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Introduction

(i) Description of-results.

Let O = bQ be the three-dimensional smooth pseudo-convex boundary of
a bounded domain @ C C2. On 9N there is a natural Cauchy-Riemann operator
0, mapping functions to sections of a suitable line bundle ®*:° of 1-forms.
(See below.) The restriction to M of an analytic function on Q satisfies the
tangential Cauchy-Riemann equations d,F = 0. We denote by JC, the closed
subspace of L*(9N) annihilated by 3, and define the Szegd projection S, as
the orthogonal projection from L%(91) onto 3C, . The Szegd projection is given
in terms of an integral kernel as

Spf0) = [ K, ). () dy.

One of our goals is to describe the singularities of the Szeg6 kernel K(x, y).

Another goal is to solve the inhomogeneous Cauchy-Riemann equations
d,u = f. To obtain a well-posed problem, we must take into account that both
d, and its adjoint have large nullspaces. Thus we pick a Hermitean metric on
the bundle ®"'° and let S}'° be the orthogonal projection from L>-sections of
®"° to the subspace 3C}'° annihilated by 3. The correct statement of the
inhomogeneous Cauchy-Riemann equations is

Opu=f—Sy°% with u L 3C,.
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Again, the solution u is given by an integral kernel,

u(x) = [ HEx») () dy

and another of our goals is to describe the singularities of H(x, y). Finally we
will also consider the equation

Opu = 8501 = f — Sp.f
with u L 3C;. Then, u is given by

ux) = [ R(x, »)e(»)dy

and we will describe the singularities of R(x, y).

Let 7 denote a defining function of bQ, such that r is C* in a neighborhood
of bQ, dr #0, and r(P) > 0if P ¢Q, r(P) = 0if Pe bQ, r(P) < 0if Pe Q. Let
L, L and T be the vector fields on bQ defined by

3 3
) L STl

- ) d
L=r, ——r; -
" om g,

a a d a
T=~-1|rn —+r. — —p, ——r, — .
1 <rz1 2z, + 1y 52, Iz, 5z, Tz, 822>

These vector fields are linearly independent at each P € bQ and the vector field
[L, L] is tangent to bQ hence we may write

(2) [L,Z] =—'\/i_—l"'0T+ aL+bl_,.

The condition that Q is pseudo-convex is then expressed by 6 > 0. Let
3C, C L,(bQ) denote the space of square integrable fuctions which are
annihilated by L in the distribution sense (i.e. 4 € 3C, means 4 € L,(bQ) and
(h, L*v) = 0 for all ve C*(bQ)). It is proved in [K] and in [BS] that the range
of L in L,(bQ) is closed. Thus given fe L,(bQ) with f orthogonal to the null
space of L* there exists a unique solution # such that

3) Lu=f and ul 3C,.
Also, given g L JC, there exists a unique u such that

4) L*Lu=g and ul 3C,.
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Denote by S,: L,(bQ) — 3C, the orthogonal projection. Note that if f, Lfe
€ L,(bQ) and if u satisfies

o) Lu=Lf with ul3C,
then, by linear algebra we have

(6) Spf=f—u.
Thus there exist distributions K, H and R on bQ X b such that

) Sy @) = [ K, 2)f() dy,
® u@) = [, Hx)SO0)dy

implies that u satisfies (3) whenever f is orthogonal to the null space of L*,
and

) ux) = | R(x, 2)g(»)dy

implies that u satisfies (4) whenever g L 3C,.

The purpose of this paper is to prove the optimal non-isotropic estimates
for K, H and R in a neighborhood of (P, P) where P € b1, is of finite type.
Such estimates have been obtained by M. Christ (see [Ch2]) and the estimates
of the Szegd kernel are contained in Nagel, Rosay, Stein, and Wainger (see
[NRSW1). We will describe our results more precisely below but first-we for-
mulate the above in a slightly more general setting.

Let X be a two-dimensional complex manifold and let @ C & be an open
set such that Q is compact and its boundary 5Q is smooth and pseudo-convex.
Now the formulas given in (1) make sense only locally and, in fact, there
may not be a global non-vanishing vector field tangent to 5Q which is of type
(1, 0), i.e. a combination of the /9z. To overcome this difficulty let 7% °(bQ)
be the subbundle of the complexified tangent bundle CT(b{2) consisting of
vectors of type (1,0). Let T%'(bQ) = T*°(bQ) and denote by B%(bQ) the
dual space of T%(bQ). We define the operator d,: C=(bQ)— sections of
B%1(bQ), by

(10) (@pw)p, Z) = Z(u),

where Pe bQ and Z € T%1(b9Q).

On each fiber CT»(bQ) we construct a hermitean inner product, depending
smoothly on P, so that T5°(bQ) is orthogonal to T%!(bQ). We choose a
volume element on bQ which is compatible with this inner product and we
define the spaces of square-integrable functions L,(b{) and square-integrable
(0, 1)-forms L9'(bQ); this is the completion of the space of sections of
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B%'(b0). Now, in case the range of 3, is closed, there exists a unique  such that
(3) dpu=f and ul 3C,,

whenever fe LY }(bQ) and f L null space of 3}, here JC, denotes the null space
of 8, in L,(bQ). We also have for each g e L,(bQ), g L 3¢, a unique u such
that

@) Oyu=0y0,u=g and u 1l 3C,.

The condition that the range of g, is closed is not always satisfied. In [K] it
is proved that the range of @, is closed whenever there exists a strictly
plurisubharmonic function defined in a neighborhood of »Q. Thus, in par-
ticular, if Q is a pseudo-convex domain in a Stein manifold then the range of
d, is closed. The kernels defined by (7), (8), and (9) can thus be interpreted
in this more general situation and our results also apply to them. Our results
apply to the case when bQ is replaced by an abstract three-dimensional,
pseudo-convex, compact CR manifold 9. The CR structure on a three-
dimensional manifold 9N is given by a one-dimensional subbundle 7' °(9N)
of the complexified tangent bundle CT(9) with the property that

T:o0OM) N T°9N) = {0).

All of the above notions can then be defined on 9 and if the range of 3, is
closed then the kernels given by (7), (8), and (9) make sense and our results
apply to them.

Consider P, eI, with M a three-dimensional, pseudo-convex CR
manifold. Then there exist a neighborhood U of P and linearly independent
vector fields L, L and T on U such that L has values in 7" °(9N), T is real
and (2) is satisfied with 6 > 0. We say that P, is of finite type if for some m
the vector fields L, L and their commutators of order less than or equal to
m span the tangent space of bQ at P. We say that P, is of type m if m is the
least number satisfying this condition. If P, is of type m, then there is a small
neighborhood U of P, in which every point is of type less than or equal to
m. For the statements of our results we fix such a neighborhood U.

The results in this paper are stated in terms of a family of non-Euclidean
balls on «cylinders». That such cylinders are crucial is clear to anyone who
has studied the work of Stein e.g. [NSW1], [NSW]. We define these cylinders
in Section 2 and recall their basic properties. For each P € U and each 6 € (0, 1]
the «cylinder» is a neighborhood of P denoted by B(P, 6). If §; < 6, then
B(P, 6;) C B(P, 6,) and N;B(P,d) = {P}. The B(P,d) have height propor-
tional to 6 and a base whose radius is proportional to Y(P, §) with C8'/2 <
(P, 8) < C'8"™. Let X; = Re (L) and X, = Im (L). Our main theorem is for-
mulated in terms of the following definition.
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Definition. If Q is a distribution on M X M and if P, € M is of type m with
a neighborhood U as above then Q is of non-isotropic order q, with q = 0,1,
and 2 if whenever p, is a homogeneous polynomial in four non-commuting
variables then there exists C; such that

(P, 87 *

an 1P (X X,)006 )| < o=, 5507

whenever x € B(P, /3) and y € B(P, 8)\ B(P, 6/3). Here X, and X, denote X,
- X, acting on x and y respectively.

The purpose of this paper is to give a self-contained proof of the following
theorem:

Main theorem. Let M be a three-dimensional compact pseudo-convex CR
manifold. Suppose that the operator 3, has closed range in L,(9N) (as noted
above this assumption is satisfied whenever M is the boundary of a domain
in a Stein manifold). Suppose further that P,e MM is of type m. Then the
distributions defined by (7), (8), and (9) satisfy the following:

(A) K is of non-isotropic order zero.
(B) H is of non-isotropic order one.
(C) R is of non-isotropic order two.

These results may be found in Christ [Ch. 1, 2] and in Nagel, Rosay, Stein,
and Wainger [NRSW]. The main application of this theorem is to the
understanding of the mapping properties of the fundamental solutions on
function spaces. This is carried out in [NRSW] by proving also certain
cancellation properties of K.

(ii) Description of the proof.

In the equation d,u = f the right hand side is of course a section of a line
bundle (i.e. B%1(9N)). However, virtually all our analysis is local, and we use
a local trivialization to write the 3, equation on U in the form Lu = f. Here,
by abuse of notation, f is written as a function, not a section. Similarly the
operator d; when applied to sections over U can be identified with L*. By L*
we mean the formal adjoint of L which can be expressed as

(12) L*v = —Lv + av

where a € C*(M).
The condition that the range of 3, is closed is equivalent to the estimate

(13) lu] < C|dpul,
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for all u L JC,. It is also equivalent to the condition that the range of 3; is
closed which, in turn, is equivalent to the estimate

(14 lvl <clagvl,

for all v orthogonal to the null space of d}. We will make essential use of the
fact that if the range of d, is closed then JC, is the orthogonal complement
of the range of 9} and hence whenever u L JC, there exists v so that u = 3} v.

The main theorem is a consequence of the following three estimates. First,
there exists C > 0 such that

2
(15) lul pep, s < CY(P, 5)<21: 1 X;u| + ||”||>’

for ue C*(M), Pe U, and 6 € (0, 1], where |u|pep, s denotes the L,-norm
over B(P, J).

Second, there exists e > 0 such that if ¢, e Cg(U) with {'=1 in a
neighborhood of the support of ¢ then for every s € R there exists C; > 0 such
that

(16) Isulsre < CUE Luls+ [u] + Job),

whenever u = L*v, more precisely we should have 4 = 3} G with G = v& in U
and v should really be replaced by G. Throughout this paper we will continue
to treat sections of B% (M) as if they were functions. This will not lead us
to any difficulties since any operations we perform on these sections will be
confined to U and on U the sections can be identified with functions as noted
above.

Third, suppose that d,u = f. Then, if u L 3C, we have

amn ILEw| < C|f].

These estimates imply the theorem, as in Christ [Ch. 1], [Ch. 2] and in
Nagel, Rosay, Stein and Wainger [NRSW]. We are grateful to E.M. Stein for
conversations directing our attention to the search for a simple, direct proof
of (17). It follows from (16) that the kernels K, H and R are C™ off the
- diagonal. This can be expressed by the following inequalities: given closed sets
B,, B, C U with BN B, = (J and k > 0 then there exists C > 0 such that

(18) sup |D¢DSK(x,»)| < C,

where the supremum is taken over x € B;, y € B,, and || + |8| < k. The same
inequalities hold for H and R. To go from (18) to the desired estimates, given
by (11), we «rescale». Roughly speaking this means that for each P e U and
6 € (0, 1] we construct a one-to-one map of B(P, §) to a fixed open set U C R>.
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This map takes the CR structure on U to a CR structure on U and the kernels
K, H and R to kernels K, H and R respectively. Estimates (15), (16) and (17)
are then used to show that (18) holds for K, A and R with C independent of
P and 6. The proof of (18) for the operator H depends on a two step rescaling
devised by Christ [Ch. 2], we reproduce his proof in Section 7. The estimates
(11) then follow from scaling back to the original kernels.

We will briefly discuss the proofs of the estimates (15), (16) and (17).
Estimate (15) follows from the results of Rothschild and Stein (see [RS]), we
give a self contained proof using microlocal techniques. Estimate (16) is proved
in [K1] and a more detailed proof is presented in this paper. Here we indicate
the idea of this proof since it is used again in proving (17).

Choose a coordinate system y,, ¥;, ¥, in U with origin at P, such that 7 =
= gd/dy, with g(0) > 0 we assume that U is small enough so that g > const. > 0
on U. Let &, &, & be the dual coordinates and let &' = (&, &,). We will
microlocalize by making use of multipliers of the Fourier transform in the
following classes.

(19) €= {peC™(R*:p >0, p(tf) = p(£) whenever ¢ > 1 and |£| > 1}
C* = {peC:there exists @ > 0 such that p(£) = 0 when &, < a|¢’|
and |£ >1}.
C° = {p e C:there exists @ > 0 such that p(£) = 0 when |&| > a|¢'|}
C~ = {p e C:there exists g > 0 such that p(§) = 0 when & > —a|¢'|}.

For ue Cy(U) we define @ " u(x), ®°u(x), and ® ~u(x) by

[e™ tp®ae dt,

where peC*, pe @® and pe @~ respectively.
To prove (16) we use the Héormander estimate, there exist e > 0, C > 0 such
that

20) lu|2< (3 1 Xul® + |u]?)
for all ue Cg(U), in [H]. Note that
SXul? + [u]? ~ |Lu|? + |Lu|® + Ju|>

Hence to prove (16) for s = 0 it is natural to try to estimate L({u) by L({u).
We have

|LGw|?* = —(LL(u), §u) + - - -
—(LL(su), cu) + (L, LI(Su), Su) + -+
|LGw) |2 + OT(u), u) + -+ -,
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where the terms denoted by dots are O((|L(u)| + |L(cw)])| cu| + | cul?).
Thus we have

Q1) |LGw)|? < OTGw), tw) + CLEw|* + | cul?.

If the first term on the right were negative we could deleté it and obtain the
estimate for L({u). In (21) we replace {u by {'®~ §u, with {'=1 on a
neighborhood of supp (£). Then the first term on the right can be written as
(R¢'® ™ ¢u, ¢'® ™ fu) where R is a first order pseudo-differential operator with
principal symbol equal to 8(x)g(x)&, when &, < 0 and 0 if & > 0. Hence from
Garding’s inequality, and (20) we obtain

(22) |@-sul?<Cl|®~ ¢Lul>+ ---,

where the dots represent terms that get absorbed later. Since ®° microlocalizes
to the elliptic region we also have

(23) |®%ull < ClO%Lul? + - - .
Let A® be the operator defined by
(24) Nu@®) = (1 + |EH7*AE).

Replacing {u by A°tu in (21) and proceeding as in the derivation of (22) we
obtain

25) |®~sull. < Cl@~Lu|Z+ -
Interchanging the role L and L we get
(26) |®*sv] <Cl®* ¢L*v], + - -

since L*v = —Lv + av.
Since u = L*v we have

|6 ul? = @ tu, K0+ £ Lo
= (Pu* ¢Lu, A*®* §v) + - - -
<@ Lu| [@*Sv]5e + -+
< |®*®¢Lu| |®*Fful + -
We thus obtain
27) |®*cul?< Cl@* ¢Lu|®> + - -- .

Now combining (22), (23) and (27) we obtain (16) with s = 0. Then replacing {u
by A*(¢u) with s < ke in (21) and proceeding by induction on k£ we obtain (16).
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Our proof of (17) requires a further microlocalization. Let
yeCi({teR*:0<a< |g <b)).

Let M be a fixed large number and 6 € (0, 1] then for u € C5(U) we define
T'su by

28) Toud) = w(—f; z)a(s).

In Section 5 we introduce for s > 0, the norms |||u|||;, with u € C3(U),
defined by

! _ do
09 lallz= [ [ 7@ 2@y ap S + ul?.
We prove that
60 Ml < €S Xl + Clul,

with C, independent of M. The idea is to prove (17) by using the same type
of argument as in the proof of (16) but with the |||+|||,-norms instead of the
Sobolev norms and with 1 instead of e. In order to carry this out, and to prove
(30), we have to also localize in x-space. To do this we construct functions o';
which essentially localize to B(P, §) but which are supported in larger cylin-
drical neighborhoods denoted by B(P, §). The B(P, §) have the same size base
as B(P, &) but their height is proportional to §y(P, 8§) " 1. The basic fact is that
Y¥(Q, 6) is «almost» constant when Q € B(P, 5). We then show that

! dP dé
2 _ 25 .0 2 ao 2
o0 W~ [ [ e iohru gt T i

Now the proof of (30) proceeds by applying (20) to u replaced by o%;I';u. We
derive an estimate of the form

(32) M*y(P,8)” > *| 0% u|® < CY(P, 8> 2 |ops T Xju|> + -+ -,
where the dots represent terms whose integral with respect to

_dP &b
Vol B(P,8) &

is bounded by C|||u|||,, ;, with C independent of M. The terms represented
by the dots arise from various commutators and can be controlled because the
dual of the £-support of T'; is contained in a ball of radius 6 and center P, and
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so the distance of this ball to the complement of B(P, §) is greater than ¢6' ~ /™,
To prove (17) the main step is to prove an analogue of (26) with |«|,, and
| +|. replaced by M¢|||+|||, and ||| |||, , respectively. This is done replacing {u
in (21) with ¢%,T',u and retracing the steps for (21) to (26) finally obtaining

(33) 2 109D X;@* tv|? < Clog,Ts®* ¢L*v[> + - - -.

The dots again represent various commutators and are estimated in such a
way that after multiplying by

dP dé

-2 s~ =
VB0 TB®.5) b

and integrating we get
2IX;@* sl < Clli@* ol + Cll@* solll; + - -

Choosing M sufficiently large in (30) we obtain an estimate for |||®* ¢v|||,,
analogous to (26). We can then estimate |||® * {u|||,. Finally we get

6% Ts®* cul® < |oR,TasLul® + - -
and hence, after integration with respect to

_dp &
volB(P,3) &

the right hand side is bounded by C | Lu| (or more precisely by C|d,u| since
we use the closed range property). Thus we get the desired bound for
|L®* tu|, the bounds for the term |L®~ ¢u| and |L®°tu| follow easily
from (21) with ¢u replaced by ® ~ ¢u and ®°¢u, respectively. Combining these
we get the desired estimates (17). The principal new point is that (17) has a
rather simple proof; all else here will be familiar to experts from [Chr], [M],
[NRSW].

(iii) Additional remarks.

Our main objective in writing this paper is to give a self-contained proof
of the main theorem. The principal point is to prove (17). Here we wish to
describe briefly how (17) also follows from our results in [FK]. Recall that in
[FK] we use a pseudo-differential operator A with the following properties

(34) APt ~ —LL®* and A®~ ~ —LL®".
First we will show how (17) follows from the inequality

(35) X X;w| < C(jaw] + [w),
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for all we C3(U). 1t suffices to estimate |L®* ¢u|, when u L 3C,, d,u = f.
We have u = L*v ~ —Luv so that

Ltu=-LLtv+---

hence
(36) —LLeC *tv=AC tv=¢® ¢ Lu+ -+,

the dots, as usual represent terms some of which in the end are absorbed by
the left hand side and the rest estimated by the right hand side. From (35) and
(36) it then follows that

IL®* su| K CX|L2®@* ¢v| + -

<
<C|fl.
The estimate (35) is established starting from the estimate
2 1 Xiv)* < Cl(Av, v)] + C|v]>.
Substituting v = X;w we get

L X Xw]* < ClAXw, X;w)| + | Xw]*
< CllAw, —X7w)| + |14, X1w, X; W)} + - - -

so we have
2 X:Xw|* < C'|Aw]? + C|(A, Xw, X;w)| + - -

in order to estimate the second term on the right side we have to either
microlocalize as above or follow a modification of the calculations in sections
5 and 6 of [FK]. The relevant L2-estimates for A may also be deduced from
the general theory in [F].

We refer the reader to [FK] for a discussion of the many related results in
the area and for a more complete reference list. The estimates for the kernels
obtained here can be used to prove optimal non-isotropic estimates for the
corresponding operators as in Christ [Ch. 2] and Nagel, Rosay, Stein and
Wainger [NRSW]. These results are also related to estimates for the d-equa-
tion and the Bergman kernel. In fact, the estimates in the isotropic Hélder norms
imply the corresponding estimates for d and the Bergman kernel. Recently
optimal non-isotropic estimates for the Bergman kernel were obtained by
McNeal (see [M]) and by Nagel, Rosay, Stein, and Wainger (see [NRSW]).

A very interesting use of these results has been made by Christ, see [Ch. 3].
He proves that a pseudo-convex, compact, three dimensional CR manifold of
finite type, on which 3, has a closed range, can be imbedded in C”, for some
n. His method shows how these estimates can be used to construct CR func-
tions which were not accessible by the use of estimates in Sobolev norms.
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1. The First Microlocalization

Lemma 1.1. Let M be a compact pseudo-convex three-dimensional manifold
with Py € M. Then there exists a neighborhood U of P, and a constant C > 0
such that

2
¢y 2 1X,0-w|*< Cl|@~Lw|* + C|®~w|* + C|®w|?
1

for all we Cy(U), where ®~ and ® ~ are pseudo-differential operators with
symbols p, p e C~ such that p(£) = 1 when £ € supp (p), and R is a pseudo-
differential operator of order —.

Proor. First note that
V)] [[®~,Llw| < C|®~w| + C|®Rw],

where ® = [®~,LI(®~ - 1).
Since the X are combinations of L and L it suffices to show that

€)) ILe~w|*> < CILe~w|* + C|®~w|>.
To prove (3) note that

) IL®~w|*= |L®~w|* + (0T® ~ w,® " w)
+O(|®~wl(ILE~w] + |LE~w| + @~ w])).

Pseudo-convexity implies that the symbol of (® ~)*T® ~ is non-positive on
U. Hence by Garding’s inequality

©)) OT® w,®~ w) < C(|®~w|*+ |Rw|?.

Thus combining (4) and (5) we obtain (3) which completes the proof of the
lemma.

Corollary 1.2. Under the same assumptions, we have
2

© 2X@ w2 < Cl@*Lw|* + C|®* w|* + C|w|>.
1

for we Cy(U).
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Lemma 1.3. Under the same assumptions as Lemma 1.1, we have

2
)] 2 1X;0%]* < C|®°Lw|* + C|&°w|* + C|®w|?

1
for we Cy(U).
Proor. Taking U sufficiently small we see that if ¢’,¢ € Cy, and ¢ = 1 on
U, and ¢’ = 1 on a neighborhood of supp (¢) then

ILOw| > |¢'LEw| — |Rw|
2

>C3

1

¢’i@ow

¢’ __a_d)ow
o

ay

J

— small const. - C|®w|

> C|®°w], - C|®w]|.

This implies (7) proving the Lemma.

Lemma 1.4. Ifin addition to the above assumptions we suppose that P, € M
is of finite type then there exists a neighborhood U of P, such that if
¢, § e Cy(U), with § = 1 on the support of ¢, then there exists ¢ > 0 and for
s€R a constant C; such that

®) 10 tuls < C® sLuls+ |®~ELul,_y + @ Ful + [®Sul).

Proor. The fact that P, is of finite type implies that there exists a neighborhood
U and constants € > 0 and C > 0 such that

2
© iz < e(S 1wl + vr?)

for all we C3(U).
Now we have

(10) 1@~ sul?, . = |[A°® fu|?

= |
< |EA°® ™ fu|? + |Riu|?
2
<c(; 1XENC gul® + |0 Ful} + ||<Rru||2>

2
< C<ZIJ | X;@~ §Acu|® + | @ ul? + l|<R§ul|2>

SC(®~LENCul® + | @~ Eul§ + |Rsul?)
SCU®~¢Luli + @~ Eulf + | ®Rsul?).
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The desired estimate (8) then follows by induction on k, if we choose s < ke.
Analogously, using (6) and (7) instead of (3) we obtain

Ay |®%uls. < CUI®°CLul, + |@%CLul,_y + |®°Cul + |®RSul)
12) |7 ¢v]s S @ EL*v|s + [@F EL* 0],y + | @7 S0 + [RS0]).

Proposition 1.5. Under the same assumptions as Lemma 1.4, if u = L*v
then

(13) [$ulsse < CUELul, + [ Sul + [ Svl).
Proor. From (8) and (11) we obtain

(14) [® sulss e+ [®@%ulss e < Co(I ELul, + | Sul).
Hence it will suffice to prove that

(15) [@* culsse < C ELuls + |Sul + [ ED).
To prove (15) we write

16) |®*cu|?, . = (@ tu, A¥+2*@ ¢ L*v)
=(@*¢tLu, A* 2@+ ¢v) ‘
+O0(1®* suls, (18 fvlsic + [E01))
+ ([, ®* ¢18u, A¥+2@ * o).

Setting & = [L, ® * ¢] we can write the last term above as

(17) (gg’:u’A2s+25(P + g.v) - (6) + ;.u, A2s+268§.'v)
+O(1®0* Fullyeo 1 + |10 Eolt + [ §ul® + [ So]?).

Combining (16) and (17) we get

(18) |®*¢u|?,.<large. const. [®* ¢Lu|? + small const. |® ™ {v|2, .
+ small const. |®* ¢u|?, . + large const. |®* {v|2, .
+C|®*Sul?, 1 + C|Eul? + C| fv|?.

Now by (12) we obtain
(19) 1@+ sv|3 e SCU®* Sull,  + [@F Eull o1 + [E0]?)
and

20) 18+ Fol2, . < C(I18* Eul? + |E0]D.
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Combining the above and changing notation we have
@D |@*suli, SCI®* cLul} + C(18* Eull + | Sul® + | Fv]?.

Hence, by induction on k with s < ke, we obtain the desired estimate (15) and
conclude the proof.

If 9N has the property that the range of 3, is closed then u L JC, if and only if
there exists v so that ¥ = L*v and furthermore there exists a constant C > 0
so that

22) |u| < C|Lu| whenever u L 3C,,
and
(23) lv] < ClL*v]

whenever v is orthogonal to the null space of L*.

Theorem 1.6. Suppose that M is a compact, three dimensional, pseudo-
convex CR manifold on which the range of 3, is closed. Suppose further that
P, € M is a point of finite type. Then there exists a neighborhood U of P, and
an e > 0 such that if u is in the domain of L, if u L 3C,, and if {Lu € H® for
all $ e C3(U) then tue H*** for all ¢ € C5(U).

PRroOF. Applyiﬂg (22) and (23) to (13) we obtain
@4 [$ulsse < C(I§Lul, + | Lul).

The theorem is then obtained using standard smoothing operators.

Theorem 1.7. Under the same assumptions as in the theorem above denote
by Sy: L,(IN) — 3C,, the orthogonal projection. Then there exists a neighborhood
U of P, such that if f has the property that {fe H® for all ¢ € C3(U) then
¢S, (f) € H? for all ¢ e Cy(U).

Proor. Let g =f— S,(f) then Lg = L f, with g L 3C, and g = L*v. Then,
applying the previous estimates
I¢2l3sc = (c8, A** >¢L*)
= (g'l_‘gs A2s+25§'v) + 0(“ g:g“s+e/2 “ g:v“s+3e/2)
= (FLf, A+ *¢0) + O(+)
= G AP 2L ) + O S s el §0]sue + 158 er era | E0]sh3e2)

= O(ISf ls+ (U sglssc + 1801549 + (IE8ls1 21§05 45002
< CIES 13+ + small const. [¢gli, . + ClSglsern
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Thus we obtain

I¢elssc SCUSS Lse + 1SD

hence, replacing s + € by s, we obtain

1£Se(N1s < ClEf s + Cltels
<Cl&fls+ ClfI-

Again the proof is concluded by applying smoothing operators.

2. Localization

In this section we recall the localization studied in Sections 2 and 3 of [FK].
Our treatment here is self-contained.

Let X, and X, be vector fields in a neighborhood U of the origin in R*. Let
T be any vector field on U such that X, X;, and T are linearly independent.

Definition 2.1. For each k-tuple (i, . . ., i), with i; = 1 or 2, we define the
functions 6; .. ; € C=(U) by

[Xik[Xi .« [X,'z, X’II]] . .] = 0,-1,_‘,-kTm0d (Xl’ Xz).

k—1"

We say that thé origin is of type m if there exists an m-tuple (j, . . . s j.,) such
that 0,1... jm(O) # 0 and if for each k-tuple (i, ..., i) with k <m we have
9,- veed (0) = 0.

1 k

Then we have

W) XX 6 i)=0i iy, F 20 el 20 g0
o IBlss+1
when 4 ...ia€ C®(U) and the a run over all proper subsets of {ji,...,Jj;}
and age C*(U).
Note that the (),~1 iy depend on the choice of 7, if 6;'1'“":: corresponds to
T’ then there is a constant C > 0 such that

C™M0;,...;, P < 107,...;, P < Cly,..;, (P)| forall PeU.

Let yo, ¥1, ¥, be coordinates in R? chosen so that, for suitably small U, we have
X,, X,, and d/9dy, are linearly independent on U. For the remainder of this
paper we will set
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Definition 2.2. For each P e U we define \Y by

)\P= Z |0i ,(P)|
i<k v

From now on we will assume that the origin is of type m, then we have
N\ > const. > 0 for all Pe U.

As in Section 2 of [FK] we define for each Pe U a coordinate system x§ ,
x¥, xP by

2 x5 = Yo — Yo(P) — FF(y; — y1(P), ¥, — ,(P))
x6=y;—-yP), Jj=1,2.

The FF are polynomials in two variables defined as follows. First we choose
vector fields X}, X5 such that

3 Xi= 2 hiX;,
the A/ are smooth with det (#}) bounded away from zero in a neighborhood
U of the origin and

ad d

4 X' =g —
@ =4 3y, * ay;

i=1,2.

Lemma 2.3. For each Pe U there exists a unique polynomial F* in two
variables, defining x* by (2), such that FF(0,0) = 0, and the functions b,
defined by

®) X;=bf§§+%’
satisfy
o V. » .
©) [(Wf)blL:O for j=0,1,...,m—1
and

a \/( a V. » o
) [(33—61?)<—5x—f> bZL—O for i+j=0,1,...,m—1.

Proor. From (2), (4), and (5) we obtain

®)  b7(P) = aj(x5 + yo(P) + FP(xT, x3), X7 + y1(P), X3 (P) + y2(P))
- Fff(xfa xf)‘
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Then (6) together with (8) determine

a i
[(a;:")FP} for i=1,...,m
1 0

and together with (7) the

are determined for i +j<m. O

In terms of the xP-coordinates we have

2
_ P P
) Xi=ai 5r+ Nag

Lemma 2.4. There exists C > 0 such that for all P e U we have

3 \/ o V\
(o) ’ [(T) (a—> ]

and

. a s a t
‘”’ o) (g oo,

Proor. First observe that

< CN\P

s+t+1°

< CN

+s5+t°

2

P i P

a, = _Zlgfbj’
J=

where (g{f) is the inverse of (h{.') defined by (3). Hence it suffices to prove (10)
with a} replaced by b7, in fact by b} because of (7). Furthermore, defining
0; ...; by

1 k

(12) (X5, (X5, ... [Xi, Xi]0,...1= 6} .., Tmod (X}, X3),
we have
(13) Bi..i, = 2 g b0,

ssk

where the g'1-**% are polynomials in X, - -X,t(g{.'); thus it suffices to prove
(11) with 6; .._;_replaced by 0i,...i,- From (12) we see that

(14) 0’12 = bfxz - b;xl + bfbfxo - bllab;xo
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so (10) for s+ ¢t =1 and (11) for s + £ = 0, k = 2 follow.
Rewriting (1), we have with s + ¢t < m

YO, ...1) =
0; . 12...2F Z ail...ikaoil...ika"' Z (15023.

R I T
! e la|<s+1t 1Bl<s+t+1
s-times ¢-times

We also have
a * a ! ’ 1\S, ] ’
<33?> <w> 0, i = XD X))

] nf 9 ’2bP F:] 51 F:] ‘120
+ a, V() Rl () (S ) e |-
ry +r2+q§ g, <s+t 12019 ox¥ < ox? J oxt axy By

Differentiating (14) we get

a rl a "2b a "l a r20,
axt ) \axt/) ' \ax? k) 12
a Vi a8\~
+ Y (L (L
i +j2§r1+r2 .1112< 3)6'{) <axf> 1

N d 3 1/ @ J'zb
i+ j2§1+r2 hiz\ 9xP axf) %

Since b, vanishes to order m at 0 we get
ax¥) \ax¥/) 2|,

|Gor) (i) ™),

Thus we obtain

a \/ o \
| (o) (ot -,
(arr) (a2
ax? xr ) "2,

Hence (10) and (11) follow by induction.

<C X

Jitysrg +I'2

P
< C)‘s+t+k

+C

Jitiyta;+a,<s+t

3 \u( 8 \%,
or) \axZ) V||

Definition 2.5. For Pe U and 2 < k < m we define U™** to be the open set
given by

m—k P P
(15) Ubk = iQE U: 3 )‘1‘:+k|(xP)I(Q)|j<)\—k and |x5(Q)| < )\k}’
=1’ Co Co
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where

Py = 7@ + x5

and C, is suitably large.
Lemma 2.6. For all Qe U>* we have

1
(16) SN < A <2)E.

Proor. Expanding 0"1- i, in Taylor series in the xP-coordinates and apply-
ing (11) we obtain

F) t
D10, ) = 0. @] < CE|[<8x1><ax§’> b ]

+ Clx)(Q) + ClxPy (@)™
SCUNL DY@V + Clexed)Q)-

Taking r < k we have X, ; < \f, j and since Q € U™* we have

Pyl

2C
1s) ’ |0il---i’(P) - 0i1...i,(Q)| _‘_)‘k

Thus (16) is established since
M = rszk |0i1~--ik|

and C, is large.

Definition 2.7. For each P € U and 6 > 0 we define v(P, d) to be the positive
number satisfying

(19) 6= f} NP, 8)’.
j=2

We define the 5-order at P, denoted by k(P, b), to be the least integer such that

(20) N, oV (P, 8% = max \]v(P, 8)’.
Jj

Then

21 k(p »Y (P, 8P < 5 < (m — DAL, o5 Y(P, k@5
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Hence
6 1/k(P, 8) 5 1/j
@ 1P, 5) ~ (P—> - min (_,,> .
k(P, 5) J >‘j
Lemma 2.8. There exists C > 0 such that
(23) ¥(Q,8) < CY(P,8) forall QeUP*®d,

Proor. By (22) and (16), we have

1/k(P, 5) 5 1/k(P, )
Y(Q,9) < C<Q—> < C'( > < C"y(P, 6).
)‘k(P, 5)

P
)‘k(P, %)

Lemma 2.9. There exists 7 > 0, independent of P and 6 such that the set

) 0
@4  BPo= [Q € U: |(xPY(@)| < n7(P, ), Ix5(Q)] < " Po) 5)}

is contained in UT*®®,
Proor. From (21) we have

)
Y(P, d)

< nim — D New, 5 Y(P, ) i

X3 ()] <7

P
e, )
Co

=
and
m-k . .
'21 Nt k@ oDV <1 20N ke, 5 Y (P 8)
J -
<P, 8) KPP Y] )\f+ ke, 5 V(P 8)/+K®:®

_ Neee.s
<P, 8) P08 < CNip, 5y < 522
0

Proposition 2.10. There exists C > 0, independent of P and 6, such that

25) S1B,8<UQH<CYP,8) forall QeBP,).
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Proor. The second inequality follows from Lemmas 1.8 and 1.9. To show
that v(P, §) < Cv(Q, 6) first note that (22) can be rewritten as

N < 8v(P,8) 7.

Next, from (17), we have

00, P) = Oy 1 (D] S C 5 N7, 8 + CoY(P,8)
J=

tttttttttt

Now

<NMeot X 16;,.,....i, )= 6;,..; (D

< C'ov(P,8)~*@D
hence

C'é

Y

1/k(Q, 8)
> < const. ¥(Q, 8).
k(Q, 9)

(P, 6)<(

Lemma 2.11. There exists C > 0 such that

3\ o\ »

and

a \( a Y\
e |G () o),

for all Q € B(P, §).

< Cov(P, o)~ !

< Coy(P,8) k¢

PROOF. Setting

0
Dy = 5o
d
D=2,
27 ot

and dropping the P’s and the 6’s we have, using (10)
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D D3a(Q)] < CX|D1"'D3""a,(0)] | @17+ O(1%(Q) + X" (D™
,r
SC(BMrtvsrrna? ™ 877!
,r

< C' 67 —-s—t—1
thus proving (26). To prove (27) we use (11) and obtain

IDiD30,, ..., (@) < CX DI D5 ,.., O | (@I

+ O(I%(Q)] + X' @™

< C(lzxtw”m’“ + oyt
N
S Cla,y—k—s—t.

Definition 2.12. Let B(P, 8) denote the subset of B(P, 8), defined by

B(P,8) = {QeB(P,d): |x{(Q)| < 18}.

Proposition 2.13.  There exists a constant C, such that whenever Q € B(P, d)
then B(Q, C,8) D B(P, 8) and whenever Q € B(P, 6) then B(Q, C,8) D B(P, 5).

Proor. Note that, for C; > 1 we have

C1™¥(Q, 8) < const. ¥(Q, C;8)
(28) 12
< C*v(Q, 9).

Thus it suffices to show that if Q € B(P, §) then there exists a C, > 0 such that
whenever Q € B(P, §) we have

29) { XD < Cpmd
|9 (D)| < C17(Q, 8)

and whenever Q, Q € B(P, 8) then

D) < Condr (@, )
(9@ < C1(Q, 9).

To prove (29) and (29)' we express the x2-coordinates in terms of the x*-
coordinates, we have

30) { x§ = x5 = x5(Q) - F&P(x] — x{(Q), x5 — x3(Q)
&9y = 7y - Y@

9y {
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where F2'* is a polynomial of order m of the form
(31 2Pz, 20) = Z CS
i+ Jj=1
As in (8) the polynomial F2'F satisfies
(32) F P (T, x9) = P + x5(Q) + FE P2, x9), x2 + x0(Q), x§ + x$(Q)
bQ(x 1% 2)
Hence
2
2 g1 < DT < Covp, 97"
i+j=1
Differentiating (32) with respect to le and x2Q and evaluating at Q we obtain

2 eI < covp, o).

i+j=r
Hence from (30) we get

[x2 (Q)| < const. 78

and

|(x9'(Q)| < const. 7v(P, ),
when Q, Q € B(P, §), and

Ix F(®)

| < const. 987~ (P, 8)
[E1(9)]

const. nv(P, 8),

//\//\

when Q, O € B(P, 5).
The desired inequalities (29) and (29)' then follow from Proposition 2.10.

To conclude this section we define 02,6 € C3(B(P, 8)) and op; € C(B(P, 9)).
Let 7°, 7! € C5([0, )) such that 7° = 1 in a neighborhood of 0, 7' =1 in a
neighborhood of the support of 7°, and such that the support of 7' is suffi-
ciently small so that

supp (7'(|x5|v(P, 88~ 7' (|FY[v(P, &)~ 1)) C B(P, 9).
Setting
(33) bps (6F) = T(|XT1V(P, 88 Hr (| FY V(P &)™
we define

34 a3 7) = (%518~ NPy v (P, 8) 7,
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and

P -N
(35) 0 (6F) = <1 + "‘6" > B 5 (X7,

where N is a large number that will be fixed later.
From (26) we easily deduce

(36) | X;, -+ - X, 0p5] < CY(P,8) ™ ;.

3. Second Microlocalization

In this section we study the operators I'; which localize the Fourier transform
of a function to a region where |£| = M/8. We prove a number of fairly stan-
dard properties of these operators, several of these results (or slight variants
thereof) were already established in [FK] and we include them here for com-
pleteness.

Definition 3.1. Let yeCy({teR*:0<a< |¢ <b})). For ue H * and
6 > 0 we define T'su by

o = o 2 &)
su(® =y ﬁé ac%).
The following is part A of Lemma 1 in Section 1 of [FK].

Lemma 3.2. Let R, R,, ..., R, be pseudo-differential operators such that
the supports of their symbols have no point in common. If one of the
Ry, ...,R, has symbol supported in |§| = M/6 (that is, in the region
aM/é < |E| < bM/6), then

5 \pover
(1) "Rl"'Rnu“sos C<M> "u"—so'

The «power» and s, may be taken arbitrarily large.

Proor. Say R; has symbol supported in {|£| = M/5}. Let Q be a pseudo-
differential operator of order K, with symbol g(£) such that

M\
q¢) = (T)
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on the support of R; and

18%g(8)] < Co(1 + |E< 1o

with C, independent of § and M. Then, by the standard theory of pseudo-
differential operators, we have

“Rl te 'RjQRj+1 e Rnu"so < const. “u“ -5,

where the constant is independent of 6 and M. The desired inequality (1) then

follows since
5 K
R;= <—> R;Q.

The following result is again a slight variant of a well-known property of
standard pseudo-differential operators, it is essential in our analysis and appears
as Lemma 2 of Section 1 in [FK], we reproduce it here for completeness.

Lemma 3.3. Let T = a(x, D) with symbol a(x, £) of order zero supported in
|&) = M/5. Let ¢ be a smooth change of coordinates defined in a fixed
neighborhood of 0. If u is supported in a small neighborhood of 0, then

Su(x) = [T o ¢~ )] o $(x)

is well-defined for x in a small neighborhood of 0. There exists a symbol
a(x, £) of order 0, supported in |§| = M/, so that

|Su — @0, D)u| grsqomman nba of oy S €87 N1t] —s-

Here, «power» and s are as large as we please.

Proor. For x near 0 and u supported near 0 we have

()] Su(x) = j 00 = oMg(g(x), £) u(y) dy dt.

Now
Ho0) — 00N = & [;0 (x + (1 — oWt |G~ ) = n(x ~ )
with
1=GEE G =[[iox+ (- nyydi]

a smooth matrix-valued function. We have G(x, x) = (¢'(x))’, so G is invert-
ible for x near y. In our integral x and y are both near 0, so we may introduce
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the smooth matrix-valued function G(x, y) = (G(x, y)) " '. Changing variables
from y, £ to y, n in (2), we have

) - ~ 1

3)  Su(x =Je“’"“y) det G(x, y)a(o(x), G(x, —— u(y)dyd

( () [ (x; V)a(o(x), Gx, )] dt o) (»dydy
= j e Db(x, n, yyu(y) dy dn
with b satisfying
M\ I8l
55,0901 < Cuo )
’ )
O] M
supp b(x, 1,y) C {ln! ~ ?}
Taylor-expanding b in y about y = x, we have
1 - X — o (3
%  Sux = IZIOI ;,-je 1EII(y — ) [B5b(x, 1, Y)y = Ju(y) dy dn
a| < .

+ j e b (x, n, Y)u(y) dy dn

where b# satisfies-(4) and also vanishes to order 10/ at x = y.
Integrating by parts in 5 in (5), we get

Su(x)= 3, Caj‘e""(x'y)lafi‘ay“b(x,n,y)|y=x]u(y)dydn

|| = 107

+C j (e I|x — y| XAl b¥ (x, 1, »)]} dy dn.

On the right side, the first term is of the form @(x, D)u(x) with a(x, £) a symbol
of order zero supported in |£| = M/6.

In the second term, the integrand and its derivatives up to order / in x, y
are O(M/8) ™% and supported in |n| = M/s. Hence, taking / large, we see that

Su(x) = atx, Du(x) + [ K(x, y)u(y) dy,
0595K| < Co', ol + 18] <5
I as large as we please. The conclusion of the lemma is now obvious.

Corollary. Let ® be a smooth coordinate change defined on {|y| < 1} C R3,
and let 0 € C3(|y| < 1). Thus 0[(T'su) © ¢] is well-defined on all R®. Let P be
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a pseudo-differential operator of order zero with symbol o(£) supported in
(|&] < c,M/8}. If ¢; < < 1, then

| PO 5u) © 61} |, < C8™ | u] .

PrROOE. Set § =6 o ®~ !, and take Y e Cyg equal to 1 in a neighborhood of
supp (f). Lemma 3.3 shows that

O[(Tsyu) o @] = ba(x, D)[(Yyu) o @] + E[(Yu) o ]
with supp d(x, £) C (|| = M/6} and &: H™* — H® with norm O(6*°**"). Hence
P{O[(T;u) o @)1} = (Pa(x, D)} [(yu)®] + PE[(Y1)®] + P[{OT;(1 — Y)u} o ].

Lemma 3.2 applies to Pd(x, D) and to 8T';(1 — ), so the corollary follows
at once.

Lemma 3.4. Let R be a pseudo-differential operator of order zero with sym-
bol R(x, £) which, when expressed in terms of xF-coordinates has support in
the support of I's. Then

6 loSRul < CllosTsul + C'o""u] g,
0

here 0 = 0% and o5 = op;. The constant C is independent of M and 6, and
C' depends on M but not on .

Proor.

@) Ru(x) = [ R(x, De™a() i
= [ R(x, e'™=%u(y) dy dg
= [ Hex, yyuy)dy

with

® H(x,y) = [ R(x, e’ ~dg.

Using the identity

M -K MZ K. .
o (1 M) (12 -

and integrating by parts repeatedly, we may rewrite H as

-K 2 K
(10) H(x,y) = <1 + % |x - y|2> f e"“x-y)[ <I— %—AJ R(x, s)] dé.
R3
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The quantity in brackets is O(1) and supported in || = M/ in view of our
hypothesis on R(x, £). Consequently,

M 3 MZ -K
|H(x, y)| < CK<?> <1 + —5—2“|x—y|2> :

Substituting this into (7), we get

M 3 0
(12) loS)Ru(x)| < C,K<_6_> A|;25(x)| % [u(»)| dy.
<1 + lx — y|2>

Now it follows from the definitions of o9 and o; that

13)

M & < Clos ()] + 677,
1+ ry Ix =

where «power» can be taken as large as we wish if K and N are sufficiently
large (recall that N occurs in the definition of gj).
Now from (12) we get

(14)  |o()Rux)|?

M\® d 05 (%) |u()|?
SCK<T> My X 6M| | sk A4y
' <1+TIX—}’|> <1+—5—|x—yl>

3 2 2
< C(M> a5(0)*|u(y)| dy
M
(1+ 3% x-)

< c( M >3 [ o) u)’

<1+£|x—y|>
J 5

Integrating with respect to x we get

o dy + CoPr| |2,

(s |osRul < Closu| + 87" |u].

Substitute now I',u for u.

We may use Lemma 3.3 to view R as.a pseudo-differential operator in terms
of the y-coordinates in which I'; was -originally defined. Since the symbol of
['; equals 1 on the support of the symbol of R, we obtain from Lemma 3.3
that |RTsu — Ru| L2(suppod) S 6P| u| _,, provided that u is supported in a
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small neighborhood of 0. We may remove the restriction on supp () by putting
¢u in place of u for a suitable cutoff function ¢ and invoking Lemma 3.2 to
control the resulting error terms.

Since also
- M \%
Tl < c(---6—> Jul -s,.
we obtain
(16) |o3Ru| < Cllo,Tsu| + C'8°" |u| _, .

Here C is independent of M and 6, while C’ depends on M but not on 8. The
proof of Lemma 3.4 is now complete.

Lemma 3.5. Suppose that R is expressed in xF-coordinates as a pseudo-
differential operator of order zero with symbol R(x, £) supported in suppT';.
Then, again setting oy = o'%; and o5 = op;, we have

C
amn |lo3, RIT;u| < o7 losTaul + €7 u|

here C is independent on & and M; and C' is independent of 6.

Proor. We have

(18) oSCORUC) = [ BCORCK, D™ ~Pu(y) dy d.
So

(19) (0%, RIu() = [ Hex, pu() dy

with

20) Hx, ) = [ (0369 — ad)Rx, e d.

Again using (9) and integrating by parts, we obtain

M AR 0
@1) H(x,y) = <1 tos lx = | ) (05(x) — a5(»)

2 -K
jeiz(x—y){<1_ %AaE) R(x, E)} dg

and, just like in Lemma 3.4, that the absolute value of the integral is bounded
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by CxM?35~3, hence

M 3
Cel(o3) - a‘g(y))|<7>

(22) |H(x,p)| < 5 -
<1 +57 |x — J’|2>
< CK< __1;_4_)3 |9869 - a30y)| I

<1 +—|f—ng>K <1+%|x—y|>x.

We will prove that if K is sufficiently large then

60 X) — ao X — ower
(23) (l il )|x _f’y(iy)‘,( < CKo,;(y)l—‘SJi + b,
e

6

To establish (23) we ask when does the following estimate hold

_ K
4) (6p°w°’+aa(y))<l L 6}' |> > const.

Clearly (24) holds if y e supp (¢9), for then o5(y) ~ 1. Also, (24) holds if
x € supp (03), by definition of ¢}, , = o3. If (24) holds, then

0y 0 _ K
(25) M(Ti—_t;i(.)’)_l_ < C<1 + |x—6y|> 6™ + a;(»)),

8

which amounts to (23).

The only case in which (24) fails is when neither x nor y is in supp (¢%), in
which case (23) is trivial.

Putting (23) into (22), we get

3 _ M -K
@6) |HCx, ) sc,((%) adntl <1 +—6——Ix—yl> %)

M\? M -X
(M) (1 M)

= H;(x — »)o;(») + 6" Hy(x — »)

with

C
(27) “Hl "LI < —]—WK_ and "HZHLI < CK'
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Substituting this in (19) we have

(28) |[09, Rlu| < Hy * |osu| + 8P H, * |u
pointwise, so that

C
(29) 103, Rlu| < 5 losu] + c87"ul.
Taking I';u in place of u, and noting that
M \%
(30) ITsul < C<7> lul -,

we obtain the desired estimate (17) thus completing the proof of Lemma 3.5.

4. Rescaled Subelliptic Estimates

The purpose of this section is to prove the following two estimates

M M*|03,Tyu|> < Crv(@, ) 3 | o, T X ul]?
J

+ CilopTsul® + €87 |ul?,

where C; is fndependent of 6 and of M and where C depends on M but not
on §, and

@ [t 5.5, < CYP, O X | X,ul + |ul},

where |u] g 5, denotes the L,-norm of u over B(P, 8) and the constant C is
independent of P and 6.

We begin with the proof of (1). For each P and 6 we introduce the rescaled
coordinates (y,, ¥y, 7,) by '

xP P
=20 ’ .= —J
3) Yo =5 and y, Y(P.5)

for j=1,2.

Let ® = {yeR%: (6y9, Y(P, 8)y") € B(P, ) for all Pe U and 6 €(0,1)}. Note
that ® is of the form {yeR3:|y,| <C, |y'| <C'} where C and C’ are
independent of P and 6. Let Y; = v(P, §)X;, that is

(P, 6)
5

@ Y- 2,

ay

J

d 2
ai (60, Y(P, 8)y) 5+ 3 a;, (8%, V(P 8)y)
e =1

where the af and af; are given in (9) of Section 2. The Y; are C” independently
of P and é and their commutators through order m span, uniformly in P, 6
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(as in [FK]). It then follows that there exist C > 0 and ¢ > 0 independent of
P and 6 such that

©® Iwle< C(S1Y,ml + Iwl)
for all we Cy(®).

Lemma 4.1. If S is a pseudo-differential operator of order e, 0 < e< 1, if
e CF(®), and if p(x) = (1 + |x|>) " then there exists C > 0 such that

6 |$Sul < C|sul. + Cloul
Sor all ue Cg5(R"™).
Proor. We have

[ ¢Sul < [SCEw| + |18, Slul,

7

@ 1G] = |AA=SGw] < Clul.,
and

(8) “[g.aS]u" gC"pu“e—lgc‘“pu",

Hence combining (7) and (8) we obtain (6).
Setting w = {u and combining (5) and (6) we get

© [£8ul”> < C X1 Y;Guwl* + Cloul?
<SCUsYul* + C'loul®.

If supp # C {£€R*: |§| > M} then, letting S be the operator with symbol

2
S® = x(Li—L)Mf,

where
0 if t<1/2

(19) X0 = {1 if t>1,

we have Su = M‘u and then

(11 M*|tu|> < C2|¢Y;U|* + Clou|?.
J

By rescaling we then obtain

(12) M*|o%u|* < CY(P, 8 3 |og X;u|* + Closul?
J
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for u with

supp (4) C {E € R™: |£| > const. ]:34} )

where

P|2 Pyr12 \ =N

3 D,y

Now for arbitrary u, T'yu = u* + u,,,, with
~# M power
supp(@”) C |£| > CT and " uerror"ck <G 1|ul| — 502

where k, «power» and s, may be chosen arbitrarily large. Applying (12) to
u® we get

(13) M**|op,Tsul® < CY(P,8) 2. [0 X;Tsu|® + C|psTsul? + 87" |u|?.
J

Since
O X Tt = 09, Ts X;u + 05, [X, Tslu
we obtain, by the results of Section 3
|05 [X; Talu| < Cllog,Tsul + 87" |ul.
Combining this with (13) we get
(14) M*|op,Tsu|? < CY(P, 8 3] |op,Ts Xju|? + ClosFoul® + 8% |ul?,
J
Recalling the definition of ¢,,, given by (33) in Section 2, we set ¢; = ¢,;
and replace u in (14) by ¢;u obtaining
(A5)M*| 08T sdsu|> < CYEY 2 | 03T 3 X;05u|* + ClosTsdsu|® + 67" ul?,
J
here we have dropped P, which remains fixed through the rest of this section.
Now observe that y(P, §) < C8™. Thus, introducing the coordinates x* =
xP81/m=1 we note that the ¢, are «smooth» in these coordinates, that is all
their derivatives are bounded independently of &. Similarly we define ¢}, ¢3,
3 etc., so that ¢.*! = 1 on a neighborhood of the support of ¢5 and we set
#2 = ¢;. The coordinates £* dual to x* are given by £* = £6 ~ '™ and hence

the support of the symbol of T'; lies in {|£*| > C5~ ™). Since o9 = o3¢} we
have
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(16) osTsu = oaTs05u + 03[3T5((1 — dp)u)].

The L,-norm of the second term on the right is O(6°**|u|) since ¢} and
1 — ¢; have disjoint supports. Similarly

a7 oaTs X;u = 03T X 51 + Ug[¢§Fan(1 — ¢p)ul

and again the second term is O(6*°"*"|u|) since 6.X; is a first order operator
in the x*-coordinates.
So now we have

(18) M*|o3T,u|* < cv(a)zz 09T X;u|* + C|psTsosu|? + 87 [u|>.
J

Reasoning as above we have
19 [(1 = ¢)Tssu]* < 87" Ju”.
Next we have
20) 937305 = Q93T + 8" Qerrers

where Q, Q... are pseudo-differential operators of order zero in the
x*-coordinates and the symbol of Q is supported on {|&*| ~ M~ 1/my This
is due to the fact that ¢2I'; is elliptic on places where the symbol of ¢}T;¢;
is essentially supported. Thus

Q1) losdsTsdsu| < |05 Q3T + 67V |u].

In the x*-coordinates, p; is constant on a scale ~8'/™ while Q is order zero
with symbol supported in {|£*| ~ M&~/™}. First we show that

(22 losQw] < Closw].
The proof of (11) in Section 3 gives
Qw(x*) = [ Hie*, y¥)w(y*) dy*
with
|He*, y*)| < Ce(M8™V™P(1 + [x* — y*|6~ V™M) ~¥.
From the definitions of p; and the x*-coordinate system we read off

ps(X*)
Ps(¥*)

S CA + |x* — y*|s~ V™V,
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Hence

Ps(x*)
Ps(¥*)

Taking K much larger than N we obtain (22) from the above.
Now we apply (22) to w = ¢3I';u and combining with (21) we obtain

ps QW(x*) = I H(x*, y*)osw(y*) dy*.

23) losTsdsut| < Closd2Tau] + 67" u].

From the definition of o; we have |p;63| < const. |o;|. Hence, combining with
(18), we obtain the desired estimate (1) with [, instead of I'; so that, changing
notation, (1) is proved.

Now we turn to the proof of (2). The first step is to construct a function
¢ € Cy({y € R%: |y| < 1}) with the property that ¢ = 1 to high order at 0, i.e.
#(0) = 1 and D*¢(0) = 0 for |a| < N. Throughout this proof we will keep P
fixed. Then for each v we define 8(Y) by

24) 8(y) = 22 N,
Jj=
which is consistent with Definition 2.7. We define ¢., by
: 1 X, x'>
25 XgyX)=——5| ——>— |»
@) 0 X) = Sy ¢< v v
here (x,, x") denotes (x5, (x*)).

Lemma 4.2. Setting

we have
(26)

Y _
|*¢2/m(0) — u*d,,,2,(0)| VOIB<V> <SCvX ")(ju"B(‘y) + M s“”"a(z-y)

and
27 lu — u*é,,0)| B S CY 2 [ X;ul By T CM “*lul B@y"

Proor. Let Y; be smooth vector fields given by Y; = vX;. Given Mg, N, Xo»

N we define
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no L (¥ ¥
¢(}’o,)’) - )\Ol)\l| ¢<)\0 ’ )\I>
and

Ty = b w20 Y7,
V(¥o,¥") = X0|X'|2 ¢<Xo’ )\/>

If M>> 1 and if the \ and X lie in [M~%, M~!] with K large then

@) [Pu© - PuOP < CX | Yuld, o+ CM *lulhy <y

~

PROOF OF (28). Define Qu by Qu(¢) = w(M ~'2Hu(f) with w e C*(R’), w = 1
if |£] > 1, w = 0if |£| < 1/2. We begin by applying (11) to Qu. (Note that Qv is
supported on |£| > M/2 so (11) applies with M'/? in place of M.) Thus

Q8 M c|*< CX[¢Y;Q0)* + Clv|> < C X | Yv|? + Clv|>.
J J
Apply this to v = {Qu, where { and { are analogous to ¢Q but symbol of

¢80 = 1 on the support of the symbol of ¢{Q. Lemma 3.2 with 6 = 1 and M
replaced by M2, gives

CQu=¢Qf0u = ¢Qu + 8u with |8u| < C,M™*|u|.
Similarly, '
QYv=0Y;{Qu=0:Y;u+8&u with &u<CM *|u|.
Hence (28)' becomes

M| §Qu|* < C QS Y;ul® + C|§Qu|® + CM™*|u|?
J

SCRI8Yul® + ClEQu|* + CM™*u|?.
J

The term | §Qu|? is analogous to the left-hand side, but we have gained a
factor M¢. Hence an obvious induction gives

(29) Me|Qu|? < CzJS | Vel Togy <y + CsM ™[]

Since ¥*Qu(0) — ¥*Qu(0) = (¥ — ¥)*¢Qu(0), (29) implies
(30) [¥*Qu(0) — ¥*QuO)* < C X |$Y;ul® + CM~*ul™.
J

The condition ¢ = 1 to high order at 0 implies that the Fourier transform
of ¥ — ¢ has L>-norm O(M~*) on G = supp (1 — w(M~ ?||)). Hence
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G Y- DuO) — $*U ~ DuO) < [§ - ¥ 1 - Qul?
S CM~*|ul?.

Combining (30) and (31), we get
[¥*u(0) — $*u(0)|* < C 20 | Yiut| Jagy <1y + C:M ™| u|%.
J
Replacing u by the product of u and the characteristic function of {x: |x| < 2}),

we obtain (28).
Setting

)\o=5<~17>5(7)_1, N=WM"LM, X 5<%>5(27)‘1,

and \' = @M~ !,2M~ ') we have

(2) V(P0, ) = b ar (s X7) volB<-XZ> .

- 2y
3[’()’0: y) = ¢2‘Y/M(x0’ x")vol B<ﬁ> .

Thus we obtain (26) by rescaling (28).
The proof of (27) is analogous to the proof of (26). In place of (28) we have

(33) lu = u*¥O) | gy <y < C; | Yiulgy <y + CM ™| u].

This is proved by again setting ¥ = Qu + (I — Q)u. We then obtain (27) by
rescaling (33) which concludes the proof of the lemma.

Let A = sup, . ., 7" *[u|%,- Then from (26) we get, for 2* 'lyM~1 < 1,
the estimate
G |u*6yi11,,0,(0) — u*b,. 1, 0))> < COR) ™' 20 [ X;u|?
+ C,M ™82 72 | ul
< CoR) ™' X | Xu|* + CM~8(2'y) T A.

Since 6(2"y) "' < 478(7) !, we obtain, by summing over i,

35) |t mO) = 6~ (C T | Xul® + C,M~°A) + Cyflu|.
Then

2 s
(36) |u*¢y/M(0)|2volB<M> <vCT 1Xu|? + C,M~3A)

+ Cp, 873 u) >
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Combining this with (27) we obtain

A<C(3 1Kl + [ul?) + CM~A
J

so that (2) follows by taking M sufficiently large.

5. Scaled Sobolev Norm

Definition 5.1. For each s > 0 and u € C5(U) we define the scaled Sobolev
norm of u, denoted by |||ul||,, by

! _ dé
0 iz = || [, v 0 2rauerpap L+ ul?

where Iy is defined in terms of  in Definition 3.1 and y(¢§) = 1 whena < a’ <
|§] < b’ < b.

The purpose of this section is to prove that for M > > 1
) Me||[ullls+ 1 < CL 2 IIXullls + Clul,

where C, is independent of M.
Note that |||u|||o ~ |u«] since

1 2

c'In(b'/a) J %6— < cln(b/a).

0

(29

Also, if v(P, 6) is replaced by 8, the resulting norm is equivalent to |u/,.

Lemma 5.2. The following are equivalent to |||ul||?

1 dpP dé
2 _ 112 ~25 0 2@ ado
I P N IR GO R R
and
1 dpP do
2 2 —2s 24____,
I e I I R A

where vol (P, 8) = ¢y (P, 8)*8, which is the volume of B(P, §).

Proor. Since v(Q, 8) ~ v(P, 8) for Q € B(P, 6) it suffices to show that

dP , dP
® j Ay vol(P,8) j 725 Q) vol(P,8) 1
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The fact that the first term is equivalent to 1 is an immediate consequence of
Proposition 2.13. To see that the second term is equivalent to 1 we have, from
(30) in Section 2, that

x5(Q) = x§() —~ F&P(~x{(Q), —*}(Q),
furthermore
|FP2(=x7(Q), —x3(Q))| < const. §,
for Q € B(P, 5). Hence
<1 N |x€§g)lz>‘”~ <1 N lx%%gnz)'”
for Q € B(P, d). So that (4) follows from this and the definition of 0ps» Which

completes the proof.

The following proposition shows that the norms ||| |||, are independent of
the choice of y in the definition of I';. If T'; is defined by the function ¢ as
in Definition 3.1 and if further there exist a;, b; so that Y(£) = 1 whenever
a; < |£| < b, then we will denote the norm |||ul||,, given by (1), by |||u]||¥.
Similarly, if ¢ € C5({£:0 < @< |¢| < b}) and if (£) = 1 when @, < |¢| < by,
we have the following result.

Proposition 5.3. The norms |||ul||¢ and |||ul||? are equivalent.

Proor. First assume that ¢ is elliptic on the support of y, i.e. |¢(§)| >
const. > 0 if £ esupp y. Then I'; = QT';, where

b
o)
A
(2
is the symbol of Q then, from (3), (4) and Lemma 3.4, we conclude that

lzll¥ < CJ||u]||¥. Now we drop the assumption concerning the support of ¥
and we take up the general case. Let

q¥) =

a, + b,
—_—)
24,

let k, be an integer so that @,r %0 < a and b,r*® > b, ¥;(£) = ¥(r’%), and let
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The function ¢ is bounded away from zero on the support of ¢ and hence we
have

k -
llullly < Clilulllf < € 25 Nzl
~ %o

Now, changing variables in (1), we get

J
- r e - dé
sl = | [ vee.r o #I0fupap S+ fur?

0

Since (P, 8) < const. y(P, r/8) and since

v’ ds
j fv(P,r'jé)‘zs|Fﬁu|2dP—6 < Clul?,
1

we obtain |||u]||¥ < const. ||]u|||‘s’_’. Reversing the roles of y and y we conclude
that |||u]||¥ ~ |||«|||¥, thus completing the proof.

To prove the desired estimate (2) we proceed as follows. Multiplying (1) in

Section 4 by (P, 6) ~ >~ 2, integrating with respect to dP/vol (P, 8) - d6/8, and
applying the above lemmas we obtain

M*|lul5+ 1 < CENXulll; + Clllull + Clul®.

Then (2) follows by choosing M large enough.

6. The Basic Estimate

The purpose of this section is to establish the following result.

Theorem 6.1. Let I be a pseudo-convex compact CR manifold of dimen-
sion 3 on which 0, has closed range in L, and suppose that P,e M is of

finite type. Then there exists a neighborhood U of P, such that if { € C5(U)
then

2
e 2 1X,6w] < ClLu]
Sfor all u L 3C(M).

Proor. The estimate (1) is equivalent to

@ |LGw| < C|Lul.
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The following estimates follow from (1) and (7) in Section 1 and the fact that
the range of 9, is closed.

(€) ILE®~su| + |LO%u| < C|Lul.
Thus it will suffice to prove
(C) |LE* su| < C|Lul.

We have u = L*v = —Lv + gv. The estimates (4) will be proved in three
steps. First, we will show that

® M|®7* svlll, < C(Ju| + |v])
and
O] Me|||®* solll, < CI@* sullly + Jul + o).

Second, we will prove that (5) implies that
(6 1@ * sulll; < C|Lu].

Finally, we will prove that (6) implies (4).
We start with (6) in Section 1, namely

@) 21X, w2 < CleTLw|* + C[@*w|* + C[Rw|>.

We wish to use this to estimate | a‘},al"an(P *¢v]|, from Lemmas 3.1 and 3.4
we have

®) [0%T,X,0 " ¢0] < [o%,T3@  X;50] + lop,T, 8 0] + o™ o]

Letting @ ;’ be an operator whose symbol is supported in a neighborhood of
the symbol of I';® * and which is 1 on the support of I';® *, we choose ®; ,
I's and ®* so that their symbols depend only on # hence we have
Ir;®* =®;T';®* and thus by Lemma 3.5

O  opl® X 0] < [®) 03T, 0 X 0| + — ||0P5I‘5Xj(P+§'v||

+ C'67°"|v|.
The first term on the right above can be estimated by
10) 185 0% T,0* X;tv] < |X,;0; 03,0 tv| + cuamr @+t

C

+ gy 1omTs® E0l + CP o,
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Now, applying (7), with ®* replaced by @'; , to the first term on the right
we obtain

an Z||chf>+amro> cv| < C|®; Lo, T,®* v + C|o%,T,® " Fv].

The first term on the right in (11) is estimated by

(12)  |®; Lo, T,®*tv| < C|o%,T,@* ¢L*v| + ——— |0ps T, @ * 0|

C
Y(P, d)
+ Cllog,[y® " Eol + C5"* ]

Combining all these we obtain
- C ~
(13) 3 |05 TsX;0 " 0| < Clop,T,0 " SL*0]* + oy 31 |op, T X0 $0]2

C

+ g 19T 501+ Clog L0 Fol?
+ CoP ]2,

. dP ds
Multiplying by ——I—(—P—a) 5 and integrating we obtain

= C
S IX,0* ol S CIO*LLw] + o 3 1X,0* S0l + ClI0 sol i + Clof?

hence
2 1X;@* cvl < C(lul + (o) + Cl|@* sl

Applying (2) in Section 5 with s = 0 and M sufficiently large we obtain (5).
Similarly, multiplying (13) by

dP  db

_2———_— el
1B b

and integrating we obtain
2 1X,@* sollly < CllIE* sulll, + ClIl@* solll, + ClII®* Eollly + Clv]
now applying (2) in Section 5 with s = 1 and (5) with ®* § in place of ®* ¢

we get (5).
Next, we take up the proof of (6), we have
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|02, T3®* cul? = (0% T5@ * tu, % T, @ * tL*v)
< |(ag§l-‘5(? * g'I_Ju, agar‘a@ + g’v)‘

C
+ m ||0P6I'6(P+§‘u|| l|6P6F6@+§-v|i

+ Cllo%sTs®@* cul [ 0%, T @ * ]
+ Clop, I, @ * ul |0, I, @ tv]
+ C8P(Jul® + o))

hence

05T ®* sul> < CY(P, 8)*| 09T ;@ * ¢Lu/|?

C
o om0 el

+ small const. |0, I, ® * fu|?
+ Cllop,T3@ " ¢v)?
+ CY(P, 8)*| 0%, T, @ * §u|?

+ CoPV (Ju|? + |v]?.

dpP db . . .
— and integrating, we obtain

. 3 1 -2 T 1/D &
Again, multiplying by v(P,8)™* 5 =

1@ sullli < C|@* ¢Lu|? + C|||®* ¢v]||3 + small const. |[|®* ful||}
+ ClI®* Eulllt + Clul® + [v]?).
Then from (5) and (5)' we get, after choosing M sufficiently large
1@ culll} < ClLu|? + C(Jul® + [v]?).

The desired inequality (6) then follows from the closed range property.
We are now in a position to finish the proof of the theorem by proving (4).
We have

68)) 0% LO®* tul? < |0p, L5 @ * §Lu|?

C ~ m L~
+m)—z||0para@+§'“"2

+ CY(P, 8)*| 0%, ;0T® * tu|?

+ CoP 2.
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This estimate is obtained by again integrating by parts as follows

ul° = LBu, ABu) + u, [A, L1Bu

ALBu|* = (L*ALBu, ABu) + (ALBu, [A, L1Bu)
= (ALBL*u, ABu) + (IL*, ALBlu, ABu) + (ALBu, [A, L1Bu)
= |ABL*u|* + (A[L*, L)Bu, ABu) + - - -

and using the estimate
|(A[L*, L1Bu, ABu)| < 7% |ABu|* + v*|A0TBu|* + - - -

Since 8I'; T is of order zero and since

0] < Co
= (P, 5

we get

lops 0T cul < F,0" tu| + Co™|ul.

C
,Y(P’ 6)2 " UPS

dP dé . .
— and integrating we

Substituting this into (11), multiplying by vol(P,8) &

obtain
|LE* tu|® < C|Lu|* + C|||®* {ulll? + Clu]

Hence, applying (6) we obtain (4) and conclude the proof of the theorem.

7. Estimates of Kernels
In this section we prove the main theorem stated in the introduction.

Proor oF (A). Suppose that fis supported in B(P, C$), and let u = f — S, f.
We know that Lu = Lf and that there exist v and w so that u = L*v and
v = Lw. Then we have |u| < |f| and

@ 1Vl 8,5 < CYP,O)|u| < Cv(P, )| f].

Now we introduce the rescaled functions #, #, W, f defined on {£: |£| < 10},
here we denote by X the coordinates defined by (3) in Section 4 and we are
setting X = y. We define

Xo, X1, X,) = &s———-—fl ’ x~2 ’
‘I’(xo,xl,xz)—<6 1P, ) ’Y(P,6)>
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f=fod, d=uod, v=v"lvo P, w=7 wo &,

Here we are dealing with fixed P and 6 and set v = (P, ). Then we have
Lu =If, a=1L*, v=Lw with 1] <100 + 1211 <10y S CLFIl, where
= Y(P, d)L.
Recall the subelliptic estimates from Section 1, namely

) |d|,.. < C|$'LF|, + Clo'd| + C|'D].

If we pick f so that supp fNsupp ¢’ = &, then the first term on the right is
Zero so we get

3) |#i];.. < ClF].

Now #(%) = [ K(%, ) f(7) d¥ where K is the rescaled Szegd kernel K(%, y) =
V2 6K(®(X), (F)). We write, i = S, f. We have shown that for U, U’ contained
n {% |%| < 10} with UN U’ = ¥, we have

18 | srswy < CIAI
for f supported in U’. Now §), is self-adjoint, so we obtain
“S.'j‘"US C“f“H—s(U')

for f supported in U’, by taking duals and interchanging U with U’. Inter-
polating between the last two estimates, we obtain

|Sf “ Hs2(U) X C"f "H s/2(U"

That means that K € C*(U X U’) uniformly in 6 and P. Hence |p(L, DR|<C
for any polynomial p and L, L can act either in % or y. The desired inequality
(2) then follows by reinterpreting this in terms of L, L and K.

Proor oF (B). First we have

C)) |l pep,cy < CY(P, )| f1.

Let 6 € C5(B(P, C8)) be a function such that § = 6 o ® e C3({x: |x| < 10})
uniformly in 6 and P. Let u* = u — S(6u). Now

* = (LO)u + 0(Lu),

hence if U C B(P, C?) is a neighborhood on which 6 = 1 then E*Eu =L*Lu
= L*fm U Moreover ||u# | < |6u] < C'Y(P,8)|f). Since u* L 3C, we have
= L*v*. Choosing v* orthogonal to 9U(L*) we have

©) [v* ], < Cv(P, ) |u’ | < CY(P, 8| f].



EsTIMATES OF KERNELS ON THREE-DIMENSIONAL CR MANIFOLDS 401

Now we rescale f, u, u”, v* by setting f=fo ®, i =v(P,8) uod, i =
Y(P,8) 'u* o @, and #* = v(P,8) %" o &. Then we have |d*| < C|f],
19*| < C|f|, L*La* = L*f, and [L*p* =a* in U= & '(U), which we
may take to be {x:|¥| < 10}. Returning to the subelliptic estimate, we have
from Proposition 1.5

loa" |5+ < Clo'fl, + Cloa’| + Clo'v*].

Assuming that suppfNsupp¢’ = &, the first term on the right vanishes,
while the last terms are dominated by C| f|. Thus we obtain |¢i”|,, . <
C| f|. What we really want is |¢i|,, . < C| f|, so we look at the difference
i — 4" in supp ¢.

Recall that u* = u — S,(0u) and that S,u = 0. Hence in supp 6 we have
u* =u+ S,((1 — G)u), that is for x € supp §

©) @' —wx) = IK(x, A = 0)u(y)dy.

If py(L, L) is a monomial of order k in L, L, then for x € suppé
Py(L, L)(u" — u)(x) = j (Dr(L, L)K(x, »)}(1 — 0(»)u(y) dy,

where the p, (L, L) acts on the x-variable. Since 1 — 6(») = 0 in B(P, C) we
may break up the -above integral as

) o

p(L, D) — wy(x) = |pi(L, D)K(x, y)| |u(»)| dy.

i=-10 LeB(P,ZiB)\B(P, 2i - 15)
In the region of integration for fixed i we have

Cy(P,26)"

@® |pi(L, LK (x, y)| < Doy P20

Also we have

|fuﬂB(p,2.-5) < Cv(P, 21'6) "f"

so by Cauchy-Schwarz

) lu(y)| dy < CY(P, 278)[v(P, 2'8)*2'8] 2| f].

I B(P, 2i5)
Inserting (9) and (8) in (7) and recalling that y(P, 2'6) > 2¥/2y(P, 6) we obtain
|pi(L, D)(* — w)x)| < Cv(P, 8~ %6~ %| f|

for x e supp 6.
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Rewriting this estimate in terms of the rescaled quantities we get
|pe(@, Dya* — @)| < C'| f|

for |%| < 10. .
Since 3/d%; is a bounded linear combination of the p,(L, L) with k < m in
{X: |%| < 10} we conclude that for any s

|¢@ — a")| 4 < C"| F1.

Combining this with our previous estimate |¢#* |, . < c|f|, we find that

(10) V2] gy < €1 7
if ¥V, V' C (% |%| < 10} are neighborhoods with disjoint closures with supp f
cVv.

Denoting the operator that takes fto u by Nf, that is u = Nf, we observe

that there is a completely analogous estimate for N* by interchanging the
roles of L and L*. Then by duality and interchanging of ¥ and V’, we get

an |, < C"| flg-s~ Where suppfcC V.
Then from (10) and (11) we conclude that He C*(V x V') where
i = [ A HF0)d5.

In particular, for a monomial p, (L, Iz,) of degree k£ with each L acting either
on X or jy, we get

\pe(L, DA, 7)| < Cr

for X e V, y € V' with constants C; independent of v and P. Returning to the
original coordinates we obtain the desired estimate (11) in the Introduction
thus completing the proof.

Proor of (C). Define kernels K(x, y), K(x,y) to provide the relative fun-
damental solutions of L, L* respectively. Thus

u() = [ Kx, ) () dy

solves Lu = f modulo the nullspace of L*, and u is orthogonal to the nullspace
of L; while

() = [ R »).f() dy
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solves L*ii = f modulo the nullspace of L, and 7 is orthogonal to the nullspace
of L*. From K, K we define composed kernels

K, (x,9) = [ K(x, )K(y, 2) dy
Ky(x,2) = [ K(x, )Ky(7,2) dy.

In particular, K, is the kernel for the relative fundamental solution of L*L,
so (C) in the Main Theorem amounts to proving estimates on K,. First we
estimate the size of K,, K;. Recall from (B) the estimates

|KCx, )|, |K(x, »)| < C/8Cx, y)v(x, ).

Here v(x, y) is the least v for which y € B(x, v), while 6 = &(x, 7). From these
estimates follows easily

[sep KDY <Cr, [ K2 dy <

To estimate K,, we write ¥ = v(x, z) and 8(y) = 8(z,Y), then break up the
region of integration in the definition of K,. We get

|&mmsj
'y €B(x, v/10)

|K(x, )| 75(7)

i K(y,2)|d
LEB(z,Z'y)\B(x’.Y/IO) v8(Y) |K(y, 2)| dy
cC 2

+ _C Ty
igll LeB(z,2i+ 1 )\B(z, 2iy) [ (217)6(21’)')]

C’ C loll
< + < )

(") igl 82 S 8(Y)

Similarly, using our estimate for the size of K, in the definition of Kj,

|K3(x,Z)| < | 9y)|

5()

J;EB(X, ~v/10)

+ ,2)| d
‘[veB(z 29\B(x, v/10) ‘)’5(’Y)| k(. 2l dy

.y j c C W
51 JyeB@ 2+ ty\B@, 2y 21)8Q2%) 8(2")

Cvy 2y C'"y
S—<+ 20 —<< ’
o(7) :§ 62) (v
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since (19) in Section 2 implies that 8(2%y) > 4'6(v).
Now suppose f is a function supported in B(0, ¥/10) and define functions

() = [ K, ) /0) dy,
() = [ Ky (x, ) () dy,
us () = [ K3(x,9)./(3) dy.

On B(0,v) we rescale f, u;, u,, u; by setting f=fo &, d, =7 'u, 0@,
#, =Y %uy o ®, iy = v u; o &. These functions are defined in {%: %] < 1}.
The definitions of our kernels show that L*u, = u;, Lus = u,, hence L*i,
=4, Liiy = &, in {# |%| < 1}. Therefore, the subelliptic estimates of Section
1 give

1625+ < ClY s + Clits| agey < 1y + Clitsl gy <y

for ¢ € C5({|%| < 1}). Our estimates for the size of the kernels K,, K; show
eaSily that “ 172 “ L2{|x| < 1}° " 113 " L2{|x]| < 1} < C"f" : Thus’

16215+ < Clthi [ + C| 71

In the proof of (B), we showed that |é#;|, < C| f|, provided ¢ is sup-
ported away from {%: || < 1/10}, where f is supported.
So we get

*) [9:]5.c < C'LFI

for supp (f) C {x: |x| < 1/10}, supp (¢) disjoint from {#%: |%| < 1/10}. To
interpret this, we introduce the rescaled operator G, and kernel K,(x,»),
defined by

G (®) = (%) = [ Ky(%,9)/(7) d5.

For x,yeB(0,7), K,(x,y) is related to K,(%,7) by an obvious scaling.
Estimate () says that

(%) Gy LXU) — H** (V)

for U, V disjoint neighborhoods in {£:|¥| < 1}.

Note also that G, is self-adjoint, since K,(x, y) provides the relative fun-
damental solution of the self-adjoint operator L*L. Hence by duality we
deduce from (+#): G,: H™*~ (V) = L*(U). Reversing the roles of U and ¥ and
interpolating with (+#), we find that G,: H~ ¢~ 9/%(0) - H“*9/%(V). This
means that the kernel K, (%, 7) is C* away from the diagonal. After rescaling,
we obtain the estimate (11) of the Introduction with ¢ = 2 thus proving (C).
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