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Functions
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1. Introduction

Let D be the unit disk and T = 0D. A Bloch function [12, p. 268] is a function
f analytic in D such that

[£ 1+ = |fO] +sup (1 - |z]*)| f'(R)] < +oo.

With this norm the Bloch functions form a Banach space ®. The closure
in ® of the polynomials is a subspace ®, that consists of all fe & such that

(1 -z f'@)| =0 as |z]—1.

For Bloch functions radial and angular limits are identical. Furthermore, a
Bloch function is radially bounded at a point of 7 if and only if it is angularly
bounded at this point [12, p. 269].

In this paper we deal with the size of the set

By = [fET:mr—’llf(rf)l < +o}.

There are Bloch functions [11] that do not have a radial limit at any point of
T, but it is known [6] that for each Bloch function f, the set B,is an uncountable
dense set.

It was asked in [4] whether all f'€ ®& satisfy dim B, = 1, where dim denotes the
Hausdorff dimension and, as far as we know, this question remains open. One
has to remark that it is not possible to replace dim 1 by positive (Lebesgue)
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measure, since there are Bloch functions f such that the corresponding set By
has zero measure (see the comment after Theorem 4).

In this paper we develop a simplified version of a method of Noshiro [10]
based in the Ahlfors’theory of covering surfaces, that may go further than
used here, and apply it to prove that the set B, has positive logarithmic capaci-
ty when fe ®. In fact, using a sort of localization of Bloch functions we prove
that Cap (B,N1) > 0 for every arc/, I C T. This is done in Sections 2 and 3.

The localization that we use, when applied to many functions in &, gives
a new way to obtain inner functions in ®,. In connection with these functions
T. Wolff asked [3] if the singular set of each inner function in &, has
Hausdorff dimension one and proved [16], by means of Noshiro’s method,
that this singular set has positive capacity. ¥ In fact, the present paper is a
development of Wolff’s ideas.

In Section 4 we give a modification of Noshiro’s method, using the
equilibrium potential rather than the Evan’s potential, that leads to a lower
bound for the capacity of B;. More precisely we prove that if fe @ and
f(zp) = 0, then there is a set A,C T such that

lim |f(r$)| < k|f|+« foreach ¢eA,

and

ANE }

CapAf> 1- |Z0|2) €Xp { - a—- |Zo|2)2|f'(zo)lz

where k is an absolute constant.

2. The use of Ahlfors’ Covering Theorem

Let fbe a non-constant analytic function in D. For z, € D and r > 0 let Q(z,, )
denote the component of {ze€ D:|f(z) — f(z)| < r} that contains z,. As a
first result we can improve Theorem 1 of [6] by means of the following.

Theorem 1. Let fe®. If r > e| f |, then Cap (3Q(zy, r) N T) > 0 for each
zZo€D.

To prove this theorem we use a consequence of the Ahlfors’ Covering Theo-
rem that we state in the following form [15, p. 255].

1 After this paper was submitted for publication we received the preprint «Boundaries of smooth
sets and singular sets of Blaschke products in the little Bloch class» by G. Hungerford in which
Wolff’s conjecture is proved. (Thesis, California Institute of Technology, Pasadena, Cal., 1988.)
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Lemma 1. Let G be a simply connected domain, let H be a disk and let H,,
H, be disks contained in H with disjoint closures. Let f be an analytic function
in G with f(G) C H. For k = 1, 2 let N be the number of domains Q C G that
satisfy (i) @ C G, (i) f(Q) = Hy.. Then, for each domain U C G such that 0U
is piecewise analytic and f is analytic on dU, one has

N+ N2 [ |f @ dm @~ ko[ |7@)] |2,

where k is a constant that depends only on H, H, and H, and C is the relative
boundary,

C={zedU:f(x)eH}.

Proor oF THEOREM 1. We can suppose that z, =0, f(0) =0and | f]+=1.
Put E=09(0,r)NT with r> e, suppose that CapE =0 and let u be the
Evan’s potential for E [15, p. 75]. For each p < oo set

U, = {zeQ0,r):uz) <p}, C,= {zeQ0,r):u) =p}.

We shall apply Lemma 1 with G = Q(0,r) and U = U,. We claim now that

L
liminf—* =0,
p— o

where
L= /@l and S,= | |f @I dmG).
C.o Up

The claim is proved in [10], [15] but for later use we do the necessary
calculations in a more direct way.
Assume that the claim is false, so that

L,>2cS, for p=2py, c¢>0.

The Schwarz inequality yields

' 2

|f'@)| j
< L V@) |dz| CPIVu(z)I |dz|

FEES PP T
<, e | a0 =2 [ Gy
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where du/0n is the derivative of u with respect to the normal to {# = p}. The

crucial fact that the integral of this derivative along {u = p} equals 27 was
used. For S, we can use the co-area formula [9, p. 37]

J jvwz
|Vu(z)|
for adequate p’ > 0.

This shows that S, is an absolutely continuous function of p and

,_dS, '@
&_@_Lmema@m

So we get
L2278, ae. for p=p,

and

1
S2g ?L <c¢S, ae.

Integrating from p, to p one gets

i( ) < p&d <L for >
3 P — Po) & posi P\Spo P 2 Pos

which is impossible, and the claim is proved.
Let us take now for H;, H, two discs of disjoint closures and radii s,
e < 2s<r, contained in {|w| < r}. Acording to Lemma 1 we get

L
kOS_p>>O for p?pl.

Nl + N2 2 Sp - kOLP = Sp<l
o
Applying [6, Lemma 2] we obtain
>sup {(1 — |z1)|f'(2)]:2€ 90,1} >2e7 s,
a contradiction. [J

Corallary. Let fe ® and f(0) = 0. Then there is a set A;C T such that
Cap A, > 0 and

lim | f(r})| < k| f|« for each ¢e€A;s,

where k is an absolute constant.
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Proor. We can suppose that | |« = 1. Applying Theorem 1 with r = 3 and
Ay =020, r)N T we get Cap Ay > 0. Moreover, for { € A there is a curve v in
Q(0, r) ending at {. So | f(2)] < 3, z€ v and, since fe ®, we get lim,_, | | f(r{)]
< k, for each { € A, according to [1, Theorem 4.2]. [J

3. The Local Results‘

In order to prove that the set B, has locally positive capacity when fe &, we
improve the conclusion of Theorem 1. We follow the notation of the beginn-
ing of Section 2.

Lemma 2. Let fe® and r> 0. Let I be an open arc in T and z,€ D. If
Nzy, )N I # &, then Cap (0Q(zy, r')NI) > 0 for each r' > r.

Proor. Write G, = Q(z,, s) and E; = 0G, for each s > r. Let I C T be an arc
and suppose that TNE, # (. We can assume that /N E, has zero Lebesgue
measure. The boundary of G, is formed by a sequence of Jordan arcs that end
at two points of T [8, p. 10]. Since /N E, has no interior points we can take
an arc [, C I whose extreme points A,, B, are the mid points of arcs in T\ E,.
We can join 4, and B, to points 4,, B, on E, by means of arcs contained in
D\G,. Take now a Jordan arc I', from A, to B, with I, C G,. This arc
separates G, into two parts. Let F, be the part of G, with F,NI, # . So
OF.NTCI,NE,.

Let us assume that Cap (dF,N T) = 0. Using the notation of Theorem 1
with F, instead of G we see that {z€dU,:|f(z) — f(z,)| <r} is formed by
C, = {z€Gy:u(z) = p} plus the arc I', for large enough p. The argument
used in this proof shows that

L ! d.
i o+ [ 17@) |dz] o

p—c© Sp

and Lemma 1 leads to a contradiction.

If g, has no singularity in 7, then for ' > r, close enough to r, we can repeat
the argument with F, instead of F,. Now g, has some singularity in 7,
because, if this is not the case, g,- would be analytic through ;. Then the
pre-image by f of an arc contained in |z| = r would be a compact set in F,..
But it contains some point of TNAF, # (& and this is a contradiction. [J

It is possible that Cap (0Q2(z, r) N T) = 0 even with the additional hypothesis
r>e| f|+«. We thank the referee because his observation about the previous
statement of Lemma 2 allowed us to correct it.
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Theorem 2. If fe ®, thereis a set E; C T such that Cap (INEy) > 0 for each
arc IC T and lim,_, | | f(r{)| < +oo for ¢ € E;.

Proor. Suppose f(0) =0 and | f ||« = 1. Consider the components of H =
S~ ({|w| < 3}). Each of them touches T; see [13] or Theorem 1 in [6]. Put
E;=E, UE, where

E, = {{eT:¢ is in the closure of some component of H},
E, = {{eT:lim,,f(r¢) # « exists}.

Since fe€ ® we have lim | f(r{)| < o at each point of E,. Given an arc I/ C T,
if [INE,|=|I| it is clear that Cap(E;NI)>0. So, let us assume that
|INE,| < |I|. In this case there is some point { € T which is a Plessner point
for f[12, p. 324]. So there are points z, = ¢, z, € D with f(z,) — 0. If there
are only a finite number of components of H some one has to touch 7 on I.
If there are infinitely many, by a result of McLane [8, p. 10], it is not possible
that all of these components do not touch 7, because then their diameter
would not go to zero. So, in this case some component has to touch 7 on 1.
Now we apply Lemma 2. [

Remark. If the function fhas angular limits almost nowhere on T the above
proof shows that, in this case, there is a set E, C T with Cap (INEy) > 0 for
each arc /C T and

Hm | f(r$) = fO)] < k| f]+,

for all ¢ € E;, where k is an absolute constant.

Let f be an inner function and let S(f) denote its singular set, the set of
points of 7 at which fhas no analytic continuation. We can improve the result
of Wolff [16], which was the starting point of the present paper.

Theorem 3. Let f be an inner function and suppose that | f |« < e or that
f€®,. Then for each arc I C T one has INS(f) = & or Cap(INS(f)) > 0.

PrOOF. Assume first | £« < e~ ! and £(0) = 0. Take r with e| f| +r < 1 and
consider the components of f~'({|w| < r}). It is clear that dQ(z, ) N T C S(f).
Now given an arc I with IN S(f) # &, there are points { e INS(f)and z, > ¢
with f(z,) — 0 and we can follow the same argument as in the proof of Theorem
2. Consider now that fe ®,, by use of Frostman’s Theorem we may assume
without loss of generality that f is an infinite Blaschke product. Given an
arcI C T with INS(f) # & we can find components Q(z, r) with r < 1 such
that 0Q(z, r) C IN S(f). Now the domains U, used in the proof of Theorem 1
satisfy also S, = o as p = o and the assumption Cap (/N S(f)) = 0 leads to
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N; + N, = + o in Lemma I for two discs H,, H, contained in {|w| < r}. This
contradicts the geometric characterization of ®, functions given by Theorem 1,
@) of [13]. O

Let f be a non constant analytic function in D with f(0) = 0 and let G =
Q(z, r) be a component of f~({|w| < r}). If ¢ is a conformal mapping from
D onto G, the function g = f o ¢ reproduces in the unit disk the local behaviour
of f. This localization has been used in the proof of Lemma 2 and we will show
now that it can be used to produce inner functions in B, with some additional
properties.

Theorem 4. Suppose that f is a function in &, that has angular limits almost
nowhere. If ¢ maps D conformally onto a component of f~ (D) then fo ¢
is an inner function in ®,. Furthermore, if f has Hadamard gaps then f o ¢
assumes every value in D infinitely often.

A (lacunary) series with Hadamard gaps has the form

f@) = 2] bez™, Merl 53> (k=0,1,...).
k=0 ny

This function belongs to ®,, if and only if b, — 0 as k — oo, [1], and is radially
bounded on a set of positive measure if and only if > |5 |* < +o [17, vol. 1, .
p. 203]. Hence

it k
fO — kEI k— 1/2z2

is an example that has all the properties required in the theorem; note that the
angular limit c occurs almost nowhere by the Privalov Uniqueness Theorem.

Proor. We have

(1 - [z)]e'®)

1- e[ (A - @S (e@)].

d
(- |Z|2)|~dzf(¢(2))| =

If |¢(z,)| — 1 then the last factor tends to 0 because fe B, while the quotient
is bounded by 1. If however lim sup |¢(z,)| < 1 then the quotient tends to 0
because ¢ is univalent while the last factor is bounded. The fact that g is inner
is a consequence of Loewner’s Lemma as used in the proof of Lemma 2, (see
also [15, p. 323]).

Suppose now that fhas Hadamard gaps. Let w, be a point with |wy| = r and
f(2) # w, for each z with f'(z) = 0. We claim that there are infinitely many
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points z, € dp(D) with f(z,) = w,. If the number of these points were finite we
could then draw a curve ¥ C dp(D) with YN T # & and f would map 7 in a fi-
nite-to-one manner on an arc of finite length in |w| = r. Since 2177_, |b,| = + o
this would contradict Theorem 1 of [5].

Now take a point w, |w| < r, and let I" be a rectifiable Jordan arc from w,
to w, with f'(z) # 0 when f(z) eI'\ {w]}. Let us consider the components T,
of f~}(T") with z, €T, since T" has finite length it follows from [5] that T', is
a Jordan arc and f(I',) = I'. We conclude that there are distinct points z,, e T,
with f(z) =w. O

Remark. Previously, the known ways to construct inner functions in &,

were the use of a singular measure whose primitive is in the Zygmund class

A« or the more geometric one of [14], by means of the Riemann surface of

the function. T. Wolff asked if dim S(f) = 1 when fe ®, is inner. The cor- -
responding result for inner functions omitting some values is true [3].

Theorem 4 shows that this gives no aid in order to answer Wolff’s question.

Theorem 4 shows that there is a close relation between the size of dQ(z, )N T

for a function in ®, and the answer to Wolff’s conjecture.

4. A Lower Bound for Capacities

In this Section we present a modification of the idea of Noshiro using the
equilibrium potential rather than the Evans’s potential. It leads to a lower
bound for the capacity of the set By.

The following Lemma contains the basic estimate.

Lemma 3. Let f be analytic in D and continuous in D and let f(D) C D,
f(0) =0, f'(0) # 0. We assume that | f |+ < 1/3 and that the set

B=({eT:|f)| <1)

consists of a finite number of arcs. Then

k
°a‘°B>e"p<‘|f—'«»rz>’

k being an absolute constant.

Proor. The set A = B is regular for the Dirichlet problem with respect to
C\A. If we take the equilibrium potential v, we have v(z) < Vand v(z) = V
if ze A, where Cap A4 = exp (- V).
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For p < V' let

G,={zeD:v(z) <p},
C,={z€0G,:|f(x)| <1} =DNaG,.

Also put
= Jc,, |f'2)| |ds|, S, = fop | f'@))? dm (2).

Take now two disks H,, H, C D with disjoint closures and radii 5/11. Then,
by Lemma 2 of [6] and since |f]« < 1/3, we see that here is no domain
Q, Q0 C D with f(Q) = H, or f(Q) = H,. Now, by the reflection principle, f has
an analytic extension to T\B, so we can apply Lemma 1, and we get
S, < koL, for p < V, k, being some constant. Moreover the same calculation
performed in the proof of theorem 1 yields

L2278, ae. (p)

and so Sf, < kS, a.e. p< V. Now we remark that there is a number p,, in-
dependent of f, such that D(0,1/2) C G,,- To see this we can suppose
CapA <1/2 or V>log2. In this case for |z] <1/2 and {e€A one has
|z—¢| >1/2 and

v(z) = J log— Z= | dp (%) <log2.

Then we can take p, = log2 to guarantee that G contains D(0, 1/2).
Integrating now the inequality S /S =k, a.e. from po to V we get

1

o k,
Z o~ 2 - V< <
Py ) |4

Po

Taking into account that S, is the area (counting multiplicities) of the image
through f of G, and the mclusmn G, DD(O 1/2), we get by means of
Bloch’s Theorem [15, p. 262] that

> ky| f1(0)]%

This inequality and the previous one give the lemma. [

Lemma 4. Let f be analytic in D with f(z,) = 0 and let G be a component
of £~ X({|w| < 1)) containing z,. We write (z) = dist (z, dG) and assume

1
sup 8@)| f'@)| < — 7H
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Then

k
Cap (3Gﬂ T) > (1 - |ZO|)CXp <—m> ’

where k is an absolute constant.

Proor. For each r, |z5| < r < 1 let G(r) be the component of GN {|z| < r}
containing z,. Since G(r) is simply connected we can take a conformal mapp-
ing ¢, from D onto G(r) with ¢,(0) = z,. Writing f, = f © ¢, we see that f, is
analytic in D, continuous on D and the set

B, = (zeD:|f(2)] <1}
consists of a finite number of arcs. Moreover
H0)=0,  F10) = f"(z)e,(0).
Also
| 71s = sup (1 = [wPles 0] 1 @)
The Koebe distorsion Theorem [12, p. 22] gives
(1 — [wP)|ey(w)| < 4dist (¢,(w), 3G(r)) < 4d(e,(W)),

and we conclude that | 7|« < 1/3. Furthermore
- . 1
| £1(0)] > dist (29, 0G(r)| f"(z0)| = 3 8(z0)| /'@,

if r is big enough. So Lemma 3 implies

k
5(20)2|f'(zo)|2>
If we write L(r) = dG(r)N {|z| = r}, one has L(r) D ¢,(B,). Furthermore
the mapping # = Teo/r © (¢,/r) where Teg/r is the automorphism of D sending
Zo/r to 0, satisfies A(B,) C T and h(0) = 0. Then applying [12, p. 348] and
Schwarz’s Lemma we obtain Cap A(B,) > Cap B, .
Moreover, [7, p. 138] gives

Cap B, > exp <

Capsor(B,)‘;l 1—-m Caph(B,)zir 1—ﬂ Cap B,.
2 r 2 r

So

1 |zo] k :
Cap L(r) > Cap ¢,(B,) > §’<1 - T) P <’W>
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Considering now the compact sets E, = {z € G: |z| > r} we have CapE, >

Cap L(r) and since E, decreases to dGMN T when r — 1, we get the estimate of
the lemma. O

The announced lower bound for the capacity of the set By is the following.

Theorem 5. Let f be a Bloch function and z, € D. Then thereis a set A,C T
such that

1?“}|f("§’)“f(zo)|<khf“* for each ;€A

and

k| f1% >
CapA;= (1 — |zo])ex <— - ,
72 (= Trbexe\ =G Byl i
where k in an absolute constant.
Proor. We can assume | f|x = 1 and f(z,) = 0. Consider the analytic func-
tion f=\fo 7, where A = 1/12 and 7(z) = (z + 20)/(1 + Zp2)-
We have
f@=o, [fl« <X and |FO)] =M1 - |z0)]f"(z0)|-

Let G be the component of f~'({|w| < 1}) that contains 0. Then
rd 1
@IS @I <A = 2DIf @ < 1 f ]« < 55

where, as before, we write 8(z) = dist (z, 9G).
Furthermore |z| < 1/2 implies

z = 1+1/2

This means that {|z| <1/2} C G and so 8(0) > 1/2 and

1
8(0)| F(0)| >, 0= 20191 /" (zo)] -

Applying Lemma 4 we get

k
NT)>exp | - ’
Cap(@GNT) > exp( a- IZOIZ)Zlf'(Zo)|2>
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and

k
Cap (10G)NT) = (1 — |zo|) exp <_ (- |Zo|2)2|f'(zo)|2‘>‘

If we use the fact that fis a Bloch function then we get the theorem with
Ay=7(0G). O

Theorem 6. Let f be an inner function with | f |« < 1/2e and f(zy) = 0. Then

k
CapS(f) > (1 — IZO|2)C’“’<_ = |zo|2>2|f'(zo)|2>’

k being an absolute constant.

ProoF. Assume that f(0) = 0 and let G be a component of £~ '({|w| < 1/2})
containg 0, so that J # dGN T C S(f).

Since |z| < 1/2 implies | f(z)| <2|f]« < 1/2 we see that {|z] <1/2} CG
and so 6(0) > 1/2. Now by Lemma 4 we get

Cap S(f) = Cap (@GN T) > exp <‘if—f0)|‘2>

If z, # 0 we deal with the function

7@ =f<—zi‘°—> :

1+Zoz

Remark. Makarov (written communication) has proved the conjecture that
dim B, = 1 for every Bloch function. His method is more direct and completely
different.
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