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Introduction

The level sets of any Riemann mapping f can not be arbitrarily long. More
precisely, there exists an absolute constant P so that if Q is a plane simply con-
nected domain, f a Riemann mapping onto Q and L is an straight line then

length (f~1(QNL)) < P.

This beautiful result was first proved by Hayman and Wu [HW], and a bit
later by Garnett, Gehring and Jones, [GGJ]. See [FHM] for a simple proof,
where it is shown that one can take P = 472 and a conjecture as to the correct
value of P is offered.

One wonders as to what is the role of simple connectivity in the Hayman-
Wu theorem. Let us call a domain Q in the plane a Hayman-Wu domain if
there exists a constant C(Q2) so that

.1 length F~Y(QN L)) < CQ)

for any straight line L and universal cover F from the unit disk A onto Q.

It was shown in [FH] that domains of finite connectivity with no complemen-
tary components consisting of a single point are Hayman-Wu domains. A word
of caution: in [FH] one is not concerned with the dependence of the constant
of (0.1) upon F, but the argument applies. Moreover, it is easy to see that the
punctured disk, A*, is not a Hayman-Wu domain, so that the non-degeneracy
condition on the complementary components is essential.
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Let I" denote a covering group of the domain Q, i.e., a fix-point free discrete
group of Mobius transformations of A with quotient A/T" conformally
equivalent to . Any two covering groups of { are conjugate, and conversely.

With I' we associate the invariant function

Ur, (@) = Uiz) = t§(1 — [z, T2

where

a—-b>b
1-ab

[a, b] =

In [FH] it was shown (see Section 6 for the proof).

Theorem A. If U,,, is bounded in A then Q is Hayman-Wu.

As a consequence of Theorem 2 one also has that if Q is Hayman-Wu then
U, is bounded. Notice that U, < U3%,.

The exponent of I" is defined as the exponent of convergence of the Dirichlet
series

2. exp(—sp(0, v(0)))
yell

i.e. the smallest number s which makes the series convergent. Here, and
hereafter, p(a, b) denotes the Poincaré distance between the points ¢ and b on
the unit disk; namely,

e(a, b) = h([a, b)),
with

1+¢

h(t) = log =7

) 0<t<1.

Since conjugate groups have the same exponent we may also speak of the
exponent of Q. We shall use the notation 6(I"), 6(Q) to denote exponents.

It is an elementary fact that 8(Q) < 1. Also, 6(Q) > 1/2, if ' contains
parabolic elements, or, equivalently if dQ has isolated points.

Notice that the groups satisfying the hypothesis of Theorem A have expo-
nent at most 1/2.

Here we shall show the following somehow surprising result.

Theorem 1. If Q is a Hayman-Wu domain then 6(Q) < 1.
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Since there are domains of finite connectivity (with no point-boundary
components) with exponent arbitrarily close to 1 we see that Theorem 1 is in
a certain sense sharp. The exponent of the domain

Q, = A<0, %)\5(0, O\A(L, 9, ee <o, %)

increases to 1 as e decreases to 0.
We shall deduce Theorem 1 from combining two results about domains
with strong barriers.

Definition. Let Q be a plane domain. A non-constant positive superhar-
monic function U of Q is called a strong barrier if there exists a positive
number ¢ such that

e-U
Y <
Ut Giste, o072 SO

(where this inequality is meant in the weak sense).

If Q has a strong barrier then Q has a Green’s function and moreover every
boundary point is regular for the Dirichlet problem, and thus 2 has no point-
boundary components.

Domains with strong barriers can be characterized in a variety of ways, and
we shall use the rich knowledge about them to prove the following two results
which yield Theorem 1 immediately.

Theorem 2. If Q is a Hayman-Wu domain then Q posseses a strong barrier.

The reciprocal of Theorem 2 does not hold. This follows from Theorem 4
below.

Theorem 3. If Q posseses a strong barrier then 6(Q) < 1.

In this case it is easy to see that the reciprocal does not hold; simply take
Q = A*, then 6(Q) = 1/2, but Q does not have a strong barrier.

It should be remarked that in [Po2] an example is offered of a domain with
a strong barrier but 6 = 1. There is an error in the calculations there.

A Denjoy domain is a domain in the sphere whose complement is a compact
set of the real line. Thus @ = C\E, E C R, E compact. Denjoy domains have
been recently studied by several authors in connection mostly with the Corona
problem. See [RR], [C], [JM], [GJ]. They provide a test case for problems
about multiply connected domains.
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A compact set E C R is called homogeneous if there exists a constant ¢, so
that if xeR and 6 > 0.

|(x — 6,x5+ S)NE]| Se,.

Carleson introduced this condition in [C] where he showed that the associated
Denjoy domain satisfies the Corona theorem.

Garnett and Jones [GJ] later showed this with no restriction on the set E.
More recently, Zinsmeister has shown that E is homogeneous if and only if
HYE) = H'(R) (see [Z] for definitions and results).

If E is homogeneous then C\E has an strong barrier.

For Denjoy domains the homogeneity of the boundary is the key for being
a Hayman-Wu domain.

Theorem 4. IfQ is a Denjoy domain, then Q is a Hayman-Wu domain if and
only if 0Q is homogeneous.

The proof of Theorem i is in Section i, i = 2, 3, 4. In Section 5 we consider
another notion of a domain being almost simply connected and relate that to
the results above. In Section 6 we give the proof of Theorem A for the sake
of completeness.

I wish to thank A. Ancona for pointing out the example in the Remark in
Section 7. I am most grateful to Juha Heinonen for very stimulating conversa-
tions which motivated this paper.

1. Domains with Strong Barrier

Here we collect the relevant features of domains with strong barrier.

Let Q be a plane domain other than the plane or a punctured plane. The
universal covering Riemann surface is the unit disk. Consider the Poincaré
metric in the unit disk. Via the universal covering map, , it can be projected
onto a metric in 2 so that = is a local isometry. This projected metric is con-
formal with the euclidean metric and the scale factor, denoted by )\, is deter-
mined by the equation

2
)\Q(W(Z))|7FI(Z)| = l——|z|2’ Z€EA.

The volume form of this metric will be denoted by w,; it is simply

wg = N3 dxAdy.
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It is always the case and follows from Schwarz’s lemma that

A, < 2
2= dist (», 4Q)

To have a reversed inequality, i.e., to have 0 <inf _,\,(z)dist (z, Q) is
equivalent to the existence of a strong barrier, [BP], [Pol]. Also in terms of
the group I' we have that Q has a strong barrier if and only if there exists
7o > 0 so that the translation length of every element of I' is at least 7,, [P1].
(The translation length of a parabolic element is defined to be zero.) In
geometric terms this translates into having no punctures plus the existence of
a positive lower bound for the length of closed simple Poincaré geodesics of Q.

We shall need another characterization. A domain Q has a strong barrier
if and only if 0Q verifies the following capacity condition: there exists a cons-
tant Cy >0

(1.1 cap (A(b, )N o) > Cyr

for every b€ df, and r, 0 < r < diam (99).
The strong barrier condition is also equivalent to Ur, , being bounded [Po2].
Recall that the condition appearing in Theorem A is that Uy, , , is bounded.
All this can be found in [A], [BP], [Pol], [Po2].

2. Proof of Theorem 2
We will check that if Q is a Hayman-Wu domain then (a), there is a constant
7o > 0 so that all closed simply geodesic have Poincaré length at least 7,, and

(b), there are no punctures. We need a simple lemma:

Lemma. Let T be hyperbolic Mébius transformation of the unit disk onto
itself whose axis passes through 0. Then

1
<Y A -TFOPD) € —s-
T <% ITOD < 7aR

Proor. We may assume that the fixed points of 7 are —1 and 1, and that
T(0)=ae(0,1). Let b, = T"(0), n = 0. Then

(1= |, — |a’)

1-1b,>=1-|T(b,_y)|* =
| n| | (n—1)| |1+b,,_1a|2

n=l.

For n > 1 we have:

1<|1+b,_1a| <1 +a,
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and so
1-a\”
1_ 2n> _ 22 - s > .
(1-a9"=21- b, <1+a> n>1
Therefore
2 k(|2 < 2 1
—> 20 - |T*OP)=1+2 2 (0 -1b,))=>—
a keZ n=1 a

(a) Let o be a closed simple geodesic in Q.
The Jordan curve ¢ contains points of 4 in its Jordan interior. Let
seo and b e d be such that

|b — s| = dist (s, 32 N interior (0)).

Let F be a universal covering map which takes 0 to s.

Lift ¢ to a geodesic segment in A through 0. The lift is part of a
diameter 6 of A. Let T be the Mobius covering transformation
(F o T=F) corresponding to o. Then the axis of T is G since o is
smooth. Moreover the length L of ¢ safisfies

1

L
tanh <7>

The segment from s to b is contained in Q and its preimage under F
contains a collection of curves each one of them emanates from a point
of the orbit of 0 and goes all the way to dA, therefore the total length
of these curves is at least Z;‘ 1 — |¥(0)|. And consequently we have that

YE

@.1) < 21— |THO).
keZ

2.2) 2. 1= O <cq-
yell

L 1
tanh (=) >
an <2> 2c

and so L is bounded below by a constant depending only on ¢, .

Therefore,

(b) It remains to deal with the possible isolated points of the boundary of
Q. We may assume that 0 € 92 and A* C Q. Let F be a universal covering
map which takes 0 to 1/2. The circle |z| = 1/2 is lifted to a curve joining
0to 7(0) where T eI is parabolic. We may assume that the unique fixed
point of T is 1. Now the segment o from 1/2 to 0 lifts to a curve G in
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A which joins 0 to 1. Notice that F(U,., T(3)) C (0, 1/2], and therefore
since 7(G) joins v(0) to 1, we see that

2.3) Z [1 — T%0)| < length (F~ Y@ NR)) < c(Q).

But it is easy to see that |1 — T*(0)||k| = t, as |k| = o where ¢, is a
positive number. Therefore the sum on the left is actually infinite. Thus we
have shown that dQ has no isolated points and so the proof is complete.

3. Proof of Theorem 3

Our proof of Theorem 3 is actually a combination of results which appear in
papers by Ancona [A] and Sullivan [S1]. Ancona shows that in domains with
strong barrier the following form of Hardy’s inequality holds: there exists a
constant ¢; so that for every smooth function ¢ compactly supported in Q

dxd
(3.1 Jlj le(2)| dlst(t. ;ﬂ) <¢ jj Vo@dxdy, (@=x+0y).

The constant ¢, depends only on the e in the definition of strong barrier. As
a matter of fact the existence of strong barrier is equivalent to (3.1).
Recall that the density of the Poincaré metric is denoted by A\, while its
volume form is denoted by w, .
The Dirichlet integral is a conformal invariant. Therefore the integral on
the right hand side of the inequality (3.1) equals

(3.2) ([ 1Vaelt wq

where V,, denotes the gradient with respect to the Poincaré metric of Q, and
| |q denotes length in the tangent space with respect to the Poincaré metric
of Q.

Moreover, it is always the case that

2
3 S .
3.3) A (2) dist z, 30) for every z€(

Using (3.2) and (3.3) we see that inequality (3.1) implies that
(3.4) ”n le|2wg < ¢ Hn |Vqel’wqy, for every ¢eCF(Q).

But this means that the Poincaré inequality holds in the Riemannian manifold
Q and therefore the spectrum of the Laplace-Beltrami operator of € is contained
in (—0, —=1/C)).
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And now the theorem of Elstrodt-Patterson-Sullivan (see [S1, p. 333]) pro-
vides the final stroke because if 6 = 6(I") then it claims in our case that

1
G

o(1 —9) >

if 6 > 1/2. In particular,

1 1
< 1 - y— < 1.
) max{ c. 2}

Remark. One can use the argument of Lemma 1 of [Su] to show directly that
if a domain posseses strong barrier then the isoperimetric inequality, A < cL,
holds (for its Poincaré metric), and combine this with Cheeger’s inequality to
give the result.

4. Proof of Theorem 4

Sufficiency

Here we assume that 9 is homogeneous.
First of all we reduce the proof to the case L = R. Let a universal covering
map F be given and assume that we have seen that

“4.1) length(F~{Q@NR) <M

where M depends on Q but not on F. Let L be any other straight line and L™
be the part of L above R. Let G be any branch of F~! defined on the upper
half plane. By the Hayman-Wu theorem (see [GGJ]) we have that

4.2) length (G(L *)) < Plength (0G(U))

where P is an absolute constant. Adding up (4.2) over all branches G and
using (4.1) we see that

length (F~Y(L*)) < M,
where M depends only on Q. Similarly, length (F~ (L ™)) < M and so
length (F~}(L)) < 2M

Choose now a universal covering map F. We will check that (4.1) holds.
Let us denote by I; the complementary intervals of E in R.
In each I; we select points z’ as follows: if I; = (a, b), with a, b finite then
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: a+b
Z(()J)=
2

b

and
. . L
2y = 2§ + sign (k)%(l -1/2,  kez

If the interval contains o, we select o as z§’ and, if g =supE and
p =infE,
we let

. 1
2 =q+ S diam (B),  k>1,

7z = p — 2% diam (E), k< —1.

Let Z = {z$:j, k}. We shall check that F~!(Z) is an interpolating sequence
whose constants are independent of the choice of the universal covering F of
Q. Assume this for the moment and let us show how to finish the proof.

Denote by I; ; the interval (z¢”, z{/) ), k€ Z. Let G be any branch of F~'
defined on the whole interval 3/; , (which is the interval with same center and
triple the length). Then G(J; ;) is a curve in A whose Poincaré diameter is
bounded by an absolute constant (log 4); this follows from Schwarz’ Lemma.
In particular if x € [; , we have

4.3) 1-GWI* <A1 - |Gz,
where A is an absolute constant. Thus, if xeI; ,,

_ 2 _ 2 _ (2
1-[GI” 1-]60I" 1 |G&)”
dist (x, 92) L, | |7, |

1G] = (1 = [GEIPMg () <

Consequently,
.4) [, leldx <A - |GG
J. k
And, in particular, adding up (4.4) over all j, kK and G we obtain that

length(F~'Q@NR)Y <A >, (1-|wP).

weF-1(Z)

But we are assuming that we have already shown that F~(Z) is an interpolating
sequence and so, in particular, that the measure

p=_ 2 (1=|ws,

weF-1(Z)
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is finite (as a matter of fact, that u is a Carleson measure). The interpolation
constants of F~!(Z) depend only on Q and thus so does the mass of y; this
implies that (4.1) holds.

All that remains is to show that F~!(Z) is an interpolating sequence. But
before doing so let us remark that the argument above (which appears in
[GG1J)) is general. In fact, given Q (not necessarily Denjoy), split the intersec-
tion with Q of a given line L into disjoint intervals J; so that in each interval J;

1 < dist (z, 02) < 100.
100 ~ length (J)

Let z; be the center of J,. Then if F~({z,}) is interpolating with contants
depending on © alone one deduces that Q is a Hayman-Wu domain. Conversely,
if @ is Hayman-Wu then using that Q has strong barrier one may show that
the inverse image of such a sequence is interpolating.

There is an argument introduced by Garnett-Gehring-Jones for checking
whether F~1(Z) is interpolating or not by transfering the problem to a har-
monic measure estimate on Q itself. If we assume that Q has an strong barrier
then we have that F~1(Z) is interpolating if and only if there is ¢ < 1/4 and
a > 0 so that if for z€ Z we define

H()= 2, A(Z,edist(z’,00)NR.

z'€Z\{z}
Then
4.5) w(z,0Q,Q\H,.(2)) =2 a, forall zeZ.

This appears in [Po2] and in [JM]. If z’ = o by A(e0, e dist (o0, 3Q)) we mean
R\(p — (1/¢) diam 39, g + (1/¢) diam 4Q). It turns out that for Denjoy domains
with homogeneous complement (4.5) can be easily checked. This could be done
as follows: if z e Z\ { =}, then A(z, (1/8) dist (z, 3Q)) C 2\ H,(z); by Harnack’s
inequality it is enough to estimate

w(z + id, 00, @\ H,(z))

from below, where
d= Ldist( Q)
=16 S0

But
w(z + id, 30, O\ H.(2)) > w(z + id, 3Q, U),

(where U is the upper half plane).
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Let b edQ be such that |z — b| = dist (z, dQ), using again Harnack’s ine-
quality we see that we just need to estimate w(d + id, E, U) form below. But
from the explicit expression of the Poisson kernel of the upper half plane we
readily see that

(b — 10d, b + 10d)|
d

wb+id,E,U)>2C

where C is an absolute constant. And this gives the desired result. (For z = «©
one needs a minor variation of the argument.)
Necessity

Assume that Q is a Hayman-Wu domain. We want to check that 9Q is
homogeneous. Write E = dQ.

We already know that E satisfies the capacity condition (1.1).

We use the notation of the proof of the sufficiency.

We know that for some ¢ > 0 and @ = a(e) > 0

w(z,E,Q\H.(2)) > a, for every zeA.

It is easy to check that EU H.(z) is homogeneous with a constant depending
only on e (and not on E). Here H.(z) is the part of H(z) not lying in the com-
ponent of oo of R\E. Clearly

w(z, E,Q\H.(2)) > a, for every zeZ.

Let V = [p, q] be the smallest interval containing £. We shall check that for
an appropriate constant M = M(e) we have for all ye V\E that

4.7 |A(y, Mdist (y, E))NE| > Cdist (y, E)

where C = C(e).
This will be enough as the following simple lemma shows.

Lemma. Let A C [0, 1] be a closed set and assume that there exist constants
9, N such that if ye [0, 1]\ A

|(y = Nd(y),y + Nd(»)) NA| = nd(p),
where d(y) = dist (y, A) then
|4] > n/8N.

PROOF OF LEMMA. Let J, = (¥ — Nd(»), y + Nd(y)).
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Consider
B= U J,.
yel[0,1N\4
We may choose points y; so that
B= UJy
J J
and
%] X, < 2%

(i.e. no point of B is in more than two of the J,). Then

J
anBl = | x,>L514n7, 1> T Sdy) > -1 |8|.
A BT 25 i 25 4 4N
Now, ANBC A, and B D [0, 1]\ A4 so that
Al > (1 - |A])
4N
and so

n
4| > N

It is clear that in order to check (4.7) for all y € V\E it is enough to do so
when y is one of the points z{”.

Since both the data and the desired conclusion are translation and scale
invariant, we may assume that z{? = 0, 1€ E, and dist (z{”, E) = 1.

Around 1/2 there is an interval of length 2¢ which lies in dH,(0). Then there
exists M = M(e) so that

w(0, R\(—M(e), M(e)), 2\ H,(2)\[ - M(e), M(e)]) < a/2.
Therefore we see that
(4.8) w(0, EN[—M(e), M(e)], 2\ H, () > a/2.

We define two sets E, K as follows: we let E be the set EN[—M(e), M(¢)] and
K be the set EU ([—M(e), M(¢)] N H,(0)). Consider & = C\ K. We know from
(4.8) that

w(0,E, Q) > a/2.
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Again K is homogeneous with a constant depending only on e, and since
K C [-M(e), M(¢)] then we know that w(e, , ) is absolutely continuous with
respect to length and in fact, that the Radon-Nikodym derivative A is in L?,
for some p > 1. More precisely.

w(oo, », ) = hdx
and for p = p(e) > 1 and T = T(e) we have
p
jaﬁ |h()|? dx < T(e).

This is the heart of the matter. It is due to Jones and Marshall ([JM]).
From Harnack’s inequality (and a bit of Poincaré geometry), we have

w(o, B, Q) > a'.
(a’' = a'(a, €) = a’(¢)). Therefore
a < jE |h(9)| dx < T(e)V?|E|1~ V7.
And so
|[EN[-M(e), M(e)]] > ¢ = c(e)

and we are done.

5. Fully Accessible Domains

This is a notion that has been introduced and studied by Patterson, [Pal],
[Pa2], Pommerenke [Po3], [Po4], [Po5], and Sullivan [S2]. A Fuchsian group
T is called fully accessible if the action of I' on 0A is fully dissipative i.e. if
there is a measurable set B C dA so that if yeI'\ {id}, |v(B)NB| =0 and
IaA\UYGF Y(B)| = 0, or in other terms that the action of I" on dA has a
measurable fundamental set.

A domain is called fully accessible if its covering group is fully accessible.

Patterson showed in [Pal] that if 8(T") < 1/2 then Q is fully accesible. On
the other hand fully accesible domains may have 6(() = 1. One such example
is provided by @ = A*\ {a,}, where @, — 0. It is easy to see that Q is fully
accessible (see Theorem 3 or Example 1 in [Po4]) but 6(22) = 1. See Remark 1.

It is reasonable to expect that Hayman-Wu domains must be fully accesible.
We can only show this for Denjoy domains. In that case a Hayman-Wu domain
satisfies that if F'is the symmetric universal covering map with F(0) = o, I
its covering group, and D, the associated Dirichlet region at 0 then
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> length (8(v(Dy))) <
yel'

(see [FH]).

This clearly implies that

3A\Uv(©@D,Na4)| =0,
Y

which gives that Q is fully accessible. Another argument to show this is provided
by two characterizations. Assume that Q is a Denjoy domain. We have seen
that Q is Hayman-Wu if and only if © is homogeneous; on the other hand it
has been shown by D. Hamilton and the author that Q is fully-accesible if and
only if harmonic measure in 9Q is absolutely continuous with respect to arc
length (see Remark 2). But Carleson, [C], showed that for homogeneous sets
harmonic measure is in fact absolutely continuous.

Remark 1. Let a, be a sequence of numbers converging to zero. Let
Q= A*\{a}¥-1-

Now
6(2) > 8(A\ {0, a, }).

This follows from the results about signatures in [Pa2], but in [F] it is shown
that 6(A\ {0, a,}) — 1 as n — « therefore §(Q) = 1.

Remark 2. We simply sketch the argument. It is based on the special form of
the Dirichlet’s, Dy, and Green’s, G,, fundamental region associated to the
covering map F with takes 0 to « and is symmetric under complex conjuga-
tion. The Dirichlet region is mapped under F on C\[p, q] where [p, q] is the
smallest closed interval which contains dQ. Since dD, is rectifiable it follows
that if I" is fully accessible then w(eo, ¢, Q) is absolutely continuous with
respect to length. Conversely, since the Green’s region is mapped onto
C\[p, g] one sees that if w(w, ¢, dQ) is absolutely continuous with respect to
length then the Green’s measure is absolutely continuous with respect to db,
and this is equivalent to full accessibility; (see [Po3] for definitions and this
last result).

6. Proof of Theorem A

We start with
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Lemma. Let G be a Fuchsian group and denote by Dy(G) the Dirichlet region
of G at 0. Then

> length (3g(Do(G) < 7% 3 (1 — |g(0)|HV>2.
geG geG

Proor. The domain g(D,(G)) is contained in

{z:0(z, 2(0)) < p(z,0)} = H(g(0)).

By a result of B. Brown, [B], we have that

2
length (9g(Dy(())) < % diam (g(Dy(G))).

But
diam (H(2(0))) = 2(1 — |g(0)|»)"?,

and so the result follows.

If I satisfies that U, , is bounded then for any group G conjugate to I" we
have

6.1) 2(]} length (g(0Dy(G))) < 72| U1z | o -
ge

For G = v~ 'T'w, where w € M6b (A), and then

ggé; (A~ [g©@)})* = 2 (A ~ [(0), Y(@O)I*)"* = Uy(e(0)).

v€G

Assume that a covering group I' of Q (and hence all) has |U, ;| < .

Let F be any universal covering map from A onto Q. The group of deck
transformations of I' is a group G conjugate to I'.

We want to estimate the length of the set V' = F~}(QNL) where L is an
straight line. Since F is one-to-one on g(D,(G)) we deduce form the Hayman-
Wu theorem (see [GGJ]) that

6.2) length (VN g(Dy(G))) < Clength (g(8Dy(G)))
where C is an absolute constant. But then using (6.1) and (6.2) we deduce that
length (V) < 2] length (3g(Dy(G))) + 2, length (VN g(Dy(G)))
geG geG

< (1 +¢) 2] length (g(3Do(G)))
geCG

<A+ 97*| Uy
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7. An Example

We know that for a domain 2, U, is bounded if and only if Q posseses a strong
barrier. Possesing a strong barrier means that Q contains no doubly connected
domains (separating Q) of arbitrarily large modulus, or equivalently, in view
of a theorem of Teichmiiller ([Ah, p. 74]), that contains no ring (separating
0Q) of arbitrarily large modulus (see [BP], [Pol]).

Let us define the modulus of a domain € as

M(Q) = sup {mod (R): R, ring, R C Q, R separating dQ}.

The constant M(Q) and the reciprocal of the € in the definition of strong bar-
rier are bounded by functions of each other.

Since 6(Q2) < 1/2 guarantees that there are no isolated boundary points it is
tempting to guess that 8(Q) < 1/2 implies that Q@ posseses an strong barrier.
Theorem A also points in that direction. Unfortunately

Example. Given 6, > 0 there exist a domain Q with 6(Q) < 6, but M(Q) = .

In order to show that the exponent of a domain is close to 1 one only has
to provide an example of a function ¢ € Cg(Q) with small

[ IVeltdxdy

Hn lezwﬂ

But the Rayleigh quotient is of no help here since at most it can be used to
show that 6(Q) < 1/2. We do have to look into the geometry of Q.
Given a sequence ¢; of positive numbers tending to zero consider the domain

Q=C\ LEJZA(zn + 1)\ Lé)Z TQn, 1,).

where if ae R and » >0
T(a,n) = {a+iy: |y 29} Ulx+iy:|x—a| <1/2,|y] =1}
If &, is given we can choose the numbers %, converging to zero so fast that

6(Q) < 6,. Of course, M(2) = .
We content ourselves with giving a proof of the following

Lemma. Given &, > 0 and M, there exists a triply connected domain Q with

5Q) <8, and MEQ) > M,.
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Consider the domain
Q2 = C\A(1, )\ A(—1, &)\ T(0, 7).

The set {x + iy: |¥| < 1/2, |x| < 1/2} will be called the tunnel. It is clear that
if e is small enough then M(Q) > M, (recall that 5 < €). We now fix e and show
that 8(Q) tends to zero as n — 0.

Notice that @ is symmetric under reflection on the imaginary axis
((x + iy)* = —x + iy). Choose F so that F(0) = 1 and F(Z) = F(z)*. We have
to check that for s small (assuming % small) we have
(7_1) Z e—SD(O,'Y(O)) < ®©

yel
where I' is the covering group of F. The group I' is a free group in two
generators. One generator, o, corresponds to the loop with base at 1, which
surrounds A(1, €) the other one, 8, corresponds to the *-symmetric loop. We
decompese the sum in (7.1) as follows

(7.2) 1+ i 37 e 50O YO,

k=1 yed,
where A, denotes the collection of those elements of I' of the form
g = whiwh2... wik

where w; is o or 8 but w;Zw; ., i=1,...,k— 1, and p;eZ\ {0} = Z*.
Consider g€ A;, we will estimate p(0, 0(0)) from below. Let # denote the
length of the shortest geodesic in © which surrounds A(1, €). This number A
depends on e and » but there exist A, = hy(¢) which depends only on e so that
h = h,. (This could be seen by using the convergence results in [H]).

The segment from 0 to ¢(0) is mapped by F onto a curve ¢ which is locally
a geodesic and

p(0, 6(0)) = [, (5) (= the Poincaré length of §).

With this information we may estimate /,,(6) from below as follows:
k 1
s (a1 - <)1)
Jj=1 n
For the length of a curve connecting the short sides of the tunnel is at least

1/9 and 6 «contains» k arcs connecting these short sides.
For a vector v in (N — {0})* we write

k
lol = 3 Ioj|
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Then we have that

Z e~ $p0,v(0) < 2k Z eS¢ [vlho + k(1 /1 — hy))
vEA, ve(N - {opk

= 2ke—sk(/1—ho) e~ sholvl
ve(N—{0h*

—sh k
_ gkg—s/n—hok| € °
B 1-—e

and given s if we choose 5 small enough we have that

e—s(l/-q—ho) <l(esh0 _ 1)
4

and then the sum (7.2) is majorized by

= 1
I+Z_k_=2‘
K=1 2

Remark. The example shows that one can have § small while U, is unbounded.
On the other hand Theorem 3 shows that for plane domains if U, is bounded
then 6 < 1. This last fact does not hold for Riemann surfaces. Consider a
Z3-cover R of a compact Riemann surface S. Now R has a Green’s function
(see, e.g., [T, p. 484]) and since U, is invariant under the Z>-action we have
that U; of R is bounded. On the other hand it is easy to see that the infimum
of the Rayleigh’s quotient is zero, and so 6 = 1. This example was pointed out

by A. Ancona.
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