(k, K) (n#4l+3)

for some choice of (k, KK), while

(4.9) (i) A, = M(k, K) @ M(k, K) (n=4l+3).
This is consistent with the well-known realizations

4.10) =R, A, =C, A = H, Uy=HO®H
and the less well-known

(4.10) () A, =H2*2, Ys=C**4, Yo =RE*E, o, =RE*EP RE*E,
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The following fundamental Periodicity Theorem completes the characteriza-
tion of ¥, for every n.

Theorem 4.10. (ii) For each n > 0 there is a realization of U, , ¢ as the algebra
Ay g = M(16,Y,)

of all 16 X 16 matrices having entries from ¥,,.

Consequently, when n = 8d + r, 0 < r < 8, the choice of K in (4.9) is given by
4.11) ) K=R (r=0,6,7, K=C (=15, K=H (r=2,3,4),
while £ is determined by
(4.11) (i) k*dimg(K) =2%*" (r#3,7), k*dimg,(K)=2%*""! (r=3,7)

since dimg, (%) = 2".
In summarizing these results it will be convenient to introduce the following
definition.

Definition 4.12. A finite-dimensional Hilbert space © is said to be an U,-
module when there exist skew-adjoint operators e, . . ., e, in £(9) such that

ejek + ekej = —Zajkeo (1 SJ, k g n),

where e, (= I) is the identity operator.

As before, the real C*-algebra of £(9) generated by e, ...,e, wili be
denoted by %($). Then for each # there is a real Hilbert space &, = K*, where
(k, K) are determined by (4.11), such that

4.13) (i) A®) is isometrically-*isomorphic to the real C*-algebra £(8,)
when n # 4] + 3,

(4.13) (ii) A®) is isometrically-*isomorphic to £(8,) or to £(],) D £(K,)
when n = 4l + 3.

This space {, is called the space of real spinors. By identifying ¥, with
82, @ 8, when n # 4/ + 3, or with §, ® 8, D 8, X &, when n = 4/ + 3, the
Universal Clifford algebra itself is an ¥,-module under left multiplication.
Thus Clifford analyticity, the study of U,-valued solutions of DF = 0, is one
special case of the theory of ©-valued solutions. On the other hand, every real
M(k, K)-module is isomorphic to the real tensor product K¥ ® R™ = K¥*™
for some m > 1. Since the latter becomes a real Hilbert space under the inner
product
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4.14) (W, 2) = tr (Zw) (w, z € IKE*m)

where 7 = [Z,,] € K™*¥ is the conjugate of z = [z,,] € K¥*™, we obtain the
following fundamental characterization familiar from real K-theory.

Theorem 4.15. When n=8d +r, 0<r<8, and (k,K) are specified by
(4.11), then every KX*™ m > 1, is an % -module under matrix multiplication
of the left by M(k, K). Conversely, every real Hilbert space that is also an U~
module is isomorphic to some M(k, K)-module K**™ or to the direct sum of
two such modules; this last case can occur only if r=13 or 7.

Thus real ¥,-modules have a rigid structure with a very remarkable «period
8» property. The complex ,-modules have a «period 2» property, and so
have an even more rigid structure. To be more precise, let €(9) be the complex
C*-algebra generated in £(9) by ey, ..., e, when 9 is a complex U,,-module.
Then G() is isometrically-*isomorphic to M(2™, C) when n = 2m or to one
of M(2™, C), M(2™, C) ® M(2™, C) when n = 2m + 1. Thus for each » there
is a complex Hilbert space &, = C*, k = 2"4, such that §($) is isometrically-
*isomorphic to the complex C*-algebra £(&,) when n =2/ or to one of
£(8,), £(8,) ® £(&,) when n =2/ + 1. This space &, is called the space
of complex spinors. Every complex ¥,-module, therefore, is isomorphic to an
M(k, C)-module C**™ or to the direct sum of two such modules; this last case
can occur only if » is odd.

To complete this section we return to the C*-algebra representations of ¥,
on an ¥,-module . There are always two such representations:

(4.16) (i) the representation w: U,, — A(D) derived from the universal property
of U,, and

(4.16) (ii) the representation o: U, — (D) defined by a(a) = w(a’) wherea — a’
is the principal automorphism on 9,,.

Notice that
w(@) = w(a)”, a(a*) =o(a)” .

These will become crucial in the next section in realizing all the irreducible
representations of the Euclidean rotation group.

5. Hardy Spaces H?(Q, )

A large and very important class of Hardy spaces arise as subspaces of
HP?(Q, ©) by considering only those functions having range in a fixed subspace
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of an ¥U,-module . Let B be such a subspace and regard D as a first-order
system of differential operators

5.1 D:C7(Q, V)~ C*(Q, 9).

Such an operator is said to be of Dirac type. It inherits many of the properties
that D has as an operator on C%(Q, $). It obviously has the GCR-property,
for instance; and the Cauchy integral representation (2.16) is still valid for
solutions in C(Q, B) of DF = 0. On the other hand, the Cauchy integral of
a function fin C(0Q, B) need not be L-valued unless each e; maps L into L,
i.e., Bis an Y(H)-submodule of H; so in general the Cauchy integral cannot
be used directly to construct B-valued solutions of DF = 0. But most import-
antly, the first-order system (5.1) is usually an over-determined elliptic system
in the sense that its symbol mapping is injective without being surjective; the
term injectively elliptic used in Section 2 would seem to be an appropriate one
to emphasize the distinction with standard usage of the term elliptic. The
operator D will still be elliptic on C*(Q, ) in this standard sense, however,
when B is an A(H)-submodule of H.

Definition 5.2. If B is a subspace of 9, the Hardy space H?(Q, 8), 0 < p < oo,
is the set of all solutions in C*(Q,B) of DF = 0 for which

IFl, = ([,, NE)0”ds)"
is finite.
The most important subspaces L arise from representations of the Eucli-
dean rotation group. Let
(5.3) A,=f{a---wza,...,w,zeR"*1}

be the multiplicative semi-group in ¥, of all finite products of elements
a,...,w,zin R"*!; this is the subset of ¥, on which the C*-algebra norm
|| is multiplicative. Thus the unit sphere

(5.4) (keA, |k| =1)

in A, is a multiplicative group, the so-called Spin group Spin (n + 1). On the
other hand, to each @ in R"*!, @ # 0, corresponds a «twisted» similarity
transformation

(5.5) o(@):v—av(@)™! veR" Y

of R"*! which can be shown to be the product of two reflections. Conse-
quently, o(a) is a proper rotation of R”*!, i.e., o(a) € SO(n + 1) for each non-
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zero ¢ in R"*?!, and o extends to a covering homomorphism
(5.6) o:Spin (n + 1) = SO(n + 1), o(k): v— kv(k") ™!

from Spin (n + 1) onto SO(n + 1). The restriction to k in the unit sphere of
A, ensures that ¢ is a two-fold covering. In the special cases of U, = C and
9, = H, Spin (n + 1) reduces respectively to the unit circle {e'/%: 0 < 0 < 47}
in C and the group SU(2) regarded as the unit sphere in H. It is well-known
that these groups are two-fold coverings of SO(2) and SO(3). Hence, once more,
we see how the Clifford theory contains the higher-dimensional analogues of
classical low-dimensional results; this time it is the algebraic and geometric struc-
ture of the Euclidean rotation group, as expressed through (5.3), ..., (5.6),
that is contained in Clifford theory. Even more basic to representation theory is
the fact that every finite-dimensional Spin (n + 1)-module, and hence also any
SO(n + 1)-module, can be realized canonically as a subspace of an appropriate
A,-module $. These modules are then natural candidates for the % in (5.2).

To be more precise, let &, be the Spinor module described in the previous
section. By restricting to Spin (n + 1) the two spin representations of %, on &,
we obtain representations S, and S_,

5.7 S, (k): x— kx, S_(k):x—k'x

of Spin (n + 1) on &, (cf. (4.16)). Furthermore, these are irreducible representa-
tions of Spin (n + 1) because the spin representation of U, on &, is irreducible
and the linear span of Spin (# + 1) is all of %,,. It will be convenient to denote
these representations of Spin(n + 1) by (&, S.) and (8, , S_) respectively
where, of course, 8 = 8, and S, , S_ are defined by (5.7). When (n + 1) is
even, S, and S_ are inequivalent representations, but they are equivalent when
(n + 1) is odd. Taking any finite tensor product (over R)

(-8 S=8'® -8 (==

we thus obtain an ¥,-module on which S, ® ---® S, defines a reducible
representation of Spin (n + 1). From (5.6) and the Cartan-Weyl theory now
follow the following fundamental result (cf. [14, Chap. III]).

Theorem 5.9. Each irreducible representation of Spin (n + 1) can be realized by
restricting S61 ®- & Sf, to a canonically specified subspace of §;' @ - - - @ &7
for an appropriate choice of (e, . . . , €,).

If 7= (my,m,,...) is the signature of an irreducible representation of
Spin (n + 1), we shall denote by $, the ¥,-module &' ® - - - ® & and by B,
the subspace of $, on which SE1 ®:--&® Se, realizes this representation. The
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detailed prescription of (¢, . . . , €,) and the subspace B, of §, are given in [14,
Chap. III]. To realize any finite-dimensional Spin (# + 1)-module X in an 9(,-
module, let ¥ = %,1 @ %,2 @ - - - be the decomposition of ¥ into its irreducible
Spin (n + 1)-components labelled by their signature. Then ¥ is equivalent as
a Spin (n + 1)-module to the subspace B, @B, @--- of &, ®H, @ ---.
The fundamental representations of Spin (n + 1), for example, all arise from
the representations (S, , & ,), (S_, _) and from restrictions of SEl ® Se2 to
subspaces of S?El ® ﬁ“ez, €; = +1. Again details are given more fully in [14,
Chap. III].

6. H”(Q, B)-theory

In this section we shall describe how the fundamental properties of the
classical Hardy spaces carry over to the Hardy spaces H?(Q, B), @ < R"*1,
associated with a Spin (# + 1)-submodule 8B of $. Some aspects of the theory
have been examined in detail already, others less so, and some not at all. The
complete picture has yet to be painted, though the broad outlines can now be
sketched in. Much as in Section 1, the fundamental properties are divided into
four broad categories: boundary values, first-order differential operators,
boundary characterizations, and representation theory.

(a) Boundary theory. The LP-boundary regularity was established for
p > p(Q) by using the solution of the scalar-valued Dirichlet problem for Q.
Since this corresponds in the classical case to treating an analytic function
simply as a harmonic function, it means that the condition DF = 0 did not
improve upon properties of harmonic functions; instead, it imposed algebraic
restrictions on the boundary functions through the characterization of
H?(09, $) as the subspace of functions in LP(3Q, 9) left fixed by the principal-
value Cauchy integral operator JC. Clearly this is a major omission and would
be a major weakness of the theory if extra regularity did not occur. The
stumbling block to progress is knowing how to relate existence of boundary
values on dQ with the algebraic structure of © and the geometry of dQ. The
only technique currently known for overcoming this problem establishes first
the subharmonicity properties that solutions of DF = 0 have. For instance, a
general result of Calderon ensures that to each 9,-module $ there corresponds
a value of p,y, 0 < p, < 1, so that A|F|?” > 0 holds on Q for every p > p, and
every solution of DF = 0 in C*(Q, H) ([33, p. 233]). In fact one can be more
precise (cf. [14, Chap. IV]).

Theorem 6.1. The subharmonicity condition A|F|? > 0 holds on Q for every
p > (n — 1)/n and every solution of DF = 0 in C™(Q, ) whatever the choice
of U,-module and open set Q.
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In the case n =1 this result reduces to the fact that A|F|? > 0 holds for
every p > 0 when F is analytic. Now, if F is merely a harmonic function in
C>(Q, D), then the best one could say is that A|F|?” > 0 holds with p > 1.
Thus, just as in the classical case, the extra condition DF = 0 on a harmonic
function decreases the lower bound on the allowed range of p. But it is natural
to ask if this lower bound can be decreased still further by considering only
those solutions of HF = 0 taking values in some fixed subspace LB of $. This
idea goes back to an important paper of Stein-Weiss ([32]), and is one of the
principal reason for introducing the Hardy spaces H”(Q2, ).

Definition 6.2. Let
D:C7(Q,B,) > C7Q, D,

be the operator of Dirac type associated with the irreducible representation of
Spin (n + 1) having signature 7. Then its critical index p, is the smallest value
of py so that A|F|P =0 holds in Q for every p > p, and every solution of
DF=0in C(Q,B,).

Obviously 0'< p. < (n — 1)/n, but the value of p, depends only on the way
B, «lies» in ,; in particular, it is independent of Q@ ([14, Chap. IV]). By ident-
ifying particular examples of these operators of Dirac type with the operators
8, in [9] (cf. also part (b) of this section), and hence with the operators
introduced by Stein-Weiss, estimates for some p, can be deduced from the
calculations in [32]. It would be very useful to have estimates for other p, (cf.
[14, Chap. IV]).

The point of the condition A|F|? > 0 is that it can be used to establish L?-
boundary regularity, at least when Q is an upper half-space, in complete
analogy to the first half of (1.2) (i) (cf. [33, Chaps. II, IV]).

Theorem 6.3. Let
Q, ={x+jy:xeR",y>0}

be an upper half-space in R".*'. Then each F in H*(Q,,%,), p > p,, has non-
tangential boundary values F* (x) on 0Q for almost all x; furthermore

lim j‘ |F(x + jy) — F* (x)|? dx.
y=0+ JRn

With simple adaptations, the Stein-Weiss proof can be carried over to
HP(Q, B,) when Q is the unit ball in R"*!, and with greater subtlety it may be
possible to carry it over to C'-domains. The possibility of extending it to any
Lipschitz domain is a particularly interesting one because the proof depends
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on being able to solve the Dirichlet problem in order to construct least harmonic
majorants of subharmonic functions. Formally, we shall denote by

HP(0,8) = (Flyg: FEH?Q,B)}  (p>p)

the space of boundary values, restricting Q if necessary to ensure that they
exist. For particular Q and %,, known atomic and molecular characterizations
from real HP-theory should provide corresponding characterizations of
HP(02,B,) (cf. [8], [11]) but little is known at present.

(b) First-order differential operators. Much is known about the algebraic
structure of (D, D)-operators and Dirac type operators, as well as about their
position within the class of all first-order differential operators. For instance,
the (D, D)-operators are as easily derived from a standard Dirac operator as
the Cauchy-Riemann operators were. In the formalism of Section 2, let $ be
a finite-dimensional Hilbert space on which e,...,e, are skew-adjoint
operators satisfying (2.2). Then

], v,=[0 e’} 1 <j<n)

O —eo
(6.4) Yo = [
0 e 0

e O
are skew-adjoint operators on the Hilbert space $ @ 9 of (4.6), and
6.4y ViYe + VeYj= =201 (0<j,k<n).

Consequently, @ 9 is an ¥, . ;-module. The first-order system defined by
i oF -
(6.5) DF= Y vj/— (FeC(Q,9®9)
Jj=0 axJ

for any open set Q in R”* ! is then a standard Dirac operator as the term was
used in [15]: because of (6.4), D is an elliptic self-adjoint differential operator
such that

0

o=l I

on any @ H-valued function

(6.6) D=[° _:D], D?= —A.

Thus

[ &
F= ,
_‘I,]

so (D, D) arise from restricting D to $-valued functions.
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An alternative way of describing the Dirac type operators

©7) D:CT@Q,B) > C7@,9), DF= Y e,
/=07 0x;

helps bring out their algebraic structure more clearly. Since this second approach
essentially defines a differential operator through its symbol, it is also a
convenient one to use on more general manifolds. Let @, B be finite dimen-
sional real Hilbert spaces, and let @ ® R”*! be the usual Hilbert space tensor
product. If {e;} J’.’= o is the standard basis for R"* ! this tensor product consists
of the elements

(68) £= E%KAQND‘Q OvGP,@E(ﬁ
J=
having Hilbert-Schmidt norm

n 172
(6.8 HE < pRMEA é) :
Jj=0
In particular, to each linear operator A: @ ® R"*! > ® there corresponds a
family A, ..., A, of linear operators
Ai:Q— B, Aj(@) = Al@®e)) o<j<n).
Definition 6.9. Let

“ oF
= V)F = i
4, F=(AoV) j=EOAJ ax,

be the differential operator obtained by composing the usual derivative
S © n+1 c aF
V:CP(Q2,R) > C7(2,@® R"™ 1Y), VF=2 —Qe¢
Jj=0 ax j
of Q-valued functions with a linear operator A: @ ® R"*1 - ®.
This defines for each A4 a linear first-order homogeneous constant-coefficient

differential operator such that 8 ,: C*(Q, @) = C*(Q, ®); and every such operator
can be put in this form for some choice of A. In (6.7), for instance,

n n
A:%@Rn+l_’©, A:Zvj®ej—’Zejvj,
ji=0 Jj=0

where A;: B~ 9, 1 <j < n, is multiplication by the imaginary unit e;, while
Ay: B— B is the identity. In general, of course, the mapping
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(6.10) a~>A@®N = 2 \(A4;a) (@e®)
Jj=0
defined from @ to & for each non-zero X = (N, ...,\,) is just the symbol

mapping of d,. To understand the algebraic structure of 8,, therefore, we
need to know how the properties of 4: @ ® R"*! - ® determine those of
8,:C7(Q, @)~ C*(Q, ®).

Let 8,: C*(Q, @) > C*(2, ®’) be the differential operator determined by a
linear operator B: @ ® R"*! — ®' having a possibly different range space ®’
from that of A: @ ® R"*! — ®&. We shall say that 8, is equivalent to 8, if they
have the same kernel, i.e., 8 ,F = 0if and only if 8, F = 0. Since the vanishing
of 8 ,F(x), Xo € 2, is a linear condition on the homogeneous first-order Taylor
coefficients of F at X, it is easy to prove

Theorem 6.11.  The first-order differential operators 8 , and 8, on C*(Q, &)
are equivalent for every Q in R"*' if and only if A, B have the same kernel
in @RQR"*! ie, At =0ifand only if BE=0, te R Q R"* .

In other words, there is a 1 — 1 correspondence between subspaces of
@ ® R"*! and the classes of first-order differential operators determined by this
notion of equivalence. In particular, an operator 8, will be equivalent to the
Dirac type operator (6.7) precisely when the kernel of A4 in 8 ® R"* ! satisfies

n n
(6.12) kerA = {ve%@ﬂ?"“:v= 2.V ®e;, Zejvj:o}.
ji=o ji=0

For the Spin (# + 1)-modules 8B,, group-theoretic methods were used in [10]
to construct rotation-invariant operator 8, whose symbol has property (6.12).
Here again the idea goes back to the fundamental paper of Stein-Weiss ([32]).
The crucial idea in the rotation-invariant case is to decompose the
Spin (n + 1)-module B, ® R"*! into its irreducible Spin (# + 1)-submodules.
The classical geometric differential operators are then the operators of Dirac
type arising from the fundamental representations of Spin (n + 1), and the
higher gradient operators introduced by Stein-Weiss are the Dirac type
operators corresponding to representations on spherical harmonics. More
details can be found in [10], [14].

A careful examination of the precise values of (KK, k) in (4.11) explains the
significance of the estimates of dim;(9) in Theorem 2.13. For the results of
Adams et al. ([1], [30]) show that if 8,: C*(Q, @) = C™(Q, ®) is any linear,
elliptic, first-order system on an open set @ in R"*!, n=8d +r, 0<r<7,
then dim (®) satisfies the same estimates

dimg (@) > (r + D167,  dim. (@) > 2072167,



HP-THEORY ON EUCLIDEAN SPACE AND THE DIRAC OPERATOR 281

as dimg (9) did. Now the lower bounds on the dimension are attained for
D, D on §,- or S,-valued functions. Hence in a very precise sense the Dirac
D- and D-operators are the «smallest» linear elliptic first-order systems of
differential operators.

(c) Boundary value problems. Using the known solutions of the various
Riemann-Hilbert problems for analytic functions and the Dirichlet-Neumann
problems in higher dimensions as a guide, we can formulate a series of bound-
ary value problems for the Hardy spaces H?(2, ) and H”(Q, B,). But apart
from the special case when Q is a half-space (or ball) in R”*! where Fourier
Transform or group-theoretic techniques can be exploited, few results have
been established as yet, so the conjectural nature of what follows must be
borne in mind. There are really two distinct difficulties:

(i) setting up the algebraic formalism of the boundary value problems for an
arbitrary set Q, especially group-theoretic aspects, and

(ii) handling the extra arnalytic difficulties created by the geometry of 99,
more particularly by its lack of smoothness.

To avoid problems of the second kind at this stage, we shall tacitly assume
that dQ is C” when formulating a boundary value problem; for instance, the
example of dQ = L,, the unit sphere in R”* !, is a natural test case. Very
intuitively, our basic philosophy will be that the boundary theory should reflect
the over-determinedness of (D, D). Given, say a Hardy space H”(Q, ) or
HP(Q,9B,), the problem is to exhibit a «smaller» Banach space ¥ of functions
or distributions on 4 isomorphic to this Hardy space, isomorphic meaning
that there is a potential type operator X mapping the boundary space onto
the Hardy space or a boundary type operator mapping the Hardy space onto
the boundary space. A «smaller» Banach space would mean one where the range
space of the functions or distributions in ¥ is a proper subspace of $ or L.,
or where they have to satisfy a boundary condition such as being fixed by the
principal-value Cauchy integral operator or some such singular integral operator
on d9. These restrictions were present in the classical Riemann-Hilbert prob-
lem for analytic functions and in Theorem 3.9. To proceed in detail, however,
a precise understanding of the meaning of over-determinedness is needed. Now
(D, D) and (0, d) are elliptic operators, and so are determined in the sense that
the associated symbols are both surjective and injective. Nonetheless, the solu-
tions of dF = 0 are analytically over-determined. The splitting = H, D j,
was used in (3.11) to express the same analytic over-determinedness that D is
presumed to have as a differential operator on C™(Q, ©). Recall Re, Im: $ — §,
were defined by

6.13) z=Re@+jIm@) =x+jy (x,y€Hy)
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In an attempt to understand thoroughly the analytic over-determinedness of
D, therefore, we introduce the following analogue of the Hardy-Riemann
Hilbert problem for analytic functions (cf. (1.16)). Let

(6.14) A®) ={a---wzia,...,w,zeR"* ! c §}

be the multiplicative semi-group in A(P) of all finite products of elements in
R”*1 (< $). On this semi-group the C*-algebra norm is multiplicative; in par-
ticular, if 4:9Q — A(9) is non-vanishing on 4%, then it is invertible.

(6.15) Hardy-Riemann-Hilbert Problem. Let A:9Q — A(D) be a sufficiently
smooth function which is non-vanishing on 0Q. Then, given f in L”(3Q, ),
find F in HP(0Q, ©) such that Re (A(R)F(z)) = f(z) on 4Q.

In view of the boundary regularity theory for H”-spaces, this problem reduces
to solving the equation 3, (F) = f where

(6.16) 3,: HP(3Q, §) > L7(32, §9),  (3,F)(2) = Re (A(D)F(2)),

just as in the classical case. The Dirichlet type problem in conjecture (3.11)
is the special case A = 1. In the classical case one uses the Cauchy integral in
an attempt to invert 3 ,, and presumably a similar attempt might solve (6.15).
The availability of the Cauchy integral and all the related theory to solve
boundary value problems such as (6.15) indicate the usefulness of a develop-
ment of «analytic function theory» for higher dimensional Euclidean space.
A topological characterization of the index of J,, special case of the Index
theorem for manifolds with boundary, would be particularly interesting also.

There are some natural geometric choices of 4. Let 5(X) be the unit out-
ward normal to Q2 at X. Then X — (X) defines a function 7:9Q2— X,
(S A(D)), the Gauss map, which is a natural candidate for A. For any such
A:0Q — £, the Hardy-Riemann-Hilbert is related to the classical Neumann or
Oblique-derivative problem.

By restricting to the Dirac type operator

6.17) D:C7(Q,B,) ~ C7(Q, D),

the differential operator becomes algebraically over-determined, i.e., injec-
tively elliptic, as well as analytically over-determined, and so algebraic restric-
tions now enter. Special cases for the unit ball were studied in [24], [25], and
[28], but the only known results valid for general domains rise in studies of
Dirichlet-Neumann Problem (cf. [22]), particularly in the work of Fabes-
Kenig and Verchota ([11], [36]). This last case corresponds to the standard
representation of SO(n + 1) on R"*?, so that 8, = R"*! and the Dirac type
operator (6.17) is equivalent to the div-curl system
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(6.18) divF=0 curl F = 0, (FeC™(Q,R"*1h)

on Q ([33, p. 234]). Now at each boundary point, the unit outward normal
7(X) determines a geometric splitting

(6.19) RI=T,@®Ny,, v=x+1X)y (*xLnX),yeR)

of each v € B, into tangential and normal components. Hence each 2,-valued
function F = F(X) on 0Q admits a decomposition F(X) = ®(X) + n(X)¥(X)
with &(X) L »(X) and ¥ = ¥(X) a scalar-valued function on 4%; technically,
F=® + ¥ with &, n¥ sections of the tangent and normal bundles on 99
respectively. Solving the Neumann problem for @ with L”-data is equivalent
to finding Fin H?(Q, B,) so that F(X) = &(X) + n(X)¥(X) where ¥ = ¥(X)
is a specified real-valued function in L?(dQ). Save possibly for a vanishing
moment condition, the choice of ¥ is arbitrary. But any & arising as the
tangential component of F|,, is far from arbitrary (cf. [22], [36]).

To proceed in general, let 9, = H, D jH, be a fixed splitting of $, and set

(6.20) T, ={Re(v):veB,}, N, = {Im@):veB,};

we shall think of these as the respective tangential and normal components of
8, analogous to the splitting of R”* ! in (6.19). But instead of splitting at every
boundary point, we can compensate by introducing a function A4: Q2 — A(9);
for as we saw earlier, the function

f@) =Re(AR)F() (z€d9)

would give the «normal component» of F at z € 3Q for any appropriate choice
of A, and a different choice of 4 would also give the «tangential component.
Thus, let 4: 02 — A(D) be a sufficiently smooth non-vanishing function on 0.

(6.21) Problem. Determine the pseudo-differential operator ® . on LP(3Q, N,)
so that the equations

®R,f=0, Re(ARFQR)=fz) (z€39)
can be solved for F in H?(Q,B,) and f in LP(0Q, N,).

(d) Representation theory. Just as the hyperbolic plane H, can be realized
as the upper half-plane or unit disk in C, hence in the Clifford algebra %,
so (n + 1)-dimensional real hyperbolic space H,, . ; can be realized as an upper
half-space or unit ball in R”*?, hence in the Clifford algebra %,,. What is more,
the algebra structure that becomes available because of this embedding makes it
possible to carry over virtually intact from SL(2, R) to Spiny(n + 1, 1) the
algebraic, geometric, and analytic results associated with the group of isometries
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of H,,,. The idea can be traced back to Vahlen and Maas, but it has been
brought to the fore more recently by Ahlfors (cf. [3] for instance) and, in-
dependently, by Takahashi ([34]). Its significance as far as Hardy theory is
concerned, arises for two reasons: when Spin, (n + 1, 1) is the identity compo-
nent of the two-fold covering of SO,(n + 1, 1), then

(i) Sping(n + 1, 1) acts on R"** by fractional linear transformations each of
which is a composition of translation, rotation, dilation and inversion;

(ii) there is an induced action of Spin, (n + 1, 1) by unitary operators both on
H*Q,9), @ =R%!, and on the boundary space L*(R", $), that com-
mutes with the Cauchy integral and the principal-value Cauchy integral
operators.

The representation-theoretic implications of these properties will be discussed
elsewhere. Here we shall do little more than indicate how closely the results
for n > 1 parallel those in the classical case n = 1 discussed in Section 1.

Fix an imaginary unit j in R” (S ¥,,) and let %, _ ; be the Clifford subalgebra
of ¥, generated by e, ...,e,_; where {e;,...,e,_;,j} is an orthonormal
basis for R”. Then

(6.22) U= 1 DjYU,_;

and
n—1

(6.23) (i) = {z:z =X+y,x= 2, xpe,eR",y> 0}
k=0

is an upper half-space in R”*! having the same boundary

n-1
(6.23) (i) 0 = {x: x= Xy € TR”}
k=0
as the lower half-space
n—1
(6.23) (iii) Q_ = {z:z=x+yj,x= Zxkekeﬂ?",y<0}-
k=0

This imaginary unit j is the unit inward normal to 2, and unit outward nor-
mal to Q- . Thus j plays exactly the same role for R"*! as i = =1 does
classically for C = R @® iR when n = 1. In this last case, Spiny (n + 1, 1) can
be identified with SL(2, R) acting on the compactified plane CU {«} by frac-
tional linear transformations
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as we saw in Section 1. In the general case, Sping(n + 1, 1) is realized as a
multiplicative subgroup G of

a b
M(2,2[,,_1)={[c d]:a,b,c,de%l,,_l}
acting on R"*!1U {w} by fractional linear transformations
a b -1 n+1
(6.24) g= c d 122 (@+zc)” (b + zd) (zeR"™ 1),

so that the orbits of G in R"*!U {e} consist of @, Q_ , and their compactified
mutual boundary Q2 U { oo }. Although there is an intrinsic definition of G (cf.
[14, Chap. V]), it is more illuminating to proceed indirectly, constructing
subgroups M, A and V of G with respect to which (6.24) reduces to rotations,
dilations and translations respectively. Let A, _ ; be the multiplicative semi-group
generated in ¥, _; by 0Q; when n =1, A,_, is just R, of course. Set

M=Hg SI:I:aeA,,_l,"a”:l}s A={[)‘—OV2 )\?/2}»0},

and
1 v
V= HO 1}:06894.}-

For these groups, (6.24) becomes

0
[a ,]:z*a'lza’=o(a“‘)v (ze R"*1,
0 «

which is known to be a rotation of R"*! fixing the j-direction (cf. (5.5)), while

A 172
I: 0 )\1/2j|:z_))\z (ZE[R"+1)s

defines dilation by \, and

1 U' n+1
[0 l}.z—>z,+v (zeR"™ 1),

defines translation by v € 0Q in any hyperplane parallel to dQ2. On the other
hand, the fractional linear transformation determinaded by the Weyl group

element
10 1
““l-1 0
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is the inversion

0 1
w—[_l 0].z -1/z

which interchanges 0 and oo. Finally, set

N=owVo = {[] OJ:ue(’)QI-
u 1

It is easy to check that MAN is a multiplicative group in M(2, ¥,, _ ;). Assum-
ing that Spiny (# + 1, 1) has been realized as an intrisically defined group G
in M(2, ¥, _,), one shows

Theorem 6.25. (Bruhat decomposition.) There is a uniquely determined
coset-space decomposition

G = MANVUMAN®

of G with respect to its subgroup MAN such that the left coset-space MAN\ G
is diffeomorphic to dQU { o }, identifying V with dQ and « with {}; further-
more, when G acts on R"* U {0} by fractional linear transformations

b
g= [Z d}:z—’z-g= @+ z¢)~ (b + zd),
the orbits of G are Q.,Q_, and their compactified mutual boundary
QU {0},

With this coset-space decomposition for G it is not hard to show that
z— z - g preserves the usual hyperbolic metric on Q. as a realization of H,,, {;
and, conversely, every isometry in the connected group of isometries of H, , ;
arises as such a fractional linear transformation. On the other hand, on the
compactified boundary 0QU {e}, the fractional linear transformations
Xx— x-g are precisely the (sense-preserving) conformal transformations of
R"U {e} (cf. [2]). The geometric and algebraic properties of G are thus com-
pletely encoded in the transformations z—z-g of R"*!1U {e]}. Analytic
properties show up in Hardy H>*-spaces for Q. .

Let $ be an ¥,-module, and let A(P) be the associated C*-algebra realiza-
tion of ¥,. Then

(6.26) g=[z ﬂ:zﬁz-g=(a+zc)"(b+zd) (zeR" Y

is well-defined solely within %(9), regarding z and the matriz entries of g as
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elements of A(P); in particular, any term such as (@ + zc) is an operator on
$. Now let H*(Q.,, ) be the Hardy space on Q, whose norm is defined
geometrically by the natural analogue

172
| Fl 42 = sup <j |F(x +fJ’)|2dx>
20

y>0

of (1.1).

Theorem 6.27. For each g in G,

(a + zc)

I +—CT1—+T F(iz-g) (zeQ.)

(m(&)F)(z) =
is a unitary operator on H*(Q +, 9), and g — w,(g) is a unitary representation
of G on HQ+,9).

As stated, Theorem 6.27 really hides the fundamental property of the Dirac D-
operator that is needed. For 7(g)F must be a solution of D(w(g)F) = 0 if w(g)F
is to be in H*(Q +, $). This, however, follows immediately from the fact that

1
D(r(g)F(z- ) = T2+ zel” (g WDF)(z - 8)

la +
holds for any F in C*(Q., ), an equivariance property which ensures that
D is invariant not only under translation and rotations, the transformations
preserving the Euclidean distance, but also under transformations preserving
hyperbolic distance on © + , just as the Cauchy-Riemann operators were in the
classical case.

To relate this action of G on H*Q, $) to one on spaces of boundary
values, we prove

Theorem 6.28. For each g in G,

(a + xc)'

(05(8) S)x) = ]+xc|,,+1f( g (xedd)

is a unitary operator on L*(0Q, ©) and g — o,(g) is a unitary representation of
G such that

(@) 3C(os(8).f) = 05(8)(3CS) (i) C(os(8)f) = m;(&)(CS)

where 3C is the principal-value Cauchy integral operator on dQ and C is the
Cauchy integral operator.

Details of these and other results will appear in [17].
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