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1. Introduction

In this paper we study quasiconformal homeomorphisms of the unit ball
B =B"= {xeR"|x| <1} of R” onto John domains. We recall that John
domains were introduced by F. John in his study of rigidity of local quasi-
isometries [J]; the term John domain was coined by O. Martio and J. Sarvas
seventeen years later [MS]. From the various equivalent characterizations we
shall adapt the following definition based on diameter carrots, ¢f. [V4], [V5],
[NV].

Let E be an arc in R” with end points x, and x;, and let E[x;, x] denote the
subarc of E between x;,x€ E. For b > 1 the open set

car (E, b) = | J{B(x, b~ ' diam E[x,, x]): x € E}

is called a b-carrot (or b-cone [GHM]) with vertex x; joining x; to x,. Here
B(x, r) denotes the open n-ball centered at x with radius . A domain D in R"
is said to be a b-John domain with center x, if there is x, € D such that each
x, € D can be joined to x, by a b-carrot in D. It follows that if D = R” is b-
John, then it is bounded; indeed, D C B(x,, b dist (x,, D)).

Among simply connected planar domains John domains can be recognized
from a number of different geometric properties as well as from the properties
of the Riemann mapping [P2], [NV], [GHM]. It is our purpose in this paper
to show that certain analogues of those results can be found also in higher
dimensions. In fact, if D is a bounded domain in R” and quasiconformally
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equivalent to the unit ball, then our main theorem provides nine equivalent
conditions for D to be John. Two of those conditions were previously known
[V5], [NV]. It is interesting to note that in our main theorem, Theorem 3.1,
the requirement «D is quasiconformally equivalent to the unit ball» cannot be
replaced e.g. by «D is homeomorphic to the unit ball» or «D is a Jordan
domainy». Thus, among all John domains those which can be quasiconformally
mapped to a ball lend themselves to more clear pictures.

The main theorem is stated in Section 3 after some preliminary discussion.
Our proofs are mainly based on the modulus method but, at least implicitly,
also the analytic aspects of the higher dimensional quasiconformal theory are
present. We also feel that J. Viisdld’s theory of quasisymmetric mappings has
come to be an indispensable guide to the geometry of John domains.

The proof of the main theorem leads us to consider more general sub-
invariance properties of certain domains under quasiconformal mappings.
These phenomena were previously studied in [FHM] and [V5]. In Section 6
we present a quite general theorem which describes the internal distortion
of quasiconformal mappings and extends a recent result of J. Viisdld [V5,
Theorem 2.20]. A few corollaries will be discussed in Section 7; we demonstra-
te, for instance, that broad domains are subinvariant under quasiconformal
mappings.

There is a beautiful theorem due to F. W. Gehring and W. K. Hayman [GH]
which states that in simply connected planar domains the hyperbolic geodesic
essentially has the least length (or diameter, see [P1, pp. 136]) among all paths
with same endpoints. In proving our main theorem we shall require a similar
result which can be viewed as a quasiconformal analogue of the Gehring-
Hayman Theorem and which as such may have some independent interest.
This result, Theorem 4.1, is stated and proved in Section 4. Having seen the
first draft of this paper, R. Nédkki informed the author that Theorem 4.1 also
follows from [HN, Theorem 2] after a simple limiting procedure.

I wish to thank J. Viisdld for generously showing me his unpublished work
and P. Koskela whose question about the equivalence of I and VIII in
Theorem 3.1 partly led me to investigate the problems in this paper. I also
thank the referee for a meticulous reading of the paper and for many useful
comments. Indeed, the proofs for the implications III = IV and III = VI in
Theorem 3.1 are due to the referee; this route of reasoning substantially
shortened my original arguments.

2. Some Definitions and Lemmas

Before stating and proving our main theorem we shall record in this section
some definitions and results needed later on.
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2.1. Notation

Our basic notation is fairly standard and generally as in [V1]. For example,
D and D’ will denote proper subdomains of R”, n > 2, and f: D — D’ includes
the assumption that fis a homeomorphism onto D’. Open balls and spheres
in a metric space (X, e) are denoted by B,(x,r) and S,(x,r), respectively;
whenever X is a subset of R” with the euclidean metric in it, the subscript e
is omitted. We abbreviate B(r) = B(0,r), S(r) = S(0,r) and S = dB, where
B = B(0, 1) is the unit ball. By a boundary cap 7C S we mean a set of the
form B(x,r) NS for some x € B. The (euclidean) diameter of a set A4 is d(A)
and the (euclidean) distance between sets A and B is d(A, B). For brevity,
d({x},A) =d(x, A). If E is an arc in R” and x, y € E, then E[x, y] will denote
the closed subarc of E between x and y. The closed line segment between
points x, y € R” is denoted by [x, y].

2.2. John domains and cigars

In addition to the definition given in the introduction we will need the follow-
ing cigar property of John domains. Recall that if £ is an arc in R” with end-
points x; and x,, then for 4 > 1 the open set

cig (E, b) = U{_B(x, b™" min d(Elx, x])): xe E}

is a b-cigar (or double cone [GHM]) joining x; and x,.

Then a bounded domain D is a b-John domain if and only if each pair of
points in D can be joined by a b’-cigar in D; the constants b and b’ depend
only on each other [NV, Theorem 2.16].

This equivalence allows us to define John domains in the compactified
space R” = R"U {o}: a domain D in R” is a b-John domain if each pair of
points in DN R" can be joined by a b-cigar in D, see [NV]. John domains in
R" are briefly discussed in Section 6.

2.3. The internal metric

The internal metric 6,, in D is defined by
6,(x,») = infd(E)

where the infimum is taken over all arcs joining x and y in D. We shall often
abbreviate 6,, = 6. The internal distance between two sets 4, B C D is written
as 6,(A, B), and the internal diameter of A C D is §,,(A4).
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2.4. Broad domains

Let ¢: (0, ©) — (0, ) be a decreasing homeomorphism. We say that D is ¢-
broad if for each ¢ > 0 and each pair (C,, C,) of continua in D the condition
6,,(Co, Cy1) < tmin {d(C,), d(C;)} implies M(A(Cy, Cy; D)) > o(t). Recall that
I = A(Cy, Cy; D) is the family of all paths joining C, and C; in D, and M(T")
denotes the modulus of T'.

Broad domains were introduced in [V5] and it was later proved in [NV] that
a simply connected planar domain is broad if and only if it is John. Broad
domains also provide some new insight to internal distortion properties of
quasiconformal mappings, c¢f. [V5, Theorem 2.20] and Theorem 6.1 below.

The definition for broad domains in R” is similar.

2.5. Linearly locally connected sets

Suppose that A is a subset of D and b > 1. We say that 4 is b-LLC, (with
respect to 6,) in D if for all xe A and r > 0 the points in A\B(x, br) (in
A\E,SD(X, br)) can be joined in D\ B(x, r) (in D\EﬁD(x, r). If A = D, we say
D is b-LLC, or b-LLC, with respect to 6.

The expression LLC, is used because the condition above is but the second
of the two requirements placed on linearly locally connected domains (then
A = D), cf. [G], [GM1], [V3].

It turns out that if D is LLC,, then it is LLC, with respect to §,,; see Lemma
5.12 below. However, the converse need not be true in general (the examples
that we have found are somewhat complicated and irrelevant in this connec-
tion).

Note that if A is b-LLC, in D, then it need not be connected.

2.6. Quasisymmetric mappings

Let X, and X, be metric spaces with distance written as |x — y| and let
7: [0, ©) = [0, c©) be a homeomorphism. An embedding f: X; — X, is -
quasisymmetric if |a — x| < t|la — y| implies | f(@) — fx)| < 2(0)| f(@) — f(»)|
for all a,x,yeX,. If there is H>1 such that |a — x| < |a — y| implies
| f(a) — f()| < H|f(a) — f()|, then fis said to be weakly H-quasisymmetric.
Clearly an n-quasisymmetric mapping is weakly quasisymmetric (with H = n(1))
but the converse is not true in general. For background information about
quasisymmetric mappings and their role in Geometric Function Theory see
[TV], [V2], [V3], [V5].

A quasisymmetric embedding f: D — D’ is always quasiconformal whilst the
converse is true only for certain domains [V3].

We also have the following
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Lemma 2.7. [V2, Theorem 2.4]. Suppose that f: D — D’ is K-quasiconformal,
xeD, and 0 <\ < 1. Then f|B(x, \d(x, dD)) is n-quasisymmetric, where 7
depends only on n, K, and \.

The next lemma follows from Lemma 2.7; see also [V1, Theorem 18.1].
Lemma 2.8. Suppose that f.D— D' is K-quasiconformal, xeD, and

0 <\ < 1. Then there are positive constants \, and \,, depending only on n,
K and \, such that

B(f(x), \d(f(x), aD") C f(Bx, \2d(x, aD))) C B(f(x), Md(f(x), 4D")).

2.9. The function a,

Let f: D — D' be K-quasiconformal. For x € D write
1
B, = B(x, —2—d(x, BD)>

and set

1
2.10 = ,
(2.10) ap(x) = exp < nm(B.) LX log dem>
where J;is the Jacobian of fand m(B,) stands for the n-measure of the ball B, .
It was observed by Astala and Gehring that for certain distortion properties
of quasiconformal mappings the function a, plays a role analogous to that
played by | f’| when f is planar and conformal [AG1], [AG2]. In particular,

Lemma 2.11. [AG2, Theorem 1.8]. There is a constant ¢ = c(n, K) such that

1 d(f(x),aD") d(f(x),aD")
¢ deap) SYOSC—00D)

for all xe D.

The careful reader notices that in [AG1], [AG2] the integral in (2.10) is defined
with B, = B(x, d(x, dD)). However, as seen from (2.12) below, these two defini-
tions prove to be equivalent and for our purpcses (2.10) is more convenient.

The next lemma derives from Lemma 2.11 and from the n-dimensional ver-
sion of [AGI, Lemma 5.10]:

1 —
m(B,)

< c(n,K)<log m(B,) + 1>;

(2.12) [ m(B,)

j log Jydm — log J,dm
Bl

1
m(By) Lz
here f: D — D' is K-quasiconformal and B, C B, are balls in D.
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Lemma 2.13. Let f: B— D be K-quasiconformal and x,y € B. Then there
are constants c;, c, which depend only on n,K, and the hyperbolic distance
between x and y such that

1
(2.14) o as(y) < as(x) < cra4(y)
and
1
(2.15) C—zd(f(y), dD) < d(f(x),dD) < c,d(f(»), 8D).

Recall that the hyperbolic metric in B is given by the metric density

2|dx|
ds = ——;
TP

the hyperbolic geodesic joining two points x and y in B is an arc of a circle
orthogonal to S.

The final result we record in this section is the following consequence of a
theorem due to M. Zinsmeister; see [Z, Theorem 2].

For x € B we define the cap I(x) = B(x, 3(1 — |x|))NS.

Lemma 2.16. Let f: B— D be K-quasiconformal and let x, y € B be such that
I(y) C I(x). Then there is a hyperbolic geodesic L from x to I(y) such that

@.17) d(f(L)) < cd(f(x), D),

where the constant c depends only on n, K, and the hyperbolic distance between
x and y (or, equivalently, on the ratio d(I(y))/d(I(x))).

3. Main Theorem

Let f be a K-quasiconformal mapping from B onto a bounded domain D. We
assume further that f has a continuous extension to B, which is true if and
only if D is finitely connected on the boundary [V1, pp. 58], in particular if
D is John [NV, 2.17].

The following is the main result of the paper.

Theorem 3.1. The following are equivalent

I. D is b-John with center f(0);
II. D is ¢-broad,
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III. f:B— (D, 8,) is n-quasisymmetric;
IV. d(f(I(x))) < bd(f(x),dD) for all xe B and I(x) = B(x,3(1 — [x|)) N'S;
V. d(f([x, w])) < bd(f(x), dD) for all we'S and x € [0, wl;
VL. a;(rw)(1 — r)' = * < bag(pw)(1 — p)! ~* forall weS and 0 < p <r<1;
a(f()) < b< du)
d(f(J)) diJ)
VIII. D is b-LLC,;

IX. D is b-LLC, with respect to ép;

X. f:B— (D, 6,) is weakly H-quasisymmetric.

VII.

> Jfor all boundary caps I C JC S;

The constants b, o, H (not necessarily the same at each occurrence) and the
functions ¢, n depend only on each other and the data

_ ) .
V= <"’K’ d(f(0>,aD)>

The equivalence of I, II, and III is known. The hard part is to show that
I (or II) implies III [VS5, Theorem 2.20] whereas it is considerably simpler to
demonstrate that John domains and broadness are preserved under quasisym-
metric mappings [NV, Theorems 3.6, 3.9]. We shall prove

MI=1IV=V=VII=IX=X=1
| f
VI = VII

We also provide a new proof for the implications I = III and II = III; see
Remark 6.7 (b).

In the plane most of the implications are known for conformal mappings.
In particular, the equivalence of IV, V, VI, and VII was proved by Ch. Pom-
merenke [P2].

Let it be remarked that the equivalence of I, II, VIII, and IX is not true
for general domains when the picture is as follows

John i broad

WX

LLC,

W

LLC, with respect to &,
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Proofs for the implications can be found below in Lemmas 6.2, 7.2, and 5.12.
As for the counterexamples, it is clear that throwing in a countable set of
points may destroy the carrot property of John domains whereas the modulus
remains intact; on the other hand, by judiciously removing open intervals {I;}
from [0, 1], the John domain D = (B*\[0, 1)U {J;: i=1,2,...} is not
broad. Further, if » > 3, a Jordan domain with an outward directed wedge
is LLC, but neither John nor, if the wedge is sharp enough, broad.

The reader is invited to compare Theorem 3.1 to results in [GM1], [V3] and
how the concepts John, broad, LLC,, and quasisymmetry in §,, are related
to their predecessors: uniform, QED, LLC, and quasisymmetry. The
analogue is particularly patent in Theorem 6.1 below from which we derive
the implications IX = X, I = III, and II = III as a special case.

Astala and Gehring proved in [AG2] that if fis a bounded K-quasiconformal
mapping in B, then f is Hélder continuous in B with the exponent
o,0<a < KY""" if and only if a;(x) < b(1 — |x|)*~ . It has been proved
by several authors [NP], [GM2], [MV] that quasiconformal mappings onto
John domains are H6lder continuous. In light of the Astala-Gehring theorem,
Theorem 3.1 VI above shows that slightly more is true.

4. A Distortion Theorem for Quasiconformal Mappings

In this section we establish the following theorem (see [HN, Theorem 2] for
a similar result).

Theorem 4.1. Let f: B — D be K-quasiconformal and bounded. Let L be the
line segment from 0 to a point weS. If v is any arc joining 0 to w in B, then

d(f(L)) < bd(f(v)

where the constant b depends only on n and K.

Proor. We denote the images by primes: f(x) =x', xeB, f(4)=A4,
A C B. By normalizing we may assume that d(y’) = 1. Fix a point 2’ € ¥’ so
that v’ C B(z’,1). For k=0,1,2,... let L, = [0 =2 % w, 1 - 27 " Hwl.
We shall first show that for each & there is a point x; € L, such that f(x;) C
B(z', ¢) for some ¢ = c(n, K) < . Indeed, if L, C R*\B(z’, c¢), then

M(A(L}, v'; D)) € w,—1(loge)' ™"
while the modulus estimate [V1, 10.12] implies

M(A(Ly, v; R™) = c(n).
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Since

1
EM(A(LIU v; R™) < M(A(Ly, v; B))
< KM(A(Ly, v'; D)),

the desired upper bound for ¢ can be found.
Next, fix k=1 and yeL,. Let x, _;€L,_; and x;,; €L, be points
whose images lie in B(z’, ¢). Since
1 =[xy 27k!
1- ]xk+1' =

y-k-2 =8,

the points x; _; and x; , ; lie in a hyperbolic ball with fixed radius; by Lemma
2.7 fis n = 9(n, K)-quasisymmetric in that ball. Since

|V = X1l S X1 = Xeials
then
[y = Xi 1l SaDxf—1 = Xy 1| <29(1)c = ¢,
and hence
' = 2| <Y = Xjsrl + [Xks1 — 2’| <" + ¢ = c(n, K).

A similar reasoning shows that if y € L,, then y’ € B(z’, c(n, K)) as well. Con-
sequently, the diameter of (L) is bounded by a number which depends only
on n and K as required.

Remark 4.2. The above proof shows that the conclusion of Theorem 4.1 is
retained if L is the hyperbolic geodesic joining two points w;, w, € S and v is
any arc joining those points in B.

5. Proof of Theorem 3.1

Throughout the proof we let ¢, ¢;,... denote positive constants, not
necessarily the same at each occurrence, which depend only on the numbers
b, a, H, the functions ¢, 7, and the data

B do) .
v ("’K’ d(f(O),aD)>

As usual, c(a, ...) denotes a constant which depends only on a,... .
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III = IV. Fix xe B and write I = I(x). We denote images by primes, i.e. for
z€ B, 2’ = f(z). Choose wy € S such that |x’' — wj| = d(x’, aD). Then for any
point w’ on the half open line segment [x’, wy) we have 6, (x’, w') = [x' — w'|,
and hence by quasisymmetry

for z € B. In particular, if w} € [x’, wp) such that w; = w; and z; € B such that
Z; 2o €1, then (5.1) implies

le_zr‘ < ‘x_z./l le_wl
IR _lx_ W.| il
J

By letting j — o, we obtain

xl_zl
x' —w

X—2Z

5.1 o

< Sph2) <

o, wh) T

|x — zo|
1 - |x|

" — zo| <17< )d(X’. aD)

< 1(3)d(x’, 4D).
Consequently,
d(f()) < 29(3) d(x', D)

as required.

IV=YV. Fix weS and xe[0, w]. Let L be a non euclidean segment from
xto I = I(x) such that d(f(L)) < cd(f(x), D), see (2.17). It then follows from
Theorem 4.1 that

cd(f(L)USU)

<
< cd(f(L) + d(fU))
< ¢,d(f(x), dD)

d(f(lx, wl)

as required.

Il = VI. FixweSand 0<p<r<1.ByLemma 2.11 it suffices to show

d(f(rw), dD) g b< 1- r>“
d(f(pw),dD) ~ "\ 1-»p

where b and o depend only on 5 and the data v. It follows from [TV, 3.12]
that » may be assumed to be of the form n(f) = cmax (¢, ¢*), where

(5.2)
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c=c(n)>0and @ = a(y) < 1. Thus for r <s <1 we have

é rw), f(sw s—r s—r\¢
= seomom <5=5) <(3=)"
Since

Op(f(rw), fsw)) = [f(rw) — f(sw)|
and since

65 (flow), f(sw)) < d(f(low, D)) < bd(f(pw), dD)
by V, (5.3) implies

5.4

bd(f(ow),dD) ¢

S—p

|[frw) = fsw)| _ <s— r>“_

note that we have already established the implications III = IV = V. Finally,
by letting s — 1 in (5.4) establishes (5.2) and the proof of III = VI is com-
plete.

Vi= VII. Let ICJCS be two boundary caps. Choose distinct points
X, x,€ B\ {0} such that |x,| < |x,| and that

(I = |x])~dlp D) ~ddD), (1= |x)]) ~dlx,, J) ~ dlJ),

where A ~ B means that the ratio A/B is bounded from above and below by
an absolute constant. It then follows that the hyperbolic distance from x, (or
X;) to a point |x,|x, w € I (or |x,|w, w € J) is bounded by an absolute constant.
In particular, Lemmas 2.7 and 2.11 yield

(5.5) | f(x,|w) = fx)| < e(n, K)d(f(x)), dD)
< C(ns K)(l - ‘XII)af(xI)

for all we I. Likewise, by (2.14)

1
(5.6) ?af(Ix,l w) < ap(x)) < cag(|x,|w), ¢ =c(n,K), wel.
Similar estimates hold for x;. In the conformal case the conclusion follows
from (5.5) and (5.6) by integrating | f’| along a line, see [P2, pp. 81]. We need

to make the following detour.
Fix wel and let X, X, ... be the points on [|x,|w, w] determined by

3 .
X, = |x|w, 1-|x| = Z(l - |xj_1|) for j>=2.
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Write
B;=B(x; |x;— x;, ) = B<xj,%(l - |xji)>-
It again follows from Lemmas 2.7 and 2.11 that
(5.7 /&) = fx;, )] < ed(f(x), D) < c(1 = |x;)a,(x).
We obtain from (5.7) and VI that

If(xj) _f(xj+ 1)[

<ol - |xj|)af(xj)
<cl - Ixji)a(l - lx1|)l_aaf(|x1|w)

3 a(j-1)
=(3)" "0 et

whence

(5.8) Fxw) = 00l < 35 176) = F05,.)]

<c(l - |x1|)af(|xllw)-
Thus, for wy, w, el

| fwy) = fw)| < | f(x,lwp) = FOw)l + [ f(x,/wi) = f(Ix|wo)l
+ | f(x,|wp) = f(wy)|
< (1 — |x)as(x);

here (5.5), (5.6) and (5.8) were utilized. We conclude
(5.9 d(f() < (1 = |x;)a ).

' Next, suppose that we have the lower bound
(5.10) d(f(J)) = cd(f(1x,| |x,| ~"xp), 8D).

Then Lemma 2.11 implies d(f(J)) = (1 — |x,])a,(x,), where x, = |x,] |x,| ~'x;.
By combining this with (5.9) we arrive at

Ay cdfUy)
(1= [xDa,0c) S (0 = Px,Da;(xo)

which, in view of VI, is the desired inequality because 1 — |x,| ~ d(J), 1 — |x;|
~d(I) and af(xo) ~ af(xj).
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It remains to establish (5.10) or generally
(5.11) d(f(»),dD) < c(n, K)d(f(J))

whenever J C S is a boundary cap and y € B is such that 1 — |y| ~ d(y,J) ~
d(J). To see why this is true, consider the path family I" = A(By, J; B) where
B, =B(y,(1 - |y)/2). Then 0<c(n) < M), and hence 0< c(n,K) <
M(f()). It follows again from (2.15) that

%d(f(x), aD) < d(f(»),dD) < cd(f(x),dD),  x€B,, c=c(nK),

and hence, if

4(/(9),8D) _
d(fJ))

is very large, we have
0<c(n,K) < M(f(I) < w,_ (logcR)' ~".

This establishes (5.11) and, therefore, the implication VI = VII.
VII = IV. LetI=1I(x) CS beacap as in IV. We follow the idea presented
in [P2, pp. 81-82].

Indeed, by VII we can choose a constant ¢, = ¢;(«, b) such that if / C I and
d(J) < ¢; d(I), then d(f(J)) < d(f(I))/4. Let c be the constant in Lemma 2.16
corresponding to the value ¢, above. That is, if J C I and d(J) = ¢, d({), then

there is an arc L from x to J satisfying (2.17).
Next consider the set

A = (zeintg I | f(2) — f(x)| > cd(f(x), dD)}.

Then A is open in 7 and can be written as a countable union of boundary caps A,
with the property that A, N(I\A4) # . Fix one A, . Necessarily d(4,) < c;d(),
for otherwise one can find a curve L from x to 4, such that

d(f(L)) < cd(f(x),dD) < | f(z) — f(x)| for all ze€A,,
which is absurd. Thus

A4 < 5 dUD)

by the choice of ¢;. Let z;, z, be two interior points of 1. If z, € 4 for some
k., choose a point z} eflkl NI\A). If z; ¢ A, set 27 = z;. Define z5 similarly.
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Then

|f(z)) — f(z2)] < |fzy) = f@D| + | f@D — f(x)]
+ 1 f0) = @) + | f@5) — f(z)]
< d(f(Ag)) + 2¢d(f(x), D) + d(f(A,)

< ;— d(f(D) + 2cd(f(x), 3D).

Since z,, z, € I were arbitrary, we have
d(f)) < bd(f(x), dD)

as required.

V = VIII. Fix xe D and r > 0. Suppose that two components, D; and D,,
of D\ B(x, r) meet D\ B(x, cr). We shall show that ¢ < 4b.

Assume f(0) = 0. First observe that M = d(D) < 2bd(0, dD) and therefore
B(0,2c; M) C D where ¢, = 1/4b. If |x| < ¢;M, then r > ¢; M, and therefore
D\B(x,cr) = J as soon as ¢ >4b = 1/c,; a similar conclusion holds if
r > |x| = ¢;M. We may therefore assume that 0 ¢ B(x, 7). Then 0 is not in one
of the components D; and D,, say 0 ¢ D,. There is a boundary point we S
such that f(w) € D, N (R"\ B(x, cr)) and that the arc v = ([0, w]) approaches
f(w) from D;. In particular, since 0 ¢D,, there is zeyNB(x,r). Since
dy[fw),z]) = (¢ — Dr, V implies (c — 1)r < bd(z,dD) < 2br. This shows
that ¢ < 2b + 1 < 4b as required.

The implication VIII = IX is an immediate consequence of the following
lemma.

Lemma 5.12. Let A be an arcwise connected subset of a domain D. If A is
b-LLG,; in D, then A is by-LLC, with respect to &, in D with b, = b (b).

Proor. Fix xe A and r > 0. Pick z,y eA\BBD(x, cr) and suppose they can-
not be joined in D\Bab(x, r). We shall show that ¢ <2b + 1.
Let o be an arc joining z and y in A. Choose z, € a and y, € o such that

. . 1

@ mln{lx—zol,Ix—yol}>5(C-—1)r

and

(ii) the subarcs [z, z,] and o[y, y,] lie in D\B,;D(x, r).

This choice is possible since o OB,SD(x, r) # . Now (i) and the LLC,-property
imply that the points z, and y, can be joined in D\ B(x, (c — 1)r/2b) by an arc
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8. Then v = alz, z,] UBU a[y, y,] joins z and y in D. Necessarily, because of
(i), 8 meets E%(x, r). Therefore, for some wef, (c — )r/2b < |w— x| <
6,(w, x) < r which establishes the desired inequality ¢ < 2b + 1.

We have two more implications to work out. The proof of IX = X is
somewhat long and, by the same token, we shall establish a more general
result: Theorem 6.1 in Section 6. Assuming Theorem 6.1, we next show how
to finish the proof of Theorem 3.1. First, the implication IX = X follows
directly from Theorem 6.1 by choosing A = B. The final impiication X = I
is essentially done in [NV, 3.5] but for convenience we incude a proof:

Fix xy e D, xo = f~ '(x}). Let E be the line segment from 0 to x, and set
E' = f(E). We may assume that E is nondegenerate, for if x, = 0, there is
nothing to prove. Then fix x' € E' and write p = d(E’'[xg,x']). We need to
show

(5.13) B<x’, %) cD, c¢=cH).

For this, let x = f~'(x) and let y € S(x, |x — x,|) be such that

/) - x'| = | min | f(z) - x’|.

z—x| = |x—x,|
Then for all z € [x,, x] we have |x — z| < |x — y|, and whence
6p(f(2), x') < Ho,(f(»),x) = H| f(y) — x'| < Hd(x', dD).
It follows that
d(E'[x}, x']) < 2Hd(x', D),

which proves (5.13) with ¢ = 2H.
Save Theorem 6.1, the proof of Theorem 3.1 is now complete.

6. Remarks on Internal Distortion and Subinvariance

The general subinvariance problem can be described as follows. Suppose that
D is a class of domains in R” and f: D — D' is quasiconformal. When can one
conclude that A € D implies f(A) € D for all subdomains A of D? It was shown
in [FHM, pp. 120-121] that the conclusion holds if  comprises all QED
domains in R” and D’ € D; moreover, in conjunction with [V3, Theorem 5.6]
this implies that if D' is uniform, then so is f(A) whenever A is a uniform sub-
domain of D. (The definitions for QED and uniform domains are recalled in
Section 7 below.) Subsequently, J. Viisild [V5, Theorem 2.20] proved that if
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D’ is broad, then every John subdomain of D is mapped onto a John sub-
domain of D’. This interesting phenomenon reflects certain internal distortion
properties of quasiconformal mappings which, we believe, are worth deeper
study.

In this section we first prove the following theorem which in the case of
bounded domains generalizes [V5, Theorem 2.20]. Theorem 6.1 also
establishes the missing link in the proof of Theorem 3.1. Some applications
of Theorem 6.1 to subinvariance problems are discussed in Section 7.

Theorem 6.1. Suppose that D, D' are bounded, that f:D— D' is K-
quasiconformal, and that D is p-broad. If A C D is such that f(A) is b-LLC,
with respect to &, in D', then f|A: A — f(A) is weakly H-quasisymmetric in
the metrics 6, and 6., with H depending only on the data

opld)  8p(f(A) >
d(xp, D)  d(f(x,), dD")

vV = (n,Ka b’ ©>

where x, is some fixed point in A.

Before we turn to the proof, let us indicate why Theorem 6.1 can be regarded
as an extension of Viisidld’s theorem [V5, 2.20]; the only drawback is that in
Theorem 6.1 we require the domains to be bounded.

Theorem 2.20 in [V5] follows from Theorem 6.1 above as soon as the follow-
ing two facts are established:

(i) if f(A) has a b-carrot property in D’, then f(A) is b,-LLC, with respect
to 6, in D';

(ii) in the situation of [V5, 2.20] the weak quasisymmetry implies quasisym-
metry.

The condition (ii) derives from [V5, Theorem 2.9] since A is pathwise con-
nected and both A4 and f(4) are HTB metric spaces by [V5, 2.14 and 2.18].
(The definition for HTB spaces is recalled below before Theorem 6.6.) The
condition (i) is established in the following lemma.

Lemma 6.2. Let D be a domain in R" and let A C D be such that each x € A
can be joined to a fixed point x, € D by a b-carrot in D. Then A is both b,-LLC,
and b,-LLC, with respect to 6, in D, where b, = b,(b).

Proor. The proof is the same for both assertions. Fix x € A and r > 0. Sup-
pose that there are two points x;, x, € A\ B(x, b;r) which cannot be joined in
D\ B(x,r). We shall show that b; < 2b + 1.

Let E, and E, be the cores of two b-carrots joining x; and x,, respectively,
to x,. Then E = E; UE, joins x, and X, in D. Necessarily E meets B(x, r). Pick



QUASICONFORMAL MAPPINGS ONTO JoHN DomaINs 113

ze€ ENB(x, r) and suppose z € E, . Since d(E[x,,z]) > (b; — 1)r and since E,
is the core of a b-carrot, we have B(z, b~ '(b; — 1)r) C D. On the other hand,

d(z,dD) < |z — x| + d(x, dD) < 2r,

and hence b~ (b, — 1)r < 2r or b; < 2b + 1 as required.

PrRooF OF THEOREM 6.1. It is no loss of generality to assume that
Xo = 0 = f(0) and that 1 = d(0, dD) = d(0,dD’). We shall denote images by
primes: f(x) =x', xeD, f(E) =E', ECD; and also for brevity 6 = ¢,
0’ =065, M=0584A), M'=58'A").

Thus, let a, x, y be three distinct points in A with é(a, x) < 6(a, y). (Note that
the claim is vacuous if the cardinality of A is less than three.) We need to find
an upper bound for

_ 8@, x)
6'(a’,y")

For this we consider two cases.

Case 1.

6'(a’, 0) > ¢od'(a’, ¥")
where ¢, = ¢y(v) is a constant to be determined later on. We shall show that
with an appropriate choice of ¢, too large H generates a contradiction.

In Case 1 we separate to subcases.

Subcase la.
xe B(0,c,/2)

where
1
¢; = ¢;(n, K), C =C2(nsK)<?
are chosen to satisfy

7B, 2¢) C B(o, %) ;

JBO, e B<0’ %) and f(S(0, cl))ns<o, %> = 7,

see Lemma 2.8.
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In proving the claim in the first subcase we again distinguish two
possibilities:
(i) a’ € B(0, c,) or (ii) a’ ¢ B(0, c,). If (i) occurs, then

a —x'
al_yl

B 6I(al’xl) B |al __x/l
§a,y) 8@,y =

and because f'is 1 = 5(n, K)-quasisymmetric in B(0, 1/2), we obtain H < »(1)
provided that y'e B(0,2c,). On the other hand, if y’ ¢ B(0,2c,), then
la’' — y'| = ¢,, and hence H M'/c,.

We may therefore suppose that a’ ¢ B(0, ¢;). Choose a point z € S(0, c;)
such that z' € S(0, c,/2) and let « be the line segment from x to z. Then
o' C B(0,c,/2). Let next B’ be an arc joining @' and y’ in D’ with
d(B’) < 28'(a’,y"), and let B = f~}(B’) be its preimage in D. Then

0(c, B) < 6(a, x) < 6(a, y) < d(B)
and

6(a, x)d(e) _ 2M

Because D is ¢-broad, we thus obtain

M(A(a, B; D)) 2 ¢3 = ¢3(v) > 0,
and the quasiconformality of f yields
(6.3) M(A(e', B'; D) 2 ¢4 = c4(v) > 0.

Observe further, that if o'NB;.(a’, cyd'(a’,y")) # &, then for some
w'ea’ C B(0,c,/2)

£2£ S 6I(al’ wl) S coal(al,y!)

whence

8'(a’,x") _ 2coM’

= < = < o0

8'@,y) = o ©)

and the proof is complete. We may therefore assume that
o' C D'\B;.(a',c,6'(a’,y")).

Let us leave the subcase 1a for a moment and consider
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Subcase 1b.
x £ B(0, ¢ /2).

We still have 6'(a’, 0) > c,6'(a’, y') and 6'(a’, x’) > c,6'(a’, y') for otherwise H
is less than ¢, = cy(v), completing the proof. Because of the LLC,-property,
we can join x’ to 0 by an arc o’ in D'\ B;.(a’, c56'(a’, y')) where ¢s = ¢o/b —
as ¢, — . Let 8’ be an arc joining @’ and y’ as in the subcase 1a, and let again

a=f""a), B=/"'(8). Then
d(a, B) < 6(a, x) < 8(a,y) < d(B)

and

é(a, x)d(a) < 2M

da) o (.

&, B) <

Consequently, as in the subcase 1a the broadness and quasiconformality imp-
ly the estimate (6.3) for the present continua «’ and 3’ as well.
Thus in both subcases we have arrived at the situation where

(i) x' is joined to a point in D’ by an arc «’ which lies entirely outside the
ball B;.(a’, cs6'(a’, y')), where the constant cg depends only on b and ¢,
and ¢ — o as ¢, — o,
(ii) @’ is joined to y’ by an arc 8’ which lies entirely inside the ball
By.(a',26'(a’, y")), and
(iii) the modulus estimate (6.3) holds.

It is desirable that this leads to a contradiction if ¢, = ¢,(v) is large enough.
But that is indeed the case, for if v is a path joining o’ and B’ in D’, then
d(v) = (cg — 2)8'(a’, y') which means that v joins the spheres S(a’, 26'(a’, "))
and S(a’, c;6'(a’,»")), where ¢, — o as ¢, — . In conclusion,

1-n
M, 8 D)) < w, _ 1<log %)

contradicting (6.3) for too large c¢,. We have thus shown that H < ¢(v) < o,
and the proof is complete in Case 1.

Case 2.
6'(a’,0) < cpd'(a’, ")

where ¢, = ¢o(v) is the constant in Case 1.
We start by observing that because

oM’

(6.4) 5@’ 0) < cy8'(a’s y") < c—ﬁ—
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we are allowed to assume that 6’(a’, 0) = |a’|. In the rest of the proof we let
e denote any function which depends only on the data v and satisfies e(H) — 0
as H — o, In particular, we have by (6.4)

| <la'| +]a' -y <8, 0) + 6'(a',y) < e(H).

Assuming that e(H) <1, let o’ be the line segment joining y’ and &’ in
B(0, e(H)). Then

1-n
M(A(e', 0D'; DY) < oy - 1<10g ?1H~)_>

whence
M(A(e, 0D; D)) < e(H),

where o = f~(a'). Since « joins @ and y in D, it follows from the standard
Teichmiiller estimate [V1, Theorem 11.9] that

d(a, dD) >

M(A(@, 3D; D)) > xn< P

where x,, is positive decreasing and x,(¢) — 0 as ¢ = c. Therefore, by choosing
H large enough, we infer that f~'(B(a’,d(a’,dD’))) contains the ball
B(a, |a — y|) which in turn is contained in B(a, d(a, dD)/2), see Lemma 2.8.
In particular, x e B(a, |a — y|) in view of our initial assumption 8(a, x) <
8(a,y) = |a — y|. Hence é'(a’,x’) = |a’ — x’|, and this finishes the proof
because f is n(n, K)-quasisymmetric in B(a, d(a, dD)/2).

The next theorem is a version of Theorem 6.1 for domains containing the
point at infinity. We omit the proof of Theorem 6.5; it is similar to but
simpler than that of Theorem 6.1.

Theorem 6.5. Suppose that f:D— D' is K-quasiconformal and that
f(0) = 00 e DN D'. Suppose further that D is ¢p-broad, that A C D, © €A,
and f(A) is a b-LLC, with respect to &, in D'. Then f|A: A — f(A) is weakly
H-quasisymmetric in the metrics 6,, and 6, with H depending only on n, K,
», and b.

It is not clear to us if one always could draw the more desirable conclusion
«f: A = f(A) is quasisymmetric in the metrics 6, and §,.» in Theorem 6.1.
The amenable HTB-criterion given in [VS, Theorem 2.9] is not automatically
satisfied as there are domains D which are LLC, with respect to ,, but which
are not HTB.
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What is more, one often wants to know when f is quasisymmetric in the
euclidean metric in some subset A of D, which is indeed a much stronger con-
clusion than that in Theorem 6.1. The following theorem partially answers
this question.

We say that A C D is of b-bounded turning or b-BT in D if each pair of
points x, y € A can be joined by an arc E in D such that d(E) < b|x — y|; if
A = D, we say D is b-BT. A metric space (X, e) is said to be k-homogeneously
totally bounded or k-HTB if k: [1/2, o) = N is an increasing function and if,
for each «a > 1/2, every closed ball B,(x, r) can be covered by k() sets of
diameter less than r/«a; see [TV], [V5].

Theorem 6.6. Suppose that D, D' C R" are bounded domains and f: D — D'
is K-quasiconformal. Suppose further that

(i) A C D is pathwise connected, b,-LLC, with respect to 6, and b,-BT in D;
(ii) D’ is p-broad and b;-BT.

Then f: A — f(A) is n-quasisymmetric with n depending only on the data

b A dfA) )
> d(xo, D)~ d(f(xo), dD’)

vV = <n5 Ks [74) bl’ b2’
where x, is some fixed point in A.

Proor. Theorem 6.1 implies that g = £~ !| f(4) is weakly H(v)-quasisymmetric
in the metrics 6, and §,,. On the other hand, f(A) as a subset of the broad
domain D’ is k(n, ¢)-HTB in é,, by [V5, 2.18] and it is easy to see that the
bounded turning condition in (i) implies that A4 is k(n, b,)-HTB in é,,. We may
then deduce from [V5, 2.9] that g, and hence f|A, is n(v)-quasisymmetric in
the internal metrics. The theorem follows from this since the bounded turning
condition implies that both é,, and é,,, are bilipschitz equivalent to the eucli-
dean metric in 4 and f(A), respectively.

Remark. 6.7.

(a) Similarly to Theorem 6.5, Theorem 6.6 admits a formulation for domains
containing c. Then the assumptions include f(e0) = © € A whilst the
dependence of 5 on d(A4)/d(x,, D), and d(f(A))/d(f(x,), dD’) disap-
pears.

(b) As discussed above, Theorem 6.1 implies [V5, Theorem 2.20] if D and
D' are bounded. We therefore have obtained a somewhat different proof
for the implications I = III and II = III in Theorem 3.1.

(c) If A is connected, then 6,(A4) and 6,,.(f(4)) in Theorem 6.1 can be
replaced by d(A) and d(f(A)), respectively. See [V5, 2.13].
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7. Applications of Theorem 6.1

Several interesting corollaries can be drawn from Theorem 6.1. In this final
section we present three such results which we feel have some specific interest.

In [FHM] the following subinvariance property of QED domains was proved:
if fis a quasiconformal mapping of a domain D onto a QED-domain D’, then
f(A) C D' is a QED domain whenever A C D is a QED domain. Recall that
a domain A is b-QED if M(A(C,, Cy; R™) < bM(A(C,, Cy; A)) for each pair
of continua C,, C; in A4, see [GM1]. Next we establish an analogous sub-
invariance result for broad domains.

Theorem 7.1. Suppose that D,D’ are bounded, that f:D— D' is K-
quasiconformal and that D' is ¢-broad. If A C D is ¢,-broad, then f(A) C D'
is ¢,-broad with ¢, depending only on the data

. A  dJA) )
Y d(x,, D) " d(f(x,), OD")

v = (l’l’ K 741
where X, is some fixed point in A.

Proor. Since broad domains are preserved under mappings which are
quasisymmetric in the internal metrics [NV, Theorem 3.9], it thus suffices to
show that f: A — f(A) is n(v)-quasisymmetric in the metrics é,, and &, . Fur-
ther, since A and f(A) are pathwise connected k(v)-HTB metric spaces in §,,
and 6,,,, we only need to show that g = f~ L. f(A) — A is weakly H(v)-quasi-
symmetric in é,, and 6,,, see [V5, 2.18 and 2.9]. This in turn follows from
Theorem 6.1, Remark 6.7(c), and from the lemma below.

Lemma 7.2. If A is a ¢-broad subdomain of D, then A is b-LLC, in D with
b depending only on n and ¢. In particular, A is b;-LLC, with respect to 6,
in D with b, = b,(n, ¢).

Proor. In view of Lemma 5.12, only the first assertion needs to be proved.
Fix xe A and r > 0 and suppose that z, y € A\ B(x, br) cannot be joined in
D\ B(x, r). We shall show that b < by(n, ) < .

We may clearly assume that b > 2. Let E be an arc of finite length joining
zand yin A, and let ¢, be the first point in E with |{; — x| = r when traveling
from z to y. We define w, to be the first point in E with |w; — x| = br when
traveling from ¢, to z and w to be the first point in E with |w} — x| = br when
traveling from ¢, to y. Next, let E, and E| be two disjoint subarcs of E[w;, wi]
joining the spheres S(x, br), S(x, br/2) in B(x, br)\ B(x, br/2). Then suppose
that E[w;, w{] and E;, E; have been chosen for i > 1. If E[wj}, y] does not meet
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B(x, r), then stop. Otherwise let ¢;, ; be the first point in B(x, r) when travel-
ing from wj} to y, and define the points w;, ;, w;,; as above: w; , ; is the first
point in E with |w;, ; — x| = br when traveling from ¢;,, to w; and w;, is
the first point in E with IW;—+] — x| = br when traveling from {;,; to y. For
E;,, and E},; we choose two disjoint subarcs of E[w;, ;, w}, ;] which join
S(x, br) and S(x, br/2) in B(x, br)\ B(x, br/2). Since E has finite length, the
process stops at some integer p > 1. /

Pick a pair of arcs E;, E}, 1 < i < p. By the construction, 6 ,(E;, E7) < 2br <
4 min {d(E;), d(E})}, and hence the broadness of A implies

M(A(E;, E}; A)) = ¢(4).

Next write I' = A(E;, E}; A) and suppose that each path ¥ eI' goes through
B(x, r). Since E;, E; C R"\ B(x, br/2), we have by [V1, 6.4]

1-n
0<o@ <MD < w,,_1<10g§> '

Therefore, by choosing b = b(n, ) large enough we infer that there is a path
v, joining E; and E'in A\ B(x, r). This being true for alli = 1, ..., p, it is evi-
dent that by piecing together all v;’s and parts of E we can construct a con-
tinuum which joins z and y in A\ B(x, r), hence in D\ B(x, r), contradicting
our initial assumption. It follows that b is bounded by a number which
depends only on # and ¢, as required.

The proof of Lemma 7.2, and hence that of Theorem 7.1, is complete.

In general, if f maps B quasiconformally onto a John domain, one cannot
hope for better distortion than described in Theorem 3.1. Our next applica-
tion reveals however that the distortion improves when f'is restricted to some
Stolz cone.

We recall that a domain D is b-uniform if each pair of points x, y € D can
be joined in D by a b-cigar cig (E, b) the core of which satisfies the additional
turning condition d(E) < b|x — y|. The Stolz cone C,,(w) with vertexat we'S
is defined to be the interior of the closed convex hull of w and the hyperbolic
ball centered at 0 with radius M > 0.

Theorem 7.3. Let C,,(w) be a Stolz cone in B and let f: B — D be a K-quasi-
conformal mapping onto a b-John domain D with center f(0). Then f|C,,(w)
is n-quasisymmetric with n depending only on the data v = (n,K, b, M). In
particular, f(C,,(w)) is b;(v)-uniform.

Proor. It is well known that quasisymmetric mappings preserve uniform
domains, see e.g. [V3], and therefore only the first assertion needs to be proved.
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We shall show that Theorem 6.6 can be applied to f~! with D’ = B and
A = f(C,,(w)). For this, observe first that the condition (ii) is immediately
met, and clearly is A pathwise connected. Further, since D is ¢-broad by
Theorem 3.1, we obtain from Theorem 7.1 and Lemmas 7.2 and 5.12 that 4
is b(v)-LLC, with respect to 6,,. Note that d(D) < bd(f(0), D). Hence it re-
mains to verify the bounded turning condition in Theorem 6.6(i).

To this end, let x’ and y’ be two points in A4 and denote by x and y their
respective preimages in C = C,,(w). Let x* and y* be the points on [0, w] with
|x| = |x*|, |¥| = |»*|. Then the hyperbolic distance between x and x*, or y
and y*, is bounded by a constant ¢, = ¢,(M). We may suppose that the hyper-
bolic balls D(x, 3c,) and D(y, 3¢,) do not intersect; for if that were the case,
f would be 5(n, K, M)-quasisymmetric on the line segment [x, y] by Lemma
2.7, whence d(f[x, y]) < c(v)|x — y|, proving the assertion.

Next suppose that 0 € D(x, 2c,). Then there are positive numbers A\, = \; (M),
A = M (M) such that 0 <\, <\, <1 and xe B(0, \,), y € B(0,\;). Choose
points z;, |z;| =\, and z,, |z,| =\, such that

(7.4) |f(z) = f@)| < |fC) = W) = |x" = '
Since fis y(n, K, M)-quasisymmetric in B(0, \,), we have

/) - S| <n< N )
| f(z) - f(25)] h N—N

whence

|fz) = f(z))| 2 ¢11F0) — f(z))| = cd(f(0),0D), ¢, = c,(n, K, M),

where the last inequality again is a consequence of Lemma 2.8. This together
with (7.4) insures that any arc E joining x’ and y’ in D satisfies

D
A(E) < dD) < s g 2o fla) ~ 1)

<clx’ =y,

where ¢, = ¢, (v).

The proof of the theorem is therefore complete if 0 € D(x, 2¢,) or, by sym-
metry, if 0 € D(y, 2¢y).

Next we suppose that 0 ¢ D(x, 2¢c,) UD(y, 2¢,) and invoke Lemma 3.1 in
[GP]: there is a K;(M)-quasiconformal self mapping g of B such that

gx*)=x, gO*) =y, and g) =z

for all z not in D(x, 2¢,) U D(¥, 2¢,). Then the K, (M )-quasiconformal mapping
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h = fog:B— D satisfies h(0) = f(g(0)) = f(0), h(x*)=x" and A(y*) =y,
and it is therefore no loss of generality to assume originally that x and y lie
on the same ray [0, w] C C,,(w). In fact, it suffices to show that under the
conditions of Theorem 7.3

(7.5) d(fIx, 0D < by |f®) = fO)], by =bi(v),

whenever x and y lies on a line [0, w], weS.

To establish (7.5) we may assume that |x| < |y|. Then the ball B(x, |x — y|)
is contained in B, and its image f(B(x, |x — »|)) is ¢(v)-broad by Theorem 7.1.
The desired conclusion now follows from Theorem 3.1 II and V, applied to
the ball B(x, |x — y|).

The proof of Theorem 7.3 is complete.

Our final application divulges a property of conformal mappings,
generalizing [FHM, Theorem 1]. J. Véisidld had proved the following theorem
before this author in an unpublished manuscript.

Theorem 7.6. Let D be a doubly connected domain in the Riemann sphere
and let f:D—> Q@ be a K-quasiconformal mapping onto an annulus
@ = B(0, R)\B(0, r). If A is a circle in D, then f(A) is a quasicircle in Q with
constant depending only on K and R/r, the modulus of D.

Proor. Note that the theorem is trivial if » = 0 and R = « so that we may
assume 0 <r< R < oo; also if r=0, the assertion follows from [FHM,
Theorem 1] but we do not need that result.

By performing preliminary Mobius transformations, we may assume that
o € A and that f maps D onto D’ with f() = o, where D’ is the image of
@ under a Mobius transformation. We apply Theorem 6.6 for unbounded
domains, see Remark 6.7. Indeed, the line A clearly satisfies the assumptions
in (i), and it is not difficult to see that D’ is ¢-broad with ¢ depending on the
modulus R/r only. Thus f is n(v)-quasisymmetric on A4, in particular f(A4)
satisfies Ahlfors’ three point condition whence it is a quasicircle [G]. Theorem
7.6 is proved.

We close the paper by two questions.

Question 1. (Question of J. Viisdld.) Are John domains subinvariant
under quasiconformal mappings? In other words, if f: D — D’ is a quasicon-
formal mapping onto a John domain D’, is it then true that every John subdo-
main of D is mapped onto a John subdomain of D'?

Question 2. Suppose that D is a b-John domain with center x, . It was shown
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in [GHM] that if D is planar and simply connected and if E is a quasihyper-
bolic geodesic joining a point x to X, in D, then car (E, b’) C D for some
b’ = b'(b). Is this property of John disks shared by John domains in R"” which
are quasiconformally equivalent to the unit ball B? Note that for general John
domains the answer is no, [GHM].
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