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Introduction

The spectral synthesis theorem for Sobolev spaces of Hedberg and Wolff [7]
has been applied in combination with duality, to problems of L7 approxima-
tion by analytic and harmonic functions. In fact, such applications were one
of the main motivations to consider spectral synthesis problems in the Sobolev
space setting. In this paper we go the opposite way in the context of the BMO-
H' duality: we prove a BMO approximation theorem by harmonic functions
and then we apply the ideas in its proof to produce a spectral synthesis result
for variants of Sobolev spaces involving the Fefferman-Stein Hardy space H'.
It should be mentioned that our techniques work only in dimension 2, one of
the reasons being that the fundamental solution for the Laplacian is in BMO
only in the plane (see below for a more detailed discussion of this fact). Our
main result reads as follows.

Theorem. Let X C C be compact and let fe VMO(C) be harmonic on )%
Then we can find a sequence ( f,,) in VMO(C), each f, being harmonic on some
neighbourhood of X, such that

JSo—f in BMO(C).
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There is a more conventional way of stating the above theorem, which we
now proceed to explain. To each measurable subset E of R” one associates the
restriction spaces

BMO(E) = BMO(R")| ; = BMO(R")/I(E)

and
VMO(E) = VMO(R")| . = VMO(R")/J(E),
where
I(E) = { fe BMO(R™): f= 0 a.e. on E}
and

JIE)={fe VMO(R"):f=0 a.e. on E}.

Endowed with the quotient norm, BMO(E) and VMO(E) become Banach
spaces (modulo constants). T. Wolff has identified BMO(E) with the set of
measurable functions on E which satisfy the conclusions of the John-
Nirenberg Theorem [4, p. 440]. As a result, functions in BMO(E) (and their
norms) can be described in a very concrete way in terms of their values on E.
The analogous task for VMO(E) has been achieved by Holden [8].

Consider now a compact X C C and let H(X) be the closure in BMO(X)
or those functions which are harmonic on neighbourhoods of X. Holden’s
extension theorem implies that H(X) is contained in VMO(X), and conse-
quently in

h(X) = VMOX)N {f:Af =0 on X]}.

We can now restate our main result.

Theorem 1. H(X) = h(X), for any compact X C C.

The main point is, of course, than the compact X is arbitrary. This is in
strong contrast with the well-known results on uniform harmonic approxima-
tion due to Keldysh [10] and Deny [3]. Using them, one can easily construct
examples of compacta X such that not all continuous functions on X which
are harmonic on X can be uniformly approximated on X by functions har-
monic on neigbourhoods of X. One of the reasons for this difference is that
the fundamental solution for the Laplacian in the plane is in BMO, but not
in L”. But this fact alone cannot provide a full explanation for Theorem 1,
as becomes clear when one considers the L? harmonic approximation prob-
lem: log |z| is still (locally) in L?, but the natural L” version of Theorem 1 does
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not hold for 2 < p, according to a clever example of Hedberg [6, p. 77]. It
turns out that the gradient of the fundamental solution plays a role too. As
shown in [17], the capacity associated to the kernel 1/z = V(log |z|) and to
VMO vanishes on sets of o-finite length, and this is the reason why Hedberg’s
construction fails to give a counter-example in the BMO case.

As far as techniques are concerned, we use a refinement of Vitushkin
localization and matching coefficients methods and a final duality argument,
which takes full advantage of an old result of Kolmogorov and Vercenko in
geometric measure theory, via a differentiability theorem for functions with
second derivatives in H'(R?) due to J. Dorronsoro.

We come now to spectral synthesis. We wish to consider functions on R"
with all derivatives of order s in H'(R"). A convenient way of doing that is
to define, for 0 < s < n,

LH'(R") = {I;+h: he H'(R")},

where I is the Riesz potential of order s, that is, I(x) = |x| "**if0<s<n
and I,(x) = log |x| if s = n. We endow I,H'(R") with the Banach space norm
| £ = ||, f = I+ h. Recent results of Adams [1] show that functions in
I.H'(R™) can be well defined except for sets of zero n — s dimensional Hausdorff
measure (they are continuous for s = #), and when so strictly defined they enjoy
some continuity properties measured by the n — s dimensional Hausdorff
content M"~°. Assume now that a closed set E in R" is fixed and a function
feI,H'(R") is given with the property that for some ¢; € C5(ES), ¢;— f in
I.H*(R™. Then it is not difficult to show that

) 3°f(x) =0, for M" s*!*l _almost all xeE, |a| <s— 1.

We believe that the following spectral synthesis theorem is true.

Conjecture. Let fe I, H'(R") safisfy (1). Then there exist ¢; € C5(E®) with
¢~ f in LH'(R".

For s = 1 and any » the above statement has been shown to be true very
recently by J. Orobitg [11] using truncation results of S. Janson for I, H*(R").
Our contribution here is to verify the conjecture for the first case in which
truncation is not available, that is, for n = s = 2.

)

Theorem 2. Let E C R? be closed and let f € I, H'(R?) satisfy

JS&x) =0, xekE,
and
Vf(x) =0, for M*— almost all xeE.
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Then there is a sequence (¢;) in Cq(E) such that

¢;~f in LH'(R.

Again our techniques are a combination of the constructive methods of
Vitushkin with duality arguments exploiting ideas coming from the proof of
Theorem 1.

Section 1 contains the constructive part of the proof of Theorem 1: after
some preliminary lemmas an approximation theorem by potentials of
measures is proven. In Section 2 the duality argument completing the proof
of Theorem 1 is presented. Theorem 2 is dealt with in Section 3.

We close this introductory section by establishing some notation and recall-
ing a few well-known facts which will be used throughout the paper.

1. Hausdorff content. Let h(t), t > 0, be a non-decreasing function. For
E C R" we set

) M™E) = inf 3 h(a),

J
where the infimum is taken over all countable coverings of E by squares with
sides of length o; and parallel to the coordinate axis. When A(f) = t*, 0 < a,
one writes M* instead of M". We will need also the dyadic version M" of M",
which is defined by the right-hand side of (2) where now the infimum is over

all coverings of E by dyadic squares of side length o;. It is clear that for some
constant C depending on 7,

M"E) < M%"(E) < CM*(E), for any E.

2. Cauchy and Beurling transforms. They are the operators defined respect-
ively by

1 1
Cf=;*f and Bf=P.V.—z—2-*f,
where f is an appropriate function on the plane.

Then we have B = —dC, where d is the conjugate of the Cauchy-Riemann
operator 4.

3. For fe BMO(RR?) we shall write

1
3 IIfII*=Sup|—A|—L A,

where |A| is the area of A, f, is the mean value of fon A and the supremum
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is taken over all discs A. If D is a disc, we let | f|, ,, stand for the right-hand
side of (3), now the supremum being taken just on the discs A contained in D.

4. The letter C will denote a constant, which may be different at each occurence
and which is independent of the relevant variables under consideration.

1. Approximation by Potentials of Measures

A family (E;) of subsets of the plane is said to be almost disjoint with constant
N whenever each z € C belongs to at most N sets Ej.

Our first lemma was discovered in [2]. However, a (slightly different) proof
of it will be presented here for the reader’s convenience.

Lemma 1.1. Let (4)) be a finite family of open discs such that for some \ > 1
(NA)) is almost disjoint with constant N. Let h; € BMO(C) be harmonic outside
a compact subset of A; and assume that

hi@) = 0(|z| %) as z- .

Then

5

< Cmax | A «
* Jj
for some positive constant C = C(\, N).

Proor. We claim that for each j we can find x; e BMO(C), with compact
support contained in A4;, such that

hj=B(x;)) + B(x;) on (NA)°
and
I X% < ClA] «-

To prove the claim fix j and set 2 = h;, A = A;. Let us assume that A is
centered at the origin at let 6 be its radius. On (AA)° & has the expansion

h(Z)= Zanz—n'l' Zﬁni-—n,
n=2 n=2
where a, = n~'(Ah, z"), the bracket meaning the action of the compactly

supported distribution A4 on the function z”. Set

20-N

1_
M=1+
! 3

and A\ =1+
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We need now the estimate
®) la,| < CN8" [ Al

A quick argument to get (5) is the following. Let ¢ € Cg(A\;A), ¢ = 1 on A,
|0%p| < €67 1°1, 0 < |af < 2.
We have
nla,| = [{Ah, o(2)z")|
= [<h, Alp(2)z") |
= [Ch = hy 5 Mp@)2")]
< [, V1= ol 1AGe@27)
< CnN{6" | A,

which is (5).
Take now ¢ € C*(C), ¢ = 0 on \A, ¢ =1 on (A\A)°, |Ve| < C6™ . Then

_Sfﬁzl=c<_za_“’>, n=2,3,...,

n—-1 n—1

4

and so

©) 11=c<fﬂ> on (A
V4 V4

Differentiating with respect to z both sides of (6) we obtain

»zl-——B(zlxn) on (AA),

.-
where ¥, = (n — 1) "'z ® " Dgep. It is clear that

”"pn”* SZ”"rbn“w< Cn_l()‘zﬁ)_n-

Set

oo

X= Z a,,!,b,,,
n=2
so that

Ix] < ZZ COMOY R «n ™ (\8) ™" = Clh]x,

and A(z) = B(X) + B(x) on (AA)°. The claim is then proven.
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Define
b; = h; — B(x,) — B(x)).

Therefore |b;]+ < C|A;]« and supp (b)) C \A,. Since
| Zaile < IS 050 + 2] B(Z %) |
<[Zo]. + | 2]

it suffices to prove Lemma 1.1 under the additional assumption that supp (#;)
C \A; for each j, which is not difficult (see [2] for details). [J

%0

The next lemma is a variant of Lemma 1.1, in which we require less decay
of the A; at infinity but we have a packing condition on the family of discs A;.

Lemma 1.2. Let w(t), t > 0, a non-decreasing function satisfying »(2t) < Cw(f),
t > 0. Let (A)) be a finite family of open discs of radii 6; with the following
properties.

(i) For some \ > 1 (\A)) is an almost disjoint family.
(ii) For any disc A of radius &

3 8,0(8) < Cou(d).
AjCA

Let h;e BMO(C) be harmonic outside a compact subset of A;, |hj|+ < w(8)
and hj(z) = O(|z| *') as z — .
Then

2h

J

< Cuw(d),

*

d being the diameter of U 4.

Remark. Notice that when w = 1 the conclusion of the lemma is essentially (4)
and the hypothesis (i) can be regarded as a linearity condition on the family (4)).

Proor. We are going to perform a reduction to Lemma 1.1. To this aim ex-
pand A; at o
a;

a.
hiz) = L+ -
z

+0(lz] 7Y,
z

and notice that

|la;| < C8; | hjf « < C8;w(6).
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Set
1 -1

K= a; EAj X%Aj
and

P; = C(w) + C(),
so that

h;=P;+ O(z| 7?).
Since

*

12 h. < ”;’U*Pj

*+“2Pj1

by Lemma 1.1 it is clearly enough to show that

() |Pj|« < C|h|
and
®) |3 P; |« < Cot@).

Now, (7) is a consequence of the well known inequality [9]
) |C(w) |« < Csup {|u|(Az, )r 1):zeC,r >0},

p being any locally finite measure, and (8) follows also from (9) provided
we ascertain that for each disc A(z, r)

2. wilAi, n) < Cu(d)r.

J
This can be done as follows.

2wl ) = ; + ; < Cu(d) ; rolla@nNal +C 0 3 8w,

A;CAR, 30
=1+ 1II.

Clearly I < Cw(d)r. If r < d we estimate IT by Crw(r) < Crw(d). Otherwise,
given any we U4, I can be estimated by

See@)= > §w®) < Cdw(d) < Crod). O
J /CAGw,d)

A.CA(W,

We come now to a result which gives a simple but useful device to produce
functions with a double zero at o, as required by Lemma 1.1.
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Lemma 1.3. Let6>0and0<pelZ. Let 7, 2,, 23 be three points satisfying
|zj— 2] C8,  j,k=1,2,3,
and
min { |2, — 25|, d(z3, (21, 22))} = 8/p,
where I(z,, z,) is the straight line joining z, and z,. Assume a€ R, be C and
la] < CN, |b| < C8N

for some N> 0. Then there exists a function g satisfying Ag=0 on
C\{z1, 22,23},

b b
g@=M%M+?+?+OWVﬂ~mzﬁw

and

lgl« < Cp>N.

Proor. Without loss of generality we can assume z; = 0, z, = r > 0. Set
g = log |z|*p, p =N 0o+ Ao, + N3b,

where &, is the Dirac measure at the point z and the \; are complex numbers
to be determined. The function g has the required expansion at oo if

a= )\1 + )\2 -} )\3
—b =M1+ M2
—5 = )\2" + X323.
Solving for the \;, we get the estimates
l)\llscpzN! j=1)2,3)

which give the desired bound for |g|«. O

The next lemma is the bulk of our technical arsenal. It deals with a covering
property which seems to be of interest by itself (see the remark below).

Main Lemma 1.4. Let h(t) = tw(t) be a measure function with « non-
decreasing and satisfying w(2t) < Cw(t). Then for any compact set K C C
there exists a finite family of discs (A;) which can be divided into two sub-
Samilies (Aj) and (Aj.’) (the superscripts g and b stand for good and bad) in
such a way that the following holds.
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(@) KCU;A,;.

(b) For some\ = N(h) > 1, (\A)) is an almost disjoint family with constant
depending on h but not on K.

(¢) Each Aj.’ has the three points property, that is, there exist Z,, 25, 23 € Aj.' NK
such that

min {|z; — 25|, d(z3, l(z}, 2,))} > ‘05;’,

where 6;‘7 is the radius ofAf, n = n(h) > 0 and I(z,, 2,) is the straight line
through z, and z,.

(d) Z,;h(?) < CM"(K), where C depends on h but not on K.

(e) For each disc A of radius 6

2. h(6)) < Ch(),

b ;
AjCA

where C depends on h but not on K.

Remark. We do not know, even for A(¢) = ¢, when a family (4;) can be con-
structed satisfying (@), () and (d), (e) with Aj.’ replaced by A This is true

when A(¢) tends to zero fast enough, for example for A(t) = t'*¢, e > 0.

PROOF OF THE MAIN LEMMA. The first step consists in finding a family of
discs D; of radius r; such that

(i) KCU;D,
(i) Z, h(r) < CM"(K)
(iii) 25, o ph(r) < Ch(r), for each disc D of radius r.

To construct the D; we consider a family (Q;) of dyadic squares of side
length o; satisfying K C Uj Q; and Zjh(oj) < ZMZ(K). It is easy to modify
that family so that in addition one has

(10) 2. h(o) < h(o),

for each dyadic square Q of side length o. In fact, if for such a Q (10) fails
then we remove the Q; contained in Q from our family and we put Q in it.
Take now as D; the disc circumscribed to Q;.

Unfortunately property (b) with A; replaced by D; does not necessarily
hold. The idea is to construct a «halo» around each D;, consisting of smaller
discs which will be called «defenses» because their effect is to prevent too
much overlapping. The difficulty will be then to preserve properties (ii) and

(iii).
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Generation of defenses: step 1. Let e be a small positive number to be deter-
mined later, such that e ~ ! is an integer. Choose one of the discs D; of maximal
size. After relabelling we can assume it is D;. We distinguish two cases.

Case 1. D, has the three points property, that is, (c) holds with A}’ replaced
by D, and 5 = ¢*/2. D, will be a member of the family (Aj%) and it will be sur-
rounded by some defenses which now we proceed to define. Consider ¢~ 3
points equally spaced on the boundary of D, and define the defenses of D,
to be the discs of radii e?r, centered at these points. Then the defenses of D,
form an almost disjoint family with constant comparable to ¢~ .

We now define two new families of discs, F¢ (the superscript d is for
definitive) and F4 (the superscript p is for process). Only the family F4 will
be subject to a new process of generation of defenses. 5 consists of the single
disc D, and F7 consists of the defenses of D, plus the discs D; which are not
contained in the union of D, and its defenses.

Case 2. D, has not the three points property. In this case KN D, is contained
in a strip S of width €*r,.

Figure 1

Observe that the length of SNAD, is at most Ce?r,. Cover SN D, by discs
of radii ¢*r, in such a way that they form an almost disjoint family with some
numerical constant. These discs will form the family ¢. Consider, as in
Case 1, e ? equally spaced discs of radii €%, centered on 4D,, and take as
defenses of D, those that intersect SNAD,. In the family % we put the
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defenses of D; plus the discs D; different from D, which are not contained
in the union of the defenses of D, and of the discs in F9.

Generation of defenses: step 2. We now examine the family F¥. We take a
disc D in ¥4 of maximal size and distinguish two cases.

Case 1. D has the three points property. If D is one of the discs D; we pro-
ceed as in step 1, but this time, we only use those defenses which are not
already contained in the union of the discs in F§UF2.

If D is not a D; then D is a defense of D, . In this case let C be the cir-
cumference passing through the points of intersection of the boundaries of
pairs of defenses of D, (see figure 2). If ris the radius of D we consider a fami-
ly © of discs of radii e?r with equally spaced centers on C, which is almost
disjoint with constant comparable to ¢ ~!. As shown in figure 2 just an arc?y
of dD of length comparable to er is in the exterior of the disc bounded by C.

Figure 2
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The defenses of D are the discs in the family © which intersect v. The family
F9 consists of F¢ plus the disc D, and the family F% consists of the defenses
of D and the discs in $2 which are not contained in the union of ¥4 and the
defenses of D.

Case 2. D has not the three points property. We proceed as in step 1, the
only difference being that the defenses of D are now centered on C when D
itself is a defense of D, (see figure 3).

e

3R

‘
=)
o

Figure 3

Proceeding inductively we produce at the n-th step families ¢ and 2. We
stop when all discs D; have been either rejected or subject to a process of
generation of defenses, that is, we stop at the N-th step provided S’ﬁ, does not
include any D;. We claim that €Fj’v = {4} is the family we are looking for. We
say that adisc A; e E}’ﬁ, is a good disc, that is, a disc Af, if it has the three points
property. Otherwise it is a bad disc AJ'.’ . Therefore, properties (@) and (c) clearly
hold. Let us proceed to prove ().

Claim. Let A =1 + ¢2/4. Then for e small enough {\A;} is an almost dis-
joint family with constant depending on e.
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Proor oF THE CLAIM. In the typical case of generation of defenses we start
with a disc D; of radius 6. At the n-th step we will produce defenses of radii
€"6 centered on a circumference C,_, concentric with D;. Let L, be the
boundary of the smallest disc concentric with D; containing the dilates with
factor N of the defenses in the n-th generation.

‘i
\/

é\v
57
VN

3
%)

N2

AN
%%

N\

@v
0

)

Figure 4

An easy but cumbersome computation shows that for e small enough
radius L, < radius C, + 6¢>"*2/2.

This inequality guarantees that to travel from the exterior of the disc bounded
by C, . to a dilate of a disc D in the n-th generation one has to cover a
distance not less than Ce? radius D.
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Let z € C and assume that z € AA; and that 4, is of maximal size among the
discs with this property. The choice of e (precisely, the just mentioned travell-
ing property) shows that if ze€ XA, then

radius A, > Ce” radius A;.

Thus there is a finite number p = p(e) of possible values for the radii of the
A, such that ze\A, . Since the discs AA, of a fixed size form an almost dis-
joint family with constant depending on ¢, the claim is proven.

We turn now to the proof of (d). We wish to show that

(1n 269 < c;h(rk),
J

but before it will be convenient to introduce some terminology to simplify the
exposition of the argument.

Assume that the process of generation of defenses has been applied to some
disc D. The first generation descendants of D are either the defenses of D or
the discs which have been used to cover the strip S in the case that D has not
the three points property. We define inductively the i-th generation descen-
dants of D, 2 < i, in the obvious way. The halo of D, Halo (D), is the set of
all descendants of D. A disc D is an ancestor of a disc D* if D* € Halo(D).
For De {A;} and a non-negative integer n, A,(D) is the set of bad discs Aj’.’
which have got exactly » bad ancestors (a bad ancestor is an ancestor without
the three points property) different from D in the halo of D.

Fix now D e {A;} and let r be its radius. We claim that

(12) 2, h(8) < Ce 'h(r), if D is good,
A;.)eAO(D)

and

(13) 2. h()) < Ceh(r), if D is bad.
a%eA (D)

To show (12) observe first that the halo of D is contained in 2D. Consider
a disc A?in Ay(D). Project the part of 3A? which will be eventually covered
by defenses of AJ‘.’ onto an interval IJ on d(2D) as shown in figure 5, and notice
that the length of 7; is comparable to €’

The intervals /; are disjoint because any disc A; intersecting the shaded
region R is not in Ay(D). Thus

h(89) < Ce™ 'w(r) 2 length (I) < Ce ™ 'ro(r).
Abedy(D) J

The proof of (13) is similar, the only difference being that if D is bad then
the halo of D emanates from an arc of dD of length comparable to e’r, and
s0 3; length (I) < Ce?r.
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Figure 5

Fix now a D, . One has

©

> hGH =3 X hE)< Z:O(Ce)" 2 k)

f_\_;?EHalo(Dk) n=0 A_;?eA" Dy AJ’?EAO(Dk)
-1 -1
< Ce (1 — Ce)” "h(rp),

where in the first inequality we applied (13) # times and in the second (12)
once. The above inequality completes the proof of (11) provided e is small
enough so that Ce < 1.

We are left with property (e). Fix a AJ‘?. We wish to associate to it a certain
ancestor A(A}’). We distinguish two cases.

Case 1. All ancestors of Aj.’ are contained in 2A, where A is the test disc in
(e). Then A(A?) is, by definition, the oldest ancestor of A?.

Case 2. At least one ancestor of Aj’is not contained in 2A. In this case there
is a youngest ancestor not contained in A, say D. If the center of D is not in
A, then we set A(Aj[.’) = D. Otherwise the «father» D* of D intersects A and
its center is outside. We set A(Aj.’) = D*.
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Let I and I be the families of ancestors so constructed which are in cases
1 and 2 respectively. We get then

A%h(éj’):(z} 2 )h(5f)+ > h@Y) =5 +5,.

Ael A(Af):A Aell A(AJ’?)=A
As we know, S; can be estimated by

S Ch(radiusA) < C 5] h(ry) < Ch(®).
D, C2A

Ael

To estimate S, fix A € IT and let 0(A) = dA N A and o(A) = AAN A. The halo
of A contained in A emanates from o(A4), and so

S, < Cw(8) ] lenght a(A) < Cw(8) 2, length o(A) < Cow(6),
Ael

Aell

where in the last inequality we used the fact that the family (4)) is almost dis-
joint, and in the next to the last that 0(4) and o(A) have comparable lengths
. owing to the relative positions of 4 and A. [

We still need another lemma. To any ¢ e€Cgj(C) one associates the
Vitushkin localization operator (see [18, p. 168])

1
V,f= 5 log |z| @ Af,

where f is any distribution in the plane.

Lemma 1.5. Let o€ Cy(A), A a disc of radius 6. We then have for any
fe BMO(C)

[ VoS« <C@ S5 345
where

Cle)=C 3 8')8%] .

lal =<2
Proor. Using
9ddf = 30(¢f) — (f8d¢ + dpdf + dpdf)
we readily get

11 = 1
Vf=of = _+fdp~ _

1 1
—*fdp + ——log|z| * fAe.
T Z 27
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The BMO-norm estimate for the first three terms can be found in [17, 3.2.
p. 290]. The BMO-norm of the last one is less than

1
cfinmad<e y [in
A
Since V,,f = V,(f — f.), we can replace f by f — f, in the previous inequality,
and this completes the proof of the lemma.

Given a compact X C C let P(X) be the linear span in BMO(X) of the func-
tions of the type log |z — a|, a ¢ X, and Re ((1/2) =), ;zvhere u is a complex
Borel measure with compact support disjoint from X, and satisfying the
growth condition

lul(A(z, ) < e(r)r, zeC,r>0,

for some e(r) — 0 as r — 0. Since (1/2) = u is in VMO(C) [9], P(X) is a subspace
of h(X).

Theorem 1.6. For each compact X C C, P(X) is dense in h(X).

l?)ROOF. Let fe h(X). We can think that in fact fe VMO(C) and Af= 0 on
X. Replacing f by ¢f where ¢ € C*(C) takes the value 1 on a neighbourhood
of X, we can assume also that fis compactly supported. Fix a 6 > 0 and let
(Dy, ¢, f) be a 6-Vitushkin scheme for the approximation of f. This means
(cf. [18, p. 168]) the following.

1. Each D, is an open disc of radius 6 and (D,) is an almost disjoint cover-
ing of the plane. ‘
2. 0, €CF(Dy), o =1o0nCand [0%,| <C6~'“, 0< |a| <2.
1 -
3. fu=, log |z| *ox Af, and so f= 2, fi.
Notice that f; = 0 whenever D, Nsupp (f) = &, and thus only finitely many

Ji do not vanish identically.
Choose a point z, € D, and expand f; at o.

b b >
L@ =aloglz -z + —~° + - +0(z 7).
— Lk Z_Zk

Then we have |a;] < Cw(8) and |b,| < Cow(8) where

1

N L | f— fi]:radius A < 6}

w(6) = sup {



BMO HARMONIC APPROXIMATION IN THE PLANE AND SPECTRAL SYNTHESIS FOR HARDY-SOBOLEV SPACES 309

If we could improve the estimate for b, to
(14) bk < CM"(DN\X),

where A(t) = tw(t), then the proof of Theorem 1.6 would be much simpler, as
the reader will realize later. As a matter of fact (14) is not true. We get around
this difficulty using a second localization for each f;, whose purpose is to
exploit the basic estimate |b,| < Ch(8) at a lower level, forcing in this way M"
to come on the scene.

To begin with the above program we claim that it suffices to construct
pr € P(X), p, harmonic outside 5D,

Je =Pk +0(z] 7% as z— oo,
and
| Pl « < Ca(5).

In fact, setting p = 22, py € P(X) we get by Lemma 1.1.

|f = plw = | 2 fe — pel| < Cmax | fi = picll« < Ca(0),

where the last inequality is a consequence of Lemma 1.5 and the well known
fact that w(26) < Cw(é) [14, p. 596]. To construct the p, we proceed as
follows Since Af, = ¢y Af, fi is harmonic outside a compact subset K of
Dk\X Let {A;} = {A"} U {A"} be the family of discs given by Lemma 1.4
applied to K and A(t) = tw(t). It is then clear that A; C 5D, for each j.

Observe now that, by construction, the sequence of different values of the
radii of the A; decreases as a geometric progression with ratio less than one.
It is then clear that an appropriate variant of a Lemma of Harvey and Polking
[5, 3.1, p. 43] can be applied to construct functions y; € Cg(A\4), A\, = (1 + N)/2,
with 2y, =1 on U,4; and [8“Y;| < C67 ", 0 < |a| <2, where §; is the
radius of A;.

Set

1 X
Jej= 2 log |z| = ¥, A fy,

so that f, = ijk‘,. Fix now a j and distinguish two cases.

Casel. A;= A’* is a good disc. Then one can find tree points as in (¢) of Lem-
ma 1.4. These pomts lie in 4; \X but by a density argument they can be taken
in A\ X. Lemma 1.3. now produces a function h’J € P(X), hg harmonic out-
side Af, and such that /%, = A% + O(|z] %), ||« < C[if |+, where we
have written f‘;;j instead to f;.



310 JoAN MATEU AND JOAN VERDERA

Case2. A;=Ab isa bgd disc. In this case we can suppose that A;\ X is non-
empty. Otherwise A;\ X is also empty, and so 4; is not really necessary to
cover K. Let z;;€ A;\ X and let fZJ. stand for f};.

If

f2i2) = ay;log |z =zl + O(z| ™)
then we define
hy(2) = ai;10g |z — 2],
so that hy; e P(X), h}; is harmonic outside Aj’.’,f,fj = hZJ. + O(|z] ") and
[ A%« < Cl fil 5 < Cal(8)),
6 being the radius of A; = A?. Let
Fy= 2 hé, + 2Ihy;.
J J
Then F, € P(X), F, is harmonic outside 5D, and f, = F, + O(|z| *') as

g oo,

The BMO-norm of F, is estimated by |F, — fi|« + | fx|« and

o o b
;h@— %*+“;hg—fw —I+1I

%*

1Fe = fel = <

Applying Lemma 1.1 we get / < Cmax; | /%]« < C| fi|«. As for the term
II we must resort to Lemma 1.2. We obtain

1T < Cw(5),

because the diameter of the union of the A; is less than 105. Collecting the
above estimates we finally get

| F | % < Cu(6).

Consider the expansions

b b
[l = F@=— "~ -+ _ ~—+0(z] 7,
T — 2 Z— 2

by; by;
L@ - k@ = T+ 2t 02 7).

— L 2 = 3y
Then

b| = < € 6%(8%) < CM'(K).

by
J
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Let now u be a positive measure supported on K satisfying
w(A(z, r) < h(r), zeC, r>0,
and
|l = CM"(K).

If we set
1 -1
pi = F + Re ;*bllﬂll g

it is clear that p, satisfies all required properties, and so the proof of Theorem
1.6 is complete.

2. End of the Proof of Theorem 1

The proof of Theorem 1 will be completed by a duality argument combined
with a result of Kolmogorov and Vercenko in geometric measure theory (see
Lemma 2.2. below). The link between our problem and geometry is provided
by the next lemma, due to J. Dorronsoro who proved it in answer to a ques-
tion of the authors.

Lemma 2.1. (Dorronsoro.) Let F = log |z| * h, with h e H'(R?). Then f has
an ordinary differential at M*-almost all z € R>.

Proor. Clearly Vf = (1/z)*h, and so Vf can be defined M' a.e., being a
Riesz potential of order 1 of a function in H'(R?) [1]. We will show that, for
M'-almost all ¢ € R* and for all z # a, we have

(15) /@) ~ f(@) = V(@) -z~ a) |z~ a| "' < Tf(a),
where Tf is an operator satisfying the weak-type estimate
M'({z: Tf(2) > N}) S CN"H A .

Since functions in C§(RR?) with zero integral are dense in H'(R?) a standard
argument will then complete the proof of the Lemma.

To prove (15) fix z # @ and set 6 = |z — a|, A = A(a, 6). The left hand-side
of (15) is estimated by

§7Nf@ ~ ful + 87 f@ ~ fu] + |V/(@)].
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An elementary argument involving a regularization of f now gives (cf. [16, p.
125-126])

f@ = fl<C 15179+ Dldms),

iel<

where m is planar Lebesgue measure. Let 0 < ¢ € C5(A(z, 36)), ¢ =1 on
A(z,26) and |Ve| < C87'. Then

|f@) = £, S C(¢] ™ 0|V )(2).

According to a remark of Stein [15, p. 385] the right hand-side of the above
inequality is less than or equal to a constant times the norm of ¢|Vf| in the
Lorenz space L*'(R?), which in turn can be estimated by C[V(eV/)[ 12,
owing to an imbedding theorem due to Poornima [12, Th. 1.4, p. 163].
Therefore

f@ S <Al [ I+ Cf IV

The same inequality is, of course, true for z = a, and so the left hand-side of
(15) is estimated by

CM(Vf)a) + CM,(Vf)(a) + |Vf(a)| = I + IT + III,

where M is the Hardy-Littlewood maximal operator and

M,g(a) = sups~! j lg(a + )| dm(%).
& ¢l <8

The required weak-type estimates for 7 and 71/ follow from results of Adams
[1, Theorem B] and they are obviously satisfied by /7. [

To state the result of Kolmogorov and Vercenko mentioned above we need
a definition. Let E be any subset of the plane and e¢eE. A half-line
{a + pv:p >0}, |v] = 1, issuing from « is called an intermediate half-tangent
of E at a if there exists a sequence z,€E, z,# a, such that z, >« and
'zn - 0‘ h l(zn —a)—v.

We have [13, 3.6, p. 266]

Lemma 2.2. (Kolmogorov and Vercenko.) Let E be a subset of the plane
with the property that for each a € E there exists some half-line issuing from
a which is not an intermediate half-tangent of E at a. Then E has o-finite
length.

Lemmas 2.1 and 2.2 will give now the result we really need.
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Lemma 2.3. Let f=log|z|*h, he H'(R?). Let E be the set of points at
which f vanishes and f has a non-zero ordinary differential. Then E has o-
finite length.

Proor. We are going to check that E satisfies the hypothesis of 2.2. Let
a€ E and assume without loss of generality that a = 0, df(0)/dx = 0 and
af(0)/dy = p > 0. The definition of differential at 0 gives (z = x + iy)

f@) = py + €(2)|z],

with e(z) = 0 as z — 0. If 6 > 0 is small enough, then |e(z)| < p/2 if |z| < 6.
Since f vanishes on E, we get

|y <lx|, for 0#zeE and |z|<6é.

Therefore any of the two imaginary semi-axis is not an intermediate half-
tangent of £ at 0. [J

END OF THE PROOF OF THEOREM 1. The argument at the beginning of the pro-
of of Theorem 1.6 shows that

VMO(X) = CMO(C)/K(X),
where CMO(C) is the closure in BMO(C) of Cg(C) and
K(X) = {feCMO(C):f=0 a.e. on X}.
Since CMO(C)* = H'(C), it is clear that
VMO(X)* = {he H(C): h = 0 a.e. on X¢}.

Let 7 e VMO(X)* and assume that A annihillates H(X). We must show that
h annihillates 2(X). Set f = Igg |z| * &, so that f vanishes on X, Since fis con-
tinuous, it vanishes also on X°. Because of Theorem 1.6 we are just left with
the task of showing thag (h,(1/2)*py = 0, whenever p is a complex Borel
measure supported on (X)° satisfying the growth condition

(16) lul(A(z, 1) < e(r)r,zeC,r> 0,

for some e(r) >0 as r— 0.
We have

27r<ha i *u> = 4<58f, ; *p.> = —47x{af,n) = —47rJ‘6fdp,.

Let D be the set of points at which f has an ordinary differential. Now, u
vanishes on sets of o-finite length because of the growth condition (16) and
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the complement of D has zero length because of Lemma 2.1. Hence
fﬂ@:

On the other hand f vanishes on (1\0’ )¢, and thus

[ardu = |_ofau,

J‘Dﬁ(/%)c of dp.

where £ is the set of points at which f vanishes and f has a non-zero ordinary
differential. But £ has o-finite length because of Lemma 2.3 and consequently
w(E) = 0. Then 3fdu = 0, as desired. [

3. Spectral Synthesis

We begin by observing that the mapping
L, (R*) — H'(R?)
f=Af

is an onto isomorphism. Hence the dual of 7,(R?) is BMO(RR?) and the action
of a be BMO(R?) on a fe I,(R?) is given by

b(f) =<b,Af>

where ( | ) is the BMO — H' duality.
Let b € BMO(R?) and assume

a7 blp) =0, ¢eCg(U), U=E".

We must show that b(f) =0, f being the function in the statement of
Theorem 2. Obviously (17) is equivalent to the harmonicity of b on U. The
strategy of the proof consists in using Vitushkin’s constructive scheme to
approximate b in the weak* topology of BMO(R?) by simpler functions 3 for
which we know that B(f) is either zero or small.

It will be first shown that, without loss of generality, one can suppose b to be
harmonic outside a compact subset of E. Let ¢ € C5(C), supp (¢) C {|z] < 2}
and ¢ =1 on |z| < 1. Set ¢,(z) = ¢(z/n), n=1,2,... b,=V, band R, =
b — b,. Then b, is harmonic on UU {|z| > 2n} and | b, |« < C| b| «. Passing
to a subsequence we get R,,j — R weak* in BMO(R?) as j — o, and it turns out
that R is harmonic on R? because R, is harmonic on {|z| < n}. Hence R is
constant, or, in other words, b, — b weak* in BMO(R?). Replacing b by b,
it becomes clear that we can assume that b is harmonic on the complement
V of a compact subset K of E.
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Fix 6 > 0 and let (A}, ¢;, b)) a 6-Vitushkin scheme for the approximation of
b. Then b; = (1/27)log |z| * ¢;Ab and b = 2., b;, where the sum is over those
J such that A; intersects K. We proceed, as in the proof of Theorem 1.6, to
localize again each b;, this time using Lemma 1.4 with A(#) = ¢. We get func-
tions

1
PJ(Z) = ;Ckloglz - Wk| + 2Re<z"*ﬂj>’
where ¢, € C, wy € K and p; is a complex Borel measure with compact support
contained in K, satisfying luj|(A(z, r) <Cr, zeC, r> 0. Moreover
bj=P;+0(z| "% as z— o,
and
| Pjl« < Clbjl« < C|b]«.

We need a triple zero at o, so we set

C; C;
bj— Pj=—1 1 + L +0(z] %) as z— oo,
im =y T TOET

z; being the center of A;. We recall that
|/l < €821 b~ Pjl« < C82|b] .

Let y;€ C5(A), [¥;=1and ||, < C5~ 2. Define B; = 2Re B(c;V,) (Bis the
Beurling transform).

Thus
bj=P;+B;+0(z| ) as z-w
and
|Bjl+ < Clb] -
Set

66=ZPJ+BJ and Dé:—b"ﬁé.
J

We claim that 8; — b as 6 — 0, uniformly on compact subsets of V. To prove
the claim consider a compact A C V and choose 6 so that 36 < d, d being the
distance from H to K. We have the decay estimate

|b;(z) — P;(z) — B;(2)| < C&%|z — z;| "*| b] «, |z — z;| > 28,

and therefore, for z € H and any positive integer N,
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Zlb,-(z)—Pj(z)—Bj(z>|<( 2+ 2 )063lz—z,~|‘3||b||*
J

lz—z =Né \z—zj1 > N
SCN*$°d™?|blx + C|bl« + Clb|« 2 n™*
n=N

One concludes the proof of the claim by taking N big enough and then 6 small
enough.

Because of Lemma 1.1 |D;|« < C|b|«. Take now a sequence §, — 0 and
set 8, = Bs , D, = D; . Passing to a subsequence we can assume (8, — 3 and
D,—»D weak* in BM"O(!RZ). Since D,, — 0 uniformly on compact subsets of
V,D = 0on V. Hence (D, Af) = 0 because D liveson V“and Afon UC V.
Thus

b(f) =<(B,Af).
Now, (B, Af) = 0 will follow from
(18) (P;,Af)=0
and
(19) <§]BJ-,Af>—>O as - 0.

To show (18) write
(log |z — wi|, AS) = 21f(Wp),
which vanishes because wy, € F, and

1
_<z *le,Af> =d4n{p;, of) =4J\afdl“j’

which is zero because y; lives on F, p; vanishes on sets of zero length and Vf
vanishes M' — a.e. on F.
We turn now to the proof of (19). Set X; = ¢;¥;. Then

- <; B(x), Af> - 4<§;B(éxj), af>
- 4<§; C(x), 62f>
= 47r<JZ X» azf>,
and so

‘<Z]:Bj’Af>’ SCJUA_Iasz—*CLwaI as 6—0.

J
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But the last integral vanishes because 3°f = 0 a.e. on E, which follows from
the fact that af = 0 a.e. on E.
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