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Introduction

Consider, by way of example, the following F. and M. Riesz theorem for R":
Let u be a finite measure on R” whose Fourier transform f is supported in a
closed convex cone which is proper, that is, which contains no entire line.
Then p is absolutely continuous (¢f. Stein and Weiss [SW]). Here, as in the
sequel, «absolutely continuous» means with respect to Lebesque measure. In
this theorem one can replace the condition on the support of i by a similar
condition on the wave front set WF(u) of u, while keeping the same conclu-
sion. The resulting «microlocal F. and M. Riesz theorem» can be applied with
great flexibility to derive F. and M. Riesz theorems for measures on Lie
groups, measures satisfying partial differential equations, etc. This is, essen-
tially, the program of this paper.

Actually, the microlocal F. and M. Riesz theorem which we are going to use
is much stronger than the one indicated above: it states that u is absolutely
continuous if WF(u)N(—WF(p)) = J; and, in fact, such a p will be in the
local H'-space of Goldberg [G]. An important tool for the proof of this result
is Uchiyama’s characterization of the real Hardy space H'(R™), ¢f. [U]. This
will be done in Section 1. In the remainder of this paper we give two applica-
tions, which we now describe.
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In [B1] the author proved an F. and M. Riesz theorem for the unit sphere
S,n—1 € C" by completely different (group theoretic and functional analytic)
methods. (The result in [B1] was actually for homogeneous spaces of compact
groups whose center contains a circle group.) In Section 2 we prove a new
theorem of this type for S,,_;, which greatly extends some important special
cases of the result of [B1]. An interesting question is whether one can regain
the full F. and M. Riesz theorem of [B1] by the methods of the present paper.

It should be noted that the reasoning used in Section 2 can also be applied
in more general situations. However, it seemed preferable first to treat a
typical example rather than trying to formulate the most general result, e.g.,
for compact Lie groups. (Cf. also [B2], where the main result of [B1] is
extended to compact Lie groups.)

To motivate the second application, treated in Section 3, we consider the
following formulation of the classical F. and M. Riesz theorem for R”. Let
1 be a finite measure on R which is boundary value (in the weak-* sense, say)
of a holomorphic function F(x + iy) defined in the upper half plane
{x + iy:y > 0}. Then p is absolutely continuous. Holomorphic functions are
solutions of the Cauchy-Riemann equations

1/ 9 i)

—— i \F=

2 <6x ! 6y> 0
and it is natural to ask whether one can replace the Cauchy-Riemann operator
here by other vector fields

d 3
X=alx,y) -+ b(x,y)g-

It turns out that the answer is «yes» if b(x, 0) # 0 for all xe R, that is, if
R x {0} is not characteristic for X. If a/b is real, this is quite easy to see; for
the case that Im (a/b) # 0, we use the microlocal F. and M. Riesz theorem
together with estimates on WF(u); cf. Section 3 below for details.

More generally, let Py, ..., P, be N vector fields (with complex-valued
coefficients) on R”*?, and let y be a measure on R” which is the boundary
value (in distributional sense) of a function fon R%*! = {(x, 1): xe R", ¢t > 0}
satisfying P;f = 0, 1 <j < N. For which P; is such a u necessarily absolutely
continuous? In Section 3 we give a sufficient condition whose proof uses the
microlocal F. and M. Riesz theorem. As a corollary we show that a measure
p on a hypersurface S in C" which is the boundary value of a holomorphic
function defined on one side of S is absolutely continuous.

Finally, I would like to thank J. Korevaar and J. Wiegerinck for their com-
ments upon an earlier version of this paper, and M. Christ and D. Geller for
some conversations on Uchiyama’s theorem.
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1. A Microlocal F. and M. Riesz Theorem

We use Uchiyama’s powerful characterization of H'(R") to derive an F. and
M. Riesz theorem for R”, which we then microlocalize. We first recall the
definitions of H!(R") and of Goldberg’s local Hardy space A'.

Definition. A tempered distribution fe 8'(R"™) is in the real Hardy space
HY(R™) if for some y € $(R") such that J(0) # 0,

< ©
L1(R®)

(1.1) 1/ = ” sup [, /()]

(where, as usual, y,(x) = t~™Y(x/1)).
fis in h’(R™), Goldberg’s local Hardy space, if

< .
L1(R7)

(1.2) | flm = “025‘51 R5.0]

For equivalent definitions and further properties of these spaces, cf. Feffer-
man and Stein [FS], Goldberg [G]. Note that both H' and 4! are contained
in L(R"). In (1.1), one may replace y,(x) by the Poisson-Kernel for the upper
half space. The interest of 4! is that it can also be defined on manifolds (in
the usual way, using coordinate charts), ¢f. [G, Proposition 3]. We will also
use the following two properties of A'(R™), cf. [G]:

1.3) $ € h'(R")
1.4) S(R™ - K'(R™) < K (R™)
(and more generally, #'(R™) is closed under 0-th order pseudo-differential

operators).
The following notation will be useful:

hi.(R™ = { fe8'(R™: for every ¢ € CZ(R™) ¢ - fe h'(R™)]}.
We now recall Uchiyama’s characterization of H*(R") (cf. [U]):

Theorem 1.1. Let ¢y,..., ¢, € C°(R"\0) be homogeneous of degree 0 such
that

(1.5) rank<¢1(9 o (8

=2, .
o:1(=5) ... ¢k(_g)> Jor every teS

Let K; be the multiplier operator associated to ¢;.(K; N = ¢;() f®.
Then, for fe L'(R™
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k
CilS 1, < 2 1K< Gl F Ly,

(with constants C,, C, only depending on the ¢; and on n).

If X is a manifold we let M(X) and M,,.(X) denote the spaces of finite and
of locally finite measures on X. If u € 8'(R") is a tempered distribution, #
denotes the Fourier transform of u«.

From Theorem 1.1 one can derive the following F. and M. Riesz theorem.

Theorem 1.2. Let F S R" be a closed conic subset such that FN(—F) = {0}.
Let . e M(R™) be such that supp ji © F. Then p is in H'(R™) (and in particular,
w is absolutely continuous).

Proor. Let F'=FNS, S=S,_; the unit sphere. Since F'N(—-F') = J,
there exists an open set U2 F’', UCS S, such that UN(-U) = ¢J. Let

W=S\(F'U-F"
and let Q; denote the j-th «quadrant» in R™:

Q1= {‘E:(El"-"gn):gl?0’5220"-'a5n>o]s
Q2= {f1<0,fz>0,---,5,,?0],

etc. Let U; = WN (e-neighborhood of Q;), where € is so small that U;N(—U))
= @. Then {U, -U,Ui,..., Uy} is an open cover of S. Relabel the
elements of this cover as {V},..., Vi}, with V; = U (and k = 2" + 2).

Let {¢;, ..., ®;} be a partition of unity subordinate to this cover, such that
¢1=1on F'S V; = U. Then these ¢,’s satisfy (1.5).

Now consider a u € M(RR") satisfying supp i S F. Let

Yy
(IxIZ + y2)(n+ 1)/2

P,(x) =c, (xeR", y>0)

denote the Poisson-kernel and define f, = P, * u. Then, with K; the singular
integral operator associated to ¢; as in Theorem 1.1,
K, f.=f., Kf.=0 for j#1.

By Theorem 1.1, | f.|; < C|f|1 < C|r|. By taking y(x) = P;(x) in (1.1)
and letting €! 0 it now follows that

Mwﬂﬂwmmuscwn
y>0 1

(we use that P, *P, =P, ,,), which implies that p € H (RM. O
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The following corollary will be needed below

Corollary 1.3. Let v € 8'(R") be a tempered measure on R" such that supp »
C F, F as in Theorem 1.2. Then v € hi,.(R").

Proor. We may suppose, without loss of generality, that supp 7N {|£] < 1}
= @. For if xeC™(R"), x(¥) =0 for |£ <2, x(® =1 for |¢| >3, then
(1 — x)7 is the Fourier transform of a tempered C*-function g, and » — g is
a tempered measure such that supp (v — g)"N{|¢| <1} = @. By (1.3), ge
hioc(R™).

Now let ¥ e $(R") such that § >0, suppy < {|¢ <1}, ¥(0) = 1. Write
Y(x) = Y(ex). Then », = Y¢ - » is a finite measure on R” such that supp 7, =
supp (Y€ * ») is contained in a conic e-neighbourhood of F. By Theorem 1.2,
v. € H'(R") < h}(R™) for sufficiently small e. Now take ¢ € CZ(R") and let
€ >0 be so small that »,e h'(R") and y(x) #0 on suppé. Then ¢ -» =
(@/¥°) - (¥*v) is in A'(R") by (1.4). O

We now microlocalize Theorem 1.2. If X € R" is open and ue D'(X) is a
distribution on X, we let WF(u) € X X R"\0 = T*(X)\0 denote the wave
front set of u (¢f. Hormander [H] for the definition). For x € X let WF,(u)
= {E€R"\0: (x, £) € WF(u)} = WF(u)N T#(X). All this also makes sense if
X is a manifold.

Theorem 1.4. Let X be a manifold and p € M,,.(X) a locally finite measure
such that
(1.6) WE.(wWN -WF.(p) = &, forevery xelX.

Then p is in hi,.(X). In particular, p is absolutely continuous with respect to
any Lebesque measure on X.

Here pu € hl,.(X) means that ¢ - u € h'(R") for all ¢ € CZ(X) supported in
a coordinate neighborhood.

Proor. It suffices to prove the theorem for X an open subset of R”. We
show that

(1.7) Given x € X there exists a neighborhood U, of x such that for any
¢ €CF(U) ¢ -peh'(R".

If v e &'(R™) is a compactly supported distribution, let £(v) € R"\0 be the
closed conic subset defined as follows: £ ¢ £(v) if and only if there exists a
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conic neighborhood I'" of ¢ such that for eI’ and Ne N

1.8) 8| < Cp(1 + [n) 7.

Then WF,(u) = N{E(pu): p € C7(X), &(x) #0} and X(¢u) — WF.(u) as
supp ¢ — {x}, ¢ ranging over Cg (X )-functions for which ¢(x) # 0 (¢f. [H],
Section 8.1).

Now suppose that pu € M, .(X) satisfies (1.6) and let x € X. There exists a
conic open I' € R"\0 such that I' 2 WF,(x) and such that TN(-T) = .

Let A € R"\0 be an open conic subset such that WF,(x) S A< AT and
let U= U, be an open neighborhood of x such that for ¢ € C7(U) with
d(x) # 0. X(pu) € A. Take such a ¢. Then @L is rapidly decreasing (in the
sense of (1.8)) on R"\A. Let x e C®(R"), 0 < x < 1, such that supp x C "\
{|£] <1} and such that x = 1 on A\ {|£| < 2}. The inverse Fourier transform
gof (1 -%)- @ is then in C*(R") and » = ¢p — gdx is a tempered measure
such that supp # € I'. By Corollary 1.3, » € h},.(R"). Hence ¢ - u € hl,.(R").
This proves (1.7) for those ¢ with ¢(x) # 0, which obviously suffices. [

2. F. and M. Riesz for the Unit Sphere in C"

We now use Theorem 1.4 to prove an F. and M. Riesz theorem for the unit
sphere S in C". For the statement we need some notation from the theory of
spherical harmonics on S, ¢f. Rudin [R], Chapter 12. Let ¢ denote the rotation
invariant measure on S, normalized by o(S) = 1, say. Let H(p, q) be the set
of restrictions to S of harmonic functions # on C" which are homogeneous
of degree p in z and of degree g in Z. Then L(S, o) = X, ¢H(p, q) (orthogonal
direct sum). Let m,, denote the orthogonal projection onto H(p, q); 7,, can
be extended to distributions.

For a finite measure u we let the spectrum of u be spec u = {(p, g): Tpep # 0}.

1 1 1
IfFS R, Uf{w},leti(F)= {———:aeF} <where 0= ®, = 0, asusual>.
(09

Also, let Z(F) € N X N be defined by
q
() = [(p,q)en\J X N!;GF}'

Our F. and M. Riesz theorem for S is the following.

Theorem 2.1. Suppose that FS R, U{o} is a closed subset such that
FNi(F)= . Let u be a finite measure on S such that specu S L(F). Then
w is in h'(S). In particular, p is absolutely continuous with respect to o.
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ExXAMPLES.

(i) F=[0,a], a<1, and Z(F)= {(p,q):q < ap}. This special case of
Theorem 2.1 is also contained in [B1, Theorem 1.1].

(i) F=[0,0]U[B,7] witha < 1 < B < vand ¥ < 1/c. In this case Z(F) looks
like the union of two cones such that the reflection of one with respect to the
line p = g has zero intersection with the other. Note that, contrary to one
of the conditions of Theorem 1.1 of [Bl1], {p — q: (p, q) € Z(F)} is not
bounded from below or from above anymore.

Proor oF THEOREM 2.1. We are going to exploit the fact that H(p, q) is the
simultaneous eigenspace of two commuting self-adjoint differential operators
on S, namely the Laplace-Beltrami operator Ag and the tangential vector field
T defined by )

_1 _d_ i
Tf(i’)—T def(e ) oo
In fact, if we write

y=(-Ag+(@n—-1)H"?—-(n-1),

then » is a first order pseudo-differential operator on S with eigenvalue k£ on
the eigenspace JC(k) = {u: Au = 0 on C", u(rz) = r*u(z) for r > 0} (cf. Taylor
[T2, Chapter 4]). Since

k)= > H(p,q),

p+g=k
it follows that
2.1 H(p,q) = {ueL¥S): v(u) = (p + @u, T) = (p — Q)u}.

Let FS R, U {o} be a closed subset satisfying FNi(F) = J, and let a(x, y) €
C®(R*\0) be homogeneous of degree 0 such that

(2.2 F={y/x:a(x,y) =0]}.
Now if spec u € X(F), u is annihilated by the operator

(2.3) 2 a(p, 9, ,

p,q

(because of (2.2)). Writing

>

xX+y x-—y
2 2

ax,y) = a<
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we see that (2.3) is equal to the operator @(v, T') as defined using the spectral
theorem, cf. (2.1). By a result of Strichartz [S] (¢f. also Section 12.1 in Taylor
[T1]), @(», T) is a first order pseudo-differential operator on S and, if we
denote the principal symbol of a pseudo-differential operator 4 by o(A),

(2.4) a(@(v, T)) = d(o(»), o(T)).

(Strictly speaking, we should have made @ smooth in 0, but this would only
change d@(v, T) by a smoothing operator.)
Now d(v, T)u = 0(mod C*) implies that

WF(u) C Char (v, T) = {(z, § € T*(S): o(@(», T))(z, £§) = 0}.
To finish the proof we compute a(@(», T)). If z€ S we let
T,(S)=TI(S) + R-iz
be the usual splitting of the tangent space in C”", with
TZ(S) = (£€C":(z, £) = 0}

the maximal complex subspace of 7,(S) ((, ) being the standard Hermitian
inner product on C"). Identify 7,(S) and T#(S), using the Riemannian metric
on S induced by C". If £ T,(S), £ =& +0-iz with ¢'e Tf(S), 0 e R, then

2.5 o)z, §) = c- (|&']* + 6312
a(T)(z, &) = 0.

By (2.4),

C(|£,|2 + 02)1/2 +0 , c(lglll + 62)1/2 _ 0>.
2 2

o(@(v, Tz, §) = a<

Now suppose that there exists a (z, £) € Char (@(», T)) such that also (z, —§) €
Char (@(», T)), E= & + 6 - iz as above, £ # 0. Then
c(|£1|2 + 02)1/2 _ 0
c(lgi'l + 02)1/2 + 0

e FNi(F),

contradicting the assumption on F. Hence WF(u) satisfies the condition of
Theorem 1.4 and hence p is in A'(S). O

Probably this type of argument can be used in more general situations, e.g.,
measures on homogeneous spaces of compact Lie groups. However, the for-
mulation of an analogon of Theorem 2.1 is likely to become much more com-
plicated. Cf. for example [B2], where an F. and M. Riesz theorem for arbitrary
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compact Lie groups can be found which generalizes the one of [B1]. The
reason for these complications is that one has to refine the notion of spectrum.

3. Absolute Continuity of Measures Arising as Boundary
Values of Solutions of Partial Differential Equations

Let X < R" be open and let U be an open neighborhood of X x {0} in R"*1;
let U, =UN{(x,1):xeR",t>0}. Let P,,...,P, be a set of first order
linear partial differential operators with C®-coefficients defined on the
closure of U, . Consider measures u on X which arise in the following way:
there is an fe C'(U,) satisfying P,f = 0, 1 <j <N, such that p is the limit,
in D'(X), of f(x, t) as £ 0. The question with which we concern ourselves here
is for which P; such a p necessarily is absolutely continuous. We will give a
sufficient condition for P’s which are vectorfields:
a

o

(7

9
G.1) Py= 600+ (a0 = (6, ) 5, + 210, (5,1

For xin X let J(x) = {j: 1 <J <N, cj(x, 0) # 0}. Then the main result of
this section is the following:

Theorem 3.1. A/l notation as above. Let P; be given by (3.1). Suppose that
for all xe X the following closed convex cone is proper (i.e. contains no
straight lines):

(32 () (EeR™Im(c(x,0)” a,(x,0), £) <0}

JjeJ(x)

N() £ R™ ¢, 0@ (x, 0), £ = ci(x, 0)¢a;(x, 0), £3].
Js

Let p be a locally finite measure on X which is the distributional boundary
value lim, f(+,1) = p of an feC'(U,) that satisfies P,f=0, 1 <j<N,
and for which there exists an M € N such that

(3.3) | fCx, D1, 10, Cx, )] = 0=,
uniformly on compacta of X. Then p is in hi,.(X).
Ifaj(x, 0) =0,a;(x,0)=--- = ak- 1arj(x, 0) = 0 on X one may replace a;(x, 0)

in the first line of (3.2) by 8 a;(x, 0).

Before giving the proof of Theorem 3.1 let us make some remarks. If one
takes n = N =1 and P, to be the Cauchy-Riemann operator on C = R?, one
obviously obtains (a local version of) the classical F. and M. Riesz theorem
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for R. More generally, one can show using Theorem 3.1 that a measure on
a hypersurface S in C" which is boundary value (in distribution sense) of a
holomorphic function defined on one side of S is absolutely continuous with
respect to surface measure (just straighten out S locally and then apply
Theorem 3.1).

It is clear that Theorem 3.1 is meaningless if the hypersurface {f =0} is
characteristic for all P;. The following easy example shows that Theorem 3.1
is false in this case: Take n = N =1 and let

foe, ) = m~ V4 1em¥727  yeR, >0,
Then f(x, ) = 6(x) as t{ 0 and f satisfies the partial differential equation

2 20 of
(x —t)§+xtﬁ—0.

Also, the cone on the right hand side of (3.1) can not be proper if ¢ laj is
real on {# = 0} for all j. But if one of the P’s, say P;, has real coefficients
and {¢ = 0]} is not characteristic for P;, u is absolutely continuous for trivial
reasons: P;f= 0 means that f is constant along the characteristics of P,,
which intersect {# = 0} transversally. Hence one can extend fin a C'-way to
a neighborhood of X x {0} in R”*! in such a way that this extension of fis
still annihilated by P. If follows that Theorem 3.1 is only interesting in case
all non-characteristic P’s have complex coefficients.

Finally note that if n > 1, f has to satisfy an overdetermined system for the
cone (3.1) to be proper.

The proof of Theorem 3.1 consists of showing that WF(u) is contained in
the cone (3.1). The conclusion then follows by Theorem 1.4. To estimate WF(u)
we first estimate the wave front set of a distribution which is the boundary
value of a function annihilated by a single vector field. The arguments we will
use have been inspired by Hormander’s treatment of this problem for the
Cauchy-Riemann operator (c¢f. [H]) but are more involved since we are dealing
with variable coefficient operators.

Let P be a vector field of the form P = 9, + (a, 9,). (This could be relaxed
at times.) Let P* denote the formal (real) adjoint of P: P* = —9, — (9d,, a).

Lemma 3.2. Let T> 0 and let u(x, t), v(x, t) € C}(R" x [0, T']) be such that
supp v(+, t) is contained in a fixed compactum K C R” for all t, 0 <t < T.
Then

[ utx Ty, Tydx — [ utx, 0)oix, 0)dx = [T [ (Puyw — u(P*v)) dx .

Proor. Integration by parts. U
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For simplicity we first consider the case where P = 9, + {a, d,) with a not
depending on ¢.

Theorem 3.3. Let X S R" be open, U an open neighborhood of X x {0}
in R"*1, U, =UNR"". Let P=09,+ a,d,,a=a(x) C* on X. Let fe
CY(U,) be such that Pfe L™(U ) while for some Ne N,

|fx, ) =0@™"™) as tl0,

uniformly on compacta of X. Then lim,, f(x, 1) = f(x,0 +) exists in D'(X).

ProOF. Let ¢ € CZ(X). Let T > 0 be such that supp¢ X [0,2T]1 € XU U, .
Let k € N. Determine ¢, ¢4, . . . , ¢ € C*(U, ) such that

k t
d(x, 1) = 2P, 1) = > ¢;(x, 1)~
Jj=0 J:

satisfies the conditions

(i) 2(x,0) = p(x).
(i) |P*®(x, )| < Ct*, xesuppo, 0<t < T.

The constant C here depends on the derivatives of ¢ up till order N + 1.
To prove the existence of ®, write P = d, + Q(x, d,). Then
k-1

3¢ v d t*
R e o e O

Jj=0

and one need only take ¢y (x, 1) = ¢(x), ¢; = —0,9;_; + Q*[¢;_], 1 <j <k.
In the present case the ¢; do not depend on the variable #, but they will do it in
the proof of the next theorem, when Q depends on ¢. Note, that supp ®(-, f) S
supp ¢, 0<r<T.

Let 0 < e < Tand write f.(x, t) = f(x, ¢t + €) (t < T). Apply Lemma 3.2 with
u=f,v=3%=3%. Then

[ f& 000 dx = [ fx, T+ 9%(x, T)dx — |

o, PR dxdl
f.(P*®)dxdt.

+)
Xx(,T)

Now
|£.(x, 1) - P*®(x, 1) S Ct* N,  (x,t)esupp ¢ x (0, T),
C independent of ¢, and
sup | PLA10e O] < |PS | 1oy
since P[f](x,t) = P[f1(x,t + ¢).
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Take kK > N and let e = 0. Then, by Lebesgue’s dominated convergence
theorem,

<f(’s 0 +)’ d)) = hf(r)l (f('s E), ¢>
(3.4 - IX fx, TY@®(x, T) dx — JXX«,, N2 3® dx dt

*F K
+ jxx(m FP*®® gy dt. O

If a is allowed to depend on ¢ in Theorem 3.3 the proof may fail: the main
problem is that sup__ ,|Pf.| (where f.(x, f) = f(x, t + €)) need not be in L.
We now show how to modify the proof in this case in order to arrive at the
following result.

Theorem 3.4. Let X, U, be asin Theorem 3.3, P =0, + {a,9,), a = a(x, t)
be of class C® on XUU, . Let fe CU,) be such that Pfe L*(U,) while
for some Ne N,

3.5 1105, D)), 18,Ce, )] = OG™™) as 10,

uniformly on compacta of X. Then lim,_, f(x, t) = f(x, 0 +) exists in D'(X)
and formula (3.4) for f(,0 +) remains valid.

Proor. The idea is to replace f(x, ¢ + €) in the proof of Theorem 3.3 by
JOo, ) =fx+¥.(x,0),t+¢),

where ¥, is a C*-function on XU U, which is to be determined such that

(3.6) PlfJx,t) =P[flx+ ¥, t+ € + O1),

uniformly in € and x, ¢. Furthermore, ¥, has to satisfy

(3.74) ¥,(x,0) =0,
(3.7b) ¥,(x,1),0,%,(x,1),0,%,(x,1) >0 as e— 0.

Retracing the steps of the previous proof with this f, one sees that Theorem
3.4 is true: Lebesgue’s dominated convergence theorem can be applied as
at the end of the proof of Theorem 3.3 because of (3.6). Finally, because of
(3.7b), P[f]J(x,t)— P[f1(x,t) as e~ 0 so that formula (3.4) remains valid
also.

A straightforward calculation shows that, with the notations ¥ = x + ¥.(x, ),
f=t+e ¥ = ¥,, ¥, = Jacobian of ¥ with respect to x,

Pf1Cx, 1) = PLfIG, F) = <3, ¥ + (Id + ¥)a(x, 1) — a(%, 1), 8, (%, 1)).
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Beacuse of (3.5) it suffices to determine ¥ = ¥, in such a way that
(3.8) 0,V + a(x,t) + ¥.-a(x, t) — a(%, {) = O1™).

We try a solution of the form
N ¢t
‘I,s = Z ‘I,j,e(x)_-"
Jj=1 J:

With such a ¥, equation (3.7a) is automatically satisfied. Expand the left hand
side of (3.8) in a Taylor series in ¢, up till order N, while treating a(x, ) in
the following way:

dx Y tr 9= S —L(@%0ka)x, ¥tk

aeNnR al k!
keN

= a(xa G) + (ata(x’ 6) + axa(x’ E) : ‘I’I,e)t
2!
+ <a?a(x, €) + da(x,e) - ¥,  + ; —9xa(x, e)(¥y, )°
laf=2 !

t2
+ 21070,a(x, e)(¥, E)°‘> -+
=1 ’ 2!

lef =

If one sets the coefficient of #/ in (3.8) equal to 0 for j < N one obtains a
system of equations for ¥; .(x) of the form

¥; (x) = {expression in ¥, ..., ¥;_; . and their derivatives}

which can be solved recursively in a unique way.
The first equation yields

‘I,I,e(x) = a(x’ G) - a(x, 0).

It is clear that ¥; (x) is a C*-function of ¢ > 0 and x and that ¥; ,(x) = 0.
Hence equations (3.7b) are satisfied. [

We now estimate WF(f(+,0 +)) for solutions f of Pf=0.

Theorem 3.5. All notations as in Theorem 3.4. Suppose that fe C'(U,)
satisfies (3.5) and

(3.9) |Pf(x, )| = 0%, k=1,2,3,...,
uniformly on compacta of X. Then

WF(f(+,0 +)) S {(x, & e X x R"\0:Im (a(x, 0), £) <O0}.
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Proor. We have to show that if Im (a(x,,0), &) >0, there exists a
¢ € CI(X), ¢(xp) # 0, such that

[Kf(s,0+),e %Py K C (1 + [EDTF, k=1,2,...

for £ in a conic neighborhood of &,.
Fix ke N. We are going to determine functions b, ..., b, of (x, £) such
that

k J
ug k(x, ) = exp < —i{x, &) + 21 bi(x, %) Jt—,>
J= .

is an approximate solution of Pu = 0 in the sense that on compacta of X and
for small ¢,

|Pug i (x, )] < ClE|e".

Note that u; ;(x,0) = e * .
A computation shows that

j—l

(3.10) Pu; ;= (Z G —ia, &) + Z (a,d,b;)~ >u5,k.

Write

k
a(x, t) = Z a(’)(x) + a®(x, t) i

where @’ = 3/,a, and @’ (x) = a"’(x, 0). Then

k t' min (/, k) J t"
2. ¢a,d,b;) — il Z < > <1>(a(1 D 5 b,))
j=1

I=max(1,j-k)

Substitute this expression in (3.10) and put the coefficient of #/ equal to 0 for
J< k—1. Then

i/
Ga1) b =iaD, 8 - ,Z <’,><a<f"’, aby, 0<j<k-1
=1

In particular, b,(x, &) = i{a(x,0), £). Note that b,,...,b,, as defined by
(3.11), do not depend on ¢, since a@, . .., a% =P only depend on x. It follows
from (3.10) that the b;(x, &) are all linear in £.

Let (X, &) € X X R"\0 be such that Re (i{a(xy, 0), &) = —Im (a(xy, 0), &)
< 0. Then there exist a neighborhood U(x,) of x,, a conic neighborhood V(&)
of & and a T > 0 such that for xe U(x,), £€ V(&) and 1 < T,

(3.12) Im (a(x, 0), £) > 2c|¢| > 0
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(c a suitable constant) and
k |
Re 3 b;(x, 9~ < 5 Ima(x, 0), ).
ji=2 J! 2

Hence for xe U(x,), (€ V(&), t< T:

(3.13) |ug 1 (x, 1) < @~ A/DTm a0, 61
and
3.14) |Pug (x, )] < C(k)|E| e~ 4/D1m et 00,651

Let ¢ € C2(U(xy)) be arbitrary. We now apply formula (3.4) to
F0x, 0 +)e™ 408 = lim f(x, £)ug ((x, 1).
ti0
Since P(fu; ) = Pf- ug i + f - Pu;  and since Pf and P*[®] are both o@t"),

® =3® a5 in (3.4), the inequalities (3.12), (3.13) and (3.14) lead to the
following estimate for |£| > 1 and k > N (we assume that 7T < 1):

T
[{f(+,0 +)e %P o3| < C- <e_cw+ J Iflrk-Ne-flflfdt> <
0

where the constants depend on the supremum norms of ¢ and its derivatives
up till order k£ + 1. Since k is otherwise arbitrary, this proves the theorem. [

Remark 3.6. The proof also shows that if
a(x,0) = d,a(x,0) = --- =937 la(x,0)=0

on X Theorem 3.5 holds with a(x, 0) replaced by d’a(x, 0).

Proor oF THEOREM 3.1. After these preparations we can now easily prove
Theorem 3.1. Let fe C(U,) and p be as in the theorem. Let x€ X and
Jj€J(x). Then for y in a neighborhood of x and ¢ small,

atf(y’ t) + cj(y, t)_l((lj(}’, t)’ axf(ys t)) =0.
By Theorems 3.4 and 3.5,

(3.15) WF(p) < {(x, £) e X x R"\O0: for every
J€J(): Im (¢;(x,0) ™ (a;(x,0), £)) < 0}.

Now fix j and k and eliminate d,f from P;f= P, f= 0. It follows that
ciay, 0,f> — c{a;, 0,f> =0on U, . Hence p = f(+, 0 +) satisfies the induced
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equations

Ljep = {c;(x, 0)ac(x, 0) — c,(x, 0)a;(x, 0),d,u) = 0.

By [H, Theorem 8.3.1],

(3.16) WF(y) < () Char (L)
J.k

= Q {(x, §) € X X R™\0: ¢;(x, 0)a(x, 0), £) = c(x,0){a;(x,0), £ }.
J»

By (3.15), (3.16) and the hypothesis of Theorem 3.1, WF(u) is proper. Hence
pehp(X). O
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