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1. Introduction

Given an open set Q in R”, a real-valued function # in the Sobolev class
WLP(Q), 1 < p < =, is said to be p-harmonic if it is a weak solution of the
p-harmonic equation

1) div (|Vu|? ~2Vu) = 0
or equivalently, for all test functions ¢ € W'?(Q) with compact support in Q
jn |Vu|P ~(Vu(x), V() ydx = 0.
Note that p-harmonic functions are free extremals of the variational integral
— p
I [u] = jG |Vu(x)|? dx

for each relatively compact open subset G C Q. Two-harmonic functions are real
analytic since they are harmonic in the usual sense. When p # 2 note that equa-
tion (1) is non-linear and it degenerates at the zeros of the gradient of u. In
consequence of this fact p-harmonic functions with p # 2 need not be C™-
smooth. They are however in the Hélder class Cj;&(Q) with some « = a(n, p),
0 < a < 1; see Ural’tseva [9], Evans [3] and Lewis [6].

In this note we determine the optimal regularity of p-harmonic functions
defined on a plane domain for each exponent p, 1 < p < . To state the
results we use the following function spaces.
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The Holder space CX: e (@), k=0,1, ,0 < a <1, is the space of complex-
valued functions u € C*(Q) whose k- th order partial derivatives D’u, |v| =
are locally Hélder continuous with exponent o, CX:%(Q) is a locally convex
linear space with topology determined by the seminorms

|D"u(x) — D"u(y)|
Ulck,ar) = su ux)| + su o ’
[l ko p| )] xygF MZk |x — |

where F'is any compact subset of Q. The completion of C*(Q) in this topology
is a proper subspace of C{‘o’c"(ﬂ) which we denote by CEr*(Q). For o =1

the space CX**(Q) coincides with C¥*!(Q) whereas functions in CE} *(Q)

with 0 < o < 1 are characterized by the condition

> |D"u(x) — Du(y)| = o(|x — y|%

v =k

uniformly on compact subsets of O x Q. Hence, we have the following imbedd-
ings

) Chiv @ < ChI@ < CEHAQ).

whenever k=0,1,... and 0 < 8 < a < 1. We denote by Wloc(Q), =1,2,...
1 < s < =, the space of functions u: 2 — C whose distributional derivatives
D’u, |v| < k, belong to Lj,.(?). By Sobolev theorem

A3) WEE9Q) ¢ Wit (@) ¢ CEI*@)

forO0O<a<land k=0,1,2,..., where

“ s= 1T —en ),

and

o=t (5)
Furthermore

(6) Wiee " 2(@) = Ciz (),
and

() Wiee 2@ & Wise (@)

for every 1 < s < co. Our main result is the following:
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Theorem 1. Let ue Wi”(Q), 1 < p < o, be a p-harmonic function defined
on a plane domain Q@ C R%. Then

) ue CE@NwEt>9Q),

where the integer k > 1 and the exponent a € (0, 1] are determined by the
equation

1 1 14 1
=—7 1 *
)] k+a 6<+p—1+J+p—l+(p—l)2>

The integrability exponent q is any number such that

(10) I<g<

For p # 2 the regularity class in (8) is optimal. More precisely, for each
l<p<oo,p#2, thereisa pz-harmonic function ve WP(Q) which is not in
the class CkX*@Q)U w235 ().

loc loc

Interest in the regularity problems for p-harmonic functions arises from
several considerations. One particular compelling connection is with an open
problem of Gehring and Reich [4] concerning the degree of summability of
the derivatives of a quasiconformal mapping.

Our proof of Theorem 1 substantially exploits and extends the ideas from
[2]. A key is the hodograph transformation that converts the p-harmonic
equation onto a linear first order elliptic system. We solve this system by using
Fourier series method. A careful examination of the Fourier expansion for-
mula for the solution of the system leads us to the regularity statement in
Theorem 1. This formula provides non-trivial examples of p-harmonic func-
tions. Among them there is one showing that our regularity result is the best
possible.

2. Complex Gradient

We are going to use some properties of plane quasiregular mappings. For this
it is convenient to introduce the complex variable

Z=x+iyeC, (x,y) e R?,

and the operators of complex differentiation

9z 2 \dx ay 0z 2\ ax ay
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Let  be an open subset of C. A mapping f: @ — C is said to be K-quasiregular,
1<K <o, if fe WLAQ) and

af(z)
0z

an SK+1| oz

K-1 ‘af(z)

for almost every z e Q.
Given a real-valued function u € Wi:2(Q), 1 < p < ®, the complex gradient
of u is defined by

ou 1 .
= — = —(u, — iu,).

f6z2

The complex gradient f = 0u/dz of a p-harmonic function u e Wi2(Q),
1 < p < o, turns out to be a quasiregular mapping. An essential part of this
statement is that fe W;2(Q). For p > 2 this follows from estimates of the L*-
modulus of continuity of Vu, see [2]. The case 1 < p < 2 is somewhat delicate
and requires an approximation argument, see [8]. The differential inequality
(11) follows from (1) without any difficulty. Actually the p-harmonic equa-
tion can be given the form of one complex equation

of (1L _1\|fof f]
12 6_2'<p 2>[f ot az}
Hence, (11) holds with

(13) K=max{p—1,p%l}.

Another interesting equation arises for the function g(z) = | f(z)|v?~ T-172).
It takes the form of Beltrami’s equation

(14) 6_% _1-vp-1 & dg,

see [2].

In this way the study of p-harmonic functions reduces to the study of solu-
tions fe Wi2(Q) of the quasilinear elliptic system (12).

From the theory of quasiregular mappings [1], [5] we find that the complex
gradient f = du/dz of a p-harmonic function u € W2(Q), 1 < p < o is con-
tinuous. Moreover, the set f~1(0) = {z € Q: Vu(z) = 0} is discrete provided u
is not identically constant. We also know from the general regularity theory
concerning elliptic equations that f is C*-smooth outside the singular set
f~1(0). We refer to this result only insofar as it simplifies the arguments used.
It is not difficult to dispense with this result since it follows from formula (63).
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For the proof of Theorem 1 it is sufficiently general to examine the regulari-
ty of f near one of its zeros, that we may assume is the origin. From now on,
fis a Wi2(Q)-solution of (12), 02, £(0) = 0.

3. Hodograph Transformation

One of the remarkable methods developed for the study of non-linear equa-
tions is the hodograph transformation. The idea was originated in an intensive
work on non-linear problems in hydrodynamics due mainly to L. Bers and
M. A. Lavrentieff. Roughly speaking, given a system of first order differential
equations and given a solution fto this system, the hodograph transformation
is to write the given system in the hodograph plane in which the independent
variable is the inverse of f. If the system is quasilinear this simple trick con-
verts it into a linear system with variable coefficients.

Let f'be a solution of system (12), f(0) = 0. Using the factorization theorem
for quasiregular mappings [5] we write

1s) f@) = @V,

where X is a quasiconformal homeomorphism defined in a neighborhood of
z=0, x(0) =0, and n is a positive integer.
From (12) we find that

ax 1 1\[ x ox X" ox
16 === +5 =
(16) 0z <p 2>[>‘( oz X" az}

Denote by H = H(£) the inverse of x = x(z) in a neighborhood of z =0,
z = H(x(2)), £ = x(H(%&), H(0) = 0. We have

X 5 X —1er
17) or =7 He o= —JT'Hy,
where J(¢) = |H|> — |Hi|*> 0 a.e. since H is quasiconformal in a
neighborhood of £ = 0. From (16) we see that H satisfies the linear equation

1 1 2
o e (5= )| fe ot

Our immediate goal is to solve system (18) in a neighborhood of ¢ = 0. There
is no loss of generality assuming that H is defined on the unit disk B =
{&:|¢| < 1}, that He W'*(B) and that He C™(B — {0}). This can be done
by rescaling the variable £, since the function H(z£), t € R, is also a solution
to (18).
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4. Series Expansion for H(§)

Theorem 2. Every solution He W' *(B) of equation (18) on the unit disk B
expands into an infinite series of the form

19 H(§) = k}; (Art" + e A E g RE,

where the numbers N\, = \.(n, p) and ¢, = ¢ (n, p) are defined by

(20) 2N\ = —np +N4kX(p — 1) + n?(p - 2)%,
)\k +n— k
@D A W
and the complex coefficients Ay, k=n, n+ 1, ... satisfy
(22 P2 IklAklz < C(n, p) ”B(IH,;P + |Hg?) do (§) < .
=n+

The series converges in W' %(B).
Conversely, given complex numbers Ay, k =n,n + 1,... satisfying

Z klAkI2< (o<}
k=n

the series (19) converges in W'*(B) to a solution of equation (18) for which
we have

HB(IHEI2 + |Hg|?) do (9 < C(n,p)k;“klflklz-

Remarks. By elementary considerations the following estimates follow from
formulas (20) and (21):

(23) €x(n, p) = N\, (n,p) =0,
(24) lex(n,p)| <1, for k=n+1,n+2,...,
~1 _
(25) P <SMmp) <kNp—1, for k=n+1,n+2,...

Ifp=2,Mn,2)=k —nand ¢(@n,2)=0, k=n,n+1,..., thus
HE) = 2 Agg T,
k=n

From now on, we assume that p # 2.
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Proor. It is desirable to use polar coordinates for this problem. Let0 < r < 1,
0<0<2m, E=re’’, H(r,0) = H(re'®), we have the following transformation
formula:

1 j . 1 j :
H;= 5 (H, + %H,,)e"’, H = (H, - %H,,)e"".

Since H is K-quasiregular,

1
K = max p— L— }s
{ p

—1
then
(26) K7 H,|* < |Hf* - |Hy* < K|H,|?,
and
27 (1 + K™3)|H,|> < 2|H|* + 2|Hz|* < (1 + K?)|H, .

Write equation (18) in polar coordinates, conjugate it and eliminate the H,
term to obtain

(28) 2rH,(r,0) = —ipH,(r, 0) + (p — 2)ie™ *""H,(r, 6) .

We expand H(r, 0) into Fourier series with respect to 6, 0 < 6 < 2.

oo

(29) H(r,0) = 2 ap(r)e®m°,
where
1 2k .
(30) a(r)=— | H(, 0" Pds, kez.
27 Jo

From these formulas, since He C(B)YNC®(B — {0}), we see that
31 a, € C[0, )N C™(0, 1), keZ.

Furthermore, since H € W'-(B) we are justified to differentiate (29) term by term

o

H (0= 3 are® "

k= —o

(32) w '
Hy(r,0)=i Z k - n)ak(r)ei(k—n)o
k

= — 0

These series converge in L(B).
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Formula (30) and equation (28) yield

1 27 . '
2rai () = - L 2rH,(r, )¢’ ~? df

27

1 . 1 Zw— .
= —ip— | Hyr, 0" "do+ (p- 2)i—j‘ Hy(r,6)e~"**™dp
27 Jo 27 Jo

27
—pn— K)o | H(,0)e 00 d
27 Jo

27

—(p—-2)(n+ k)(% . ) () d9>-

The last equality follows from integration by parts. In view of formulas (30)
the right hand integrals are equal to a,(r) and a_,(r), respectively. It leads
us to an infinite system of ordinary differential equations for the Fourier coef-
ficients

(33) 2ra(r) = —p(n — K)a(r) — (p = 2)(n + k)a_(r)

for all k € Z. Replace k by —k in (33), conjugate it and multiply by (p — 2)
2(p = 2ra’_(r) = —p(p — 2)(n + K)a_,(r) - (p — 2’(n — K)a ().

We eliminate the term (p — 2)(n + k)a_, by using (33) again

(34) 2Ap — 2ra”_y = plraj + p(n — K)ai] — (p — 2)*(n — k)a
= 2praj + 4(p — 1)(n — k)a,.

Finally, we differentiate (33) and, by (34), we obtain
2rQ2ray) = —2pr(n — k)a, — (n + k)[2praj, + 4(p — 1)(n — k)a,].

In this way we arrive at the following uncoupled system of linear (over com-
plex numbers) equations of second order.

35) r(ra;) + pnray + (n* — k*)(p — Da; = 0

for ke Z. Fix k, the general solution of (35) must take the form
ar)=A*r" +A° ",

where A\ and A\~ are distict roots of the quadratic equation

N+pan+ @ -kH(p-1)=0,
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that is

—pn +Vak*(p — 1) + n*(p - 2)
—pn —\Nak*(p — 1) + n*(p - 2)*

2\
2\T

Since a, € C[0,1) and A\~ < 0, the constant A~ must vanish. By the same
reasoning, the constant A* has to be zero whenever \* is negative, which
happens if |k| < n. Hence,

B 0 if |kl<n
(36) a(r) = {Akr"k if |kl>n’
where
1
(37 A = 3(—17" + N4k (p — 1) + n*(p — 2)%),

for k= +n, £(n + 1),... Note that A\, =X_, and \, = 0.

We still should verify system (33) because this is not equivalent to (35).
Inserting (36) into (33) we find conditions for the coefficients A;, k = +n,
+(n+1),...,

(38) 2N + p(n — KA, = 2 — p)(n + kA _,.

For k= +n, in view of A_, =\, =0, we obtain A_, = 0. There are no
restrictions for 4,.. For |k| > n we write (38) as follows

(39) A_y = Ay,

where
N+ P(i—k)  NAn—k
“TR-pIn+k) MNtn+k

The later identity is computed from formula (37). Observe that ¢e_, =1,
thus the change of sign of the index k in (39) leads to the same condition. In
conclusion, we may take arbitrary numbers for A,,A4,, |, - . . , and determine
A_,,A_,_4,... from formula (39).

Returning to the Fourier expansion (29) we write:

(40) H(r,0) = Y (A,e™® + e, Ape™ *O)ree=in,
k=n
This is the polar form of (19). A standard computation gives

1 27 ©
jr(j lH,(r,0)|2d0>dr=7r 3 M+ e))A
0 k=n+1

0
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This, together with estimates (24), (25) and (27), implies (22) with a constant
C(n, p) depending only on z and p.

Our arguments can be turned back proving the converse statement of
Theorem 2.

Corollary 1. Let H(£) be a local solution of equation (18) which is quasicon-
formal in a neighborhood of the origin, H(0) = 0. Then there is p > 0 and
there are constants 0 <c< Cand C,,, m=0,1,2,..., such that

41) clg™ < |H()| < ClE|™ for 0< ¢ <p,

(42) g TP U@ = |Hf* - [HE* < ClE)P»"% for 0< g <o,
and

43) H}_] ID’H®)| < C,|E[™™™ for 0<|¢ <o,

where

1 2
(44) Yn = )‘n+1(n5p) = ‘%{_p"' \/4<1 + 7) p-D+(p- 2)22 :

Proor. By rescaling the variable £ one may assume without loss of generality
that H is a quasiconformal solution of (18) on the unit disk, thus it expands
into infinite series of the form (19) with A4, = 0. Therefore, for each
0 < |¢] € p < 1, we have the following estimates

oo oo

|H ()| <, 2 U+ |eD] Al [ < 207 e rfgPeer 3T | Aylo™

=n+1 k=n+1

© 1/2 © 172
<zl 3 Har) (3 ko)<
k=n+1 k=n+1
The convergence of the last two series is verified by (22) and (25). These
arguments also show that the series (19) converges uniformly, on {£: |¢| < p}.
Applying argument principle, we find that 4,,, ; # 0. Hence for 0 < |£| <p < 1,
we obtain

H©| > 0 = len s aDlAillélr = 2 0+ Jehl Al [E

©

= |£|)\"Hl:(1 = lens 1D Ans1l = ZP)‘"J'Z—)\"*lk > zlAkIp)"‘—)‘"+2:| .

=n+

For suffiently small p, the expression in rectangular parantheses is positive.
Hence (41) follows. To prove (43) we note that lim A\, = c. Therefore, we can
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perform any finite number of term-by-term differentiations in formula (19)
for 0 < |£| < 1. This gives the required estimate

>} |D*H(¥)| < C(n, p, m > lx;:'lAkllsl*k""
=n+

o] =m

-]

S C(n, p,m)|gM+17" 37 k™| Ay|pMe e
k 1

=n+

o 172
< C(n, p, m)IE]”"“'"‘[k > lklAkll]
=n+

k=n+1

© 172
X Z k2m—1p2)\k—2)\"+1:| .

For m = 1, this implies the upper bound of J({) as stated in (42). To prove
the lower bound for J(£¢), we use expansion (40) from which it follows that

Hi(r,0) = 3 M(Axe™® + ¢ Ae™ " e 01,

k=n+1

Hence, for 0<r = |£| < p <1 we find

lHrI >>‘n+l(1 - |E,,+ 1‘)[‘4n+1|r)‘"+1_1 - k—2+2)\k(1 + ‘ekl)‘Akip)\k_l

Zr)‘"+l_l<)‘n+1(1 — lens1DlAnsil - 29”"”'*"“1{ 2 2)‘k|Ak|p)‘k_)‘"+2>
=n+

= c(n, p, p)r™ 1, ’

where, in view of (22) and (25), the constant c(n, p, p) is positive as p gets small.
This together with inequality (26) implies

I = |H? - |Hi> > c|g?2 for 0< € <o.

5. Estimates of the Derivatives of f(2)

We return to the function f(z) = [x(z)]", where x = x() is the inverse to H(§),
that is

(45) x(H(§) = £

for |£| < p. We shall express the partial derivatives D’x(z), |»| = 0,1, ..., at
z = H() in terms of D*H($), |u| = 0,1, ... The first order derivatives of x
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are easy to derive from (45):

X.(2) = J~(HH,
(46) _ -1 "

Xz(z) = —J " (§)H
To describe the formulas for higher derivatives of x(z) we need the following
convention. Given a positive integer s let H* denote one of the partials

O°H °H
— Or —>
0g'a¢’ o¢' ot

where i and j run over non-negative integers such that i + j = s. For example,
the symbol H' stands for one of the first order derivatives H,, Hz, H, or Hj
and we do not specify which one of them. Any expression of the form
H*H?®...H%, where s; + s, + --- + 5 = s will be called a monomial of

type (s, k).

The set of all linear combinations of monomials of type (s, k) is denoted by
P(s, k), s=1,2,..., k=1,2,... For instance. the Jacobian determinant
J(§) = HH, — HzH; is a member of P(2,2). Let us remark that

() If Pe lP(s_,k),ﬂen Py, Pg_e_rP(s+_1,k),
(iii) if Pe IP(s, k) and Q € IP(¢, ), then PQ e P(s + t, k + [).
Now we generalize formula (46).
Lemma 1. Let |v| =m, m=1,2,..., then there exists
P=P,eP@dm—-3,3m —2)
such that
47) D’x(z) = J(§)' ~*"P,(%),

where 7 = H(§).

Proor. We perform induction with respect to m. For m = 1 formula (47)
follows from (46). Suppose that (47) holds for some integer m > 1. Applying
chain rule, we obtain
(D"x),H; + (D"x):H; = J~*"[JP, + (1 — 2m)PJ}]
(D" H; + (D"X):H; = J~*"[JP; + (1 — 2m)PJ3]
This system can be solved for partials (D”x), and (D"x);:
(D), = J~ ' "*"[JP.H, — JP;H; + (1 — 2m)PJ H, — (1 — 2m)PJ:Hz],
(D’X)z = J '~ *"[JP;H, — JPH; + (1 — 2m)PJ;H, — (1 — 2m)PJ Hg].
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What remains to be established is that the expressions in the brackets [...] are
members of P@4(m + 1) -3, 3(m+1)—2)=P@m —1,3m + 1). One can
verify this fact by using the induction hypothesis and properties (i-iii). Thus
formula (47) holds for m + 1.

Combining Lemma 1 together with Corollary 1 we obtain estimates for the
derivatives of the complex gradient f = f(z).

Corollary 2. Suppose f(z) is a local solution to the system (12) which has
the form (15), f(0) = 0. Then there is 6 >0 and there are constants B,,,
m=0,1,2,..., such that

(48) | IZ |D’f(2)| < Bplz|™""™,
vi=m
Sfor 0 < |z| < &, where v, is defined by (44).

Proor. First we examine the quasiconformal map x = x(z). Fix |»| =1,
I=1,2,...,m. By Lemma 1,

49) D’x(2) = J(®' "*P,(®),

for 0 < |£| < p, where P, € P(4/ — 3, 3] — 2). In view of inequality (43) any mo-
nomial Q = H\H®2 - .- H%, s, + - - - + 5, = 5, of type (s, k) admits an estimate

|Q(E)| < lwlsl’yn—sl|£|7n_82. - l£|7n-sk - M|g|k‘7n-s,

for 0 < |¢| < p. Here and below the letter M stands for a constant independent
of £, not necessarily the same in each appearance. Since P,(£) is a linear com-
bination of monomials of type (4/ — 3, 3/ — 2), we then find that

va(E)| <M|$|(3"2)7""”+3,
for 0 < |£] < p. On the other hand, using (42), we see that
J(E)l -2/ < M|£|(1 =202, - 2)_
The above estimates together with formula (49) imply
|D’x(z)| < M|g|' =™,

where |»| =1,1=0,1,2,...,m. This also holds true for / = 0 since x(z) = &.
According to (41), c|¢|"" < |z| < C|¢|™, so foreach |v| =1,1=0,1,...,m
we have

IDVX(Z)I <M|z|l/7n—l

for 0 < |z| < 8, with sufficiently small 6 > 0.
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Finally, applying Leibniz formula for the derivatives of f(z) = [x(z)]" we
come to the required estimate |D*f(z)| < M|z|™"=~™ for each |v| = m.

6. Proof of the Regularity Statement

Let ue WiP(Q), 1 < p < o, p # 2, be a p-harmonic function. As mentioned
before, it suffices to establish the regularity of u near one of its singular
points, that we may assume is the origin. Denote by f = f(z) the complex gra-
dient of u, f(0) = 0. Corollary 2 applies to f for some positive integer n. By
formula (44) we see that the smallest value of the numbers n/v,,n=1,2,...,
occurs for n = 1. Let this minimum value be denoted by d = d(p), 1 <p < oo.

1 1 14 1
(50) d=—<1+ + [1+ + >
6 p-1 p-1 (p-27
Hence, we obtain estimates which are independent of n
(51) HZ ID’f(@)| < Bnlz|”™"™,
vi=m

or equivalently

(52) 2, |D’u(z)| < Bnlz|* ™",
1

lv| =m+

forO0<|z]<b6and m=0,1,2,...
Let the integer £ and the exponent « € (0, 1] be determined by (9), so
d=k -1+ «a. Take m in (52) equal to k£ + 1

S |D'u@)| < Beiyldl*™? for 0< |zl <.

lv|=k+2

The function |z|*~2 is integrable over the disk 0 < |z| < & with every expo-
nent g such that 1 < ¢ <2/ — «). Hence u e WE*9Q).

These two estimates imply Holder’s condition of exponent o for functions
D’u(z), |v| = k. This fact follows from an elementary lemma.

Lemma 2. Let U be a convex open subset in R" containing the origin and
let F be a function of class C(U)NC'(U — {0}) such that

@) |F(x)| < M|x|* for xe U,
(i) |VF(x)| < M|x|*~! for xe U — {0},

where o€ (0, 1]. Then

(53) |F(x) — F()| < 5M|x — y|*, forall x,yeU.
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Proor. Two cases are possible.

Case 1. Suppose that |y| < 2|x — y|, then
IFG)| + |[F()| < 2' " *(F@)|"* + |F(»)|"*)"

POM(|x] + [y <21 M(|x - y| + 2|y)*
T-esopflx — y|* < SM|x — y|°.

|F) — F(y)|

2
2

N CININ

Case 2. Suppose that |y| > 2|x — y| > 0, then for each 0 <7< 1 we have

lx + (1 =yl 2 |y = thx =y = |x - y|.
Thus
ltx + 1 = Oy|* "I x—y|*7 L

Using this estimate, we conclude

1

1
|F(x) — F(»)| = ’ j %F(tx+ y- ty)dt’ = ‘ f (x—y,VF(tx +y — ty)) dt
0 0

1
sM‘f Ix = y| |tx + (1 = H)y|*~1dt < M|x — y|~.
0

7. The Extremal Function

Take n=11in (15) and A; =0, A, =1, A; = A4, = - - - = 0 in the series (19).
In this case
1 N -1 1-d
h=m=y and 6= =Ty
We then have
£ 3 1-d
(54) H(E) = <W+ 1 >|s|”"’ €= 113

Note that for p = 2, in view of formula (44), we haved = 1, e = 0, and H(§) = £.
It is of crucial importance that e # 0 for p # 2. In this case H is a quasiconformal

homeomorphism on the whole plane.
Let f = f(z) denote the inverse of H = H(§)

(55 SHE) =& z=H®, §£=f@).
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This defines a p-harmonic function v = W§;?(C) of complex gradient equal to
f, 8v/3z = f(z). We complete the proof of Theorem 1 by showing that

(56) feCE T O UWELLYC), g=

For this effect let us remark that f is a homogeneous function of degree d,
(57) f(t2) =tf(z), zeC and t>0.
Indeed, by (54), tH(¥) = H(t"%), and by (55)

ftg) = fEH(E) = fHEY) = 1% = 1°f ).

Hence, partial derivatives D’f are homogeneous functions of degree d — |»|.
In particular, since d = kK — 1 + «, we have

(58 D’N(tz) = t°D’f(2),
forz#0,¢t>0and |»| =k — 1, and
(59) D’f(z) = £~ *(D’f)(tz),

forz#0,¢>0and |»| = k + 1. Now, suppose to the contrary that (56) fails.
We have two cases:

Case 1. If fe WKk*1:9(C), then integration of (59) gives

”m _IDF@ @) = || e DT @

for all positive # and R. Hence D’f(z) = 0 for each |»| = k + 1.

Case 2. If fe C{;;”"‘(C), then, by (58) and by the definition of the class
Ck-1*%(C), we find that

0 if 0<axl

DI = DI = {0 s
for each |v| =k — 1.

In each case, we conclude that f must be a homogeneous polynomial. The
number d in (57) is therefore a positive integer and

f(z) = 2 amnzmzn;

m+n=d
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or, equivalently,

£= Z AmnH(E)mH(E)"

m+n=d

We use this formula only for |£| = 1, in which case H(§) = £ + et™3
H() = £ + e£®. Thus,

(60) E= 2 Ap(E+eET)E + )

m+n=d

This identity admits analytic continuation to all £ # 0. In particular, we may
evaluate (60) at each of the four possible values of the root \/——e getting
R/=€)?*! = Ayy(1 — »)?. This yields d + 1 = 0 (mod 4). On the other hand
(60) evaluated at each of the four values of \/ —1/e gives

4

-1 3d+1 1 d

(-l
€ €

which yields 3d + 1 = 0 (mod 4). Contradiction arises since (d + 1) + (3d + 1)
= 2 (mod 4).
The proof of Theorem 1 is complete.

8. Notes and Remarks

Let us perform hodograph transformation of system (14) for the function
2(@) = | f@|Y?~ 1 ~£(2), £(0) = 0. The local solutions of (14) take the form

@) = @1,

where # is a positive integer and y is a quasiconformal mapping in a neighbor-
hood of the origin. The corresponding system for y(z) can be written as follows:

(61) 9y _1-~p __y_a_y
Z 1++/p y* oz

Denote by F = F(£) the inverse of y = y(z). Then (61) converts onto a linear
system

Np-1-1 E”
An advantage in studying this system is that after an elementary substitution

_ Vp—l —lgnﬁ>|$|—1+p/2m,
Nvp-1+1

Fy(§) = F(®).

W = <E"F
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one obtains a very simple system of Cauchy-Riemann type

p-2 1 .
63 W) = —— - W().
(63) (0= = 7O

In particular, successive differentiation of (63) leads to the C™-regularity
result outside £ = 0. To finish, we remark that the complex gradient f = u, of
a p-harmonic function u € W3.#(Q) is a K-quasiregular mapping with

1
K= -1 .
max fp - 1L ]

It is known that K-quasiregular mappings are locally Holder continuous with
exponent K1, [1], [5]. In our case, it would give fe Cﬁ,c(ﬂ) with

B=min{p—l,—l-}-
p—1

However, for the complex gradient f = u, we have a better result since fe
CE-1*(@) and by (9) and (50)

1 1 14 1
—1 = = — —_———— S —
k—1+a=d(p 6<1+p—1+\/1+p—1+(p—1)2>

pil} for 1<p< o, D # 2.

>min{p— 1,

A well known conjecture in quasiconformal analysis [4] asserts that plane
K-quasiregular mappings belong to Wi3(Q) for any 2 <s< 2+ 2/(K — 1).
For the complex gradient f of a p-harmonic function, p # 2, we would obtain

fe W@,

for any
2p—2
P if 2<p<eco
2<s< p2
- if 1
2-p if <p<?2

However, for this special class of quasiregular mappings, Theorem 1 states a
better result.

NOTE ADDED IN PROOF. We have received a preprint of G. Aronsson
«Representation of a p-harmonic function in the plane», in which he obtains,
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via stream functions, representation of a p-harmonic function u# near a
singular point. As a corollary of this representation he also obtains a Holder
regularity result. This result, according to Theorem 1, is sharp if p > 2.
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