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1. Introduction

For a function f defined on R", we associate its Fourier transform

J® = [, fe > fdx,

wn

and the partial sum operators
(1.1) Sef ) = [ _ S’ Fdt

whenever these make sense. One of the most classical problems in Fourier
analysis is that of pointwise convergence of S, f(x) to f(x) as R — . That is,
for which spaces of functions f do we have S, f(x) = f(x) at a given point,
almost-everywhere, everywhere, or uniformly? One may consider also the cor-
responding lacunary problem, i.e. when does S,« f(x) — f(x) as k = oo, k € N?

The natural spaces to consider for uniform convergence are (spaces of) con-
tinuous functions, and the natural spaces to consider for almost-everywhere
convergence are the LP-spaces, 1 < p < . Even for n=1 and p = 2, the
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320 ANTHONY CARBERY AND FERNANDO SORIA

almost-everywhere question has only relatively recently been answered by
Carleson [4], and historically progress has been made by considering easier
problems. One such easier problem arises when we replace the rough Fourier
multiplier X, _  in (1.1) by a smoother cousin, for example (1 — [£]?/R?)$ with
o > 0. This family of multipliers, the so-called Bochner-Riesz multipliers, gives
rise to a summability method which has been much studied in the last 20 years-
see for example [1, 2, 5, 7, 8, 9, 10, 12]. As an alternative way to make things
simpler, one may, instead of insisting upon results, say, for L” spaces, look
for results for (large) subspaces of L” which consist of functions having some
smoothness. Of course, the classical tests for pointwise convergence of Fourier
series are stated in terms of smoothness hypotheses on the functions, but this
point of view seems not yet to have been treated from a modern perspective. The
aim of this article is to lay down a framework within which this question may be
considered. This turns out to be possible due to the progress made in the theory
of Bochner-Riesz multipliers, although there is not apparently any formal link
between smoothing the mutliplier in (1.1) and multiplying f(£) by a power of |£|.

To place our results in context, let us recall some classical results on the unit
circle T, where S, denotes the N " partial sum operator.

(i) For some fe LX(T), Sy«f— f a.e. fails (Kolmogorov’s example).
(ii) If, however, fe L'(T) and f vanishes in some open set €, then Syf—0
on  (Riemann’s localisation principle).
(iii) If fe LP(T), 1 < p < o, then S,«f— f a.e. (Littlewood-Paley).
(iv) For some continuous f, S,.f— funiformly on T fails (du Bois Reymond).
(v) If, however, w(¢) denotes the L* modulus of continuity of f, and

1
J w(t)--q;t < oo,

0

then S, f— f uniformly on T (Dini’s test).
(vi) If the Fourier coefficients of f satisfy >, |a,|*log |k| < o, then Syf=f
a.e. (Kolmogorov-Seliverstov-Plessner).

(For all these results, see Zygmund [19].) Only in the 1960’s was the situation on
T finalised, the result par excellence being due to Carleson [4] and Hunt [13]:

(vii) If feL(T), 1 <p < =, then S, f— fa.e.

In this paper we concentrate on the higher-dimensional case, and so from
now on we work in R”, with n > 2.

Let 1 < p< o, and let us consider the almost-everywhere convergence
problem for LP(R"). If almost-everywhere convergence is to hold for fe L”,
then S, f'should at the very least be defined as a tempered distribution. Hence
by duality, S,: $ = L”(R"), (S denoting the Schwartz class), and, by choosing
f=1on {|¢ <1} we see that unless
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K _ i ezm»gd
1(x) J| fet 3
belongs to L (R"), we cannot make sense of the problem. But of course

J. ,Cr|x e2milx|
nral [x<D) ~— sz + lower order terms at oo,

K@) = PLCEN (T

(see [17]). Thus we see that it is reasonable to consider only the almost-every-
where convergence problem for fe LP(R"), p <2n/(n — 1). (We owe this
observation to José L. Rubio de Francia.) On the other hand, if p < 2, any
sort of almost-everywhere convergence of S, f(x) for feL” would imply
that the corresponding maximal operator would be weak type p, due to the
abstract principle of Calderén and Stein-see for example [11]. This would
then contradict C. Fefferman’s disc multiplier theorem [9] or one of its
variants.

Of course it will not be an easy task to obtain a positive a.c. convergence
result for S, f, fe L?, 2 < p < 2n/(n — 1), since such a result would logically
imply Carleson’s Theorem. However, we can obtain a form of the localisation
principle in this range.

Theorem 1. [fn>2, fe L(R") with2<p<2n/(n-1) and f=0 on an
open set Q, then Sp f— 0 a.e. on Q.

An earlier variant of Theorem 1 where f was assumed to have compact sup-
port was obtainded by Sjo6lin, [14]. It may be worth mentioning that the
analogue of the Littlewood-Paley theorem for R” has been obtained by Rubio
de Francia, Vega and the first author in [2]:

Theorem A. Ifn>2and fe LP(R") with2 < p <2n/(n — 1), then Syc f— f
a.e.

The proof of Theorem 1 uses many of the ideas from [2].

We now turn to see how matters may be improved if we add a little
smoothness to our L”-spaces. For 1 < p < « and a > 0, we let L?(R") be
the Sobolev space of Bessel potentials of order «, i.e. the closure of
{fe8: [ + |£>)**f(&)]Y € L”} under the obvious norm. (When o € N and
1 < p < = this coincides with the usual Sobolev space of functions whose
derivatives of order up to « are in L”. For this and all the elementary facts
about Sobolev spaces, see [16, Chap. 5].) If we now consider the a.e. con-
vergence problem for L?, we observe that inserting a power of (1 + |¢%)'?
in (1.1) does not affect the nature of the singularity of X <R and so the
argument above shows us that no matter how large o is, we should only con-
sider the problem for p <2n/(n — 1).
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Theorem 2. If n>2, fe L2(R™) with « >0 and 2 < p <2n/(n — 1), then
Sgf—fae.

In fact the proof of Theorem 2 will show us that a stronger statement holds.

Theorem 3. Let n>2, 2<p<2n/(n—1) and fe LP(R"). If for all ¢ €
C7(R™ the function g = ¢f satisfies

[16®Pa + 1og™ | dt < oo,

then S, f— f a.e.

Theorem 3 is a weak form of a Kolmogorov-Seliverstov-Plessner-type
theorem, and is formally similar to the Rademacher-Mensov theorem (see
[19]) for general orthogonal series. It would therefore be interesting to be able
to replace the factor (1 + log™ |£])* by (1 + log*|£|) (or something smaller!)
in the statement of this theorem.

To conclude the discussion of the case p > 2, let us state a result which
might be regarded as an analogue for R” of Dini’s test:

Theorem 4. Let n>2. If fe Lf,','/_"l’)“/z”' "(R™), then S, f— f uniformly.
(Here, L?'' is the space of functions whose derivatives up to order « are in

the Lorentz space L”'; Lg'/¢ " D (R") embeds in Cy(R").)

We now consider what may happen when 1 < p < 2. In this situation, any
positive result for L2, p > 1 implies a corresponding positive result for Bochner-
Riesz means of order 8 > « on L”. For example, a «lacunary» localisation prin-
ciple for L would imply that (1 — |£|%)? is a Fourier multiplier of L” for each
B > «, and a «full» localisation principle would imply that

(1.2) ”15”"2 1A — €278 F®1]

=t=

<clfly
p

for each 8 > «. Now a necessary condition for (1 — |£|2)‘i to be a Fourier
multiplier of L? is

1 n+1+26
< S
D 2n

(take feS, f=1 on |£ < 1) and this has been shown to be sufficient (for
p < 2) only when

n-—1

2 2+ )



ALMOST-EVERYWHERE CONVERGENCE OF FOURIER INTEGRALS FOR FUNCTIONS IN SOBOLEV SPACES 323

(see [10], [18]) or when » = 2 and 8 > O (see [5], [12], [10], [7]). The state of
affairs for the maximal Bochner-Riesz operator is even worse: (1.2) has only
been shown to hold in the cases corresponding to interpolation with the
«trivial» L' and L? estimates: that is, (1.2) is only known to hold for 1 < p < 2
and « > 0 when

For the a.e. convergence problem, we have
Theorem 5. Let n>2. If fe L, _,,,,(R"), then S, f— f a.e.

Notice that Theorem 5 is false when n = 1, by Kolmogorov’s example.
Moreover the corresponding statement for Bochner-Riesz means of order
(n — 1)/2 is false, since Stein has shown (see [17]) that localisation fails for
L'in this case. However Theorem 5 is very easy to prove, and is closely related
to Theorem 4. A immediate consequence of Theorems 2 and 5 is

Theorem 6. Let n > 2. If fe L2(R") with
1
l<p<2, a>0 and p< + >

then S, f— f a.e.

Finally, for lacunary convergence, we can improve Theorem 6 in some
special cases.

Theorem 7. [fn=2anda>0,o0rifn>=3and o > s then Syk f— f

n—1
2n + 1)
1 n+ 1 -‘FWZoz

1
.e. for fel?, < <
a.e. for felL” 2 S, on

In view of the recent work of M. Christ on weak type estimates for
Bochner-Riesz operators (see [6]) it would be interesting to establish Theorem
7 for 1/p =+ 1+ 2a)/2n. We hope to return to this matter in a forth-
coming article.

The paper is organized as follows. Theorem 1 is proved in Section 2,
Theorems 3 and 4 in Section 3, and Theorems 5 and 7 in Section 4. The proof
of Theorem 7 requires some L” — L9 estimates for the operator S,, and more
generally one can consider L” — LY estimates for Bochner-Riesz mcans of
order @ < 0. These have previously been studied by Sogge, [15], and we make
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some improvements on his estimates in Section 5. (Although for o < 0 these
estimates have no relation with the rest of the paper, it seems convenient to
include them here.)

We were privileged to discuss all stages of this work with José Luis Rubio
de Francia. As always, he freely shared his ideas with us, and we feel this work
owes much to his insight. The first author enjoyed the generous and gracious
hospitality of José Luis and his family during several delightful visits to
Madrid. We will miss him a great deal, and so it is with great sadness that we
dedicate this work to his memory.

2. A Localisation Principle
We begin with our localisation principle.

Theorem 2.1. Suppose 2 < p <2n/(n — 1) and suppose fe LP(R"). Then,
almost everywhere off supp f we have S, f(x) = 0.

Proor. By translation and dilation invariance, we may assume without loss
of generality that fis supported in {|x| > 3}. We must show that for every
open ball B contained in {|x| < 3} we have S, f(x) ~ 0 a.e. in B. We shall do
this for B = {x: |x| < 1}; for any other ball {|x| < r} with r < 3 the proof is
similar.

It suffices, as usual, to obtain an appropriate estimate for the maximal
operator

S« f(x) = sup [Spf(¥)];

I<R<x

in fact, for the L? case we shall prove
@.1) [ ISf@Pde<e]| I/

In order to make use of the support restrictions in (2.1) we split up both f and

Ko (x) = |E _ €T dE = R'K, (RX)

into dyadic pieces. Let ¢ be a smooth radial function with X< $O<
Xiy <2~ Then

I=00)+ 2 [6(x/2) = $(x/277 )] = $(x) + 2 UX/2) = $(x) + PIRZCN
J= J= J=

where ¥(x) = ¢(x) — ¢(2x). Let K%, = Kpy;, and f; = fy;. Then
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— — J
SRf_ KR*f_ ,kZ:]KR*fk + (KR¢)*f’
Jik=

since ¢f = 0. Now if |j — k| =3, then supp (K% =f)N{|x| <1} = &, and
supp (Ko *f)N{|x| <1} = & since suppf < {|x] =3}. Thus to obtain
(2.1) it suffices to show

25 Ko # Sy

Jj=1

2.2 ‘[sup 2dx<cj|f]2

R>1

for |s| < 3; we shall deal only with the diagonal case s = 0, the other cases
being exactly similar. The inequality (2.2) is now the special case 0 < @ =7y
< 1/2 of the following theorem:

Theorem 2.2. Let {gj};’?=1 be an arbitrary sequence of test functions. Sup-
pose 0 <a<1/2and v>0. Then

sup
RTR>1

Remark 1. If we set g;=f,=fy; with suppf< {|x] =3}, Theorem 2.2
shows that

2 Kyxg;

Jjz1

dx . dx
2 “r 2jy 2 7.
|X|2a < ca,'y Z 2 J;P" |gj| |x|2(x

Jj=1

[ isooparse, | e ®

x| <1 x| =3 |X|1'

with 7 = 2(e — v) < | but arbitrary. In particular since L?(|x| = 3,dx) S
L*(dx/|x|") for n(1 —2/p)<n, we see that Theorem 2.1 follows from
Theorem 2.2. It is easy to see that Theorem 2.2 with parameters « = v = 0 is
false, and thus even to obtain the L? case of Theorem 2.1 one is forced to con-
sider weighted L? inequalities.

Remark 2. The results of this paper were announced in [3], where the state-
ment of Theorem 2 is slightly incorrect. The correct version is the present

Theorem 2.2.

The proof of Theorem 2.2 requires several lemmas. Let A, be the (homo-
geneous) Sobolev space {fe S'(R™: [ |F(®)|*£]>* dt < oo ]

Lemma 2.3. [f0<a<1/2,t>0and é<2t, then
J‘HE! —-tl=<s lh(S)IZdE < Caﬁza"h“i{u

with ¢, independent of t and 6.
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Proor. If 6 < /2, the inequality is merely a rescaled version of Lemma 3 in
[2]; if 1/2 <6 < 2t,

n? < |

as may be seen by chopping up the ball {|# < 3¢} into dyadic annuli.
Let mi(&) = (K4)N¢) for j > 1 and ¢ > 0.

AP < 2R3,

jl!e!—tlﬁ [£] =3¢

Lemma 2.4. Let BeN, A\>0, and t > 0. Then

d\® .
(2 Yo

with ¢, 5 independent of t and j.

<o, 2/ + 270 = o)

Proor. By a change of variables it suffices to consider the case # = 1 and we
shall consider only the case 8 = 0, the cases 8 > 1 being handled similarly.
First suppose |£| < 1. Then, since ¥(0) = 0,

Imi@®)] = X5 * @128
= “‘(\Z)z.i(n)[XB(g - =1] dﬂ[
- U{é_”‘zl(@)zf(n) dn,
< g @it dy
Joutmaa 1 [P0 du
<o/l +2/|1g - 1])* forany \>0.

N

Similarly, if |£] > 1,
mi@l=|[,_,. @y
@) dn

<o/ +27||¢ = 1)* forany \>0.

<Juane-

Fix a smooth function v: R — R such that v(¢) = 0 for 1 < 1/2 and v(z) = 1
for t > 1. Let L/ = v(¢+)K’ for t € R, and let D” be the fractional differentia-
tion operator of order 8 on R, that is (D?h)"(v) = |v|‘3fz(v).

Lemma 2.5. For3>0and 0 <« < 1/2 we have

(2.4) j JIDBL{*ledt- d)zc <c2‘f22fﬁf|f|2 d)ch
wen )% lX| “ \Xl "

(where D" acts with respect to the t-variable).
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ProOF. The Lemma says the operator f~ L/+f is bounded into certain
(Hilbert space valued) L>-Sobolev spaces on R. If we can establish this bounded-
ness (with the correct constants) for integral values of the derivative parameter
B, then we shall have the lemma in general by interpolation. By Plancherel’s
theorem on R (in the Hilbert space valued setting), it suffices to replace D”?
in (2.4) by the usual derivative (d/dt)® when 8 € N. Thus it suffices to prove
2
dt- ;3)'2(?’ < 2% j 112

) d B .
oo LI,

for 0 < a < 1/2, BeN, and we shall do so only in the case 8 = 0, the other
cases being exactly the same.

We first notice that the operator f— K<« fis a local one (in x-space); that
is, if fis supported in a cube Q of side 2/, then K”* f is supported in a larger
cube Q* of comparable volume. Thus it suffices to prove (2.5) for fsupported
in such a cube, and we consider two cases, that when dist (Q*, 0) > 2/ and
when dist (O*, 0) < 2/,

When dist (Q*, 0) > 2/, the factors |x| ~ 2% in the integrals in (2.5) are essen-
tially constants, so we may ignore them. Hence it is enough to show that

dx
|X|sz

jm" J:]K{*f|2d[dxg cz—jj if|2dx,

or, by Plancherel’s theorem, that

sup j |mi(§)|*dt < c27.

teRn JO

But this is an easy consequence of Lemma 2.4.
When dist (Q*, 0) < 27, it suffices to show

2.6) J J K% f|? dt dfa gcz-zfuz—fj | f12 dx
en Jo ‘X| 0

since

2in dx
j | fI2dx < c2¥ j AR
0 0 |x]

By duality, (2.6) is equivalent to

[on| [oKS % frat ’2 dx <27 Y2 [7| £y dr x> ax,

or, by Plancherel’s theorem, to

@.7) Joo | TR D | d < c27¥2 7 ¥ g1, .
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Now, by Lemma 2.4 we may write, for any A > 0,

j — kX
|mi(¢)] < e /Z‘oz Xig:20l1g - (] s 261>

and so we consider

L" jg,(E)X“ [1g] - ¢ <2k - J\dt‘ dt
= Jojue"lg’(m X{E:HEI—tlszk—j;dfdtSUPi_Hl > 0:||¢] — 1] <2F77))
< CZk_jJ:LE:Hst—z;szk—j, |&®)* dg

2k —ig2tk =) J':I\ gl di

N

if 0<a<1/2, by Lemma 2.3. Thus, if A\ > o + 1/2,

2 172 o ) ) 0o 172
(j dg) <o X 2'“2“’“/22“”“(] P dt>
Rn 0 o

k=0

© 172
<2 Mgty a)

Proor oF THEOREM 2.2. By the Sobolev embedding theorem on R,

> K% > Lixg|’

Jjz1 Jjz1

< j
14
provided 3 > 1/2, and so

) dx 172 dX 172
(J 3|5 hesf on ) < (e L], o i)
1/2
SCB Z <j‘ J' IDBLJ*g| dt l |2a>
Jj=1

172
coz [l )
_/_
(by Lemma 2.5if 0 < a < 1/2)

cB( Z 2 —Jn2iBy = 2jv 1/2< Z 22 J| |2a>

Jj=z1 Jjz1

L m(&)g, (%) dt

which is (2.7).

sup
R=z=1

sup
telR

j=1

> DL

Jjz1

2, Ko

jz1
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) dx 172
Y 92jy 2 .
g Coz, % Z 2 Ig j I 2a
izl R | x|

provided ¥ > 3 — 1/2 for some @ > 1/2; that is, provided v > 0. This con-
cludes the proof of Theorems 2.2 and 2.1.

3. L? Estimates, p > 2

In this section we first use the result of Section 2 to prove Theorem 3 of the
introduction, and then establish an analogue of Dini’s test for R”".

Theorem 3.1. Let n>2, 2<p<2n/(n—1) and fe LP(R"). If for each
¢ € C7 the function g = ¢f satisfies

[186®PA + log™ [£)* dt < =,
then S, f— f a.e.

Proor. We shall show S, f— fa.e. on {|x]| < 1}; by the localisation prin-
ciple (Theorem 2.1) it suffices to assume that fis supported in {|x| <2}, and
satisfies

[17®Pa +10g* |E)?d < o

By the Hardy-Littlewood maximal theorem we may assume that we are deal-
ing with modified partial sum operators §R with multipliers m, = Xjgl<r —
7(|£|/R) with 7€ C* and X, _1,, <7< Xjp <374

We shall again consider a maximal operator

S*f(X)=:up IS S| for |x| <1,
>1

and for the moment fix an Ne N and consider S, f(x) with R ~ 2". Now

Sef(x) = K = f(x)
= (Ke®)=fx) if |x[ <1,

where ¢ €8, and ¢ =1 on {|x| < 30}. Thus

Sef(x) = [K16(+ /2] = f(x)

N
= [_Zl K (DW(+/2) + K (9)(+) | *f(x)
-

R
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where ¥(x) = ¢(x) — ¢(2x). Hence,

N
3 (R £00)

sup |S, /(x| < CMf(x) + sup
R~2N R~2N

N

< CMf(x) + 2 sup [(K))=f()],
j=1R=~2N

(where M denotes the Hardy-Littlewood maximal function and
K/(+) = Ry (+)y(+/27)).

Lemma 3.2. There is a c independent of j so that

j sup |(K),=h|*dx < c J |h|%.

1<t<2

Accepting the truth of this lemma for the moment, we see that
_ 1/2 N . 1/2
<j SUP,|SRf|2> <C|fl.+ 2 <j sup |(Kf),~/:~f|2dx>
Jixi= 1T R~2N Jj=1 Ix|=11~2N

<CA+ NS,

Observe that this estimate is true, by the localisation Principle, for any func-
tion in L2. This fact will be used later. We are indebted to Pascal Auscher,
M.? Jesus Carro and Guido Weiss, from Washington University, for the
observation leading to this estimate. Our original arguments for the proof of
the theorem were incorrect.

Now, if we set (&) = (1 + log™ |£]) f(£), g€ L?, and we have

[(K), = 1) = (R)NE/R) F(%)
= (KD "E/R&E( + log™ |g))~!

- L ®ye/rP o
= N( ) (E/R)Pg(%)
where

A _ + -1 Ny 2
P g(§) = N(1 +log™ |£])” "a(£/27)E(5),

with ¢ a suitable smooth bump function of compact support away from 0
around the unit annulus. We can do this because the modified Fourier multiplier
(K))" has support in an annulus not containing the origin. Hence,
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~ it 1 -
J sup ‘SRf|2 < Z sz‘ sup |SRleg‘2
| N=1 |

x|<=1R=1 x|=1R~2N
o
<C 2 Ipnels
N=1

< Clel3,

which finishes the proof of the theorem.

Proor ofF LEMMA 3.2. This lemma is entirely standard. We have
d .
<dt>(K’),*h(X)

2 dr \V2/ 2 d\ .
wh|? - 7y
SZ(L [(K?), = h| ; > <j1 t<dt>(K ), xh

J sup |(K),* h(x)|* dx
l<t<2

dt + O.K.

2 dt 1/2
!

2
sup l(I?f), *h(x)|2 <2 J‘ ‘(Kj)t *h(x)l
I<t<2 1

and so

2 . d[ 1/2 2 d - 2 dt 172
* h|? _— %
SC<L jI(KJ), h|*dx ; > <£ J td[ (K?),=h| dx ; >
<clal;
provided we can show that
2 2 2
G.1 <supj &y e/or ><supj ¢ @ d’) <c
£ J1 t £ J1| dt t

independently of j. By a calculation similar to that of Lemma 2.4 we have

d\* i
|<d1>[=1(1<’) &/0

so the first term in the product in (3.1) is dominated by 2 =/, while the second
is dominated by 2/. Thus (3.1) holds and so does Lemma 3.2.

< 6,527/ + 2/||E| — 1),

If we assume significantly more smoothness of our function f, we can get
uniform convergence of S, f to f.

Proposition 3.3. Let n>2. If fe L{)/¢ " D" '(R"), then Sy f converges to f
uniformly on R".
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PROOF. Suppose g € L2(R") with « > n/2; then Sr& — g uniformly since

g(Be’™ tds '
T

R=<|t =

, , 172 dt 172
< <Lsmsr|g($)l (1 + (¢ dE) (j a+ l‘é|z‘)“u>

-0 as R, T— .

[[Sgg — S;&lx)| = H

2 2n/(n-1),1 : 2n/(n—1),1
Note that L is a dense subclass of L fora > n/2,soif fe L0

and ¢ > 0 we may pick a ge L2, a > n/2, with | f— g oo <€ Hence

HSRf_f“oo ‘SR(f—g)"eo + "Skg_g”oo+ "g_f”eo

< |
< [ Skl L2/ Dl e | f— el L2/ D + ce

(if R is sufficiently large, since |g — f|. < c|g —f||L%,./(,{ - 1.1)- It thus suffices
. . n—1)
to obtain the norm estimate

(32) " SRf“eo < C"f" [_%:/_(r]';/zl),l .

We may again assume we are working with the modified operators §R (since
1Se = Sp)f o < | f|) and let he L*¢~ D! be such that

FEA + (g = h.
Then

m(¢/R)

(SN = (1 5 gy 7% h()

A\ L
= R~ D2 (g/R)pR(£)A(E)
~
with p® a smooth bump function adapted to the annulus || ~ R. So
|Sefle=|R™"" V2K %pRxh

LR -2 ”KR [ [2n/(n+ 1), ® ||pR *h| 12n/(n=1),1

<CR~ (n-1)/2 “ ]?R || [2n/(n+ 1), || f" L%:{-(';;z”' 1.

Now as is well-known,

27| x|

K ()~ - @02 + lower order terms,
x

SO " [?R “ 12/ (n+ 1), 00 = O(R(n B 1)/2).
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4. L? Estimates, p < 2

As noted in the introduction, the only general theorem available when p < 2
is Theorem 6, which is an immediate consequence of the results of the
previous section and this next result (which is itself closely allied to Proposi-
tion 3.3).

Proposition 4.1. Let feL{,_1,,,(R") for n > 2. Then Spf— f a.e.

Proor. It is enough to see that the modified maximal operator S, fis finite
almost everywhere for fe LE,,_ 1y72- As in the previous section,

Spf () = R~ 2R 5 pR s,

LZn/(n + 1),

with |A], = | f”L(l"_ e’ and, since is a Banach space when n > 2,

we see that

sup R~ "~ V2|K % pR| 1S
R>1

[2n/(n+ 1), (n—-172

" S;f" [2n/(n+ 1), < C’

A moment’s thought will convince the reader that |KR*pR(x)| < CIKR(X)l
(since pR is an averaging operator on a scale 1/R), and, from the form of X,
we see that indeed

sup R— (n— 1)/2i1‘("R| € LZn/(n+ l),co(n?n).
R>1

If we instead consider the lacunary problem, we can say a little more.

Proposition 4.2. Ifn=2and a>0,0rifn>3 and a> (n - 1)/2(n + 1),
then Sy f— fa.e. for fe LE(R™), if 1/2< 1/p<(n+ 1+ 2a)/2n.

ProoF. As in previous proofs, it suffices to see that

” sup [Syc f|
k=1

gc”f”qy
q

q

for some 1/g < (n + 1)/2n since

<IMfl,<elfla<cl Sl

q

” sup (26 — Sa0) f]

if 1/g 2 1/p — a/n. To do this, it suffices to show that

sup |27 KK, p2* + h|
k=1

<clal,
q

(since (K)" has compact support in an annulus). Now the case o = 0 of
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Theorem 5.2 of Section 5 below states that

K+ flg<clfl,

for 1/g<(n+1)2nif (n+3)/2n+1)<1/p<1, orif n=2 and 3/4<
1/p < 1. By Young’s inequality, the same holds for K, in place of K, , and this
now scales to

IR #flg < et P2 1],

Finally,
sup [2 %Ry p? v k|| < 3 27 kekn@p -V g2y
k=1 qg k=1
<clhl,

if 1/g<(n+1)/2n, a>n(l/p—1/q) and (n +3)/2(n+ 1)< 1/p <1 (3/4
< 1/p <1 when n = 2). Thus we obtain a.e. convergence of Sy« f for 1/2 <
I/p<(n+1+2x)/2nand o > (n—1)/2(n + 1) or, when n =2, o > 0.

S. Bochner-Riesz Means of Negative Order

For —(n + 1)/2 < a < 0, we define for fe §
(T°HNE =T+ D)1 - gD F©),

so that T* is convolution with = ~*|x| =2~ %/, , , .(27|x|). In this section we
examine for which 1 < p < g < o, a and n we have

(5.1 | TS | rawmy < €IS Loery -

The case a = 0 of this problem occurred in the preceding section, and the
problem has also been previously studied by Borjeson and Sogge. By taking
fes, f=1on |£| < 1, we see that necessary conditions for (5.1) to hold are
1/g < (n+ 1+ 2)/2n, and, by duality, 1/p > (n — 1 — 2a)/2n (except when
a = —(n+ 1)/2, when we trivially have | 7~ “*V2f|_ < c| f],). Also, we can
not expect, in general, (5.1) to hold unless 1/qg < 1/p + 2a/(n + 1) since the
optimal L” — L” theorem for T~ !is for (n + 3)/2(n + 1) < 1/p < 1-anything
stronger would give a false L — L? restriction theorem for the Fourier transform.
For —(n+ 1)/2 < a <0, let

A,={(/p,1/g) €0, 1% 1/g<(n+1+2a)/2n,
1/p>(@n—-1-2a)/2n,
1/g<1/p +2a/(n + 1)}.
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Sogge’s results may be summarised as follows

Theorem [15].
(@) If n=2and (1/p,1/q) € A,, then
” T°f ” L9(R2) < CHfH LP(R%)*
(®) If n23, (1/p,1/q) € A, and if a < —1/2, then

1T llg < el flp-

Thus a natural conjecture is that in all dimensions (1/p, 1/q) € A,, is suffi-
cient to imply (5.1) if —(n + 1)/2 < a < 0. It would also seem reasonable to
conjecture that T is weak type (p,2n/(n + 1 + 2a)) for [(n + 1 + 2a)/2n] —
[2a/(n + 1)] < 1/p < 1 (true for p = 1!) and perhaps even weak type (([# + 1
+ 2a)/2n] — Ra/(n + D) ™', 2n/(n + 1 + 2a)) if « > 0. This last conjecture
would imply that 7 is strong type (p, q) on the line 1/g = 1/p + 2a/(n + 1),
which is true for g = p’ (but false by Fefferman’s theorem [8] if « = 0 and

D #2).
Part (b) of Sogge’s theorem is implied by the following lemma

Lemma [15]. Let K’(+) = K,(+)¥(+/27) (with  smooth of compact support
in an annulus). Then

(KT %] |, < ca~mias 1| g,
ifl/g=@m+1n-1)""'0~-1/p)and 0<1/q <1/2.
Here we notice that a stronger statement is true.
Lemma5.1. If(n+ D)(n—1)"'1-1/p)<1/g<1/pand (n + 3)/2(n + 1)
<1/p <1, then
(K75 f | < 2702 )
This lemma together with the observation that T%:L? — L” if 1/p=1/2
— af(n + 1) immediately gives us:
Theorem 5.2. Ifn>=3,(1/p,1/q)€ A,, and (1/p, 1/q) is strictly below both
the lines joining

CQ'—am+ D) L2 vam+ D) " Hito((n+3)/2(n+1),(n+ 1+ 2a)/2n)
and Q7' —a(m+ 1) L2 ' a(n+ 1)) to
((n—1-=2a)/2n,(n - 1)/2(n + 1)), then |T°f|,<c|fl,-



336 ANTHONY CARBERY AND FERNANDO SORIA

Curiously, Lemma 5.1 is a consequence of the (trivial) observation that
| K75 f | < c27/0+ D212 £1 although it is not obtainable by inter-
polation from this estimate. This came to light in conversations with Luis
Vega.

ProoF orF LEMMA 5.1. Only the case g < 2 is of interest, since we can inter-
polate this with the trivial L' — L estimate to get the case ¢ > 2. The case
q = 2 follows immediately from the Stein-Tomas restriction theorem (and
hence from | K7 f |, < c27/* DW/P=1/2 £l y.see Stein’s argument in [10].
If now p < g < 2, we may assume that f is supported in a ball of radius 2/;
now

|Kin ], < c|Kxf | 200172

by Holder’s inequality, and the case g = 2 gives the desired result.
For Section 4, we need part (@) of Sogge’s theorem and Theorem 5.2, both
in the case o = 0,

l/g=m+1)/2n—¢,1<p<4/3(n=2),1<p<2n+1)/(n+3)(n=3).

Theorem 5.2 has been obtained independently by A. Seeger, (personal com-
munication).

We should like to thank C. Kenig and C. Meaney for pointing out to us,
after this work was completed, that the analogue of Theorem 2 on the n-torus
has been obtained by B. I. Golubov (Math USSR Sbornik 25(1974), 177-197).

However, his methods do not apply to give our Theorem 3.
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