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Introduction

This paper is mainly intended as a survey of the recent work of a number of
authors concerning certain infinite group actions on spheres and to raise some
as yet unanswered questions. The main thrust of the current research in
this area has been to decide what topological and geometrical properties
characterise the infinite conformal or Mébius groups. One should then obtain
reasonable topological or geometric restrictions on a subgroup G of the
homeomorphism group of a sphere which will imply that it can be made con-
formal after a change of coordinates. That is G is topologically conjugate to
a Mobius group. Many aspects of the theory of Kleinian and Md&bius groups
can be found in the books [Ah 3], [Bea], [Mas 1], [MB] and [Th].
Another focus of an investigation into the topological nature of Mdbius
groups is that it helps us to better understand these groups and enables us to
decide what features are essential to the development of certain aspects of the
general theory. As a relatively simple question one may ask whether the
classification into elliptic, parabolic and loxodromic elements for a conformal
group is analytic or topological in nature? What properties determine the
structure of the limit set? To gain deeper insight one is led to ask are the com-
bination and decomposition theorems for Kleinian groups (a 14 Maskit), either
topological, geometric or analytic in nature? How does Ahlfors’ finiteness
theorem fit into the picture? Is it really topological in nature or does it
definitely depend on the analytic structure of Kleinian groups (as does the
proof). Perhaps it is essentially an algebraic statement about finitely generated
Kleinian groups! Also what of Bers’ Area Theorem and Sullivan’s Finiteness
of Cusps. Are these too more general phenomena? Is Selberg’s theorem on the
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existence of torsion free finite index subgroups of finitely generated linear
groups a phenomena exhibited by any reasonable topological action on a
sphere?

In this introduction we will outline the main ideas and some of their conse-
quences, specific details of statements and some proofs appear later. I hope
the careful reader (and especially the relevant authors) will forgive the
simplifications I have had to make in the proofs that do appear.

A first natural generalisation of a group of conformal homeomorphisms of
a sphere is that of a quasiconformal group of homeomorphisms. Such groups
can be thought of as acting with a uniformly bounded amount of distortion,
whereas conformal groups have no distortion (at least infinitesimally). We use
J. Viisdld’s book [V4] as our standard reference for the theory of quasicon-
formal mappings. The following question was first asked by F. W. Gehring
and B. Palka [GP] in connection with their work on quasiconformally
homogeneous domains:

Is every uniformly quasiconformal group the quasiconformal conjugate of
a conformal group?

The answer to this question is unknown in dimension one (where quasicon-
formal maps are more commonly called quasisymmetric maps), yes in dimen-
sion two and generally false in higher dimensions. These, together with some
positive results, are mainly due to D. Sullivan [Su 1] and P. Tukia [Tu 1, 2, 3].

We regard quasiconformal groups as a geometric generalisation of confor-
mal groups. A topological generalisation was proposed by Gehring and the
author [GM] in their study of quasiconformal groups. The idea is to retain
the normal families properties of conformal and quasiconformal mappings,
as exhibited by the fact that any sequence of conformal homeomorphisms
contains a subsequence whose limit is either a conformal homeomorphism or
a constant mapping. This compactness property is clearly a necessary condi-
tion for the existence of a topological conjugacy and we call group of
homeomorphisms of the n-sphere with this property a convergence group. We
then ask.

When is a convergence group topologically conjugate to a conformal
group?

Again the answer to this question is largely unknown although there are good
positive results. In dimension one it is thought to be always the case while in
higher dimensions some additional hypotheses are clearly necessary. We ask
the question with regard to conformal groups since we are primarily interested
in lower dimensional phenomena or cases where the natural geometric can-
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didate for a possible conjugacy is a conformal group, for instance as in the
case of topological analogues of Schottky groups. As a simple example, the
group of complex biholomorphisms of the unit ball in C”, n > 2, acts as a con-
vergence group on S?*~! but by Margulis super-rigidity this group or any of
its discrete cocompact subgroups cannot even be isomorphic to conformal
groups as the enveloping Lie algebras are distinct. Actually these groups cannot
even be topologically conjugate to quasiconformal groups. There are however
quite reasonable hypotheses to make in a general setting which yield good
answers to the above question.

There are many closely related questions to those raised above. For in-
stance:

When does the group action on the n-sphere extend to the (n + 1)-ball?

This question is motivated by the classical Poincaré extension which extends
conformal actions on the n-sphere to the (n + 1)-ball. ‘

In dimension one this extension problem is equivalent to the general con-
jugacy problem, [MT]. And due to results of G. Mess [Me] and P. Scott [Sc],
the general conjugacy problem is equivalent to the Seifert conjecture for three
manifolds:

Is a compact three manifold with a normal infinite cyclic subgroup in its
fundamental group is a Seifert fibered space?

Roughly a Seifert fibered space is a three manifold foliated by circles in a
nice way. There are other interesting consequences related to Teichmiiller
theory. Indeed the one dimension question on the conjugacy of convergence
groups to Fuchsian groups is essentially a universal version of the Nielsen
Realisation Problem. The usual Nielsen Realisation Problem, solved by S.
Kerchoff [Ker], is implied by the statement (see [Tu 3]):

A group of homeomorphisms acting on the circle with a Fuchsian subgroup
of finite index is topologically conjugate to a Fuchsian group.

Necessarily a group of homeomorphisms with a Fuchsian subgroup of finite
index is a convergence group. P. Tukia has shown that convergence groups
of the circle are conjugate to Fuchsian groups unless they contain a
semitriangle group of finite index [Tu 3]. Such groups are so special as to be
presumed not to exist. In addition he and the author have shown that con-
vergence groups of the circle which can be extended to the entire disk are con-
jugate to Fuchsian groups [MT].
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In higher dimensions the problem is essentially more complicated. It is
known that the fundamental group of a strictly negatively curved manifold
acts as a convergence group on the sphere at infinity of the universal covering
space [MS]. Thus reasonable affirmative solutions to the problem imply results
concerning the homotopy type of negatively curved compact manifolds. This
is especially interesting in the three dimensional case where it is thought that
every negatively curved compact three manifold is hyperbolic. There is enough
machinery in place, mainly due to Thurston, so that the answer to this question
is essentially implied by the conjecture:

A convergence group acting on the two sphere and whose limit set is the
whole two sphere is topologically conjugate to a Kleinian group?

For partial results along this line see [MS] and [MT]. There is a relationship
here between these questions and those of Gromov concerning his so called
hyperbolic groups [Gr. 2]. Also the fact that the fundamental group of a
strictly negatively curved manifold acts as a convergence group on the sphere
at infinity explains many of the geometric features of the isometry groups of
visibility manifolds discovered by Eberlin and O’Neil in their work [EO].

M. Freedman has shown that in higher dimensions, the question of the
existence of a solution to the extension problem for even a rather restrictive
class of convergence groups is equivalent to the surgery problem [Fr]. In
particular the four dimensional surgery problem, at present unsolved, is
equivalent to the following question concerning a topological characterisation
of certain Schottky groups acting on the three sphere.

Given a convergence group G acting on the three sphere, isomorphic to the
Jree group on a finite number of generators, with limit set a Cantor set and
which is of compact type, does G extend to a convergence group of the four
ball?

These questions are all very interesting, however the simplicity of their
statements often belies the fact that they are mostly quite difficult. But as we
will see even partial solutions are often revealing and unify many approaches
to varied problems.

Finally we remark that the theory of finite group actions on spheres is sub-
sumed in trying to understand general convergence groups. Fortunately this
theory is well developed but there are still many unanswered questions which
are rather difficult and deep, for a good survey (particularly the three dimen-
sional aspects) see Morgan and Bass [MB] and the references therein. We will
try to concentrate on the aspects of the theory which specifically relate to the
group being infinite.
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1. Notation and Definitions

We denote by Hom (S") the homeomorphism group of the unit sphere S” of
euclidean (n + 1)-space, R”*!. The topology of Hom (S") is the usual compact
open topology, which is the same as that of the topology of uniform con-
vergence in the chordal distance p(x, y) that S™ inherits as a metric subspace
of R**1, A self homeomorphism f of S” is said to be K-quasiconformal,
1 < K< oo, if for each xeS”

. £, r)
P ) €
where
£ = max {p(f(x),f(M): p(x,y) =]}
and

£=min {p(f(x),f(): p(x,y) = r}.

By a conformal homeomorphism of S” we mean a Mobius transformation,
that is the restriction to S” of a finite composition of reflections in spheres or
hyperplanes orthogonal to $”in R”*?, [Ah 3]. In all dimensions, a self homeo-
morphism of the sphere is conformal if and only if it is 1-quasiconformal [Ge].
Conformal mappings are of course the boundary values of isometries of the
usual Riemannian hyperbolic metric ds* = (1 — |x|®) ~%|dx|* of constant negative
curvature on the unit ball B"*1, :

A subfamily § of Hom (S") is said to have the convergence property if each
infinite subfamily of F contains a subsequence {f;} for which one of the
following two properties holds

(@) There is an fe Hom (S") such that f;— fand f; ' - f~ ! uniformly.
(b) There are points x and y (possibly x = y) such that f;— x locally
uniformly in §” — {y} and f; !> y locally uniformly in S$” — {x}.

One should note that there is a slight redundancy in the definition with
regard to the convergence of the inverse mappings.

Definition 1.1. A subgroup G of Hom (S") is called a convergence group if
G has the convergence property. A subgroup G of Hom (S™) is called a
quasiconformal group if there is a finite K such that every g € G is K-quasi-
conformal and G is called a Mébius group (sometimes conformal group) if
every g e G is a Mobius transformation.

Our interest in the convergence property is twofold. Firstly it is the
characteristic compactness property of conformal and quasiconformal mapp-
ings, see [GM Thm. 3.2].
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Theorem 1.2. The family § of all K-quasiconformal homeomorphisms of
S”" has the convergence property.

Corollary 1.3. A quasiconformal group G is a convergence group.
Secondly the convergence property is topologically invariant.

Theorem 1.4. If G is a convergence group and h is a self homeomorphism
of S", then the group H = hGh™! is also a convergence group.

Thus the topological conjugates of Mdbius and quasiconformal groups are
convergence groups. Clearly then the convergence property is a necessary condi-
tion for a group G to be the topological conjugate of a quasiconformal group.

Definition 1.5. Let Q be a region in the sphere and x € Q. A subfamily § of
Hom (S") is said to act discontinuously at x if there is a neighbourhood U of
x in Q such that for all but finitely many fe &,

SNU= .

We say that F acts discontinuously in Q if it acts discontinuously at each point
of Q. We say that § acts properly discontinuously in Q if for each compact
subset E of Q "

SEYNE=
Sor all but finitely many fe .

Definition 1.6. Let G be a convergence group acting on S™. The ordinary set
for G is the set

O(G) = {xe S™: G acts discontinuously at x}.
The limit set of G is the set
L(G) =S" - 0(G).

We say that is discrete if the identity is isolated in G.

Notice that by definition O(G) is open and L(G) is closed. Recall that even
in the conformal case it is possible that G is discrete while O(G) is empty.
Whenever G is discrete the convergence property (@) can never occur for if
g;— g, then the sequence gjgj’+11 converges uniformly to the identity in G.
The convergence property (b) guarantees L(G) is not empty as soon as G is
infinite and discrete. In fact the condition (b) easily implies.
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Theorem 1.7. A discrete convergence group G acts properly discontinuously
in its ordinary set O(G).

We recall that a Schottky group is a Mobius group of the n-sphere whose
limit set is a Cantor set, that is a totally disconnected perfect set. The classical
example of a Schottky group is the group generated by reflections in a finite
disjoint collection of codimension one round spheres with the property that
no sphere separates the collection. Schottky groups are a good example from
which to build a general theory, they being the simplest infinite Mobius
groups that exhibit interesting geometric and dynamic behaviour. The follow-
ing result [GM Thm. 7.8] shows that any reasonable topological generalisa-
tion of a Schottky group will necessarily be a convergence group.

Theorem 1.8. Let G be a subgroup of Hom (S™) which acts properly discon-
tinuously in S™ — E, where E is a closed totally disconnected set. Then G is
a discrete convergence group and L(G) lies in E.

SKETCH OF PROOF. Let {g;} be an infinite sequence of elements of G and
X, €S" — E. Without loss of generality we may assume that g;(x,) — a and
& '(xp) = b. Necessarily a,beE. We claim g, —a locally uniformly in
S" — {b}. Let Es = {xeS": p(x,E) < 8}. Then E = NE; and the maximum
diameter of a component of Ej tends to zero with 8. Assume that E; has con-
nected complement. For sufficiently large i, g;(S" — E;) N(S" — E;) = & as
G acts properly discontinuously in the complement of E. Since this set is con-
nected its image must lie in a component of E; and as x, eventually lies in Ej
and g;(x,) — a we see that eventually g;(S"” — Ej) lies in the component Uy of
Ej; containing a. The boundary of all the components of Ej; also must lie in
this set and so the image of all but one of these components must lie in Uj.
It is not difficult to see that this one component must be that component V;
of E; containing b. Since U; — a and V; — b the desired convergence follows.
The details are in showing the assumption that the complement of Ej is con-
nected is not necessary.

Here is another useful characterisation of convergence groups. Let T,
denote the zriple space

T,=S"XS"xS"-A

where A is the big diagonal A = {(x,y,2):x=yor y=z or x =z}. Thus 7,
is the space of distinct triples of points on the sphere.

The space 7, is homeomorphicto B> x S'. Letn >2and ¢ = (x,5,2) € T,.
We think of x, y and z as being three distinct points on the boundary S$” of
hyperbolic (n + 1)-space B"*1. Let £ be the hyperbolic line joining x to y and
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p(¢) as the projection of z onto £. That is p(¢) is the point of £ such that
the hyperbolic ray joining p({) to z is orthogonal to £. For each w e B"* ! the
fiber p~!(w) is homeomorphic to the space of two frames of the tangent space
T, B"*! the fiber p~'(w) is homeomorphic to the space of two frames of the
tangent space 7,,B"*! (the inner product comes from the hyperbolic metric).
The homeomorphism is given by the directions of x and z at w = p(¢). Since
T,B"*! = B"*! we find

+1
Tn=Bn X Vn+1,2s

where V,,; .= {(#,v)eS" x S"™:u L v} is the Steiffel manifold of two
frames on hyperbolic space. Thus we think of T, as being hyperbolic space
up to a compact factor.

Given a subgroup G of Hom (S") there is a natural homomorphism
¢ embedding G in Hom (7,) given by ¢(g)(¢) = (g(x), g(»), g(z)) where
§=x7,2).

The point of this exercise is the following (see [GM 2]).

Theorem 1.9. The following assertions are equivalent:

(1) G is a discrete convergence group acting on S".
(2) ¢(G) acts properly discontinuously on T,.

Furthermore, the action of ¢(G) on T, is.effective if G is torsion free.

Usually we will forget the homomorphism ¢ and say that G acts on the
triple space.

P. Scott has conjectured that a finitely generated group G of homeomor-
phisms of S! is isomorphic to a Fuchsian group if and only if ¢(G) acts prop-
erly discontinuously on 7; [Sc. pp. 175]. This is conjecture is evidently implied
by the existence of a topological conjugacy of any one dimensional con-
vergence group to a Fuschsian group. It is here that we find the relationship
with the Seifert conjecture. If G is convergence group acting on S?, then
M? = T,/¢(G) is a three manifold for which we have the short exact sequence

1-Z->7,(M*»)> G~ 1.

If the Seifert conjecture is true, then M? is Seifert fibered and G is isomorphic
to a Fuchsian group. Given this isomorphism one can construct a topological
conjugacy [MT]. Conversely, given an orientable three manifold M with Z as
a normal subgroup and if M is not a circle bundle over the sphere then the
universal cover of M is B®> x R!. Passing to the appropriate subcover given
by the normal Z one can construct an action of the quotient group on the
circle (which is thought of as dB2) which acts properly discontinuously on the
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triple space T; = B® x S. If this action is topologically conjugate to a Fuchsian
group, then the quotient group is isomorphic to a Fuchsian group and conse-
quently M is a Seifert fibered space, [Sc] [Me].

From [St. p. 132] we find a calculation of the homotopy groups of the
Steiffel manifolds. In particular 7;(V,,1,2) =0, i<n—1and 7,(V,,,,,) is
Z or Z, depending on whether 7 is odd or even. Hence T, is simply connected
for n > 2 and thus a torsion free discrete convergence group of S*, n > 2, is
isomorphic to the fundamental group of a 3n-manifold.

This also suggests that an approach to the extension problem (from S” to
B"*!) might be to try and split off the compact manifold factor from the
action of the group on the triple space.

Theorem 1.9 has other important consequences. If M is a negatively curved
(n + 1) manifold, then it is well known that the universal cover of M is dif-
feomorphic to the open (n + 1) ball. One can define a compactification of this
universal cover: A point at infinity is an equivalence class of asymptotic
geodesics (that is geodesics which remain a bounded distance apart). If the
sectional curvature K(M) < K < 0, then the points at infinity form a topological
n-sphere S, which is the boundary of the universal covering space [EO]. It is
not difficult to see that the elements of w,(M) act naturally on S, via their
action on the geodesics and that this action is as a group of homeomorphisms.
The curvature assumption also implies that there is a unique geodesic line
in the universal cover connecting any two points of the sphere at infinity.
Using this fact, together with the fact that m,(M) is a discrete group of iso-
metries and is therefore properly discontinuous on the universal cover, it is
not too difficult to establish the following consequence of Theorem 1.9, see
[MS Thm. 5.6].

Theorem 1.10. Let M be a strictly negatively curved (n + 1)-manifold. Then
w1 (M) acts naturally as a convergence group on the sphere at infinity of the
universal cover.

This provides yet another reason for studing convergence groups. Results
of this type for compact M are implicit in earlier work of Gromov [Gr 3].

2. The Limit Set and the Elementary Convergence Groups

The following lemma is a useful tool in the study of the limit set of a discrete
convergence group.

Lemma 2.1. Let G be a discrete convergence group. Then for each point
Xo € L(G) there is a point y, € L(G) and a sequence {g;} of elements of G such
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that
8~ xo locally uniformly in S™ — {y,}
and

g~ ' =y, locally uniformly in S™ — {x,}

It is essentially this property which implies the following classical result on the
structure of the limit set.

Theorem 2.2. Let G be a discrete convergence group. Then

(1) L(G) consists of either 0, 1, 2 points or else L(G) is a perfect set.
(2) L(G) is either nowhere dense or coincides with S".
(3) If card L(G) > 2, then L(G) is the smallest closed G invariant set.

If L(G) = S”, then we say G is of the first kind. Otherwise G is of the
second kind.

Theorem 2.2 holds in much more generality of course. A more general con-
struction of a limit set was given by R. Kulkarni [Ku]. He points out that there
is a close connection between the number of components of the limit set and
the number of ends of the group (a purely algebraic concept). Extending ideas
of H. Hopf and H. Freudenthal he went on to develop the ends inequality
[Ku, Thm. 4] which for (finitely generated) convergence groups is

The number of components of L(G) is no more than the number of ends
of G.

This result has a nice consequence (realised by Kulkarni in the conformal
case) on the algebraic structure of certain convergence groups which we will
see later.

In a discrete Mobius group there are three types of elements; elliptic, parabolic
and loxodromic. Here is a topological generalisation of these notions.

Definition 2.3. Let G be a discrete convergence group. We define
ord(g) = inf {m:m > 1 and g™ = identity)
and
fix (g) = {xeS™ g(x) = x}.

We say g is elliptic if ord (g) < «, g is parabolic if ord(g) = © and card
{fix ()} = 1 and finally g is loxodromic if ord (g) = « and card {fix(g)} = 2.
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Definition 2.4. Let G be a discrete convergence group. We say that G is
elementary if card L(G) < 2.

Then, analogously to the classical case, it is quite natural to classify the
elementary discrete convergence groups [GM 1].

Theorem 2.5. L(G) = J if and only if G is a finite group of elliptic elements.
L(G) consists of a single point if and only if G is an infinite group consisting
only of elliptic and parabolic elements all of which must fix this point.
L(G) consists of a pair of points if and only if G is an infinite group con-
sisting only of elliptic and loxodromic elements each of which fixes or inter-
changes these points.

In the last case it is not difficult to show that G does indeed contain a
loxodromic element. It is not known whether there must be a parabolic ele-
ment in the case that L(G) is a point. This is equivalent to the following ques-
tion. (Recall we do not require the action to be effective!)

Is there an infinite purely torsion convergence group acting properly dis-
continuously on euclidean n-space? What if we suppose in addition that the
group is finitely generated?

The answer is no in both cases when n = 1 or 2. This question should be
regarded as a first step towards a more general Selberg Lemma [Se] as the
existence of a torsion free subgroup of finite index (in the finitely generated
case) implies the group is finite. In the conformal case, the answer is always
no, [Wat].

The following result must be regarded as the first real interplay between
topology and algebra in this theory. We repeat the sketch of proof from
[GM 3].

Theorem 2.6. Let G be a discrete convergence group which is abelian. Then
G is elementary.

SKETCH OF PROOF. Suppose that x;, x,, x; are three distinct points of L(G).
From Lemma 2.1 we obtain sequences and points such that for k=1, 2, 3

&,k Xy as j— oo locally uniformly in $” — {y]}.

By symmetry we need only consider the two cases

(i) x; #y, and x, # y;.
(ii) x; #y3, X, #y, and x; # y,.
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Suppose (i) holds. Choose disjoint neighbourhoods U, , U, of x;, x, such that
y; ¢€cl(Uy) and y, & cl(U,). Fix y ¢ {y;,7,}. Then by the convergence property
for all sufficiently large j

Uy 2g,({y}JUU,) and U,2g;,({y}UU).
Thus
g,2°8,1x)elU, and g;,°g;,,x)elU;

and this is impossible as G is abelian. The argument is similar but a little more
complicated when (ii) holds.

If we now consider the cyclic group generated by an element of a discrete
convergence group we find that our classification of elements is exhaustive.

Corollary 2.7. Let G be a discrete convergence group. Then every element
of G is elliptic, parabolic, or loxodromic.

A classical result of Newman [Ne] which says that periodic homeomor-
phisms of the sphere which fix an open set are the identity together with the
above classification now implies a uniqueness result reminiscent to analyticity.

Proposition 2.8. Let G a discrete convergence group and f, g€ G. If f=¢g
on an open set, then f = g.

The convergence property also implies the following dynamical behaviour
of the elements of infinite order which is identical to that of the elements of
infinite order in a discrete M&bius group.

Theorem 2.9. If g is parabolic with fixed point x,, then
g*—x, as j— o locally uniformly in S" — {x,}

If g is loxodromic with fixed points x, and y,, then these points can be labeled
so that

g/—>x, as j— o locally uniformly in S" — {y,}
and

g 4>y, as j— oo locally uniformly in S™— {x,}.

In light of this result and in view of the general question we have raised con-
cerning topological conjugacy, one is naturally led to ask.
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Are the elements in a discrete convergence group topologically conjugate to
Mobius transformations?

We now turn to answer this fundamental question. Notice before we proceed
that the classification necessarily applies to the elements of a quasiconformal
group and so one can raise the above question in the quasiconformal context.
We say g is a K-quasiconformal parabolic (respectively loxodromic) if the cyclic
group (g) generated by g is a K-quasiconformal group and g is a parabolic
(respectively loxodromic) element. We consider the three cases separately.

(1) Suppose g is parabolic.

Then in dimension one the answer is easily seen to be yes. In higher dimen-
sions the convergence property for parabolics is known as Sperner’s condition
and homeomorphisms of S” with this property are called quasitranslations.
Results due to Sperner and Kérékjarto [Ke 1] show that the answer is again
yes in dimension two (basically the action of (g) = {g™:meZ} on R? is
effective and so must cover an annulus). However it is not true in general that
quasitranslations are topologically conjugate to translations, for examples see
Kinoshita [Ki] in dimension 3 and Husch [Hu 1] for all higher dimensions.
Here is an outline of a construction of a counterexample in dimension four.
Let W3 be a Whitehead three manifold. That is W? is a contractible three
manifold not homeomorphic to R3. It is known that W3 x R is homeomorphic
to R*. Then W? x S! and R® x S* have the same universal covering space R*.
The covering action extends to a quasitranslation of the sphere and these two
actions are topologically distinct as the quotients are not homeomorphic.

If in addition g is a K-quasiconformal parabolic, the existence of a K’-quasi-
conformal conjugacy to a translation, where K’ depends only on K and not
g, is due to Hinkkanen [Hi] in dimension one (where it is surprisingly difficult)
and the aforementioned results of Sullivan and Tukia in dimension two (which
we outline later). The general question in the quasiconformal case is unknown
in higher dimensions and we ask

Is every quasiconformal parabolic transformation topologically (quasi-
conformally) conjugate to a Mobius translation?

A generalization of Sullivan and Tukia’s method yields an affirmtive answer
for parabolic quasiconformal diffeomorphisms of the sphere, see [Ma 2].
Here the conjugacy is quasiconformal with dilatation depending only on that
of the group and the dimension. There is an example however of a purely
parabolic abelian quasiconformal group of S$”, n > 3, which is not quasicon-
formally conjugate to a group of translations (it is topologically conjugate,
see Section 5).
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(2) Suppose g is loxodromic.

Then in all dimensions loxodromic transformations are topologically con-
jugate to Mobius transformations. Homeomorphisms satisfying the conclu-
sion of Theorem 2.9 for loxodromic mappings are called topological dilations.
Results due to Kérékjarto [Ke 2], Homma and Kinoshita [HK] and Husch
[Hu 2] imply that orientation preserving topological dilations or their inverses
are always conjugate to the dilation x — 2x. Here is an outline of the proof
of this fact:

We may assume that the fixed points of g are 0 and « and that g™ — o as
m— . Assume that there is a topological sphere S of codimension one
separating 0 and o and such that g(S)NS = . Set S,, = g™(S). The con-
vergence properties imply that S,, is a disjoint collection of spheres with 0 and
oo as their only accumulation point. The Annulus Theorem implies that the
region between S,, and S, , ; is homeomorphic to an annulus. Now it is easy
to see how to use this annular structure to construct the desired conjugacy.
We point out however that the use of the Annulus Theorem here is an essential
use of this deep theorem which has only recently been established in all dimen-
sions. We are left with the problem of constructing the sphere S. The con-
vergence properties imply that eventually every sphere S separating 0 from oo
moves of itself as it is compactly supported away from the limit set. In low
dimensions one can use a finite cut and paste process to modify such an S to
find one that moves off itself. In higher dimensions one must use more
sophisticated methods. When n > 3, S™ — {0, o} is simply connected. The ac-
tion of {g) on this space is effective and must cover a compact manifold with
fundamental group Z. This manifold must fiber over the circle and using some
homotopy theory one can show that there is a sphere transverse to the fibra-
tion which lifts. This is the sphere we seek.

The existence of a topological conjugacy implies of course that

(S" — {0, 0})/¢g) =S"" ! x S.

In the quasiconformal case the existence of a topological conjugacy together
with the fact that the quotient is compact implies (via the quasiconformal
Hauptvermutung) that there is a quasiconformal conjugacy. It is not known
if the dilatation of this conjugating map can be made to depend only on the
dilatation of the group and the dimension. However this is the case if g is a
diffeomorphism (where a more direct proof can be found, see Section 5).

(3) Suppose g is elliptic.

Then by a Theorem in part due to Brouwer, Kérékjarto and Eilenberg [Ei]
every periodic homeomorphism of the two sphere is topologically conjugate
to a rotation. By suspension this also implies the result in dimension one.
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However this result is not true in higher dimensions. In dimension three
Montgomery and Zippin [MZ] constructed an involution of S* whose fixed
point set is a wild knot. Such a map cannot of course be conjugate to an
orthogonal rotation. However the affirmative solution to the Smith conjec-
ture [MB] implies that periodic diffeomorphisms of S with a nonempty fixed
point set are conjugate. The result is unknown if the fixed point set is empty.
Examples due to Giffen and others [Gi] of smooth diffeomorphisms of all
orders whose fixed points sets are smoothly knotted codimension two spheres
show that there is no hope of topological conjugacy. Note that a finite group
of diffeomorphisms is a quasiconformal group. For the general quasicon-
formal case in dimension one the existence of a quasiconformal conjugacy
whose dilatation depends only on that of the group and not the order of the
group is established in [Hi], while in dimension two the result follows form
[Tu].

This summarises what is known about the elements in a discrete con-
vergence group. There is the remaining question about the elements in a con-
vergence group which is not discrete. It is clear we need only consider the
cyclic case and we ask what can be said about a self homeomorphism of $”
with the property that for some sequence of integers m(j) we have

g™ - Identity uniformly in S”.

In dimension one it is simple consequence of Denjoy’s Theorem that such
maps are conjugate to irrational rotations. The quasiconformal case can be
found in [Hi]. In dimension two again it is always true that such maps are con-
jugate to irrational rotations of the two sphere [HM]. I do not know of any
results in higher dimensions. Presumably it is not the case that such topological
irrational rotations are conjugate to orthogonal irrational rotations in any
higher dimension, even in the quasiconformal case. I do not know the answer
to the analogous identity theorem for such maps;

Suppose that g is a topological irrational rotation and that g is the identity
on an open set. Is g necessarily the identity?

It is worthwhile to recall a result of A. Hinkkanen, [Hi 2], who shows that
every non-discrete convergence group of S! is topologically conjugate to a
Mobius group.

Returning to the structure of the limit set we observe from the classification
of the elementary groups that every nonelementary discrete convergence
group contains at least one loxodromic element. The following theorem shows
that actually the loxodromic fixed points are pairwise dense in L(G) X L(G),
see [GM, Thm. 6.7].
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Theorem 2.10. Let G be a nonelementary discrete convergence group and
suppose that U and V are open sets which both meet the limit set. Then there
is a loxodromic element in G with one fixed point in U and the other in V.

Another result in this direction analogous to a classical result is

Theorem 2.11. Let G be a discrete convergence group and f, g € G. If f and
g have a common fixed point and if g is loxodromic, then f and g have two
fixed points in common and there is a integer k such that

fogh=grof.

A simple consequence of the plethora of loxodromic elements in a
nonelementary discrete convergence group is

Theorem 2.12. Let G be a discrete nonelementary convergence group. Then
for every m, G contains a subgroup isomorphic to the free group of rank m.

Finally here is another nice interplay between algebra and topology for con-
vergence groups (for a conformal version see [Ku]). Stalling’s theorem [Sta]
states that a finitely generated group G with infinitely many ends splits as a
free product with amalgamation or as an HNN extension. If G is a con-
vergence group whose limit set is a Cantor set, then the ends inequality (see
the note following Theorem 2.2) and Stalling’s theorem imply that G splits.
Each of these spliting subgroups has fewer than three ends or has infinitely
many and the limit set correspondingly must consist of fewer than three points
or is again a Cantor set. One can then inductively proceed to split those
splitting subgroups with infinitely many ends. In the end (if this splitting
process terminates) we are left with a complete splitting of G into subgroups
all of whose limit set consists of fewer than three points. These are the elemen-
tary groups.

Theorem 2.13. Let G be a finitely generated discrete convergence group
whose limit set is a Cantor set. Then G splits as HNN extensions and free pro-
ducts with amalgamation (possibly infinite) and each factor is an elementary
convergence group.

In the special case that G is torsion free the splitting process must stop by
Grushko’s theorem. As we have seen the elementary convergence groups with
a single limit point are hard to classify (they could be isomorphic to Fuchsian
groups for instance). However Theorem 2.11 easily implies those torsion free
elementary convergence groups with two limit points are just the infinite cyclic
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groups generated by a loxodromic. There is an easy way to assert that in a con-
vergence group with Cantor limit set there are no elementary subgroups with
a single limit point and that is to assume that every element is loxodromic.
Thus we have the following nice corollary to the above [GM 2].

Corollary 2.14. Let G be a finitely generated convergence group of S™ whose
limit set is a Cantor set and for which every element is loxodromic. Then G
is isomorphic to a free group.

B. Maskit has a stronger version of this result, including a partial converse,
in the Kleinian case [Mas 2].

3. Groups Acting on the Circle

Here is the best known result concerning discrete convergence groups acting
on the circle. It is due to P. Tukia [Tu, Thm. 6 B]. We will sketch a proof
from notes of Tukia’s talk at the Nevanlinna Colloquium. Tukia’s proof is
motivated by the partial solutions to the Nielsen realisation problem obtained
by Nielsen and Zieschang. Central to the proof is the existence of a simple
axis.

Theorem 3.1. Let G be a discrete convergence group of the circle. Then
either G is topologically conjugate to a Fuchsian group or G has a semitriangle
group of finite index.

A semitriangle group is a discrete nonelementary convergence group
generated by two elements f and g such that for some p,q,r > 1

fP=g7=(fog) ™"

Such groups are factors of triangle groups and are of such a special nature
it might be supposed that they do not exist (as subgroups of Hom (S?)). Here
are some conditions which imply that G does not contain a semitriangle group
of finite index and so G is topologically conjugate to a Fuchsian group.

(1) G is torsion free.

(2) G is isomorphic to a Fuchsian group.

(3) L(G) #S".

(4) G contains a parabolic element.

(5) G is infinitely generated.

(6) T,/#(G,) is noncompact or virtually Haken (G, is the orientation
preserving subgroup).
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It should be noted that if there are semitriangle convergence groups. Then
it is not true (as is conjectured) that every 3-manifold is virtually Haken (that
is finitely covered by a Haken manifold). The 3-manifold T)/¢(G) is the
counterexample.

SKETCH OF PROOF. We assume that G is orientation preserving. From the
above every element of G is topologically conjugate to a Mobius transforma-
tion. We want to extend the action of G to the unit disk and apply the follow-
ing result of Martin and Tukia [MT, Thm. 4.4] whose proof we also outline.

Theorem 3.2. Let G be a discrete convergence group acting on the closed
unit disk . Then G is topologically conjugate to a Fuchsian group.

Proor. (D — L(G))/G is a (possibly bordered) surface with isolated branch
points. Using this surface construct a G-invariant triangulation of D — L(G).
Redefine the conformal structure of ® — L(G) so that G now acts conformally,
this can be done as in Ahlfors and Sario [AS, p. 127]. This conformal struc-
ture on int (D) is conformally that of the standard unit disk or the entire
complex plane. This last case is impossible as it implies G is elementary. If
L(G) is totally disconnected the conjugacy is easily extended to the whole disk
D while if L(G) = S! one can extend the conjugacy using the fact that every
limit point has a neighbourhood basis bounded by loxodromic axes by
Theorem 2.10.

Returning to our sketch of Tukia’s proof, we define an axis to be a pair
(a, b) of distinct points of S'. We identify and axis with the hyperbolic line
joining the points and we say two axes intersect if the corresponding hyper-
bolic lines meet. If 4 = (a, b) is an axis and g € G we set g(A4) = (g(a), g(b)).
We say an axis is simple with respect to G if

(i) A4 and g(A4) do not intersect for any ge G — {identity}, and
(ii) for any e > 0, |g(a) — g(b)| < € for all but finitely many g€ G.

Suppose that there is a simple axis A. We form the one complex
X,=S'U{gA):geG)}.

The simplicity of A easily enables us to extend the action of G to this complex
retaining the convergence property. A component C of ® — X, has boundary
homeomorphic to a circle and the stabilizer G, of this boundary acts as a con-
vergence group of this circle. The limit set of G, lies in S! and so the group
is of the second kind. It is not difficult to show that there is a simple axis for
groups of the second kind (the endpoints of an interval of discontinuity). We
repeat the construction of the one complex in this component C and then
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transfer it to all components conjugate to C in G. In this way we obtain a con-
vergence group of an extended complex Y, 2 X,.

We repeat this process, perhaps infnitely often, to find a one complex X on
which G acts as a convergence group and such that if C is a component of
D — X, then the stabilizer of C is an elementary convergence group. It is easy
to conjugate the elementary groups to Fuchsian groups and so we are able to
extend the action of G on X to the whole disk.

This then leaves us with the problem of constructing a simple axis or showing
that there is a semitriangle group of finite index. It is important to note that
not all Fuchsian groups have simple axes, for instance cocompact triangle groups
do not. The basic starting point is the existence of a regular axis. This is an
axis A satisfying (i) above and such that {ge G — G: g(4)NA = (J} is a finite
set, here G, = {g € G: g(A) = A}. The cardinality of this set is the intersection
number of 4. It can be shown that the fixed points of a loxodromic element
of G form a regular axis, this follows more or less from the convergence
property. Thus we start with a loxodromic axis 4 which is regular but not simple
and try to produce another axis with smaller intersection number. This is done
by carefully studying the intersection patterns of those axes which are conjugate
in G to A and meet A. One can show that there is an axis with a smaller
intersection number unless a specific pattern occurs which then leads to the
construction of a semitriangle group. An argument based on the action of the
group on the triple space shows this semitriangle group to be of finite index.

The remaining problem of dealing with the semitriangle groups seems to be
quite difficult. Tukia has suggested a way of conjugating every discrete con-
vergence group of the circle to a quasisymmetric group (the one dimensional
analogue of quasiconformal groups). The hope is that the problem will be
easier given a more geometric constraint on the group. Here is what is known
at present about quasisymmetric groups (that does not follows from Tukia’s
result above), the results are due to Hinkkanen [Hi].

Theorem 3.3. Let G be a K-quasisymmetric group of the circle such that
either G is elementary or G is not discrete. Then G is conjugate to a Fuchsian
group by a K'-quasisymmetric mapping, where K' depends only on K and not
on G.

P. Tukia has kindly pointed out the following

Theorem 3.4. Let G be a discrete convergence group acting on' S'. Then G
is topologically conjugate to a uniformly quasisymmetric group.

Proor. If G does not contain a semitriangle group of finite index, then G
is topologically conjugate to a Mobius group, Theorem 3.1. Otherwise the
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action of G on the triple space is cocompact and by a result of G. Mess [Me]
the group G is coarse quasi-isometric to the hyperbolic plane. That is, after
a change of coordinates, G acts as a quasisymmetric group of S'.

Presumably some version of the following question has an affirmative
answer and so one can apply Tukia’s results to the quasisymmetric case as
well.

Suppose that G is a discrete K-quasisymmetric group which is topologically
conjugate to a Fuchsian group. Is G conjugate to a Fuchsian group by a
K'-quasisymmetric mapping, where K' depends only on K and not on G?

It is not difficult to see a possible argument in the case that G is of the first
kind.

We point out here that if one could extend a quasisymmetric group of the
circle to a quasiconformal group of the unit disk, then this extension is
necessarily quasiconformally conjugate to a Fuchsian group and so too
therefore is the boundary group. There are many ways to extend a quasi-
symmetric map of the circle to the disk and some of these are canonical in
many respects, see especially the extension found by Douady and Earle [DE].
However no extension can respect the composition of general quasisymmetric
maps and so the extension of a group to the disk may no longer be a group
acting on the disk. It might be however, that there is a canonical extension
respecting composition for quasisymmetric groups.

We present here an interesting connection between the problem of con-
jugacy of quasisymmetric groups to Fuchsian groups and Teichmiiller theory.
The reader who is familiar with Teichmiiller theory will recall that the Nielsen
realisation problem (the problem of realising a finite group of homotopies of
a given surface F2 as a group of isometries of F? in some conformal structure)
is implied by showing that a finite group of isometries of the Teichmiiller
space of F? has a common fixed point.

The Schwarzian derivative S(p) of a holomorphic mapping ¢ of the unit

disk D is defined as
/ n\r 1 (P” 2
S(p) = K‘i,, _ E To—’_ .

The Schwarzian derivative measures the deviation of a holomorphic map
from a Mobius transformation as seen by the fact that it precisely annihilates
the latter. We define

U = {S(¢): ¢ is univalent in D}.
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Universal Teichmiiller space is 3 = int (U). A quasidisk is the image of the unit
disk under a quasiconformal self homeomorphism of R2. Here is the connec-
tion between quasisymmetric mappings and Schwarzian derivatives, relevant
details and proofs can be found in [Le].

Let g be a quasisymmetric homeomorphism of the circle. Then there is a
quasidisk Q and univalent mappings ¢: D —>Q and y:C - D> C - Q, such
that

g=y logp|S.

This construction is essentially unique so that the map g = S(p) = S, is well
defined and, given some normalisation of g, is bijective (it is really the Bers’
embedding).

Universal Teichmiiller space has a few natural metrics. The Teichmiiller
metric is defined by

d(S,, Sp) = inf {logK: g © f~! has a K-quasiconformal extension to D},

other natural metrics and discussions of their various properties can be found
in the recent books [Ga], [Le] and [Na]. We point out that this metric is suffi-
ciently regular to enable one to construct geodesics between any two points.
Our interest in all of this lies in the following representation of a quasisym-
metric group G as a subgroup of a compact subgroup of the isometry group
of Universal Teichmiiller space.

Let g be a quasisymmetric map of the circle. Define the map g*: 3 — 3 by
the rule

g*(Sf) = Sp,

where h = fo g™ 1.

It is not difficult to see that g* is an isometry of 3 with the Teichmiiller
metric and that the set G* = {g*: g € G} is a group of isometries. Since G is
a quasisymmetric group, the set

S(G) = {S,: g€ G}

is a bounded subset of 3. It is also G* invariant. This enables us to prove that
the closure of G* is a compact group of isometries. If the elements of G* have
a common fixed point S,, then

1

g*(Sh)=Sh®h0g_ ='yoh

for some Mobius transformation . Thus 4 conjugates G to a Mdbius group.
There are many natural ways to try to find a fixed point for a compact group
action on a contractible space (as J is) using the metric structures available.
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For instance if the set S(G) has a well defined barycenter. Or if there is a
metric with enough «convexity» in which G acts as isometries. The fact that
geodesics are not always unique for the Teichmiiller metric causes problems
for constructions based on this metric. In the finite dimensional case, where
this construction works perfectly well, G* acts as isometries in the Weil-
Petersson metric. S. Wolpert [Wo] has shown that this metric is negatively
curved and so by an old result of Cartan G* has a common fixed point. This
is another proof of the Nielsen problem. We therefore finish this section by
posing the following problem:

Find a metric p on universal Teichmiiller space in which the action g* of
a quasisymmetric map g is as an isometry and such that a compact group of
isometries has a common fixed point.

It is quite possible that the Teichmiiller metric is such a metric.

4. Groups Acting on the Two Sphere

As we have mentioned, every quasiconformal group acting on $? (or more
generally any subdomain) is quasiconformally conjugate to a Mdbius group.
This result was first proved by Sullivan [Su 1] and his proof was formalised
and generalised by Tukia [Tu 2]. The methods developed for the two dimen-
sional quasiconformal case have useful applications in higher dimensions.
Thus we will give here a brief outline of the idea of the proof and then present
most of the details in a more general setting in Section 5.

Theorem 4.1. Let G be a K-quasiconformal group acting on S*. Then there
is a K'-quasiconformal self homeomorphism f of the sphere such that the
group fGf~ ' is a Mébius group. Here K' < min {KYV?,\/2K }.

IDEA OF PROOF. Suppose that G is a-group of diffeomorphisms and x € S2.
What it means for G to have bounded distortion is that for each g€ G the
linear mappings g'(x)'g'(x): T,S> - g(x)Sz send circles to ellipses of uniformly
bounded eccentricity. Since we are only interested in the associated conformal
structures we normalise these ellipses so that the product of the length of their
axes is one (that is det g’(x) = 1). For each g € G we construct the ellipse coming
from g~ '(x) under the map induced by g. This family of ellipses based at x is
G-invariant. That is, the family of ellipses based at g~ !(x) is sent to the family
based at x under the map induced by g. So too then is the average ellipse which
we can construct because of the uniform bound on eccentricity and diameter.
This constructs a G-invariant ellipse field; a field of ellipses in the tangent bundle
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which is invariant under the map induced by any element of G and has
uniformly bounded eccentricity. The smoothness assumption on the elements
of G can be relaxed (quasiconformal mappings are differentiable almost
everywhere). In this way we construct a measurable G-invariant ellipse field.
It is this much of the construction that can be done in all dimensions. Next
in dimension two the existence theorem for quasiconformal mappings (or as
it has lately become known, the measurable Riemann mapping theorem) implies
that any measurable ellipse field is almost everywhere the ellipse field induced
by some quasiconformal mapping. Conjugating by the quasiconformal
homeomorphism 4 corresponding to the G-invariant ellipse field we see that
the group H = hGh™! leaves the standard field of round circles invariant.
Thus every element of H is conformal and so H is a Mobius group.

As a first application of this result we recall from Theorem 1.10 that the
action of the fundamental group I'" of a negatively curved three manifold on
the universal cover is a convergence group of the two sphere at infinity S,.
Evidently this sphere carries a quasiconformal structure in which I' acts
quasiconformally if and only if M has the homotopy type of a hyperbolic
space form.

If M has quarter pinched sectional curvatures —4 < K(M) < —1, then one
knows that the sphere at infinity has a compatible C!-structure in which the
fundamental group acts as diffeomorphisms, [Gre] and [HP]. D. Sullivan has
made the following conjecture in this case [Su 2].

If M is a quarter pinched three manifold, then =,(M) acts as a quasi-
conformal group on the two sphere at infinity.

As a consequence of course we find that quarter pinched three manifolds
have the homotopy type of hyperbolic manifolds. Sullivan has related this
conjecture to other questions concerning the expanding properties of the
geodesic flow on the tangent spaces to the horospheres. Examples of Gromov
and Thurston [GT] of n-manifolds, n > 4, with sectional curvatures close to
minus one that do not have the homotopy type of hyperbolic manifolds show
that this quasiconformality must be a low dimensional phenomena.

We return to the question of whether or not convergence groups are also
conjugate to Mobius groups in dimension two. Here is a simple example that
is easily generalised to all dimensions to show that this is not the case (although
recall that in dimension two every element is individually conjugate).

Example 4.2. Let G be a nonelementary Fuchsian group acting on S*. Then
G leaves the disk D? invariant. Identify D to a point x, and extend the action
of G over this point by agreeing that every element of G fixes x,. This pro-
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duces a group of homeomorphisms H of S$?/D = S? acting properly discon-
tinuously in the complement of the point x,. Thus H is a convergence group
and is not conjugate to any Mobius group since the stabilizer of a point in a
Mobius group is virtually abelian and the stabilizer of x, is H = G.

One can see how to generalise this process of taking an equivariant decom-
position of the sphere to produce more complicated examples of convergence
groups. The point to this example is that in dimension two it seems quite likely
that this is the only way to construct convergence groups which are not the
topological conjugates of Mobius groups. We now outline the results of R. Skora
and the author [MS]. To begin with we need the following terminology

Definition 4.3. A subset X of S" is cellular if X = N B;, where {B;} is a col-
lection of closed topological n-balls (cells) such that B; , , lies inside Int (B)).
A map n: S" —'Y is cellular if 1~ () is cellular for every y € Y. A decomposi-
tion ® of S" is a disjoint collection of subsets of S" such that every point of
S” lies in some element of ®. We say a decomposition R is cellular if the quo-
tient map S" — S"/® is cellular.

A subset X of the two sphere is cellular if and only if X is a closed connected
nonseparating set (an easy application of the Riemann mapping Theorem).

A decomposition ® of S” is upper semi-continuous if the quotient map is
a closed map and it is G-invariant or simply equivariant if its elements are per-
muted by G. The applications we have in mind rest on the following important
result of R. L. Moore [Mo].

Theorem 4.4. If R is a cellular, upper semi-continuous decomposition of S?,
then S*/® is homeomorphic to S*.

An immediate consequence is
Corollary 4.5. Let G be a discrete convergence group of S* and ® an equi-
variant upper semi continuous cellular decomposition. Then the induced
action of G on S$*/® (= S?) is a convergence group of S°.

We need to make the following technical definition.
Definition 4.6. A finitely generated group I' is accessible if every sequence
of nontrivial algebraic splittings of ' as free products with amalgamation

along finite subgroups or as HNN extensions along finite subgroups is finite.

It is conjectured by C.T.C. Wall that every finitely generated group is
accessible [Wa]. This conjecture has been established in the case that I" has
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uniformly bounded torsion or is finitely presented by P. Linnell [Li] and
M. Dunwoody [Du] respectively. It is a simple consequence of Grushko’s
theorem that a finitely generated torsion free group is accessible and since
Mobius groups are virtually torsion free (Selberg’s Lemma) they too are
always accessible.

The main result of [MS] is really the Decomposition Theorem. It implies
that an accessible convergence group G with O(G) # J is the fundamental
group of a finite graph of groups. The edge groups are finite cyclic and the
vertex groups are convergence groups for which every component of the
ordinary set is simply connected. A consequence of this result will be that
under certain circumstances O(G)/G is of finite topological type. This is a
version of Ahlfors’ Finiteness Theorem. The proof of the Decomposition
Theorem is analogous to Abikoff and Maskit’s decomposition of finitely
generated Kleinian groups [AM]. If some component of the ordinary set is not
simply connected we use a topological version of Maskit’s Planarity Theorem
[Mas 1] to find a «nice» invariant union € of simple loops in O(G). From this
we construct a tree on which G acts without inversions as follows. Define an
equivalence relation on O(G) — € as by saying that two points are equivalent
in no element of C separates them. If [x] and [y] are equivalence classes then
at most finitely many elements of C separate them. Thus € determines a tree
where every vertex is an equivalence class of points of O(G) — C and two
vertices are joined by an edge if exactly one element of C separates them.
G acts on this tree without inversions if it is orientation preserving. For a
vertex v we set G, = {g € G: g(v) = v} and similarly define the stabilizer of
an edge. Then by the Bass-Serre theory of groups acting on graphs G admits
a spliting as G = G, *,,,,G, or G = G,+,,,, and each factor G; is a vertex
group and the amalgamating groups are the edge groups. One then proceeds
inductively to find splitings of G, and G, . If this process terminates we have
a complete understanding of G up to these factors, this is why we need the
hypothesis of accessibility. In the case that G is a Kleinian group this splitting
process terminates by Ahlfors’ Finiteness Theorem which says that O(G)/G
is of finite type [Ah 2].

Decomposition Theorem 4.7. Let G be an orientation preserving convergence
group which is accessible. Then there exists an invariant union C of disjoint
simple loops in O(G) such that C/G is a disjoint collection of simple loops
and each component of O(G,) is simply connected for every vertex v in the
tree determined by C.

Actually one gets somewhat more from this result. Namely a picture of
how the limit set is built up from the limit sets of the vertex groups [MS,
pp 4-5].
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The decomposition theorem reduces the problem of classifying those
accessible convergence groups with O(G) # J to classifying those for which
every component of the ordinary set is simply connected. Unfortunately even
in the case of Kleinian groups this classification is far from complete, contain-
ing Web groups and all groups of the first kind! In any case we have achieved
one of our objectives. It is a weak form of Ahlfors’ Finiteness Theorem.

Theorem 4.8. Let G be an accessible convergence group such that every
component of L(G) separates the two sphere into finitely many (and therefore
at most two [GM]) pieces. Then O(G)/G has finite type. That is it has finitely
many components, each component has finite genus, a finite number of ends
and a finite number of orbifold branch points.

There have been other results along this line. R. Kulkarni and P. Shalen
[KS] showed that if G is a finitely generated torsion free discrete convergence
group acting on the closed unit 3-ball, then (O(G) NS?)/G is of finite type,
except for the possibility that there are infinitely many disks or annuli. It is
unknown whether this last possibility can occur. Recently Kulkarni has found
a version of Theorem 4.8 in the case that the limit set is a Cantor set. And
M. Feighn and D. McCullogh refined the techiques of Kulkarni and Shalen
[FM] to obtain topological analogues of Bers’ Area Theorem [Be] and Su-
llivan’s Finiteness of Cusps [Su 3] and [Kr]. Our methods too provide weak
(but topological) forms of these estimates. One can directly check that under
the hypotheses of the Decomposition Theorem and Theorem 4.8, that
X(O(G)/G) = 2(1 — N), where X is the orbifold characteristic and N is the
fewest number of generators of G. This is Bers’ Area Theorem. Similarly it
implies that there are a finite number of conjugacy classes of parabolic fixed
points of G and under the additional hypothesis of G being torsion free it implies
this number is no more than 3N/2. This is Sullivan’s finiteness of cusps.

We now proceed by making an assumption on the structure of the limit set
of the convergence group G. We want to identify those convergence groups
G; in the splitting of G that comes from the Decomposition Theorem as
topological conjugates of Fuchsian groups. We wish to eliminate from our
considerations, those convergence groups G; whose ordinary set is simply con-
nected and whose limit set is a nonseparating continuum and those con-
vergence groups G; whose limit set is connected and has infinitely many com-
ponents in its complement (principally because we cannot show that these
groups are conjugates of Kleinian groups in any reasonable sense). In the first
case we would like to say that every such convergence group is obtained from
a Fuchsian group by some identification on the limit set S*. Unfortunately it
is not known whether this is even true for Kleinian groups although it is con-
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jectured to be the case. This is the question of the local connectedness of the
limit set of a finitely generated function group. The second case concerns Web
groups and seems even more difficult. This leaves us with essentially two types
of convergence groups to deal with. Firstly the elementary groups. We have
already classified these: The finite groups are topologically conjugate to finite
Mobius groups, the groups with a single limit point are either conjugate to a
euclidean group or are constructed exactly as in Example 4.2. The former are
identified by the fact that the stabiliser of the limit point is virtually abelian.
Secondly there are the convergence groups whose limit set is a topological
circle. These groups are topologically conjugate to Fuchsian groups, see [MT].
This follows more or less from Theorem 3.2.

Given a convergence group G such that every component of the limit set is
a point or a circle we decompose G into the groups G; as given by the decom-
position Theorem. We conjugate the G; to Fuchsian groups by homeomor-
phisms f; where this is possible. For the groups arising as in Example 4.2 we
need a semi-conjugacy by a cellular mapping 7,;. One then recombines these
Kleinian conjugate groups using the Klein-Maskit Combination Theorem to
obtain a Kleinian group I'. The map which will «conjugate» G to I' is locally
defined by the f; and the 5; and will correspond to some equivariant (with
respect to I') cellular decomposition of the sphere. The elements of the decom-
position which are not points will be disks whose boundary lies in the limit
set of I'. Thus the convergence group G is obtained from I' via this cellular
decomposition. We capture this notion in the following definition

Definition 4.9. Let G and H be convergence groups of S*. We say that G
is covered by H if there is an isomorphism ¢: H— G and a cellular map
n:S$™ = S"™ such that 1/n~ (O(G)) is a homeomorphism and the following
diagram commutes

HxS" — §"
lo I Iy
G xS" — S".

Our discussion has established the first part of the next theorem. The second
part follows since if the fixed point data of G is correct, then all the con-
jugacies are topological.

Theorem 4.10. Let G be a finitely generated accessible convergence group such
that every component of the limit set L(G) is either a point or a topological circle.
Then G is covered by a Kleinian group. If in addition G has the correct fixed
point data, namely the stabilizer of any point in L(G) is virtually abelian, then
G is topologically conjugate to a Kleinian group.



434 GAVEN J. MARTIN

As a corollary to this and Theorem 1.8 we obtain the following topological
characterisation of Schottky groups in the plane, once we observe that as soon
as there is an invariant component of the ordinary set of a finitely generated
convergence group, then it is accessible [MS, Prop. 5.1 and Cor. 5.5].

Corollary 4.11. Let G be a finitely generated group of homeomorphisms
acting properly discontinuously in the complement of a totally disconnected
set. If the stabilizer G, of any point x€S?* is virtually abelian, then G is
topologically conjugate to a conformal Schottky group.

Of course in Corollary 4.11, the assumption on the fixed point data is
necessary.

We conclude by conjecturing that Theorem 4.10 is true in much more gene-
rality and is really the only way of constructing convergence groups on S2.

Conjecture. FEvery convergence group G acting on S? is covered by a Kleinian
group.

This conjecture implies that every negatively curved three manifold has the
homotopy type of a hyperbolic space form. It implies the following (weaker?)
conjecture which is also true if G is as in Theorem 4.10.

Conjecture. Every convergence group G acting on S* extends to a convergence
group G' of B3.

This would be a topological Poincaré extension theorem.

S. Higher Dimensions

The examples of C. Giffen [Gi] of smooth involutions of the n-sphere, n > 4,
which we mentioned above provide simple examples of smooth uniformly
quasiconformal groups which are not the topological conjugates of Mobius
groups. Presumably it is possible to construct a quasiconformal version of the
example of Montgomery and Zippin [MZ] to provide a three dimensional
example (the affirmative solution to the Smith conjecture implies that there
is no smooth version).

To obtain more complicated examples, one can use the quasiconformal
analogue of the Klein-Maskit combination theorems [Ma, Thm. 4.3] to com-
bine one of the examples above with a various Mobius groups. Indeed such
a construction is possible for any Mobius group I' with nonempty ordinary
set. We can easily arrange that the smooth involution acts conformally on
some open set and (after an appropriate conjugacy of I' by a suitable Md&bius
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transformation) that this set contains the complement of a fundamental domain
for the action of I" on O(I"). Using the combination theorem we obtain a
uniformly quasiconformal group G which is isomorphic as group to I' *Z,, and
which is not topologically conjugate to any Mdbius group.

There are many natural questions that these examples leave unanswered.
For instance, is the existence of a fake involution the only way to construct
such quasiconformal examples? If we were to assume that the group was tor-
sion free or that every element of the group has the correct fixed point data
could there still be such examples? Example 4.2 generalises to give examples
in all dimensions of convergence groups that are not topologically conjugate
to Mobius or even quasiconformal groups. Is this essentially the only way to
construct such examples as it seems in dimension two? We will discuss these
questions and then turn to consider some affirmative results regarding the
existence of a conjugacy.

The first relevant example is due to P. Tukia [Tu 4].

Theorem 5.1. For every n > 3 there is a uniformly quasiconformal action of
a solvable Lie group on S™ which is not isomorphic as a topological group to
any Mobius group.

This example was an extension of another example, due also to him, of a
uniformly Lipschitz (in the euclidean topology of R") action which was
topologically conjugate but not quasiconformally conjugate to a group of
translations. This latter example was constructed by arranging that the orbit
of a point was a hyperplane that was not locally quasiconformally flat (in fact
this hyperplane is the product of the Von Koch snowflake and R™~?). This
group was not discrete. Tukia’s methods were subsequently modified and
extended by the author in [Ma 1] to prove the following theorem.

Theorem 5.2. For each n > 3 there is a discrete uniformly quasiconformal
group of parabolic transformations acting on S", isomorphic as a group to Z" !
and topologically but not quasiconformally conjugate to a Mobius group.

This theorem is especially interesting since as we shall see all smooth abelian
examples are quasiconformally conjugate to Mobius groups. But this does
raise the question.

Suppose G is a uniformly quasiconformal group of R" containing only
parabolic transformations ( fixing ). Is G topologically conjugate to a group

of transiations?

The next interesting examples are due to M. Freedman and R. Skora [F.S.].
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Firstly a convergence group which has all the correct fixed point data and a
simple algebraic structure but cannot be made quasiconformal by a change
of coordinates. We recall that a Cantor set is tame in S” if there is a self
homeomorphism of S” taking the Cantor set to a subset of a smoothly
embedded arc in §”. Otherwise the Cantor set is wild.

Theorem 5.3. For every n >3 there is a convergence group G with the
following properties.

(i) G is algebraically isomorphic to the free group on two generators and
contains only loxodromic transformations,
(i) O(G)/G is compact and L(G) is a wild Cantor set,
(iii) G is not topologically conjugate to any uniformly quasiconformal group.

The example of Theorem 5.3 provides a nice counterpoint to M. Freed-
man’s topological characterisation of certain Schottky groups [Fr].

Theorem 5.4. Let G be a discrete convergence group of S™, n # 4, with the
Jfollowing properties.

(1) G is algebraically isomorphic to a free group and contains only loxodromic
elements.
(ii) O(G)/G is compact.
(iii) L(G) is a tame Cantor set.

Then G is topologically conjugate to a Schottky group.

Freedman goes on in that paper to equate the four dimensional surgery
problem and the five dimensional s-cobordism «theorem» to the problem of
extending to the four ball every convergence group G of S? satisfying (i) and
(ii) of Theorem 5.4 and whose limit set is a Cantor set. This reduction is quite
complicated and related to the reduction of the surgery problem to the so-called
atomic surgery problems [CF] (whether it is possible to solve the surgery prob-
lem in four manifolds with fundamental group isomorphic to a free group).

The hypothesis that O(G)/G is compact effectively forbids the existence of
parabolics and hence the sort of elementary convergence groups that arose as
in Example 4.2. We say that G is of compact type if O(G)/G is compact. A
relevant question is

Suppose that G is a (finitely generated?) discrete convergence group with
O(G) # . Show G is of compact type if and only if G contains no parabolics.

The second result of Freedman and Skora is a quasiconformal example
similar to Theorem 5.3.
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Theorem 5.5. For every n 2> 3 there is an r > 1 and a smooth uniformly quasi-
conformal group G of compact type, acting on S™ and having the following
properties:

(1) G is algebraically isomorphic to the semidirect product of a free group
of rank r and a cyclic group of order 2r.
(ii) L(G) is a wild Cantor set.
(iii) G contains only loxodromic and elliptic elements and every element of G
is quasiconformally conjugate to a Mébius transformation.
(iv) G is not the topological conjugate of any Mébius group.

This example is good because it does not rely on the existence of a fake
elliptic and it has simple algebraic structure. Unfortunately there is still the
problem of an elliptic. Also we know that r is necessarily large in this example
(is this really necessary in general?). The fact that in both of the examples of
Theorems 5.3 and 5.5 the limit set is a wild Cantor set (as evidenced by the
fact that its complement is not simply connected) led Freedman and Skora to
raise the hope that this was enough to guarantee that a convergence (or quasi-
conformal) group was not conjugate to a Mobius group. Unfortunately we
now know this is not the case as D. Cooper and M. Bestvina [BC] have
constructed a Schottky group satisfying (i) and (ii) of Theorem 5.3. However
Freedman and Skora’s results do raise the problem

Find invariants of Cantor sets which imply they cannot be the limit of
Schottky groups. Then if possible construct convergence (or quasiconformal)
groups with these sets as limit sets.

As Freedman and Skora point out, the example of [BC] shows such invariants
must be subtle. In particular it is not known if the existence of the elliptic in
the example of Theorem 5.5 is necessary. That is whether the free part of the
action alone is not conjugate. Hopefully subtle invariants may be used to
decide that in a very real sense the limit set of the example is wilder than the
limit sets of the so far constructed Schottky groups. In any case this still leaves
the problem

Construct a discrete uniformly quasiconformal group of S”, n > 3, which
is torsion free and not topologically conjugate to a Mobius group.

It was pointed out to me by R. Skora that there is still the possibility that
every convergence group of S” whose limit set is a Cantor set arises from some
Schottky group via an equivariant cellular decomposition (not necessarily sup-
ported on the limit set). Is this possible?
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To give a rough idea of what is going on in these examples we outline the
constructions. Recall first that the natural way to construct a classical Schottky
group is to take a collection of pairs of round hyperspheres, none of which
separates the collection. For each pair choose the (essentially) unique orienta-
tion preserving Mobius transformations that takes one of the paired spheres
to the other. The group generated by these pairings is a Schottky group with
limit set a Cantor set. This construction works more or less because the inside
and outside of a sphere are homeomorphic. It was Freedman and Skora’s
observation that one could play the same game with tori (the inside and out-
side of a torus in S* are homeomorphic). One could take a collection of paired
tori (no one separating the collection) and look at the group generated by a
suitable choice of homeomorphisms of S identifying elements of the pairing.
This is not so easy to do conformally as attached to a torus is the conformal-
invariant of its modulus. This construction of identifying tori provides nothing
new unless one chooses the tori so that some linking occurs. Then one finds
that the homeomorphism which maps the inside of one of the paired tori A
to the outside of the other B causes the remaining tori to form a nontrivial link
inside B. This process repeats itself as we look at other elements of the group.
We find a construction going on like that of Antoine’s necklace [Ru]. In
general one must be a little careful to arrange that the limit set is indeed a Can-
tor set. If the linking is very tight (few tori all linked), then there is so much
stretching (to ensure that the image of the link wraps around the core of the
torus under the identifying homeomorphism) and squeezing (to ensure that
everyting fits in) that the group cannot be quasiconformal. It cannot be made
quasiconformal because this stretching and squeezing pattern is topological in
nature (the linking pattern of tori is preserved by any homeomorphism). This
is the key to the first example. If one makes the linking less severe by using
a large number of tori one can arrange that the amount of distortion stays
bounded. The analogy is with a coarse necklace with few pieces, each piece
must bend a lot for the whole thing to bend a lot, and a fine necklace, each
pieces suffers little even when one bends the whole. At this stage it would be
nice to conclude that the limit set built out of this linking pattern (in the
quasiconformal case) is not the limit set of a conformal group. Unfortunately
this has not been done. However if one is careful in the construction and
symmetrically places the linked tori one can extend the group by a finite
rotation group preserving this symmetry. We then use the linking pattern
to show the fixed point circles of certain conjugates of the elements of the
group preserving the symmetry also form a link and that this link cannot be
realised by the linking of round circles (which must be the fixed points of
Mobius elliptics). This shows the group is not topologically conjugate to a
Mobius group and explains the presence of the elliptic in Freedman and Skora’s
second example.
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Having provided a number of counterexamples to the general question we
shall now go on to look at what can be said in specific circumstances for a
uniformly quasiconformal group G. The results are actually quite interesting
and useful. The most powerful tool is the construction of a G-invariant ellipse
field (as it is in dimension two). One obtains conjugacy results by showing this
invariant field is the pullback of the standard field (of round spheres in the
tangent space) under a quasiconformal mapping (an existence theorem) or by
somehow linearising this field to find a new invariant field which is the
pullback of the standard field by an affine transformation. Since this idea is
central to essentially all that is known in higher dimensions we will provide
a reasonably detailed account.

We define the space S(n) = SL(n, R)/SO(n). Thus S(n) is the space of real,
symmetric, positive definite » X n matrices with determinant equal to one.
The general linear group GL(n, R) acts transitively on the right of S(#n) via the
rule

X[A] = |det X|~¥"X'AX, XeGL(n,R), AeSn).
The Riemannian metric,
ds?> = (1/2)Vntr (Y — 1dY)?

on S(n) gives rise to a metric distance which we denote by d(A4, B) for
A, B e S(n). This metric is invariant under the right action of GL(n, R) and
makes S(n) a globally symmetric Riemannian manifold, which is complete,
simply connected, and of nonpositive sectional curvature, see [He] (we include
the factor Vn/2 so that when n = 2 we get hyperbolic space of constant cur-
vature —1). Then

d(A) = d(Identity, A) = (1/2)Vr ((nX,)* + (In)\y)* + - - - + (In),)%)Y?,

where A\, N, . . ., \, are the eigenvalues of A4, see [Maa]. Other distances can
now be calculated from the transitivity of the GL(n, R) action.

The matrix dilatation of a homeomorphism f of $", which is differentiable
with nonzero Jacobian matrix almost everywhere, is the measurable map
pr: S™ = S(n) defined by

pr(x) = |detf'Co)| =¥ ') (x) = f'(ol1d]

where f’(x) is the Jacobian matrix of f and Id denotes the identity.
A conformal structure on S" is a pair (S", ), where u:S"— S(n) is a
measurable mapping for which

esssup {d(ux)): xeS"} = d(p) < .
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We define D(u) = exp (d(pn)) and call this the dilatation of u. The standard
conformal structure is 8(x) = Id. As we have said, one should think of a con-
formal structure as a measurable ellipse field on the tangent space to the
sphere, such that the eccentricity of every ellipse is uniformly bounded. A
homeomorphism of S” viewed as a mapping between two conformal struc-
tures p, and pu, '

f: (Sn’ MI) - (§n, /42)
is called D(u,, u,)-quasiconformal if

(1) fe Wi, i.e. f has locally L" integrable first derivatives, and
(2) D(S, p15 12) = esssup {exp (d(p1 (0), /() [p2 (f(X)D): x € S™} < o0,

If u; = puy = B, the standard structure, we obtain the usual notion of quasi-
conformality and if no conformal structures are present we mean quasi-
conformal in this usual sense. In this case the quantity exp (d(f'(x)[1d])) is
often referred to as the Ahlfors-Earle dilatation of a quasiconformal mapping
at a point x, see [Ah 1]. We call the essential supremum of D(f, u,, u,) over
S" the D-dilatation of f and we will denote this quantity D(f). Notice that
by definition D(f) = D(us). We say that f is conformal if D(f, p1, o) = 1,
that is

() = ) p (S ()]

almost everywhere.

For the basic facts concerning quasiconformal structures, see [Tu 1, Sec. D].
One should notice that a mapping which is quasiconformal in one structure
is automatically quasiconformal in all other structures, however the dilation
will vary from structure to structure. Recall too the Louiville theorem that a
one-quasiconformal in the usual sense is conformal in the usual sense and so
a Mobius transformation.

The notion of D-dilatation is especially useful in our situation. The usual
notion (that is of our reference [Vé]) of K-quasiconformality of a homeomor-
phism f is

K(f) = esssup {10g (\payx (), 10g (1 /N in ()}

where f satisfies (1), (2) and A,.(x) and \;,(x) are the largest and smallest
eigenvalues of the matrix f'(x)[Id]. Here is the sharp relation between the D-
dilatation and the K-dilatation, see [Tu 1, (DS)].

% <D(f) <K(f) (neven) or %

n

3) (n odd).
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Notice the implication that
K(f)=D(f) when n=2.
For a quasiconformal group G we set
D(G) = sup {D(g):g € G}.

Similarly we define K(G). For a quasiconformal group G, a G-invariant con-
formal structure p on S™ is a conformal structure (S”, ) such that each g in
G is conformal as a map

& (S", W~ (S w.
We observe that if g is quasiconformal, then
h:(S™, ) > (S",8) and h~':(S",B) > (S", ma)

are conformal. Hence if y is a G-invariant conformal structure and 4 is a
homeomorphism satisfying (1) and (2) and p,(x) = u(x) almost everywhere,
then the group 2o G o h~! is a conformal group.

One can always construct a G-invariant quasiconformal structure for a
quasiconformal group g. This is due to the GL(n, R) invariance of the metric
distance d in S(n) and to the fact that S(n) is nonpositively curved. In fact if
P(E) denotes the center of the smallest ball containing a bounded subset E of
S(n) (which is well defined and unique since S(#n) is nonpositively curved and
simply connected), then

wx) = P({ pg(x): g€ G})

will be the desired G-invariant conformal structure, see [Tu. 1, Sections D and
E]. A simple geometric argument based on the law of cosines in a negatively
curved manifold implies that D(y) < D(G)Y V2 In higher dimensions (n > 3)
there is no measurable Riemann mapping theorem and we will have to use
different techniques to produce a conjugating mapping other than appealing
to an existence theorem. )

The first idea is due to Gromov [Gr 1] and Tukia [Tu 1]. It is this: suppose
that p is a G-invariant conformal structure and that there is a limit point x,
such that p is continuous at x;,. We may assume that x, = 0 and that G acts
on R”. Let {g;} be a sequence in G such that g; — 0 locally uniformly in
R”™ — {,} (recall G has the convergence property!). Suppose for the moment
that 0 # y, and so we can assume (without loss of generality) that y, = «. Let
{N\;} be a sequence of real numbers such that |g;(\;e;)| = 1. Then {g;} forms
a normal family and there is a quasiconformal homeomorphism # such that
(for some subsequence) g;(\;x) = h(x). The group \; G \; has the invariant
conformal structure
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where A4 is some constant matrix. But
)\i— 1G>\i = >\i_ 1gi_ ngi)\i d h_ lGh

and this last group is conjugate to a Mobius group since it has the constant
matrix 4 as an invariant conformal structure. Consequently G is conjugate
to a Mobius group.

Now of course one must tidy up all the details. A key result is Tukia’s
generalization of the good approximation theorem, see [Tu 1, Cor. D].

Theorem 5.6. (Good approximation theorem.) Leff;: U— S” be a sequence
of K-quasiconformal embeddings. Suppose that f;— f for some embedding
f: U~ S" and that I in measure for some measurable map p: U — S(n).
Then f is K-quasiconformal and p; = p a.e. in U.

If the invariant conformal structure is continuous at a limit point then the
above outline works (the assumption that x; # y, is unnecessary). Of course
we have produced the invariant conformal structure from general methods
and it is quite unlikely that it will be continuous anywhere on the limit set
(where the action is highly mixing). However the argument is sufficiently
robust that all that is necessary is that u be continuous in measure at a limit
point x, where we can assert that there is a sequence g; = x, and g;” ! = y, with
Xo # Yo - Such a limit point is called a point of approximation or a conical limit
point, see [MT]. This last term is because if the action extended to the ball
then the orbit of the origin would meet some Stoltz cone based at x, infitely
often. Since a measurable map is continuous almost everywhre we are more
or less done if we assume that the limit set has positive measure (for instance
if it is the whole sphere) and that there are plenty of conical limit points. If
the action extended to the ball then the hypothesis that Int (B”)/G is compact
easily implies every point is a conical limit point. Alternatively, if G acts on
the triple space T, so that T,/G is compact then every limit point is a conical
limit point [Tu 1, Cor. G]. We can put all this together to get the following
theorem and its corollaries.

Theorem 5.7. Let G be a quasiconformal group of S” and p a G-invariant
conformal structure. If p is continuous at a limit point of G or continuous in
measure at a conical limit point of G, then g is quasiconformally conjugate
to a Moébius group by a quasiconformal homeomorphism h satisfying
D(h) < D(G)V V2.
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Corollary 5.8. Let G be a quasiconformal group of S™ such that either

(1) G extends to B"*! and int (B"*')/G is compact, or
(2) G acts on the triple space T, so that T,/G is compact.

Then G is quasiconformally conjugate to a M6bius group.

As an application of these ideas together with some results on the sort of
domains in R" that admit quasiconformal actions we find a generalisation of
a theorem of Gromov [Gr 1, p. 209], see [Ma 3].

Corollary 5.9. Let M be a compact n-dimensional manifold (or orbifold)
whose universal cover quasiconformally embeds in S™ and has at least one
locally quasiconformally flat boundary point. Then the universal cover of M
is quasiconformally the ball and M has the homotopy type of a hyperbolic
manifold (respectively orbifold).

The example S” x S! is relevant to Corollary 5.9. The universal cover is
S" x R' which embedds in $”*! but $" X S! does not admit a hyperbolic
structure. The point is that there are two natural ways to embedd S$” x S! in
S"*! The first is as $” x (0, 1) which has smooth (and therefore locally
quasiconformally flat boundary). This embedding cannot be quasiconformal.
The only quasiconformal embedding has image S"*! — {0, «o} which does
not have flat boundary.

Theorem 5.7 essentially says that as soon as the limit set of a quasiconformal
group G is large enough, then G is quasiconformally conjugate to a Mdbius
group. We now turn to consider the case where the limit set is small, namely
the elementary groups. We will see that smoothness (which played no role in
the above) and algebraic simplicity imply quasiconformal conjugacy (as long
as there is an element of infinite order).

The following results are from [Ma 2]. It is quite important to recall that
although G may be a group of diffeomorphisms the G-invariant conformal
structure is almost certainly not very nice. It is easy to construct a loxodromic
quasiconformal transformation which is infinitely smooth at both its limit
points and yet the invariant ellipse field above is not even approximately con-
tinuous there.

Definition 5.10. A self homeomorphism f of S" is said to be affine at x, if
fis differentiable almost everywhere and there is a matrix A € S(n) such that

d(us(x),A)—0 as x—Xxp.

Notice that a diffeomorphism will always be affine at every point.
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Theorem 5.11. Let f be a parabolic quasiconformal homeomorphism of S"
which is affine at its fixed point. Then f is conjugate to a parabolic Mébius
transformation by a K-quasiconformal mapping for which

KWK K<Nm=1) K(fY)VVE,

Proor. Work in R” and assume the fixed point is infinity. Choose similarity
maps B,, = a,,x + b,,, where a,, is real and b,, lies in R”, such that

S"oBn(0)=0 and [f7oB,(e)| =1.

Now since the mapping f™ is K({ f))-quasiconformal for all m and since
every B3,, is conformal, the sequence { f™ © 8,,} is normal and so contains a
uniformly convergent subsequence converging to a K({ f))-quasiconformal
group of affine transformations. To see this note that for all integers &

gf=h"toffon=lm@B; of moffofmopB,)=1lim(B,; 508,

as m — o, by the uniform convergence. Consequently g generates a K({ f))-
quasiconformal group. We now show that g is affine. To do this we will com-
pute its matrix dilatation and show that it is constant (note g(e) = «). Let
gj=ﬁr;l ofopy,so

re (%) = prog, (¥) = Brn () py (B O] = pr (B (X))-

The assumption that fis affine at infinity now implies that there is an 4 € S(n)
such that

’ng(x) = /"f(Bm(x)) —A, as j— oo.

From the good approximation theorem we conclude that y, = A. That is, g
has constant matrix dilatation. Finally the affine, uniformly quasiconformal
group {g) is necessarily quasiconformally conjugate to a Mobius group by a
linear mapping B whose dilatation is no more than v/ (n — “ﬁK((g))l/ vz,
Thus ho Bisa~(n—1) KK */T-quasiconformal mapping conjugating
fto a parabolic Mobius transformation.

A similar argument gives us the loxodromic case

Theorem 5.12. Let f be a loxodromic quasiconformal transformation of S”
whose matrix dilatation is approximately continuous at a fixed point. Then
fis conjugate to a loxodromic Mobius transformation by a K-quasiconformal
mapping for which

KNP <SKSN@m = 1) KKf)PHVYYE,
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The algebraic idea we need in order to generalise this line of argument is
the concept of admissibility

Definition 5.13. Let G be an abstract group. If g and h are elements of G
we define the commutator of g and h as [g,h] = g~ *h~'gh. If H is a subset
of G we define the commutator of G and H as [G,H) = {[g,h]: g€ G and
he H}. Realize that |G, H] is just a subset of G and not a subgroup even if
H is a subgroup. The center of G, Z(G), is the largest subset of G such that
[G, Z(G)] = {1dentity}. We say that a subgroup H of G is virtually central if
the set [G, H] is finite.

Definition 5.14. An abstract group G is called admissible if there is an in-
Sfinite cyclic subgroup which is virtually central.

Here is the sort of result we have been seeking [Ma 2, Thm. 4.5].

Theorem 5.15. Let G be a discrete, admissible group of quasiconformal
diffeomorphisms of S". Then G is conjugate to a Mobius group by a
K-quasiconformal homeomorphism for which

K@) <K<N@m -1 K@G)' Y2

Proor. Since G is admissible there is f € G such that fis of infinite order and
(f» is virtually central. Thus F =[G, { f)] is a finite set. Because G is a
discrete quasiconformal gr'oup fis either parabolic or loxodromic and we may
assume that f fixes infinity and that if f is loxodromic then infinity is the
repulsive fixed point. We proceed as above to find conformal maps 3,, such
that (for some subsequence) 8, °© f™ converging uniformly to a K(G)-
quasiconformal mapping 4. As before #~! o f o h will be an affine mapping.
Let g€ G. We show £~ ! o g o h is affine. Again, by the uniform convergence
we see

g =h"logoh=1imBydl of " ogo "o B, ;).

Now as ¢ f) is virtually central we see that for all m(j) there is A, ;, € F such
that the mapping

f m(j) o g ofm(.l) =go hm(j)'

Since F'is a finite collection of mappings, we may pass to another subsequence
so that

f—m(j) og ofnl(j) =goh
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for some fixed 4 in the set F. Then

g=h""ogoh=lmBugog°hobul)

is a K(G)-quasiconformal homeomorphism of R”. Calculating the matrix
dilatations of elements of this sequence and using the fact that the matrix
dilatation of g o 4 is continuous everywhere, and so in particular at infinity,
then applying the good approximation theorem as we did in Theorem 5.11 we
see as before that g’ is a K(G)-quasiconformal affine mapping. Since g was
arbitrary, the group #~! o G o h is affine and quasiconformal and thus con-
jugate to a conformal group via a linear mapping.

Corollary 5.16. Let G be a finitely generated infinite discrete quasiconfor-
mal group of diffeomorphisms of S™. If G is abelian, then G is quasiconfor-
mally conjugate to a discrete Mébius group. Consequently the rank of G is
at most n.

We now turn to consider the hypotheses of Theorem 5.15 and to give
examples to show that they are essentially all necessary. As we saw earlier the
assumption that there is an element of infinite order in the group is necessary,
when n > 4, due to the existence of smooth counterexamples to the generalized
Smith conjecture. The examples of Freedman and Skora show that some
geometric or algebraic restriction is necessary. We raise the following question
though

Can the hypothesis of admissibility in Theorem 5.15 be replaced by the
hypothesis that G is virtually abelian?

Notice that these two hypotheses are independent. It may be that this is not
the case, it seems possible that there is a smooth quasiconformal group con-
taining an exotic involution and isomorphic to the Dihedral group.

We recall Theorem 5.2 which was an example of a uniformly quasiconfor-
mal group of S” isomorphic to Z" ! (and so of course admissible) which is
not quasiconformally conjugate to a Mobius group. As remarked in that
paper [Ma 1], the group can be made smooth except at one point. It cannot
be made smooth over this last point by our results above. By J. McKemie’s
results [McK] the dilatation of this group can be assumed arbitrarily close to
one.

It is worth observing the following consequence of Theorem 5.15. Recall we
saw earlier that fake elliptics can lie in some infinite discrete quasiconformal
groups. However we see.
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Proposition 5.17. Let o be a periodic diffeomorphism of S™ of period p. If
o is not topologically conjugate to an orthogonal transformation, then there
is no discrete smooth 7 X Z, action on S™ which contains o and is of bounded
distortion.

Actually of course, a periodic diffeomorphism which is not conjugate to an
orthogonal transformation, can lie inside no finitely generated infinite abelian
group of bounded distortion acting smoothly on S”.

In a different vein using more topological methods we conclude this section
by recalling a result of P. Tukia and the author regarding the conjugacy of
certain convergence groups in the three dimensional case. The main idea of
the arguments used is that if G is a convergence group acting on B* and which
is of compact type, then the quotient three manifold can have no incompressible
tori. It follows then (by Thurston’s theorem, see [MB]) that the quotient
manifold admits a hyperbolic structure if for instance the manifold has bound-
ary or more generally is Haken. This produces the desired conjugacy to a
Mobius group on the ordinary set. There is in general some problem in extend-
ing the conjugacy over the limit set, but this is automatic if G were for
instance uniformly quasiconformal or if L(G) were a Cantor set.

Theorem 5.18. Let G be a torsion free uniformly quasiconformal group
acting on B® which is of compact type and of the second kind (or if G is of
the first kind assume B®/G is Haken). Then g is quasiconformally conjugate
to a Mébius group.

Theorem 5.19. Let G be a torsion free convergence group acting on B?
which is of compact type and whose limit set is a Cantor set. Then G is
topologically conjugate to a Mébius group.

There is a suggested outline of how to extend the above results to the
geometrically finite case in [MT]. The hope is to prove the general conjecture.

A uniformly quasiconformal group acting on B? is quasiconformally con-
Jjugate to a Mobius group.

Note that from the results of Section 4, the action on the boundary may be
assumed conformal. '
6. Leftovers

There is much that we have left unsaid. As an example one can define a Poin-
caré series for a discrete quasiconformal group acting on B" [GM 2]. The con-
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vergence and divergence of this series depends on the structure of the limit set.
The radial limit set can be defined and was shown by Gehring, Garnett and
Jones [GGIJ] to satisfy the classical dichotomy of zero or full measure when
n > 2. J. Garnett has raised the following question when n = 1 (recall that
unlike quasiconformal mappings quasisymmetric mappings need not preserve
Lebesgue null sets).

Let G be a quasisymmetric group of the circle. Is the measure of the conical
limit set zero or full?

One can define what it means for a quasiconformal group to be geometrically
finite and correspondingly solve Ahlfors’ measure zero problem in this case
using essentially no properties of analyticity.

Other questions regarding discreteness criteria (such as Jégensen’s inequality)
and universal constraints (as are imposed by discreteness on Fuchsian groups)
may be raised for quasiconformal groups in all dimensions.

Another project would be to more closely relate Gromov’s theory of hyper-
bolic groups [Gr 2] to that of convergence groups. What are the consequences
for convergence groups (or for hyperbolic groups)?

We hope that the questions and conjectures raised in this paper and others
will motivate further investigation into convergence and quasiconformal
groups.
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