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1. Introduction

In last years the mapping properties of the Cauchy integral

Cof@) = 1 [ sf®

27i Jr £—2

dg

have been widely studied. The most important question in this area was
Calderén’s problem, to determine those rectifiable Jordan curves I" for which
C, defines a bounded operator on L*(T"). The question was solved by Guy
David [Da] who proved that Cy. is bounded on L*I") (or on LP(T"), 1 < p < )
if and only if T is regular, i.e.

(0] ("N B(zo, R)) < CR

for every z,€ C, R > 0 and for some constant C.

Once the LP-cases are settled it is natural to ask when Cy, is bounded on the
other classical function spaces. In particular, it has been shown by Salaev
[Sa], ¢f. also [Dy], that if I is regular, then Cy. is a bounded operator on the
Lipschitz classes

A = {f: 1l ey = xs;lgrw < w} ,
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0 < o < 1. Recently Zinsmeister {Z] made the interesting discovery that after
a suitable reinterpretation, see Section 3, Calderon’s problem makes sense for
Lipschitz classes A*(I') even on non-rectifiable curves I". His result was a
follows.

Theorem 1.1. (Zinsmeister.) If T is a bounded K-quasicircle, there is a con-
stant a €[1, 40] such that the Cauchy operator

Cr: A*(T) = A*(ID)
is bounded whenever a(K) < a < b(K) and K** < (1 +V5)/2;

K* -1

W) =FE

b(K)=QK* - 1)1

Here a curve I' is called a K-quasicircle if I' = ¢({|z] = 1}) for some K-
quasiconformal mapping ¢ of C. Similarly a domain D is called a K-quasidisk
if aD is K-quasicircle. For the many different characterizations of quasicircles
and —disks see, for instance, [L].

In this paper we shall obtain boundedness theorems for the Cauchy
operator on all quasicircles and all X > 1. In fact, it turns out that for every
quasicircle I" there is a number «(I") < 1, depending on the dimension rather
than the dilatation of I, such that Cy. is bounded on A*(T") if & € ((T"), 1) and
unbounded if « € (0, a(I")].

The best way to describe the behaviour of Cy. is in terms of A, weights of
Muckenhoupt [M]. Recall that a function w > 0 is said to belong to the class
Ay, 1<p<oo,if

-1
<ﬁ L w(z) dm (z)) <W;T L w(z) " VP Ddm (z)>p <C

holds for a constant C < o and for -all disks B C C; here |B| denotes the
Lebesgue measure of B. Further, we A4, if

|—113|— j w(z)dm (z) < Cw(x) a.e. xeB
B

and we 4, if

Tllﬂ— L w(z)dm (z) < Cexp (l—;‘ L log w(z) dm (z)>

hold for all disks B. Then A; C A, C A, and A, is the union of all 4, classes.
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Theorem 1.2. Let T' be a bounded quasicircle and 0 < o < 1. Then the
following conditions are equivalent

(@) Cp: A*(T) = A*(T") is a bounded operator.
() dz,T)eA,, p=1+1/0- o).

Here d(z,T') denotes the euclidean distance from I'. More precisely, if
) al') =inf {o:d(zZ, T €A, 10 -0}
then 0 < (") < 1 and Cy. is bounded on A*(T') whenever a(I') < a < 1 and
unbounded whenever 0 < o < a(I).
The condition (b) can be replaced by
b)) diz,T)* " TeA,
and also by
b diz, T)* e Ay,

in other words by d(z,I")* ! € A, for any p. As it is well known, the A4,-
condition also characterizes the boundedness of the 2-dimensional Hilbert
transform or the Beurling-Ahlfors transform

Hf(z) = p.v. J /O

c (E _ z)z dm (E)a

see [CF]. Hence we have

Corollary 1.3. If T is a bounded quasicircle, 0 < a <1 and 1 < p < «, the
following conditions are equivalent

(@ | Cpf"Aa(r) <M, ||fHAcx(1‘)’ Sfe A%D).
®) j@ |Hf (2)|Pd(z, T)* " dm (z) < M, jc | f(@)|7d(z, )" dm (z),
feLE(C), w(z) = d(z,T)* .
In Theorem 1.2 the assumption that I' is a quasicircle is not necessary, the proof
works for a number of other curves, too. For example we obtain a proof for
Salaev’s theorem, cf. Corollary 3.9.
To see more clearly the geometric meaning of Theorem 1.2(b) we must

introduce some notation. If E is a bounded subset of the complex plane and
0 < r < diam (E), set

n
MP*(E; r) = inf {nrﬁ:EC U B, r),ne IN} .
i=1
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Then lim, _, , sup M?(E; r) = M®(E) is the S—dimensional Minkowski content
of E, ¢f. [MV]. Instead of the Minkowski content we need to use the following
closely related quantity

hB(E) = sup{ M*(E; r): 0 < r < diam (E) J.

If 3C® denotes the 8-dimensional Hausdorff measure, then clearly JC4(E) <
MP*E) < hA(E).

We shall see in Lemma 2.2 below that a Jordan curve I' is regular if and
only if 2'(I' N B(z,, R)) < CR for all z, € C and R > 0. Therefore it is reasonable
to say that I' is 6-regular if there is a constant C such that

3) h*("NB(zp, R)) < CR®, z,eC, R>0.

Theorem 1.4. If T is a bounded quasicircle and if T' is 6-regular, then Cy, is
bounded on A*(T") whenever 6 — 1 < o < 1. Conversely, if Cy. is bounded on
AT, then T is (1 + a)-regular. Thus

6(I") = inf {6: T is é-regular} =1 + ().

To illustrate how these results describe the behavior of the Cauchy integral
we mention that for the snowflake or Koch curve T, o(T") = log (4/3)/log 3
and that I" is 6(T")-regular. In fact, 6(I") = 1 + a(I") = log4/log 3 = dim, (T"),
the Hausdorff dimension of I'.

In the case of a general quasicircle I the Hausdorff dimension, the Minkowski
dimension B(I") = inf {8: M*(") < «} and the degree of regularity 6(I") may
be very different. However, the differences vanish if we look at the whole class
of all K-quasicircles, i.e. as in Theorem 1.1 look for the estimate of a(T") in
terms of the dilation K,

oK) = sup {a(I'): T" is K-quasicircle}.

Theorem 1.5. For each K > 1 the following quantities are equal

(@) d(K) = sup {dim, (I'):T" is K-quasicircle}.
(b) B(K) =sup {BI): T is K-quasicircle}.
(c) 8(K) =sup {6(I"): T is K-quasicircle}.

Moreover,
1+ a(K) =d(K) = B(K) = 6(K).

The above characterization yields numerical estimates for a(K): In a recent
article Becker and Pommerenke [BP] estimated the Minkowski dimension of
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quasicircles and proved that B(K) <2 — C,K~3*! and that for K close to 1,
1+0,09x*><BK) 1+ 3Tx?, x= K- 1)/(K+ 1).

Thus, if I' is a K-quasicircle, then the Cauchy integral Cr. is bounded on
A*(T") whenever a(K) < o < 1, where

oK) =dK)-1<1-C, K>
and
0,09(K — 1)*/(K + 1)* < a(K) < 37(K — 1)*/(K + 1)

for K near 1. The bound is best possible; if o < d(K) — 1 we can find a K-
quasicircle I' such that Cp. is not bounded on A*(T').

It is our pleasure to express our gratitude to M. Zinsmeister for pointing
out mistakes in the first version of this paper and, especially, for his help in
constructing the correct proof for Lemma 3.4, which is now based on a sug-
gestion of him.

2. Preliminaries

Following the terminology of Vaiisild [V] we call a set 4 porous if there is a
constant 0 < A < 1 such that every disk B(z,, R) in C contains a disk B(z, AR)
with A N B(z, \R) = (. We show first that for porous curves I" the conditions
(b), (b") and (b") in Theorem 1.2 are equivalent.

Lemma 2.1. Let I" be a Jordan curve and 0 < a < 1.

(a) If there is a constant C < o such that

4 diz,T)* 'dm(z) < CR'*«

jB(zO,R)
for all z,eC and R >0, then d(z,T)* '€ A,.

(b) If T is porous and d(z,T)* ™' € A, then (4) holds for all z,€C, R > 0.

(© Ifp=1+1/(1 — a), then d(z,T) € A, if and only if d(z,T)* "' € A,
p'=p/(p-1.

Proor. Fix z,eC and R > 0 and denote B = B(z,, R). In (a) if " intersects
B(z,, 2R), then d(z,1I') < 3R for z € B. Thus

1
B Ld(x, MN* 'dmx) < C,d(iz,T)*"', zeB.

If T' does not intersect B(zy,2R), then d(zy, I)/2 < d(z,T) < 2d(z,, T") for
every z € B and hence
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[ de, )" dm (x) < 4'~*|Bld(z, T)*7", z€ B.

To prove (b) choose a disk B(x, \R) C B(zy, R) which does not intersect I".
As d(z,T)* ' belongs to A, d(z,T')* ' €A, for some p <  and so

L a-1 L (1-a)/(p-1) >1_p
IB| Ld(z, N* dm(z) < C< Bl Ld(z, I dm(z)

< C|B|P'(\R/2)*~ | B(x,\R/2)|'~?

which gives (4). Finally (c) follows from the fact that we A4, if and only if
w'l/("‘l)eAp,. O

Every quasicircle is porous [V]. There are, of course, many other examples.
For instance, it is not difficult to see that regular Jordan curves, or even
é-regular curves with 6 < 2, are all porous.

Lemma 2.2. A Jordan curve T is regular if and only if it is 1-regular in the
sense of (3).

ProorF. Since JC(E) < h!(E), 1-regularity implies the usual regularity. Con-
versely, if I is regular and if I intersects B(z,, R), let p < diam (' N B(zy, R)).
Then there exist points x; € I' N B(zy, R), 1 <j < m, such that I' N B(zy, R) C
UT B(z;, p) and each point of I' N B(zy, R) is contained in at most M of the
balls B(x;, p) (see, for example, [St]). Here M is an absolute constant. As
x;el,
mp < m3C'(T' N B(x;, p))
< M3C' (T NUTB(x;, )
< M3C'(' N B(zy, 3R)) < CR.

Consequently, #'(I' N B(zy, R)) < CR and T is 1-regular. [J

Lemma 2.3. Let I' be a porous Jordan curve and 0 < o < 1. If d(z, T)*~*
€A, thenT is (1 + o)-regular, and if T is 6-regular d(z,T')* ™' € A, whenever
1 + a > 8. In particular, 6T") = 1 + a(I).

Proor. Assume first that I" is é-regular and denote B(¢f) = B(0,¢). If t <R,
it follows from basic covering theorems, c¢f. [MV, Lemma 3.1], that

t*~2|(z€B(zy, R): d(z,T") < t}| < [T NB(z9, 2R) + B(t)| /1>~ °

C;h°(I' N B(zo, 2R))
C,R®.

/

VAR/A
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Integrating this we have for e (6 — 1, 1)

Ls@o,m dz T 'dm@) =1 - a) j:| {zeB(z,, R):d(z,T) < t}|1* 2 dt

8 [Ria-5 _ 2 (® a-2
< G,R jot dr+ (1 — )R th dt
<C3Rl+a,

Cy =1+ Cy/(1 + a — 8). According to Lemma 2.1 d(z,T)* '€ A4,.
On the other hand, in case d(z,I')* "' € A,, we may apply as above [MV,
Lemma 3.11 and Lemma 2.1 to obtain

h'* (' NB(z, R) < C sup, IPﬂB(zo,R) + B(p)| /o'

0<p<

<C sup p* Y{xeB(zg,3R):d(x,T)* "} > p*1}]

0<p<2R

a—1
<CJ e 1 @D dm @

<CR'™™. O

3. The Cauchy Integral

Let I" be first a rectifiable Jordan curve and let D be the bounded component
of C\I'. If F is a C*-function with compact support and if f = F|, it then
follows from Stokes’ theorem that

1 oF
Crf(z) — _._1. B &_ dt = _..__J. E (Ez)

dm(), zeD.
ré-z

Here the latter expression is well defined even if I" is not rectifiable. Hence
we can take it as the definition of C|.fin case of a general or non-rectifiable I':

() Crf(z) = ——j -a@d m (§), z;sD,f=F|r and FeCg(C).

Note that by applying the generalized Cauchy integral formula we see
immediately that CL.f as defined in (5), does, indeed, depend only on f and
not on the specific extension F. Furthermore, it is easily seen that C. f extends
continuously to D (in fact, formula (5) defines a function continuous at each
z € C when Fe Cj(C)).

Definition 3.1. LetI" be a Jordan curve bounding the domain D C C and let
0 < o< 1. We say that the Cauchy operator Cy, is bounded on A*(T), if
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(6) |Cof | paqry S M| Sl paqry Sor every f=F|.,  FeCg(0),

for some constant M independent of f.

Remark 3.2. In Definition 3.1 the continuity requirement is minimal or the
weakest possible and so the definition is the most general one. If Cy. is bounded
in the above sense, then C|. extends a priori only to Ag(I"), the closure of C*
in A*(T),

A = (fe A @): [f) = S/ |x = y|* = o(|x — y])}.

However, the next two lemmas show that if I' is a quasicircle and C. is bounded
on A%(T) in the sense of Definition 3.1, then necessarily every fe A*(I") has
an extension F to C with dF € LY(C\D) N C*(C\D). In addition, then Crf(2)
is well defined via formula (5) for each fe A*(T') and z € D, C.f(2) is analytic
in D and it has a continuous extension to dD = I' such that (6) holds.

Lemma 3.3. Let D be a bounded Jordan domain and let 0 < oo < 1. Suppose
further that ve C3(C), suppv C B(zo, R), zo€T = 0D, dv(z) >0 for z ¢ D
and that |v| s oy = 1. Then, if the Cauchy operator Cy, is bounded on A*(I'),

. l+a
L:\Dc')v(z) dm(z) < C,R'™*°.

Proor. Choosing points w, w’ € I" such that |w — zo| = 5R and |w’ — 75| = 10R
we can estimate

ov(z)
Z—w

dam(2)|-

j Iu(z) dm () <20RH dm (z) — f 9v(z)
C\D Cc\D

c\p Z— W

Here the latter expression is equal to 20R|C.v(w) — Crv(w")| and since the
Cauchy operator is bounded on A*(T),

|Cro(w) — Cro(w')| < Go|w — w'|* < 15%C,R”.

Consequently
a l+o
L:\Dav(z) dm (z) < C;R'* ¢,

€, =20-15°C,. O

Lemma 3.4. Let D be a bounded K-quasidisk and let 0 < a < 1. If the
Cauchy operator is bounded on A*(T"), I' = dD, then

@ [,d@ T dm (@) < CR' =

for each disk B of radius R.
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Proor. Let B = B(zy, R) and 2B = B(z,, 2R). If B does not intersect T', (7)
follows trivially since then d(z, I')* ! < d(z, dB)*~! for each z € B. Thus we
may assume that z, € I'. Moreover, by a similar reasoning it suffices to study
only the case R < diam (I').

To prove (7) we shall find a ve Cj(C), satisfying the assumptions of
Lemma 3.3 with supp v C B(z,, 4R), such that

®) [,d@T)1 " dm@) < () [ 3v() dm ().

Indeed, it is enough to find such a v in the special case R = 1 since otherwise
we may change variables and set v, (z) = R*v(zp + (z — Z0)/R) for R # 1.

Assuming that R =1 choose for each €N a maximal set of points
x;=x;el'N2B, 1 <i<k,, such that

Ixf —x}| 22277, i#j.

From the basic distortion properties of quasiconformal mappings we see that I'
is porous in the following slightly stronger sense: There exists a constant
N = MK) such that B(x}, 27"~ 1y contains a point wje D with d(w;.', M >=N27"
We can now construct the function v. Define first g(x) = x — 1if A <x <1,
g(x) = (= D(x/N)?if 0 < x <\ and g(x) = 0 if xe R\[0, 1]. Next set ¢(z) =
2(z])/z, ze C. Clearly supp ¢ C B(1), |¢(z) — o(W)| < \~2|z — w| and

) do(z) = 1/2)|z] if A<]z]<1.

After these preparations let

m kn
U(Z) = ZO Uy (Z), Uy (Z) = .21 2- "“40(2"(z - W;-l)),
n= j=

where m € N will be chosen later.

It follows easily that the support of v is contained in B(z,, 4) and, by (9), that
0v(z) > 0if z ¢ D. Since a standard smoothening gives a function v € C(C) with
the same properties, it remains to show that, for all m, |v| yaqr, < C3(K) <
and that (8) holds when m is large enough.

We start with the Lipschitz estimate. Suppose z, weT'and2 77 < |z — w| <
277*1, Since for a fixed n the disks B(w}, 2 ") are disjoint, |u,(z) — u,(W)| <
|1, ()| + |u,(W)| <2-27"forn > pand |u,(z) — u,(W)| < N"22" 7"z — w|
for n < p. Hence

p—1 m
lv@) —vw)] < 2 NT2"0 "Dz —w| +2 3] 27
n=0 n=p

< Cyllz— w2772 + 277
< Cylz — wle.
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Here C, depends only on o and K (or \).
Thus we are left with the proof of (8). Since the disks B(x7,2*™"), 1 <i<k,,
cover I'N2B,

kn2(1+a)(2—n) M1+a(11 ﬂZB; 22—n)

=
> C5|T'N2B + B~ ")[2¢ ~on,
In the latter inequality we used again [MV, 3.1]. Beacuse B(x?,2 "~} C

B(w},2™") we can find a disk B(y7,N\2~") inside B(w},2~") N (C\D) and as
0u,(z) >0 in C\D, (9) implies

kll
2
i=1

I 0u,(z) dm (z) > j 0u,(z)dm (2) > Nk, 2™ """
c\p By A2-m

Since Lemma 3.3 yields

% J ou,(z)dm (2) = J w(z)dm () < C,-Cy- 4" * <
c\D c\D

n=0

for all m € N, we may estimate

Ld(z,I‘)"“ldm(z) = ruzeB: dz, )" > t}| dt

(=]

8

< > 2" -9 {zeB:d(z,T) <27 "}
n=0

o

< Cq L\D u,(z) dm (z)

n=0

< 2C j . 0v(z) dm (2)
D

as soon as m is large enough. Here Cg = 8 - 2% - C5 ! - A\~ 2. The inequality (7)
follows now from Lemma 3.3. [ .

With Lemma 3.4 and the following corollary to the classical Whitney exten-
sion theorem, see [St, p. 174], we can fulfil the promise made in Remark 3.2.

Theorem 3.5. Let I" be a bounded Jordan curve in the complex plane and
0 < a < 1. Then every fe A*(T') has an extension F € A*(C) such that |F| A©)
<M, | fl axqry Where My is independent of f, Fe C*(C\I), F is compactly
supported and |grad F(z)| < My | f | poryd(z, T)* 1.

Indeed, if the Cauchy operator is bounded on A*(I") according to Definition
3.1 and I' is a quasicircle, then d(z, I')* ™! is locally integrable in C by Lemma



CALDERON’S PROBLEM FOR LIPSCHITZ CLASSES AND THE DIMENSION OF QUASICIRCLES 479

3.4. Thus Whitney’s theorem gives for each f € A*([") an extension F such that
JF($)(¢ — z)~ ' € L}(C\D) whenever z € D. In particular, the expression

(10) /@ = - l—j O gm@,  zeD,

T Jow §-2
is well defined for every fe A*(I'). And it is easily seen that this expression
does not depend on the particular choice of the admissible extension F and,
furthermore, that in case I' is rectifiable or fe C®, (10) reduces to the stan-
dard definition of the Cauchy integral.

It remains to show that in our situation C[.f has also boundary values in
A%() with

(11) ICoS ey S MU f | gy for all fe A*(D).

This leads us to the sufficiency of the condition (») in Theorem 1.2; the
inequality (11) will then be a consequence of Lemmas 3.4, 2.1 and Corollary 3.7.

Lemma 3.6. Let o be a complex measure with compact support K C C. If
0 < a< 1 and |o|(B(zy, R)) < MR'* for all zye C, R > 0, then the Cauchy
transform

d
(12) o= [

is holomorphic and a-Holder continuous with |G| a, < C(@)M in each
component G of C\K.

Lemma 3.7 is due to Dolzhenko [Do] but under a different formulation.
However, the same proof gives the above result; see also [G, Theorem 111.4.4]
and its proof.

Corallary 3.7. Let T be a bounded and porous Jordan curve and denote by
D the bounded component of C\I'. If 0< a < 1 and d(z,T")* '€ A, then
every fe A*(T") has an extension F such that

1 oF
Crf@) = T L\D £ —(Ez)

dm(t), zeD,

is well defined and holomorphic with

1CoSf | pery = 1 Crf | aaioy
< C“f“Au(I‘)'
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Proor. If fe A%(") is given let F be its Whitney extension as in Theorem 3.5.
According to Lemma 2.1 the measure

o(A) = |, Xc\p(®) 3F (&) dm (&)

satisfies the growth condition of 3.6. Hence |Cr.f | yapy < C S| pary- The
equality |Cr.f | yay = | Crf | par, follows now from [GHH]. O

Finally we collect the above steps to the

Proor oF THEOREM 1.2. If 0 < o < 1, if I' is a quasicircle and if the Cauchy
operator Cr. is bounded on A*(T"), then d(z, I") € A; . 1,(; - ) by Lemmas 3.4 and
2.1, i.e., (a) implies (). Conversely, if d(z,T') € A, , 1,1 - oy » then d(z, T)*~ le
Ay, the Cauchy integral C|. f(z), formula (10), is well defined not only for fe C*
but for all fe A*(T") and z € D and by Corollary 3.7 C. is a bounded operator
with |Crf | puqry = 1 Crf | papy < €l f | paqry - Thus (b) implies (a).

It follows form the work of Gehring and Viisdld [GV], either via the
original proof or via Theorem 1.5, that every quasicircle is 6-regular for some
6 < 2. Hence, according to Lemma 2.3, o(I") = inf {c: d(z, T)* '€ A4,} < 1.
Moreover, if w is a weight in the 4,-class, then by Jensen’s inequality w® € 4,
whenever 0 < 8 < 1. Thus C. is bounded on A*(I") for each « in the open
interval ((I"), 1). If Cp. were bounded in A*(T") for some positive o < o(I),
then w(z) = d(z, T)*® 1€ A, and by Muckenhoupt’s theorem [M, p. 214]
w!*¥e A, for some e > 0. But that is clearly impossible as (a(T") — 1)(1 + €)
< o(T") — 1. The proof of Theorem 1.2 is complete. [

PROOF OF THEOREM 1.4. IfI'is 6-regular and 6 < o + 1 < 2, then d(z, I)* ™!
€A, and Cp.: A%(I") = A*(I") by Lemma 2.3 and Theorem 1.2. Conversely, if
C, is bounded on A*(I"), d(z,T)* '€ A, and I' is (1 + @)-regular. [

Remark 3.8. The proofs described here for Theorems 1.2 and 1.4 remain valid,
in addition to the quasicircles I', also to a number of other Jordan curves. In
fact, the only property of quasicircles we used was that they were «biporous»:
There is a constant \ such that whenever x, € I" and R < diam (I'), then both
DN B(x,, R) and (C\D) N B(x,, R) contain a disk of radius AR. Consequently,
Theorems 1.2 and 1.4 hold for all biporous Jordan curves.

The above approach gives also a proof for Salaev’s theorem in a generalized
form.

Corollary 3.9. IfT is a é6-regular Jordan curve and 6 < 2, then Cp.: A*(T") =
A*(") for each 6 — 1 <a< 1.
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PRrooF. Since §-regular curves, 8 < 2, are porous d(z, I)*~ ' € A, by Lemma
2.3. The claim follows therefore from Corollary 3.7. [

There are many other ways to see that d(z,I')*~ '€ A4, for I' regular and
0 < a < 1. For example, one can show directly that d(z,T')€ A, for p > 2
(M. Zinsmeister, private communication) or we can use the Hardy-Littlewood
maximal function Mu(x) of the arclength measure ¢ on I,

1 I('NB)
) =0 7 =g

here the supremum is taken over all disks B containing x. Indeed, by regularity
C,d(z,T) ' < Mu(z) < C,d(z,T") " ! and according to a theorem of Coifman
and Rochberg [CR] (M) belongs to the class A; whenever 0 < e < 1.

Similar arguments yield the correct estimates of the boundedness of the
Cauchy integral on many other curves, too. For instance, if I" is the standard
Koch curve or the snowflake curve, then by [H] I' carries a natural measure
u such that C;d(z, T)? ™% < Mu(z) < C,d(z,T')? ~* where 8 = log 4/log 3 is the
Hausdorff dimension of I'. Hence C;. is bounded on A*(T") if log (4/3)/log 3 <
a < 1. Conversely, 8 < 6(I") = 1 + o(I") and thus C. is not bounded on A*(I") if
0 < o < log(4/3)/log 3. We also note that by combining these estimates with the
proof of Lemma 2.3 one can show that the snowflake I is (log 4)/(log 3)-regular.
More generally, if T' is any (porous) Jordan curve which supports a positive
measure p such that

Ci R < u(B(z0, R)) < C,R?
whenever z, €I’ and R < diam (T"), then
d=dim, ) =0)=6T)=1+ )

and I' is d-regular. In particular, ¢f. [MV, 4.19], this holds for all selfsimilar
fractal curves satisfying the open set condition of [H, p. 735].

4. The Hausdorff Dimension

In this last section we prove Theorem 1.5, the relation between «(K) and the
upper bound for the Hausdorff dimension d(K) = sup {dim,(I'): T' is K-
quasicircle}. According to Theorem 1.4 it will be enough to show that
6(K) = d(K). For this some lemmas are needed.

Lemma 4.1. For each K> 1, d(K) = lim d(K + ).

e—=0+
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Proor. All bounded (K + e)-quasicircles I' are of the form I' = Ap({|z]| = 1})
+ pwhere\, p € Cand ¢ is (K + €)-quasiconformal on € with ¢(0) = 0, (1) = 1
and () = . Moreover ¢ admits the factorization ¢ = ¢, © ¢, where ¢, ¢,
fix 0, 1, o and have dilatations K(¢;) = (K + €)/K, K(¢,) = K, cf. [L, p. 29].

According to Mori’s classical distortion theorem ¢, is 1/K(¢;)-Holder con-
tinuous on compact subsets of C. Hence

dim,, () < K(py) dimy (¢, {|2] = 1)) < (1 + ¢/K)d(K).
Since ' was arbitrary, d(K + ¢) < (1 + ¢/K)d(K). O

The next lemma is a standard deformation argument. No proof, however,
seems to appear in the literature and hence we sketch the details.

Lemma 4.2. Let ¢ be a K-quasiconformal mapping on C fixing 0, 1 and .
Then for each e > 0 there is a number p = p(K,€) €(0,1/2) and a (K + €)-
quasiconformal mapping ¢ on C such that

@ @ =¢@ i 1/2<2]
® 6@ =z if |2 <o

Proor. Assume first that ¢ is conformal in the unit disk B(1). If A = ¢’(0), then
1/M < [N < M and |e(2) — Nz| < Mp?, |¢'(@) — N < Mp for |z] < p < 1/2 with
a constant M depending only on K. Given a C*-function v such that v(z) = 0
for |z| 22 and v(z) =1 for |z| <1, set

2(2) = ¢(2) + (\z — ¢(2))v(z/p).

Then g is quasiconformal on C and K(g] B /2)) < 1 + Cp for p small. Finally,
we replace g by g(z)(|g(z)| /o) * € in an annulus p; < |z| < p and obtain a map-
ping & with the properties: §(z) = o(2) if |z| > 1/2, &(z) = z if |z| <p, and
K(glg(l/z)) < 1+ €& p1= pl(K’ E).

The general case follows from the above. Indeed, we may factorize
@ = k™1 o h, where A is conformal in B(p,) and k is conformal outside ¢B(p,)
and deform 4 and k so that ¢(z) = A(z) for |z| > 1/2 and h(z) = z for |z| < p. O

Lemma 4.3. If d(K) < 6, there is a constant
Co = Cy(K, 0)
such that
h2(¢l0, 1) < G

for each K-quasiconformal mapping ¢ on C fixing 0,1 and .
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Proor. If the claim is not true, we can find a sequence {¢,}T of K-quasi-
conformal mappings on C, each fixing 0, 1 and o, such that

13) h(e,[0,11) >n, neN.

Using Lemma 4.2 we shall then construct for every e > 0 a new mapping &,
on C with X(®,) < K + € and dim,, (%[0, 1]) > 8. By the M&bius invariance
of quasiconformal mappings

d(K) = sup {dim,, (¢[0, 1]): ¢ is K-quasiconformal on C, ¢(e) = «}

and hence we obtain d(K + €) = 6 > d(K) for all e > 0. This, however, con-
tradicts Lemma 4.1. Therefore to prove Lemma 4.3 it is enough to find the
mappings &, .

Now, assuming the existence of the sequence (13), choose for each n a
radius r, < 1 such that M®(e,[0, 11;r,) > n. Then choose a maximal set of
points z; = z7 € [0, 1], 1 < i < k,, such that ’

14) |n(z) — @)l 210y P#]
Clearly, the union of the balls B(p,(z;), 7)) covers ¢,[0, 1] and thus
15) kn(r)® = M®%p,[0,1];1,) = n.

By (14) the disks B(y,(z;), r,/2) are disjoint. Let B(z;, A;) be the largest disk,
with center z;, contained in ¢, 'B(¢,(z;), 7./2)-

Next, we deform ¢, and create «holes» at the disks B(z;, \;). We shall then
fill the holes by similarity-copies of ¢, and as a result obtain a selfsimilar set
E, dim, (E) > 6, contained in a (K + €)-quasicircle.

To be more precise, we fix ¢ > 0 and apply Lemma 4.2 to find a number
o = p(K, €) € (0, 1/2) and for each n € N a (K + €)-quasiconformal mapping ¢,
such that the following conditions hold.

(16a) ¢,(z) = ,(2) if |2/ <2 and z ¢U,;B(z:N)

(16b) $,() =z if 1/p<la|.

(16¢) In B; = B(z;, p\)) ¢, = 7;, a similarity with 7,(z;) = ¢,(z;) and 7;(z; + \))
= @a(zi + N).

Note that here 7;, \; and B; depend also on n. From the distortion properties
of quasiconformal mappings we deduce

rn
2N

(17 <|mil <

Ci\;
where C; = C;(K).
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If B is as in (16¢) let u; be the similarity #;(z) = z; = \;p>z with #;B(0, 1/p) =
= B; and u;[0, 1] C [0, 1]. Then the holes B; can be filled in by defining new
quasiconformal mappings ¢ as follows: set ¢ = ¢,,,

(18) 0P =, ou;0 9% Voul(z), if zeB,,

and ¢®(z) = 9% ~D(z) otherwise. It is easily seen that each ¢% is (K + ¢)-
quasiconformal on C. In fact, ¢, is a similarity on B; and u; 0 ¢% =1 o ;!
the identity outside B;. Consequently, as k — o the ¢% converge uniformly
on C to a (K + €)-quasiconformal mapping ®,,.

Finally, from (16c¢) and (18) we have

(19) ‘1’" o ui(Z) =T; ° u; o q)”(Z), ‘Zl < l/p.

The similarities u; are contractions and by Hutchinson’s theorem [H, 3.2]
there is a unique compact set E, such that

kll
L,E)=E,, L, (A)= k=_Jl u;(A).

Since these similarities map the unit interval into itself, E, C [0, 1]. On the
other hand, the similarities 7; o u; are also contractions, r,0%/C; < |(7; © u;)'|
< rp0*/2 by (17). Hence we have a unique compact E for which

Ky
L(E)=E,  Z.(A)=Urmrcu)
i=1

and it is easily seen from (19) that &,(E,) = E.

Lastly, we have to estimate the Hausdorff dimension of E. Because the
disks B; are disjoint, E, and hence E satisfy the open set condition of Hutchin-
son [H, 5.2]. According to [H, 5.3], dim,, (E) is then the unique number s for
which

Ny

(7 0 w)|* = 1.
i=1

1]

But |(r; © 4;)'| = r,0*/C, and when n is large, (15) yields k,(r,0%/C;)° >
np*/C% > 1. Therefore

dim,, (&,[0,1]) > dim,(E)>8, nzn, O

Proor oF THEOREM 1.5. 'We must show that d(K) = 6(K). Since d(K) < 6(K)
trivially, it is enough to prove that for each 6 > d(K) and each bounded K-
quasicircle I' there is a constant C < oo with

h’(B(zy, R)NT) < CR®, z,eC, R>0.
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By Lemma 4.3 and the Mobius invariance of quasiconformal mappings, if
6 > d(K) then

h () < C(K, 6) diam (I")°

for all bounded K-quasicircles I'. If z,, R are given, take a point w, € B(zy, R)
such that d(wg, T') = Co(K)R and let ¢(z) = (z — wp) " '. As |9(2) — ¢(z')| >
|z — z'|(2R) ™ * whenever z,z' € B(zy, R)NT,

h®(B(zy, R)NT) < 2R)?h%(¢T)
< @QR)®Cdiam (¢IM)°.

However, diam (¢I')° < (2/ CoR)®? = C, R~ ® and hence the claim is proved. The
equalities 1 + a(K) = d(K) = B(K) = 6(K) follow now from Theorem 1.4. [
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