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An Extremal Property
of Entire Functions
with Positive Zeros

Daniel F. Shea and Allen Weitsman

1. Introduction

Let f(z) be a Weierstrass product of finite genus g with zeros z, # 0 so that

1.1) @)= 1;[1 E,(z/z,)
where

1 —-u g=0
(1.2) Eq ) = {(1 —wexpu+u?/2+---+ul/g) g>0

is the usual Weierstrass primary factor and

(-]
27|77 < .
v=1

Put

1.3) f@) = 1;[1 E,(z/\z,)),

and define

(1.4) u(re’, f) = sup {log | f(re"®*?)| + log | f(re"®~)|}.
/]

Let n(r, 0) and N(r, 0) be the counting functions for the zeros of f [H; p. 6].
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Theorem 1. For

(1.5) T/2g+ 1)< e < 7/2q
we have
(1.6) u(re', f) < u(re®,f) = 2log | f(re')|.

(When g = 0 we interpret (1.5) as 7/2 < ¢ < 7.)
Further, the convolution inequalities

(1.7) u(re’, f) < ["n(t, 0/t )t~ dt,
(1.8) u(re’, f) < [N, OK(r/t, o)t~ dt
both hold for ¢ in the range (1.5), where

257% Y(scos gp — cos (g + 1)¢)

(1.9) s, 0) = 1 +s%—2scose

and

(1.10) K(s, ¢) = s3J(s, ©)/ds

satisfy

(1.11) J(@s, ) 20, K(s,¢) 20 0 <s< ).

Recall that, for a nondecreasing function S(r) (0 < r < ), a sequence {r,,}
tending to o is a sequence of Polya peaks of order \ for S if for every e > 0

A—e
S@) < <ri> Stw)  (1<u<ry)

m

u A+e
S@) < <r—> Stw)  rm<w)
whenever m > my(e), from which it follows that S(r,,)r,,* "% — o as m =
for any 6 > 0 (cf. [F; p. 136]).

If g is an entire function of nonintegral order A, then g(z) = z*e*@f(z)
where f has the representation (1.1) with g = [\], P is a polynomial of degree
at most g, and, by known existence theorems ([H; p. 103], [DS]), N(r, 0) and
n(r, 0) each have Pdlya peaks of order \.

The inequalities (1.7) and (1.8) along with the positivity (1.11) of J and X
allow for very precise estimates of u(re*, f) near the Pélya peaks of the coun-
ting functions. These estimates will be carried out in Theorem 2.
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There are numerous known results on the distribution of values of entire and
meromorphic functions of orders A < 1 for which the extremal functions have
positive zeros, and whose counterparts for A > 1 are unknown (cf. [H; pp.
109-119] and [P]). This is due to the particularly simple behavior of |Ey(re’®)|,
which for every r > 0 is increasing on (0, 7) and then decreases symmetrically
on (m, 2). When g > 1, the intervals on which |E,(re’’)| increase and decrease
depend upon r.

Our Theorem 1 presents a rare instance when an inequality on primary fac-
tors is sharp for a range of 6, independent of r, and hence leads directly to
extremal properties of f.

Theorem 2. Let g have nonintegral order \ and {r,,} be a sequence of Pdlya
peaks for N of order \. Then

ip A
1.12) Jim sup “m€>8) 27N

mow Ny, 0)  sina\ cos ((m = &)

Sor ¢ satisfying (1.5), uniformly for t in compact subsets of 0 < t < oo,
Similarly,

u(tR,e*,g) _ 2zt

1.1 i - < — -
(1.13) hl,:lf gp n(R,,, 0) sin A cos ((r = )

Sor {R,,} a sequence of Pdlya peaks of order \ for n, with ¢ in the range (1.5)
and uniformly for t in compact subsets of 0 < t < co.

Theorem 2 is sharp and extends a theorem of Fuchs [F] who proved (1.12)
for t =1, A > 1/2, and ¢ restricted to the range 7/2(q + 1) < ¢ < 7/2\.

Inequality (1.12) still holds for entire g of finite lower order p, provided A
is replaced in (1.12) by any finite nonintegral p € [x, A\] and the r,, are chosen
to be strong peaks of N(r,0) in the sense of [MS]. The corresponding remark
applies also to (1.13). For proof, combine the arguments used here for
Theorem 2 with those of [MS].

2. A Preliminary Lemma
Put k(z, ¢) = log |E,(ze'*)E,(ze ~*)|. For (1.6)-(1.8) we require
Lemma 1. For ¢ in the range (1.5) and |z| = r we have

2.1 k(z, ) <k(r,o) (0<r<w).
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When r < 1, (2.1) is equivalent to

- > (*/k){A - cos k) cos ke > 0,
1

k=qg+

but a direct proof of this seems difficult. Exponentiating (2.1) leads however
to an easy proof.

Proor oF LEMMA 1. Put
2.2) G(z) = E,(ze ™ ")E,(ze") = 3] g,2".
n=0

To prove (2.1) it then suffices to show that
2.3) 8,20, n=0,1,...

for ¢ in the range (1.5).
Let

|

J
ER) =E,(2)=(1-2€e"?®, R(2)= i — (=0if g=0)
ji=1

~

so that E'(z) = —z%*®®. Thus,

G'(z) = eE'(ze")E(ze ™ ") + e~ "E(ze'")E'(ze ")
- _ eip(zei¢)q eR(ze“") E(ze~ iw) —e- iw(ze - iqo)qeR(ze ~ley E(zei:p)
- __zqeR(ze"")eR(ze - "")(ei(q + 1)¢(1 —ze” i¢) + e i@+ 1)¢(1 _ zeitp))
= oRGe™) +RGze™ "")(azq +Bz7Y

where oo = —2cos (g + 1)¢ and B = 2 cos ge. Since

. . q 1 .
R@ze") + R@ze~#) =2 3 °°j.’ ® 2,
=1

we have that R(ze’) + R(ze™**) and thus exp [R(ze’*) + R(ze ™ *)] have non-
negative Taylor coefficients for ¢ in the range (1.5). Now, o > 0and 3 > 0 for ¢
satisfying (1.5) so that G’ has nonnegative Taylor coefficients. Finally since
G(0) = 1 it follows that (2.3) and consequently (2.1) hold for the range (1.5). O

3. Proof of Theorem 1

By Lemma 1 and (1.1) it follows that for any z with |z| = r and ¢ satisfying
(1.5) we have
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(3.1) log | f(ze™) f(ze™ )| = Zl k(z/z,, ¢)
v=

< ; k(r/|z,|, )

) k(r/t, ¢)dn(t,0)
0

= 2log|f(re™)]

5

= r n(t, 0)k,(r/t, o)rt 2 dt
0

where
_ 0k(s, 9)
(3.2) ki(s, ¢) = 3
Thus (1.6) holds and if we put
(3.3 J(s, ) = sky(s, ¢)

a direct computation with (1.2) shows that J is also given by (1.9) and that
J(s, ¢) = 0 for ¢ satisfying (1.5). From (1.4) and (3.1) we then obtain (1.7).

Continuing on from (3.1) with another integration by parts and K as in
(1.10), we get

log | f(ze*) fze™ )| < [TN(t, OK(r/1, o)t " dt
which implies (1.8).

It remains only to verify that K(s, ¢) > 0. In fact with G again as in (2.2),
then k = log G so that from (3.2), (3.3), and (1.10) we have

0 (sdlogG
K(S,QD)—-S%( ds >

= G(5) ~*[sG'(5)G(s) + s°G"(5)G(s) — (sG'(5))’]
= G(s)~? i b,s"
n=0

where G(s) “2 > 0 and Y, b,s™ has infinite radius of convergence. Thus, it suf-
fices to show that b,>0, n=0,1,... .
With the notation of (2.2) we have
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b,

n n n
2 kergu ke + 20 kk — 1)grgn_x — 2 kgx(n — K)g,_x
k=0 k=0 k=0

n
2 (K — km)gig,

x

_ 0(2(,1 —JY = nn—j)eg._;g-

J

Thus, for ¢ satisfying (1.5) it follows from (2.3) that

n

2b, = 2, (2k* — kn + 2(n — k)* — n(n — k))gk&n_«

k=0

= kZo (n - 2k)°g,8,_ = 0.

4. Proof of Theorem 2

Since {r,,} is a sequence of Pdlya peaks of order A of N we have from (1.8) that

@.1) u(tr @', £) < N(r, O)| [7K(t/0, 0)0"~ do + (1)
where

1 1
4.2) Nm() = NG, 0) [ L N(o, 0)K(tr,,/ 0, ¢) do

1
+ j K(t/o, o)1 - YHdo
r,;l

+ j K(t/o, o)(c* 1€ - c* " Ydo
1

+ klog (tr,) + C(tr,).
Using (1.9) and (1.10) we find that for ¢ # 0,

|K(Gs, 0)| S Ci(g, 0)s7*!  s<1
|K(s, )| < Cy(q, ¢)s? s>1.

These inequalities along with the fact that N(r,,, O)r,,**%— (6 >0) as
m — o« imply that for ¢ in the range (1.5) and ¢ in a compact subset of (0, «)
we may take 7,, arbitrarily small, for sufficiently small e and large m in (4.2).

The integral in (4.1) can now be explicitly evaluated as follows, using the
notations of (3.1)-(3.3).
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j' K(t/o, o)o*do = t* j K(r,o)r > 'dr
0 0
<] aJ r’ ©
= j 0 L g\ j J(r,o)r >~ tdr
o Or 0

=\ J ki (r, o)r~dr = Nt* j k(r, o)r~*"ldr

0 0

=N j (log |E,(re*)| + log |E,(re=*))r >~ 'dr
0

= 2)31*] log |E,(~re’™=)[r=>~1 dr
0

_ 2M*meos ((m — o))
a sin 7\

The computation of this last integral is done in [HS; p. 222]. This completes
the proof of (1.12). The proof of (1.13) is similar and is thus omitted.

5. Estimates of log M(r)/N(r, 0)

Let g be as in Theorem 2. Then u(re’, g) is easily seen to be subharmonic in
C. We may therefore form a local indicator h(f) as in [E] where the details
are carried out for the case # = log|g|, but they go through without essential
change for u = u(re', g). The functions

V(r) = Nt O)r/r) (0" 'rp,<r<or, o>1)

serve as valid comparison functions in the sense of [E], since for each fixed
t>0

log M(t.
6.1) Jim sup 128 Mm &)

NG G SBTBY <.
m-—o m»

To verify (5.1) we observe that the argument of [H; p. 102] proves
log M(r, ) < ¢; (q)<q j (r/s)'N(s, 0)ds/s + (g + 1) j (r/s)?* 'N(s, 0) dS/S>
0 r
+ O(r? + O(logr)

© qg+1
<2q + l)cl(q)j UL

N(s, O)E,i + O@r? + O(logr)
o 1+r/s s



44 DAaANIEL F. SHEA AND ALLEN WEITSMAN

where c¢;(g) = 2(g + 1){2 + log(g + 1)}. Since the r,, are Pdlya peaks, we
have for fixed >0 and 0 <e<min(A —g,qg + 1 —\) that

® (trm/s)?*?
log M(tr,,, g) < _
og M(tr,,, ) < c;(q) L 1+, /s

© . g-A+te t,,g-A—¢
Scz(q)N(rm,O){t"'fj “ du+t"+‘j ”1 du}
t

1+u 0 +u

N(s, 0) % + O((tr,,))) + O(logr,)

+ O((tr,)D + O(logr,,)

where ¢,(q) = 2(q + 1)c;(q). Letting m — « and then e — 0 yields

. logM(trm,g) ®ul"Nd
1 < T
Hn?jgp - PN, 0) & ) 1+u =@ ]sm m\|
as claimed in (5.1).
We may then define
h(p) = su U(trm e”, g)
‘ so _O’_ISptSU tN(rm:
h,(¢) = lim sup h(¢),
m-—> o
and finally
h(p) = lim hy(p).
Then,
(i) A(p) is subtrigonometric (see [E]);
(ii) forB=0or B =m,
2log M(rm, 8)

(5.2) h(B) = lim | SUp N 0)

and for |8 — o] < w/\,
(5.3) h(B)cos (B — #)N) < h(e);

(iii) for ¢ in the range (1.5),

5.4) h(e) < S—Z@—cos ((m — V).

in A

Here (5.4 follows from Theorem 2, (5.3) from [L, p. 56], and (5.2) is im-
mediate from the definitions of u and A.
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Following Pdlya [P], we seek estimates for

.o log M(r, 8)
@ =N 0

When A < 1 we can take 8 = wand ¢ € [7/2, 7) in (5.2)-(5.4) to deduce C(g) <
w\/sin 7\, a classical result due to Valiron [V] and Pélya [P].

For A > 1, good bounds on C(g) are not yet known. To see what (5.2)-(5.4)
can tell us, we take 8 =0 and ¢ = w/2(g + 1) in (5.3) to deduce

Cle) < AN

A
sin

|sin 7\

where the estimate

cos((r — @)\  sin((2g + 1)) < T >
= Y= "2— — o\

(.5 AN < (-Df— -~ sin y

is far from sharp for large A.
When g has order 1 <\ <2 we have two explicit estimates:

A(N) <1+ 2|cos (wN/2)],

(5.6) A\ < 2|cos 2mN/3)|.

The first is equivalent to (5.5) when g = 1; the second uses

6.7 log M(r,f) <u(re™>,f) (0<r< x),

with £, f as in (1.1), (1.3), together with an application of Theorem 2.
The inequality (5.7) follows in case f = E; from the calculation

r2/2 0<r<?2)

max log |E, (re'®)| =
0 g [Ey(re™)| {r+log(r—1) 2<r
together with

u(re™?, E;) = 2log |E, (re™?)|
=r+log(r>’—=r+1) (0<r< o).

For f of the form (1.1) we deduce

logM(r,f) < 2. logM(r, E,(2/z,))

yv=

—

< D) u(re™?, Ey (z/\z,])) = u(re™”, f).
r=1
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Thus the second inequality in (5.6) follows from Theorem 2:

 logM(rm,f) + O()
<1
Cle) < limsup =35

. u(rme™?, f)
< limsuyp——2— 2
maal N, 0)

< 27\ cos 27\
= sinah 3
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