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Comparison Principles
and Pointwise
Estimates for Viscosity
Solutions of Nonlinear
Elliptic Equations

Neil S. Trudinger

Abstract

We prove comparison principles for viscosity solutions of nonlinear second
order, uniformly elliptic equations, which extend previous results of P.L. Lions,
R. Jensen and H. Ishii. Some basic pointwise estimates for classical solutions
are also extended to continuous viscosity solutions.

1. Introduction

In this paper we are concerned with some comparison principles and local
estimates for viscosity subsolutions and supersolutions of nonlinear uniformly
elliptic differential equations of the form,

a.n Flu] = F(x,u, Du, D*u) = 0

in domains Q in Euclidean n-space, R”. Here the function F e C°(T") where
I'=0xRXxR"xS" S" denotes the linear space of real n X n symmetric
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matrices and the operator F is at least degenerate elliptic, that is,
(1.2) Fx,z,p,r) < F(x,z,p,r + n),

forallx,z,p,rel’, n >0, n€S". Following Lions [16], a function u € C°(Q)
is called a viscosity subsolution (supersolution) of equation (1.1) if for any
function ¢ € C*(Q) and local maximum (minimum) X, of u — ¢, we have

(1.3) F(xo, (Xo), De(xo), D*¢(x)) 20, (<0).

A viscosity solution is both subsolution and supersolution. Such a notion of
solution is implicit in the classical Perron process but was invoked recently by
Crandall and Lions [4] in the context of first order equations. Lions [16] treated
the existence and uniqueness of viscosity solutions of second order equations in
the case that (1.1) is a Bellman equation, arising from stochastic control theory.
The first significant breakthrough in the general case was made by Jensen [9],
who established comparison principles for Lipschitz solutions when the function
F is essentially independent of the x variables. His result was extended to con-
tinuous solutions by Jensen, Lions and Souganidis [11] and the latter restriction
removed independently by Ishii [7], Jensen himself [10] and the present author
(for uniformly elliptic operators) using different methods. The main point of
this paper is to demonstrate our approach which employs a combination of
Jensen’s ideas in [9] and a second derivative estimate for linear equations, due
to Lin [15]. By adjoining the technique, used by Ishii [7], of adding more
variables we are able to improve the results of Ishii and Jensen in the uniformly
elliptic case. This latter technique was also utilized independently by us for
regularity considerations [18], [19] and in this context it arose from a classical
regularity argument which we supplied in [14, Theorem 1].

In order to describe our comparison principles we formulate structure con-
ditions as follows:

F1 (Uniform ellipticity)
\ trace () < F(x, 2, p,r + m) — F(x,z,p, 1) < A trace (n);
F2 (Lipschitz-continuity in p)
|F(x,z,p, 1) — F(x,2,q,1)| S|P = ql;
F3 (Monotonicity in z)
F(x,z,p,r) < F(x,z + t,p,r);
F4 (Centinuity in x)

|F(x,z,p,r) = F(3, 2,0, 0| < palx = y1°|r| + w(x — ¥));
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for all x,yeQ, |z| <K, |p|, |g| <K, reS", >0, n€S", t,K,K;eR™,
where A\, A, u;, p,, 6 are fixed positive constants (depending possibly on K)
and w(@)— 0 as a— 0.

We can then state the following comparison principle.

Theorem 1.1. Let u,ve C°Q)NC%Y(Q) be respectively subsolution and
supersolution of equation (1.1) in Q, with u < v on 0Q. Then if the structure
conditions F1, F2, F3, F4 are satisfied for 6 = 1/2, we have u < v in Q.

In fact more general results hold. Namely one can allow § < 1/2, depending
on n, A/\, and if only u or ve CO@)NC>"(Q), 0 < v <1, (with F1 — F4
holding for all p, g € R"™), the conclusion holds for some 6 < 1 — v/2. In the
work of Jensen [10] and Ishii and Lions [8], which extends Ishii [7], the second
inequality in F1 can be dispensed with but one must have 6 > 1/2. The further
relaxation of F4 seems to be an open problem. Of course if u, ve W2 "(Q),
no such condition is required as the usual comparison principle then holds,
(for example see [6]). Theorem 1.1 implies a uniqueness result for the Dirichlet
problem, previously announced by us in [18, Remark 3.3].

The plan of this paper is as follows. In the following section we develop
some auxiliary results for semi-convex subsolutions of linear eliptic equations.
These are applied to yield comparison principles in Section 3, initially in the
case 6 = 1 which we originally obtained. As consequences of Theorem 1.1 we
obtain a strong comparison principle and a comparison principle for oblique
boundary conditions. The results of Section 3 are extended to Hoélder con-
tinuous solutions in Section 4. In Section 5 we note some of the pointwise
estimates which also arise from the estimates of Section 2. In a further work
[20] we show that viscosity solutions of uniformly elliptic equations are twice
differentiable almost everywhere. Unless otherwise stated all notation in this
paper follows the book [6].

The author is grateful to the Max Planck Institut fiir Mathematik in Bonn
where the research for this paper was completed in 1987, and to P.L. Lions
for informing him of related work [7], [8], [11], after we had proved the case
6 =1 in Theorem 1.1.

2. Auxiliary Results for Linear Equations

Jensen’s approach to viscosity solutions is based on their approximation by
semi-convex subsolutions and semi-concave supersolutions. In this section we
consider the appropriate extensions of the linear theory to such subsolutions
and supersolutions. We first note that a function # on the domain Q is called
semi-convex (semi-concave) if u = v+ w for some ve C(Q) and convex
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(concave) w. Such solutions are twice differentiable almost everywhere in Q.
We consider linear elliptic operators of the form

2.1 Lu = a"Dju + b'D;u
with coefficients a¥, b', i,j=1,...,n satisfying
(2.2) M<[d1< AL b <p,

for positive constants \, A, p.

Lemma 2.1. Let u be semi-convex in Q and suppose Lu + f > 0 almost
everywhere in Q for some fe L"(Q). We then have the following estimates:

1. (Aleksandrov maximum principle.)

2.3) supu < supu + Cdiamﬂllf/ﬁ)*l]L,,(r+),
Q 20

where C depends on n, |b/D*|, and D* = (det [a¥])"/", T'* is the upper con-
tact set of u (see [6]);

II. (Local maximum principle.) For any ball B = Bn(y) CQ, concentric
subball B, = B x(y), 0< o<1, and p> 0,

1/p
.4 supu< ¢ (R [ @)+ R |
where C depends on n, A/\, uR/\, o and p;
IIl. (Weak Harnack inequality.) Forany ball B = By(y) C Q and concentric

subball B, 0 < o < 1, there exists a positive number p, depending only on n,
A/\, such that

p
e (ko[ or-wr) <cfint @0 -0+ R )

where M = supp U and C depends on n, A/\, uR/\ and o.

IV. (Derivative estimates.) There exists a positive number x, depending
only on n, A/\, such that, for any subdomain Q' C C Q,

1/x
(2.6) <L’ |Dul* + |D2u|’t> < C{S?lp lul + | f/)‘“u(n)}

where C depends on n, A/\, p/\, diam Q, dist (@', 0Q).
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The estimates I, II, III are established in the literature for subsolutions
u e W2™(Q); (see for example [2], [6], [17]). The extension of the Aleksandrov
estimate (2.3) follows automatically from his work [2] since the normal mapp-
ing of semi-convex functions will be absolutely continuous with respect to
Lebesgue measure. Alternatively, all of the above estimates may be deduced,
from their validity for classical subsolutions, by mollification since the Hessian
matrices of the mollifications of a semi-concave function will be uniformly
bounded from below.

The estimate IV was proved by Evans [5] and Lin [15], for the first and
second derivatives respectively of solutions of the Dirichlet problem. To obtain
a local estimate for subsolutions u € C*(Q) we may first observe from Lin
[15] that there exists a positive matrix function [¢%], depending on D?u, such
that

A , N

@.7) 5 1Dl < (@ - a")Dyu,
A i
71< [af] <2Al

For 5 € C3(Q), k < infu and
(2.8) v=19%u - k)?
we now compute

(2.9) a¥D,;v = 29*(u — k)aiD u + 29’aiD,uD;u + 8n(u — k)aiDnD,u
+ (u - kaiDn?

> > (- BID%] + [Duf’
— Clu = )’ = B)IBI* + 0°|.f| + A = B)(Dnf* + [nDn}
= (= KD + Du) - .,

for some constant C. It then follows from Evans [5] (or Lin [15]) that there
exists some positive » depending only on #, A/\ for which

(2.10) {[o 771 = OID%u| + |DuPT}™ < ClLfu/M 1oga)

where C depends on n, A/\ and diam Q. By appropriate choice of n and k we
thus obtain the estimate (2.6). [
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3. Comparison Principles for Lipschitz Solutions

In this section we prove Theorem 1.1, along with some applications. Follow-
ing Jensen [9], we can approximate functions u € C% }(Q) by setting, for e > 0,

Q, = {xeQ|dist (x,99) > €},

and letting u* € C%1(Q,) be the functions whose graphs have fixed distance
e from the graph of u and which lie respectively above and below the graph
of u. The graphs of u* will satisfy lower and upper exterior sphere conditions
respectively, with spheres of radius ¢, and therefore, since the functions u*
are Lipschitz, they will be semi-convex and semi-concave respectively.
Moreover we have the estimates

(3.1 |Du;* | < |Dul,
and

_ L+ [Dulp)*”?
€

+D%u? >

in the sense of distributions. A simple geometric consideration (together with
condition F3) shows that if u is a viscosity subsolution (supersolution) of
equation (1.1) in Q, then the functions u} — e (u} + €) will be a viscosity
subsolution (supersolution) with the operator F replaced by F* (F~) given
by

(3.2) F*(x,z,p,1) = F(x*,z,p, 1),
where
D =+
X* =X = EV=E N £ = %
N1+ |DuF?

is the projection in R" of the unit normal to the graph of u;* . Accordingly,
(replacing u* by u* ¥ €), we have (see [9], [18], [7]) the differential inequalities,

3.3) +F*[x,u®,Du*,D*u*]1 >0

almost everywhere in Q,.

We first prove Theorem 1.1 for the case § = 1, which was our original
result. If u, v satisfy the hypotheses of Theorem 1.1, we have (almost every-
where) in the set where

3.9 w=ul-v"20
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the differential inequality,
(3.5 Lw,=da’D,w, + b'D;w,
> F(x™,v. (%), Dul (x), D*ul (x)) — F(x*, 7 (x), Dul (x), D*u.f (x))
> —2u,e|Dyul| — w(2e),
by F4, with coefficients a”, b’ given by
. 1.
(3.6) a' = jo F, (x,v7,Dv. ,D*(v. +twp)dt,
bi= ﬁFp‘i (x,v",D(v. + tw), D*u})dt.
Using the structure conditions F1, F2 we see that
(3.7 M < [dY] < AT
|b] <y
If the constant u, = 0, then Theorem 1.1 follows immediately from the Aleksan-
drov maximum principle and we have as a special case Jensen’s result [9]. Here
of course there is no need for the upper bound in (3.7) and the result is readily
extended to the case of degenerate ellipticity and a strict monotonicity condi-

tion F2. To handle the second derivative term on the right hand side of (3.5),
we now write the differential inequality (3.3) for #. in the form,

(3.8) Loul = a§Dyul + byDu
> —-F"(x,u’ —¢0,0)
> -F,

for some constant F,,, where the coefficients aJ, b}, given by
(3.9) af = [ F}(x,ul, Duf, tDul)dt,
b= Ll) Fy (e ul,tDu,0)dt,

also satisfy (3.7). From the second derivative estimate, Lemma 2.1, IV, we then
have

(3.10) jﬂ, |D2u} < C

for any Q' C C Q, where » depends only on n, A/\ and C is independent of
e. Fixing Q' C C Q, we now apply the Aleksandrov maximum principle, Lem-
ma 2.1, I, to the function w,, noting that on the upper contact set I'* of w,,
we have by virtue of (3.1),

<

(3.11) |D*u | <
€
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Accordingly, we obtain

(3.12) SUp We < ClelD*ul | pugp+y + @)} + sup wet
< C{e“™ + w(2e)} +supw., by (3.10)
ag
—supwl, as e—0,
2

-0 as Q'—-Q.

Consequently # < v in Q and Theorem 1.1 is proved in the case 6 = 1.
To treat the general case, we extend w as a function of 2n variables (x, §&)
on the domain,

Q =Q, X By(1) C R*",
by defining
(3.13) w(x, &) = ul (x) — v7 (x + €b).
We then obtain (instead of 3.5),
(3.14) Lw, 2 —p1(36)°|D*uf | — w(3e),

where in the formulae (3.6) for the coefficients a”, b’, the arguments of v,
are x + €£ instead of x. Writing

(3‘15) g= ‘DZu: |x/2n’
we may then estimate
(3.16) Lw, > —Ce®*g|D*u’ | — o(e)

where X = 1 + »/2n and 6 is replaced by any smaller number. Now come some
technical subtleties. Defining )

- {D..u:/lDzu:l if D%} #0,
0"’ — y
0 if D} =0,
we write (3.16) in the form
(3.17) Lw, > —Ce™ga"D ul — o(e)
= —Ce™ga"(D,,w + Djv.) — 0(e)

—-CGBXgO"J<DijW - :D,st) - O(E).
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To proceed further we need to write (3.17) as an elliptic differential inequality
in the variables (x, £). First let us suppose that

(3.18) Ce®g g%

to guarantee that inequality (3.17) is at least elliptic in the x variables (with
minimum eigenvalue > 2\/3). Setting, analogously to (3.9),

€

(3.19) af = [ F;(x,07,Dv ,tD*]) dt,

we next have

(3.20) af{DEiij> —eaDV; > —C,¢é?

for a further constant C,. Consequently

(B:21) Lw.=Lw + Ce™go¥(Dyw, — €~ lD,-ije) + 3n(Cge®*~ l/x)zagpgifjwe
> —C8%*™ — o(e)

for constants C, C, independent of ¢, and the operator L is elliptic if (3.18)
is satisfied.

We next need to modify w, so that it cannot take its maximum for |£| = 1.
Using the Lipschitz continuity of v and (3.1), we set

(3.22) W (X, §) = W (x, §) — 2Ke¢[?,
where K = |Du|,, to guarantee

(3.23) ls|up w.(x, &) = W.(x,0) — Ke.
g=1

From (3.19) we then obtain

(3.24) Lw, > —C1g%*™ 1 — o(¢)

for a further constant C;, independent of e. The inequality (3.23) prevents us
from directly applying Lemma 2.1, as in the case 6§ = 1, so we first need to
convert (3.24) to a homogeneous inequality. To achieve this we fix a subdo-
main Q' C C Q,, and a ball B C @ and extend § to vanish in B — Q. We then
solve the following generalized Dirichlet problem for the Monge-Ampére
equation,

(3.25) det D°G = h(x,DG) in B,
G=0 on 4B,
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where

2n " - - n-— n —n|sln
h(x, p) = <T> (p" =D + gg/ @Dy " + g5 "8,

and

2
8= 1€l

If u = 0, we can simply take

From the theory of Aleksandrov [1] and Bakel’man [3], there exists a unique
convex generalized solution G satisfying (3.25) almost everywhere in Q. Fur-
thermore, we can estimate, (see also [6, Section 9.1}),

(3.26) inf G > ~C|gl e,

>

> —Ce*®™ ™1 — o(e),

by virtue of (3.10), (3.15) and (3.24). Moreover, we now have
(3.27) (W, + G) >0,

almost everywhere on the subset of @’ X B where w, > 0 and (3.18) holds.
Since G is convex the inequality (3.11) continues to hold on the upper contact
set of the function W, + G, whence condition (3.18) is fulfilled there for suffi-
ciently small e. Applying the Aleksandrov maximum principle, Lemma 2.1,
I, to the semi-convex function W, + G, we find

(3.28) sup(w, + G) < sup (W, + G + o(e)
xeQ’ 6(0’){3)

< sup w' + o(e),
a0’ X B

by (3.23), and hence we conclude, by (3.26),

(3.29) supw, < Ce?®*~1 4 o(e) + supw.
Q' a0’
—-sup(u—v)t as e—0,
aq’

—supm-v)* as Q' —-Q,
a0
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provided 26x — 1 > 0, that is

1
3.30 o> —
(3.30) 2+ x/n
We therefore have
(3.31) sup(u — v) <sup(u—v)*
Q Q

and the proof of Theorem 1.1 is complete. [J

Remark 3.1. The continuity condition F4 can be made more precise in terms
of the value of » in Lemma 2.1, IV. Namely, if we formulate F4 as

F4: |F(x,z,p, 1) — F(3,2,p,1)| < w(jx = y(|x = y]°|r] + 1),

then 6 > 1/2(1 + »/n) suffices for the validity of Theorem 1.1. If only the first
inequality in F1 holds, that is Fis strictly elliptic rather than uniformly elliptic,
then we must have » = 0, as in [10], and the proof of Theorem 1.1 simplifies
greatly.

Remark 3.2. Following a standard argument, ([6, Section 3.2]), we can infer
from the weak comparison principle, Theorem 1.1, a strong comparison prin-
ciple and a boundary point inequality. Namely,

(i) (Strong comparison principle.) If u and v e C%(Q) are respectively sub-
solution and supersolution of equation (1.1) in Q, then the difference
w = u — v cannot take a positive maximum in Q unless it is constant.

(ii) (Boundary point lemma.) If the above function w assumes a strict
positive maximum, continuously at a boundary point x,, where 9Q
satisfies an interior sphere condition (with sphere S) then

W(Xp + 18) — w(xo) <
t

0

(3.32) Dg w(x,) = lim sup
t—0

for any B8 - » > 0 where » is the inner normal to S at x,.

Remark 3.3. The previous remark yields comparison principles for oblique
boundary conditions. Let G be a continuous function on I'y = 2 X R X R”
and suppose that an inner normal » exists on dQ in a reasonable sense, for
example dQ € C! (or more generally dQ satisfies an interior cone condition).
Then G is degenerate oblique (oblique) if

(3.33) Gix,z,p+tv) - Glx,z,p) 20  (>0)
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for all x,z,peTy, t > 0. For ue C%Q), the boundary conditions G[u] >0
(< 0) are then satisfied in the viscosity sense if for any ¢ € C'(Q) and local
maximum (minimum) x, € 3Q of u — ¢, we have

(3-39 G(xo, u(x0), De(x0)) 20 (< 0).

We then have

Corollary 3.1. Let u, ve C*(Q) be respectively subsolution and supersolu-
tion of equation (1.1) in Q satisfying Glul > 0, G[v] <0 on 30, where 39
satisfies an interior sphere condition and G is strictly oblique (with respect to
an interior sphere normal at each boundary point) and non-increasing with
respect to z. Then either u < v in Q or u — v is a positive constant.

Proor. If w = u — vtakes a positive maximum at x, € 9, so also does w* =
u* — v* where u*, v* e C1(Q) satisfy u* > u, v* <vin Q,
u*(xp) = ulxo), v*(xo) = v(xo).
But then
G(xp, v(xp), Dv*(x)) < 0
< G(xo, u(xo), Du*(x,))
< G(x, v(xo), Dv*(x) + v - Dw*(xp))

which contradicts (3.35) since D,w*(x,) can be chosen arbitrarily close to
D} w for u,ve C%'(@). O

Remark 3.4. Finally we remark that if u or ve C»(Q), ¥ > 0, then by
replacing e by ¢! * 7 in the approximations #* and (3.22) with K = 2[Du],, we
obtain the above results for

6>0—-7/Q2+ x/n).

If u or ve CY(Q), the proof of Theorem 1.1 can be effected with x = 0.

4. Comparison Principles for Holder Solutions

In this section we extend Theorem 1.1 to embrace solutions u, v e C%*(Q)
where possibly a < 1. The reduced smoothness of u#, v must be compensated
by a strengthening of condition F4 and we must take K; = oo in conditions
F1 to F4. We shall in fact modify F4 to extend F4 as follows:

F*4: |F(x,z,p,1) — F(y,2,p,1)| < o(x = y])(|x — /7] + |x = y|*’|p| + 1)



COMPARISON PRINCIPLES AND POINTWISE ESTIMATES FOR VISCOSITY SOLUTIONS 465

where 6, 6* are non-negative constants to be specified. Throughout this sec-
tion, unless otherwise stated, we assume F1, F2, F3, F*4 to hold for all
x,yeQ, |zl <K, p,geR", r, n>0, neS”", t,KeR*. We then have the
following extension of Theorem 1.1.

Theorem4.1. Letu,ve C/@Q)NC*%Q), 0 < a < 1, be respectively subsolu-
tion and supersolution of equation (1.1) in Q, with u < v on Q. Then if the
structure conditions F1, F2, F3, F*4 are satisfied for

“4.1) 6201 -a/2)/A+x/n), 6*>201-a)/(1+ x/n),

we have u < v in Q.

Proor. Although the approximations u.*, v, are now not necessarily semi-
convex, semi-concave, they will be in the upper contact set of the function w,
in the proof of Theorem 1.1 and consequently the case when »x =0 (g = 1)
follows by only minor adjustment. As there appears some difficulty in extending
the Lin estimate (3.10), we shall employ instead the corresponding approxima-
tions of Jensen, Lions and Souganidis [11] which are semi-convex, semi-concave
everywhere. Accordingly, let us define for positive ¢, the functions

T
4.2) u’ (x) = sup {u(y) — o —“Ix 2y| } ’
yeQ €

_ 2
u.; (x) = inf [u( ¥) + wg M}
yeQ €

where wy = 0sC u. It is clear that the supremum and infimum will be achieved
in (4.2) at points x* satisfying |x — x*| < e provided x € 2, and moreover

20)0

4.3) |DuZ| <

b

2w
+Dul > -5t
€

in the sense of distributions. Furthermore it is easily seen that if u is a viscosity
subsolution (supersolution) of equation (1.1) in Q, then ./ (1) will be a
viscosity subsolution (supersolution) with the operator F replaced by

F*(x,z,p,r) = F*(x*,z,p,1).

We can now proceed as in the proof of Theorem 1.1 The dependence on p
in condition F*4 is handled by taking g = (|D*u| + |Du|)*’*" and augmenting
L by terms in D,w,. Instead of (3.22) we take



466 NEIL S. TRUDINGER

4.4 We(x, §) = w.(x, &) — 20(e)| £

where

4.5) o(e) = sup ( osc u> < Ce®.
yeQ' \B, ()

Further details are left to the reader. O

Remark 4.1. The case o = 0 was proved by Ishii [7] for subsolutions and
supersolutions which need only be respectively upper-semicontinuous and
lower-semicontinuous. A similar generalization holds here in that the condi-
tions u, ve C**(Q) need only hold in a corresponding one-sided sense. Fur-
thermore only u or v need lie in C% *(Q). The case x = 0 is also proved in [10],
but by different methods and, as we pointed out previously, only strict ellip-
ticity (or degenerate ellipticity and strict monotonicity in z) suffices in condi-
tion F1.

5. Pointwise Estimates

Using the approximations #* we can readily convert pointwise estimates for
semi-convex subsolutions and semi-concave supersolutions to viscosity sub-
solutions and supersolutions. Consequently pointwise estimates such as the
Holder and Harnack estimates of Krylov and Safonov [13] can be extended
to continuous viscosity solutions. Let us suppose that F is uniformly elliptic,
satisfying F1 (with K; = o) and

F5: |F(x, z,p,0)| < po + 2| P|*

for all xeQ, |z| < K, pe R", where pu,, u, are further constants, depending
on K. If u is a subsolution of equation (1.1) then the functions

1 +
5.1 v = —(e*2¥ —1)
]

satisfy
LoU€+ = agDijv: 2 _ﬂoeuzlulo

almost everywhere in Q, for some [¢"] satisfying (2.2) and we can apply, for
example, the estimates in Section 2. In particular we obtain the local
estimates.
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Theorem 5.1. Let ue C%Q), F satisfy F1, F5, and

B=B,(»CQ,
B,=Bi(»), 0<o<1.

I. (Local maximum principle.) If u is a viscosity subsolution of (1.1),
1/p
(5.2 sup u < C{(R'" j‘ (u*)p> + [LORZ/)\} ,
B, B
for any p > 0, where C depends on n, A/\, p,|ulo/N, o and p;

II. (Weak Harnack inequality.) If u is a non-negative supersolution of
(1.1), there exists a constant p, depending on n, A/\ such that

1/p
(5.3) <R'” j u") < C{infu + ;LORZ/)\}
BU Bﬂ
where C depends on n, A/\, p,|u|o/\ and o.

III. (Holder estimate.) If u is a viscosity solution, then u € C*(Q) for some
a > 0, depending on n, A/\ and p,|ulo/\ and

(5.4 oscu < Ca“{osc u+ [AORZ/)\}
B

BaR R

where C also depends on n, A/\ and p,|u|q/\.

IV. (Harnack inequality.) If u is a non-negative solution, then

(5.5) supu < C{infu + ,LORZ/x} :
B B,

o

where C depends on n, A/\ and p,|u|y/\.

Remark 5.1. Boundary gradient estimates for nonlinear elliptic equations
may be extended in a similar fashion. In particular if u € C°(Q), Qe C",
u=gondQ, ge C"(Q) for some v > 0 and u is a viscosity solution of (1.1)
in Q, then ue C%'(Q) and v = (u — g)/dist (x, Q) € C*(Q) for some o >0
depending on n, A/\, p,|u|o/\ and v, (see [6], [12]). Further regularity prop-
erties of viscosity solutions are treated in [18], [19], [20].

Remark 5.2. After completion of this manuscript, we received work by Caf-
farelli [21] on regularity, which overlaps [18], [19] and also proves III and IV
above.
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