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Abstract

We establish the uniqueness of fundamental solutions to the p-Laplacian
equation

(PLE) u, = div(|Du|? " *Du), p>2,

defined for xe RY, 0 <t < T. We derive from this result the asymptotic
behaviour of nonnegative solutions with finite mass, i.e. such that u(e,?) e
L'(R™). Our methods also apply to the porous medium equation

(PME) u, =A™, m>1,

giving new and simpler proofs of known results. We finally introduce yet
another method of proving asymptotic results based on the idea of asymptotic
radial symmetry. This method can be useful in dealing with more general
equations.

1. Introduction

The p-Laplacian equation

(1.1) u, = div(|Du|? ~2Du), p>1

339
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admits a fundamental solution, i.e. a function w > 0 which solves (1.1) in a
weak sense in Q = RV x (0, «) and takes on the initial data

(1.2) u(x, 0) = Msx), M > 0.
It is given by the following selfsimilar expression (the «Barenblatt» solution [Ba])
(1.3) wix, 1) = 17 (C = g7 7= D)= e

where

) -1 —2 /[ k\V-D
— [-—k/.’\v’ k - _ 2 + p s = P < .
E=x (p N q p N

and C is related to the mass M by C = cM*, with o = p(p — 2)k/N(p — 1)
and ¢ = ¢(p, N) determined from the condition fw(x, t)dx =M.

In this paper we prove that w = w,  is the unique solution of (1.1), (1.2)
which is nonnegative (and satisfies the natural growth conditions as |x| — ).
Moreover, these are the only nonnegative solutions of (1.1) which take on the
initial value u(x, 0) = 0 for x # 0, apart from the trivial solution ¥ = 0 (i.e.
they have a positive isolated singularity at (0, 0), see Theorem 1, Section 3).

In the course of our proof we estimate the rate of expansion of supports
of nonnegative solutions and give necessary and sufficient conditions for the
existence of a waiting time.

We then use Theorem 1 to prove that w represents the asymptotic behaviour
as t — o of any nonnegative solution with mass juo(x) dx = M. (Theorem 2,
Section 4.) This result was known in one space dimension. In fact, for N = 1
Esteban and Vazquez [EV] establish a detailed description of the asymptotic
behaviour of solutions and interfaces for a class of equations which generalizes
both (1.1) and the porous medium equation

(1'4) u{ = A(um)’ m > 15

under the assumptions: u, € L'(R), u, > 0, u, has compact support.

Our method uses in a strong way the similarity properties attached to the
power-like nonlinearity of the equation.

Corresponding results are also known for the porous medium equation for
N = 1. Uniqueness of solutions with a bounded measure as initial datum was
proved by Pierre [P]. Asymptotic behaviour is due to Friedman and Kamin
[FK]. Of course, the results are well-known for the heat equation, which cor-
responds to the case p =2 or m = 1 above.

Our proofs of Theorem 1 and 2 apply without any essential modification
to equation (1.4), thus establishing the uniqueness of fundamental solutions
(which is a part of Pierre’s result) and the asymptotic behaviour of [FK]
by different methods. We will give detailed references to the background
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material as the proof proceeds. The corresponding self-similar solutions w are
explicitly stated in Section 5.

In the last section we give yet another proof of the asymptotic behaviour
both for the porous medium and p-Laplacian equations which uses completely
different methods. Since the proof is analogous in both cases we have chosen
to present it only for the porous medium equation. It is based on the idea of
asymptotic radial symmetry.

Finally, we recall that in the stationary case

(1.5) —div(|Du|? " *Du) =0, x#0

the description of solutions with a singularity at the origin is due to [FV] and
[KV]. In this work Kichenassamy and Veron establish a classification of solu-
tions with an isolated singularity at the origin, generalizing classical results by
Serrin. For equation

(1.6) —div (|Du|” " ?Du) + |u|?'u=0

a similar study is done in [FV].

2. Preliminaries

Since equation (1.1) is degenerate at the points where Du = (ux], ceasUe)
vanishes we need to introduce a suitable concept of solution. A measurable
function u = u(x, t) defined in Q, = RN x (0, T), T> 0, is a weak solution of
(1.1) if

ueC((0, T]; L (RM)NLYO, T; W2~ '(RY))
and for every test function

e Wh=(0, T; L*(RV) N L0, T; W"=(RY))
having compact support, the fellowing identity holds

(2.1 J'J’Q (—ué, + |Du|?~*Du - D$)dxdt = 0

(Du - D¢ means scalar product). Di Benedetto and Herrero [dBH] study the
existence and uniqueness of weak solutions. They define the norm

p

2.2) A, = supR-%J fldx, A=N+
R=>r Bg(0) p—2

for feLL.(RY) and r>0; B,(x) = {yeR™: |y — x| <s). They prove the
following results in particular.
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Result 1. For every uy € Li,.(R™) with |||uy|||, < o, r > 0, there exists a time
T = T(u,) and a weak solution u(x, t) of (1.1) in Q.. which takes on the initial
data uy: ue C([0, T1; L, (R™) and u(s,t) = u, in L (RY). Moreover for
0 <t < T, (uy), where

(23) Tr(u()) = COH.”O'Hr_ (p—Z)’

we have

2.4 luCe, Ol < Cill|uolll,

(2.5) lu(x, 1)] < Cot *RPP=D||Juy|||17*™ if |x| <R, r<R

(2.6) |Du(x, )| < Cyt~ N* DENR@=D 1y 112N if |x] <R, r<R

where C; = C;(N, p), i =0, ...,3. Finally u and Du are Holder continuous in
RY x [7, T(u,) — 7] with Holder constants and exponents depending upon N,
p, Ci’ 7 and |||”0\Hr

Result 2.  Two weak solutions u, v of (1.1) defined in Q., such that |[|u(-, t)|||,
and |||v(s, t)|||, are uniformly bounded for 0 < t < T and some r > 0, and such
that

2.7 u(e,t) —v(e,0)=>0 in L' (RY)

loc

as t10, are equal in Q,, u=v.

Result 3. (Maximum Principle) If under the above conditions u, < v, a.e. in
RY, then u < v in their common strip of definition Or.

Result 4. A nonnegative solution of (1.1) in a domain Q.. admits a unique
initial trace u, which is a o-finite Borel measure.

Result 5. (Harnack inequality) Let u be a nonnegative solution of (1.1) in
Q. Then for every R >0; 7, 0 >0 with 7+ 6 < T.

2.8) R~V j u(x, 7) dx

R
RPN\ ;l» 0 \» L
<C4(p,N){< o > "+(R,,>'u(o,r+9)”-“"/»'}

As a matter of fact, existence is proved in [dBH] for initial data which are
o-finite Borel measures under the restriction of finite |||»|||, norm (suitably
defined for measures). One of the open problems mentioned in the paper is
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the uniqueness of such solutions. A partial answer to this question will be pro-
vided by our Theorem 2.

Corresponding results are well known for the porous medium equation.
Analogues of Results 1, 2 and 3 were proved by Bénilan, Crandall and Pierre
[BCP], while Results 4 and S are due to Aronson and Caffarelli [AC]. As men-
tioned above the uniqueness of solutions with bounded measures as initial
data was settled by Pierre [P]. This result was later extended to measures with
a growth rate as |x| = « by Dahlberg and Kenig [DK].

We will need in our study some precise information about how supports
propagate. It is well-known that for p > 2 equation (1.1) enjoys the finite
propagation property, by which we mean that the support of a solution travels
a finite distance in a finite time; in particular a compact support at time = 0
stays compact for £ > 0, cf. [DH], [DV]. We will deal from this moment on
with nonnegative solutions, u > 0.

Let Q(7) = {xe R": u(x, t) > 0} the positivity set of « at time ¢, 0 <t < T.
We know that the family {Q(¢)},., is expanding in time (essentially a conse-
quence of the Maximum Principle and the property of expanding supports for
the solutions w,,). We begin by characterizing the points at which u stays zero
for a certain time.

Proposition 2.1.  Given x € R™ we have u(x, t) > 0 for every t > 0 if and only if

2.9 B(x) = sup R‘xj |luy| = 0.
R>0

B
Moreover if B(x) < « then u(x,t) =0 for

(2.10) 0<t<Cy(p, N)B(x)~ =2,

Proor. (2.10) is a simple consequence of (2.5) and (2.3) above taking x as
the origin, so that B(x) = lim,_ , |||uy]||, and letting R = r — 0.

For the positivity when B(x) = c we use the Harnack inequality with x = 0,
7+ 0 = ¢, divide both members by R”/? =2 and let R, 7 — 0 to conclude that
u(0, t) > 0 for every ¢t > 0. Remark that B(0) = <« is equivalent to

lim R‘”J uy(x)dx = .
R—0 BR )

In case u, does not vanish a.e. in any neighborhood of x, and B(x) < o,

then for some positive time u(x, £) = 0 and x will belong to the free boundary

separating the regions [u > 0] and [u = 0] in Q,. Therefore we have a sta-
tionary interface and

2.11) t*(x) = sup {r > 0:u(x,t) = 0}
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is called the waiting time at x. Proposition 2.1 gives a necessary and sufficient
condition for a waiting time to occur.

On the contrary, if u, vanishes in a neighborhood of x, then we can estimate
the time it takes for the solution to reach x. This estimate can be precised if
uy e L'(RY) as follows. Let

(2.12) d(x) = sup (R:uy(y) = 0 a.e. in B,(x)}

be the distance from x to the support of u, and let us define for a set S ¢ RV
the p-neighborhood as N,(S) = {ye RY:d(», S) < p}.

Proposition 2.2. Let xeRN with d(x)>0 and let uye L'(RY), then
u(x,t) =0 for

(2.13) 0< 1< Co(p, NYANP =D uy| 7 #-?

therefore for T>1t, > t; 20, Qt,) is contained in the p-neighborhood of
Q(t,), with

(2.14) p = Cs(p, N)(Jup|? =%ty — t))*™.

Proor. (2.13) follows from the observation that under our assumptions the
supremum in the definition of B(x) is taken for R > d(x) and choosing the
worst possibility. (2.14) is a consequence of (2.13) changing the origin of time
tor=¢. O

It will be of great importance in the next section that, but for the constant
Cs, formula (2.14) is the exact rate of propagation of the explicit solution w.

The above development follows closely the similar study by Caffarelli, Vaz-
quez and Wolanski [CVW] for the porous medium equation.

3. Uniqueness of the Fundamental Solution

Let u be a nonnegative weak solution of (1.1) defined in Q,, T > 0 and such
that it takes continuously the initial data

(3.1) u(x,00=0 for x#0.

This solution can exhibit a singular behaviour as (x, t) = (0, 0). In fact, by
Result 4 there exists a o-finite Borel measure p such that

lim J u(x, t)p(x) dx = ‘[ odu
RN RN

-0 JR/ ,
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for every ¢ continuous and compactly supported in R”. Because of (3.1) p is
supported in {0}, therefore u = Mé and we have

3.2) lim j ulx,t)ydx =M

(=0 JBg,
for every R > 0. We say that u is a_fundamental solution if it is a nonnegative
weak solution and satisfies (3.1), (3.2) for some M > 0. The functions w
defined in (1.3) are fundamental solutions of (1.1). We prove the following
result.

Theorem 1. The only nonnegative solutions of (1.1) satisfying (3.1) are the
Jundamental solutions w,, and the trivial solution.

The proof is divided into several steps. We begin by estimating the support
of any such solution u.

Lemma 3.1. u(e-,t) has compact support for every t> 0. Moreover
supp (u(+, 1)) C B,,)(0) with p(¢) >0 as t = 0.

Proor. Let #é(x,7) = w,, (x,t + 7) with some M, and 7> 0. For R and 0
1

small enough #i(x, ) > u(x,t) on I', = {(x,1): |[x] = R,0< < 60}. The in-

equality is true if 6 is small enough by (3.1). Consider the domain

(3.3) Dy = {(x,0): |x| > R,0 < 1<8).

Since # = 0 < # on the bottom: |x| > R the Maximum Principle (a variation
of Result 3 above) implies that

(3.4) u<i

in D,. In particular u(, t) has compact support, since # does for 0 < < 6.
Since we have the finite propagation property, u(s, t) is compactly supported
for all ¢.

By (3.4), for0<t< @

(3.5) supp (u(+, 1)) C B, (0)

with r(t) = c(t + D%V, c depends on M, . Letting 7 — 0 we conclude that the
support of u(e, t) shrinks to {0} as t—0. [

A simple consequence of Lemma 3.1 is the fact that u(e, ) € L'(R"). By
conservation of mass and (3.2) we have

Corollary 3.2. ju(x, t)dx = M for every M > 0.
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We may now exclude the case M = 0, where necessarily # = 0. In the sequel
we assume that M > 0. We also know that u exists for all times ¢ > 0 since it
has finite mass (cf. [dBH]).

We need also L* bounds. Such bounds have been proved by [Vel, [B], [HV]
and are known as «smoothing effects». We need here the sharp version that
is contained in [V2]. See [V1] for the porous medium case.

Lemma 3.3. For every t > 0 and every solution u with initial data u, we have
(3.6) |u(x, )] < Wy, 0,1) = cx(p, NYMP/Nt =k
where M = |ug|, and k = (p — 2+ p/N)™".

We shall use later the sharp constant ¢4 in an essential way.

Our next step consists in comparing # with a Barenblatt solution. In order

to simplify the calculation we set M = 1, what implies no loss of generality
using a rescalling of our solution (see (3.18) below).

Lemma 3.4. There exists M' > 1 such that

3.7 u, 1) <wy(x,t) in Qp

Proor. We first improve our control on the support of u(x, ¢). Let 7> 0 be
small so that supp (u(+, 7)) C B,(0) with ¢ = 0. Then by (2.14) the support of
u(s, 1), t > 1, is contained in a ball of radius

Cs(p, N)(t — 7"V + e

(recall that we are assuming that |u(s,7)|, = 1). Letting ¢ > 0, we obtain
Cst*”N which corresponds to a Barenblatt solution with a certain mass M, .

For M’ large enough w,,.(x,?) > cst~* for £ = xt~*¥ < C5. By (3.6) we
know that u(x, t) < c«+t % for every x € R". On the other hand u(x, t) = 0 if
¢ > Cs, therefore u(x, r) < w,,.(x, f). Notice that j'u(x, t)dx = 1 implies that
M =1, U

We now take the minimum of these bounds
(3.8) M =inf {M':w,,.(x,1) 2 u(x,1)}.

By Lemma 3.4 such M exists, M > 1 and w,, > u in Q. If we prove that M = 1
the theorem is complete since fu = jw, hence u = w. Therefore we are left
with the task of excluding the possibility M > 1. This we do next.

Lemma 3.5. M=1.
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Proor. We assume that M is larger than 1 and arrive at a contradiction by
showing that it can be decreased further.

Step 1. Take ¢t = 1. We know that u(x, 1) is bounded above by w,,(x, 1) and
also by ¢, therefore if we consider the solution U which at time ¢ = 1 takes
on the data

3.9 UGx, 1) = min {cy, w,,(x, 1)}
it will be clear that for 7 > 1
(3.10) ux, 1) < U, 1) < wy,(x, 1)

In fact, since U(0, 1) < ¢« and cx is strictly less than w,,(0, 1) = c, MV, by
continuity, there exist ¢, > 1 and r > 0 such that

3.11) Ulx, t)) < wy,(x, 1) for |x|<r.

We claim that U(-, ¢,) and w,,(+, f;) do not touch at any point inside the sup-
port of w,(e,¢), i.e. for

(3.12) x| < a(p, NYMP™NL)E = p (8)).

This is so because of the Strong Maximum Principle: since for 0 < |x| < p, w,,
is a classical solution of (1.1) with [Dw, | > 0, if they were to touch at a point
(%05 21), then Du(x,, t;) = Dw,,(Xo, t;) # 0. By the continuity of Du, in a
neighborhood of (xo, ¢,),  — w,, is also a solution of a linear strictly parabolic
equation with continuous coefficients, so the Strong Maximum Principle ap-
plies and forces u = w,,, a contradiction.

The solutions U and w,, could touch at the free boundary |x| = p(¢;). To
tackle this situation we slightly change w,, by putting in a small delay and con-
sider w,,(x, #; + 7) instead of w,,(x, ;) for a small 7 > 0. We claim that U(-, t,)
is strictly below w,,(x, t, + 7) inside the support of the latter function, {x: |x|
< pylty + D).

For this we need a small technical diversion.

Lemma 3.5. w,(x,1) > w,(x,t+ 7) in a region |x| < c(r,p, N)p,,(t) and
Wy (X, L+ 1) > wy(x, 1) for c(r, p, N)p,,(t) < |x| < p,,(t + 7). Moreover as
70

(3.13) c(r,p,N)=cy = ((p — k)P~ VP < 1.

Proor. It is reduced to knowing the sign of dw,,(x, 1)/dt. After a typically
cumbersome computation we find that

Py wy (6, 1) =0 for |x| =p,(t)cy,
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being negative for smaller |x| and positive otherwise. [

Now it is clear how to prove the pending claim. Take asmall6 > 0. If 7> 0
is small enough we have

(3.14) Ux, 1,) < wy, (x, 1, + 7)

for |x| < cyp,,(¢;) + & because U is strictly separated in this compact region
from w,(x,t;) and 7=0. On the other hand, for cyp,(f;) + 6 < |x| <

pM(tl + T)
(3.15) Ux, 1) < wy(x, £) < wy(x, b + 7).

Now we come to the crucial part. Since U(e, ¢,) is strictly separated from
w,,(e, t; + 7) inside their supports, which are also strictly separated, we may
slightly reduce the mass of w and have still the relatioship

(3.16) U, t)<wy,_ (,t;+7, xeRM

By the Maximum Principle the same holds for ¢ > ¢,. Moreover, since u < U
for t > 1 we get

3.17) ux,t) < w,,_(x,t+7) for xeR", t>1t.

Step 2. We apply to U the rescaling operator

(3.18) T,,U=-€1k~ U<-0,f‘/N;>

Let us call Uy = TyU. Uy is a solution of (1.1) for ¢ > 6 which takes on the
initial data

(3.19) Uy(x,0) = min {c.0~%, w,,(x,0)},

since w,, is invariant under T,. Moreover (3.16) translates into

(3.20) Upx, 1) < w,,_ (x,t+067) for t>061,xeR".

The initial conditions (3.19) and our estimates on # imply again that U, > u
for ¢t > 6¢,. Hence

(3.21) ux, 1) <w,,_ (x,t+07) for t=06¢.
At last we see the end. We let § — 0 and obtain
(3.22) u(x, 1) < wy,_ (x,1) for xeRY and ¢>0.

We are done with Lemma 3.4 and with Theorem 1. [J
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Remark. When we apply the above method to the porous medium equation,
everything is similar. Even an important step is simpler. In our proof of Lemma
3.5 we have to be careful to eliminate the possibility that U touches wat x = 0,
since the equation degenerates (Dw,, = DU = 0) and the Strong Maximum Prin-
ciple does not apply. This difficulty does not occur for equation (1.4).

4. Asymptotic Behaviour

We discuss in this section the asymptotic behaviour of nonnegative solutions
with finite mass. We prove the following result.

Theorem 2. Let u be a nonnegative solution of (1.1) with u, € L*(R™). Then

4.1 lim *|u(x, £) — w,,(x, )| = 0

{—o

uniformly in x € R™. Here M = juo(x) dx.

Proor. (i). To begin with, we assume that u, has compact support. We con-
sider the family {u, = T,u} of rescaled solutions, where 7, is defined by
(3.18). Since T, is mass preserving, juxyo(x) dx = M for every A > 0, therefore
the family {u,} is uniformly bounded in R™ X (7, ®) for any 7> 0 (by
estimate (3.6)). Also u, and Du, are uniformly equicontinuous on compact
subsets of Q, (by Result 1, Section 2).

Therefore for every sequence A\, — 0 there exists a subsequence (which we
also denote by \,) such that u, converges uniformly to a continuous function
i and Du, — Di, also uniformly. It is clear that & will be a weak solution of
(1.1).

We claim that # = w,,. In order to prove this we recall that by (2.14) the
support of u(s, t) is contained in a ball of radius R(¢) with

4.2) R() < cpy (1) + Ry,

where ¢ = c(p,N) > 1 and R, is radius of a ball BRO(O) D supp (#y)- This
implies that for any fixed ¢ > 0 the supports of the family {#,(+,7)},-, are
uniformly bounded by R(¢). Therefore u,(+, t) converges in L'(R"™) to ii(, 1)
so that

4.3) pmnw=m

Every solution has an initial trace, u. Since the support of #(e, ) shrinks as
t — 0 its initial trace is a Dirac mass. Hence i is a fundamental solution and,
by Theorem 1, i = w,,.
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By the uniqueness of the limit the whole family converges as A = . Now
observe that (4.1) is equivalent to u, (x, 1) = w,,(x, 1) uniformly in x as \ = .

(ii) For general u#, we consider an approximating sequence {u,,} such that
Uy, has compact support and 0 < g, < Uy 54 < Up.

We use the L'-dependence of solutions on initial data (contraction property
in L'(RY), cf. [Bel): if u, it are two solutions with initial data u,, 7, € L'(R™),
then for every ¢ > 0

(4.1) [uCe, 1) = aCs, Ol < Juo — do] -

Now assume that », has mass M and u,, has M, with M, T M. We repeat
the rescaling above both on u and u,, to obtain families { T, u}, { T,u,}. Along
a subsequence A\, = o T,u — i while T\u, = w,, by step (i). But since

" T)\M(', t) - Txun(" t)“l = ”H(',)\[) - “n(">‘t)||l < qu - uOn"l
in the limit we will get
|u — WM"||1 < Jup — tgnl s

which as n— o gives # = w,,. This ends the proof. [J

Remark. Our proof applies literally to the porous medium equation, thus
giving a new proof of the asymptotic behaviour of [FK], easily derived from
the uniqueness result for fundamental solutions.

5. Another Approach to Asymptotic Behaviour

We give another method of proof of Theorem 2 which does not rely on the

uniqueness of fundamental solutions. It uses instead the idea that solutions with

compact support become asymptotically radially symmetric and the principle of

concentration comparison introduced by Vazquez in [V2] for the porous

medium equation, and valid also for the p-Laplacian equation. Since this is of

interest also for the porous medium equation we give the proof for this equation.
We consider a solution # > 0 of the problem

5.1 u, =A™ for (x,t)eQ, m>1
(5.2) u(x,0) = uy(x) for xeRrR¥

with uy € L'(R"), [uy(x)dx = M. We want to prove
Theorem 3. Ast— oo

Hulx, 1) — wy,(x, 0] =0
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uniformly in x € RY, where now k = (m — 1 + 2/N)~ ' and w,, is Barenblatt’s
solution

ok ~ (m _ llk ) 1/(m-1)
(5.3) wy,(x, 1) =1 <C omN |€|

+

k/N

with £ = xt~ and C is determined in terms of M, m and N.

ProOF. (i) Using the L'-dependence of solutions on initial data which is also
true for (5.1), (5.2) and arguing as in (ii) of Theorem 2 we may assume that
u, has compact support,

(5.4) supp (u,) C BRO(O).

(i) The asymptotic symmetry of the solution will be a consequence of the
following Lemma, which is a variant of Proposition 2.1 of [AC] (see also
[CVW], [BA]).

Lemma 5.1. For any |x;| = R, and any t > 0 we have
(5.5 u(xy, 1) = u(x,, 1)

if ol 2 xi| + 2R,.

Proor. We draw the hyperplane IT which bisects the segment x,x,. Assume
that this hyperplane leaves the support of u, in the same half-space Q, as x.
We consider the solutions

ul(xi t) = ll(X, t)s
uZ(x: t) = H(ﬂ'(x), t)a

where w(x) is the symmetric of xe S = Q; X (0, ) with respect to IT. Since
u; = u, on the lateral boundary IT X [0, ©) and u; > u, = 0 at the bottom
0 we conclude that U, = u, in S, i.e. u(x,t) > u(w(x),t). Since x; € and
X, = w(x,;), ulx;, t) = u(x,, t) for t > 0.

Finally, the condition for IT to leave BRO(O) on the same side as x, is just
1| = x| +2R,. U

Suppose now that we consider the rescaled solutions 7,u given again by
(3.18) with our present value of k. If happens that (5.5) holds if

(5.6) | = x| + 2R\, x| = RN %N,

As in Section 4 we pass to the limit N\, = o thanks to the boundedness and
equicontinuity of the solutions which are well-known (cf. [FK]) and we obtain
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Tx"u-» # uniformly on compact subsets of Q. Moreover the supports are
uniformly bounded (cf. [CVW]) hence Tx"u — g uniformlyinxe RY, 0 < 7 <
t < 1/7. Moreover (s, t) € L*(R") with |i(+, )|, = M. Passing to the limit
A — o in (5.5), (5.6) we deduce that

.7) Hxy, 1) > 0, 1) if || = x>0,

i.e. u is radially symmetric and decreasing.

(iili) We now recall the concept of concentration for nonnegative, radially
symmetric functions in L'(R") as defined in [V1]. We say that f is less concen-
trated than g, < g if for every r > 0.

(5.8) [ 103~ dp < || g(0)o™ " dp.

We will use the property that the relation < is hereditary for problem (5.1),
(5.2).

Lemma 5.2 [V1]. Let u,, u, be radially symmetric and nonnegative solutions
of (5.1), (5.2) with initial data uy,, uy, . Then if uy, 3 Uy, we have u,(s, 1) <
u,(e,t) for all t > 0.

Obviously the most concentrated initial data are u, = Mé(x) corresponding
to a Dirac mass. Therefore we have for every f > 0 and every u with mass M,

(5.9) a(e, 1) 3 wy (s, 1).

It easily follows from (5.9) that |u(e, )|, < |W(s, {)| -, i.e. the smoothing
effect. (The above argument needs a justification since é is a measure, not a
function. This is however done easily by approximation; in particular replace
Més with w,,(+, 7), 7= 0 and approximate u,, from below.)

(iv) We need now an estimate converse to (5.9). This is done by first
remarking that arguing as in Sections 3 and 4 with the estimates for the sup-
port of [CVW] we conclude that

(5.10) supp (#(+, 1)) C By ,,(0)
with
(5.11) R(1) < cpy, (1)

where p,,(¢) is the radius of the support of w,,. Take 7> 0, 7 small. Then
supp (e, 7) is contained in a very small ball. Since also # is radially symmetric
and decreasing, it is easy to see that for some 6 depending on 7

(5.12) wy (e, 7+ 0) 3 a(s, 7).
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This property will continue to be valid for ¢ > 7. Letting 7 — 0, hence § — 0,
we obtain

(5.13) wM(-,t){ i(s,t) for t>0.
(5.13) and (5.9) imply that

(5.14) [T wagto, 0™~ dp = | o, 100"~ dp,

for every r > 0, hence w,, = i.
(v) Since the limit # is unique, the whole family 7,u converges to u#. [l

Remark. This proof generalizes easily to the p-Laplacian equation with p > 1.
It can be also applied to u, = A¢(u), with assumptions on the nondecreasing
function ¢ which make it resemble a power, as the ones imposed in [dPV].
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