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1. Introduction

In this paper we study variational principles for a general situation which
includes free boundary problems with surface tension. Following [2], our
main result concerns a variational principle in a infinite dimensional principal
bundle of embeddings of a compact region D in a manifold M having the same
dimension as D. By considering arbitrary variations, free boundary problems
are included, while variations parallel to the boundary permit to consider
fluid motion or flow of Hamitonian vector fields in non compact regions,
generalizing [3], [4].

In Section 2 the main result is stated and proved. The Lagrangian includes
a boundary term allowing us to include surface tension [5], or to remove it.
Section 3 applies our result to Hamiltonian vector fields, while Section 4
concerns free boundary problems.

2. Variational Principle in Bundles of Embeddings

Let M be an n-manifold and Q a given volume on M. Let D & M a sub-
manifold having dimension n with boundary 4D < M.
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The set
P = {5: D— M:q is an embedding}
is a principal bundle having structure group
G = {g:D— D: g is a diffeomorphism }

acting on P on the right, by composition of maps.
Similarly, we define P,;, G,,, by adding the further incompressibility con-
dition, namely

n*Q=Q, gx0=1Q,

where the star means the pull-back operation.
A typical example of this situation to be considered afterwards with some
more detail, is the liquid drop D moving freely in M = R® with

Q = dx ' Adx*Adx3.

Thus, at each instant of time ¢, the element 7,: D — R? of P represents the
position of the fluid particles at that instant namely, if X = (X!, X2, X3) are
the coordinates of the position of a given particle at time =0, and x =
(x!, x2, x3) the position of the same particle after the interval of time [0, #] has
passed, then x = »,(X). If the fluid is incompressible, then for each X € D and
each ¢, we have

T, (X) =1

where J,,! is the Jacobian of 5,. An equivalent condition is that », * @ = Q.
Now, back to the general situation, let L: 7M — R be a given lagrangian.
This induces a Lagrangian £: TP — R defined by

£, ) = [ Lo, nX)2X).

It is sometimes useful to think of (5, #) as the derivative with respect to ¢ of
a curve x = 1,(X), X e M. Thus

an,(n (%))

Melne l(x)] = ot

represents a vector field on D, = 5,(D) € M.
Of course, £ has a restriction

£: TP~ R.
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Let 4,; t € [t,, t;] be acurve in P,,; € P. Thus, foreach t €[ty 1,1, n,: D> M
is a volume preserving diffeomorphism. Now consider the following func-
tional with M, = Mo» M, = M fixed, defined on the curves (y;, \;) where A, is a
curve on the set F(D) of real valued C* functions on D

al, dt
dt

11 d
= j at L [L(m(X), 1,(X)) + M(X) Ty (X) 2X).

Iy

t

@(n,X)=j [43(71, )+ N

)

dJ,
The constraint J, = constant, or equivalently 7% = 0 with the Lagrange

multiplier \, € (D) together with the condition J,,o = ] gives the end this does
not imply any loss of generality. Likewise, we can assume that

QX)=dX'A---AdX".

This is because variational principles are essentially local in nature.
Sometimes we will write Q(X) = d>X, whenever computations are simpler
in the case M = R,
Now think of a variation

d
on, = E;nte o

such that
6"11‘0 =0, 67’t1 =0,

and 7, is a curve on P for each ¢ € (—¢;, €;). On the other hand assume that
M=y, is a curve on P,;. If (y,,\,) is a critical point of @, then we have

aa=ia

de =0.

e=0

This means that

0=20 J‘n dtj {L[nte(X)9 (X)) + —d_Jts(X»‘t(X)} d’x
0 D dt

z

i oL oL
= j‘o dt J;) {a [7.(X), #,(X)]om, + -6; [7:(X), 7,(X)] 6,

+ "% [V-(@n,°n; Do nt(X)])‘I(X)} a’X. )
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Since
d _
2T X =V o) 0 nlX).
€ ¢ e=0
(To check this, let
dne -1
de |._, ° *)
Then
(V-o)oq=—tl .
e=0

In fact we can assume without loss of generality that n = n, = identity. Thus

im * (d’x)

dJ,
= d3’x = 3)=V-vd3x.
de e d°X = L,(d’x) vdx>

e=0

Thus by applying integration by parts to (6), we get

1 oL . d oL )
0= L dtjD {{a("ln M) — —d_ ExT("" 11:)]5% -

d
—[V-(n, 09 1)] ° ntz)‘t} X) d’X.

Since 7, is volume preserving we have Jp, =1, and then, by the change of
variables formula for a multiple integral, we get

o oL .. d oL v, 3
O-jt dt LI(D)[<—3;(x,x) ar E;(x, x)) ox, — (V 6x,)n,(x)}d X.

(]

where
d _
pe(X) = 71;0\: o)oy l(x)—
But from Gauss’ divergence theorem we have

j (V- Y)0ut0) dx = j [V-(uY) - Vp-Y]d’x =
Q Q

=J. ,u.(Y,fI)—Jl Vu-Y.
a0 Q
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Applying this formula we finally get

g oL d oL !
0= dt — 0, %) = — —(x, X) + Vp,(x] 6xd3x—j dt[ 0x,, 7).
J;O L,(D) Ii ax (x, %) dt a)'(( ) e )j| t , n, @ u(0x,, 1)

(o

At any event, we need the two separate integrals to be zero. From the first
integral we have that

oL d oL
(%) — — — (%, %) = —Vp,(x).
P (x, %) a7 ox (x, %) He(X)
We consider two posibilities now.

(@) If the variations dx, are arbitrary on the boundary, we need

I»"t‘aD =0.

(b) If the 6x, are parallel to the boundary, the second integral is
automatically zero and there is no additional condition on ;.

Before we state our results, let us introduce some notation. The Euler-
Lagrange operator will be denoted by [L],. In local coordinates

d oL

oL
[L]x = [Fx—(x: X) — E a—x(x, X):I dx.

This is a well defined 1-form on M, once a curve 7,(X) = x on P has been
chosen. Here
X = ﬂt(X )-

Summarizing the previous calculations we have

Lemma 1. Let n, be a curve on P, with My = Mo» My, = M fixed, and )\, a
curve on F(D), and let

N,
b = dt °n .

Then the following statements are equivalent.

@) (s N\ is a critical point of Q(y, N) in the set of curves (n;, \;) such that
ey = Mo N, = 1> and 8D, fixed (i.e. o, |dD,).

(i) [L] = dp(x), x € (D).

We will need now the following lemma, which gives a particular version of
the Lagrange Multipliers Theorem.
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Lemma2. Letn,beacurveon P,,. The following statements are equivalent

(i) #, is a critical point of Lt‘ L(ny, 0,)dt on curves v, belonging to P,y with
0
fixed end points v, = 19, n, =1, and 4D, fixed (i.e. dn, |8D,).

(ii) There exists a curve \, € (D) such that (y,,\,) is a critical point of the
Sfunctional @ on curves 3,€ P, \,€ (D) with the conditions Ny, = o>

M, = M-

Proor. That (ii) implies (i) is easy to check.

To prove that (i) implies (ii), we must show the global existence of A,.

Let 7, be a curve on P, satisfying (i). A variation %, of 5, on P, can be
constructed as follows.

Let Z be a vector field on D which is divergence-free (div Z = 0) and parallel
to the boundary (Z | D). Then for each ¢, 5, * Z = Z, is a vector field on
D, = 5,(D) such that divZ, =0 and Z, | dD,. Let ¢(t, €) be any real valued
function defined for ¢ € [£,, ¢,] and € > 0. For our particular purposes, ¢ will
be taken to be a bump function in the variable ¢ for each ¢, approximating
the Dirac Delta function at T € [¢,, ¢;] and satisfying ¢(#,, €) = ¢(#;,€) = 0.

Define Z,, = (¢, €)Z,. Thus for each ¢, Z,, satisfies divZ, =0, Z, | dD,.
For each ¢, let F,, be the flow of Z,, for e > 0. So for each ¢t and ¢, F},: D, — D,
is a diffeomorphism. Define

Nee = Fye © 1y,

then 7, is a variation of 5, on P, satisfying

Mige = Mo> Mee =M

1

and

<d7”“-(X)>” 9D, for all &> 0.
€

In general, if we are given a vector field Z, for each ¢, ¢ such that
div Z,, = 0, Z,. | 4D, depending smoothly on the parameters, then we can con-
struct in a similar way, a variation %, as before.

Now we must compute

a j ' Lne(X), (X)) dt = -»d—j ’dtf LIne(X), 01 d*X
€ ty de to D

f oL L
=j dtj {a—[me(X), hte(X)]md ?
2 D 0X

. d 3
ar a—x[ms(X), me(X)]} Ze X)X
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Since 7, is volume preserving we can change variables x = 5,.(X), so that the
right hand side equals

I:l dt jD [L],Z,.(x) d*x.

Now choose ¢(%, €) such that ¢(¢,¢) = 6(t — T) for ¢ » 0. Then we finally
get the condition

JDT [L],Z(x)d* = 0.

At this point, we should remark that Z, = 9, * Z can be chosen to be an
arbitrary vector field on D, except for the conditions divZ, = 0, Z,. | 0D,. By
Hodge theorem, we can conclude that there exists u,. globally defined on D,
and such that

L], = dur(x),  xeD.

We leave to the reader to check that even though p,(x) is determined up to
a constant, however we can choose p(x) to be a C* function of x, T and satis-
fying the previous condition.

To finish the proof, define A, by

NGO = [ w0 nX) dt
and apply Lemma 1. [

In order to state our main result, we need some notation. Let 5,: M > M
be a curve on Diff (M) such that J,, =1, i.e. n, is volume preserving. For each
D < M, a compact submanifold of M with boundary dD, define

77tD= 7lt|1_)

and denote by P? the principal bundle of embeddings of D into M and by
P2, c PP the principal bundle of volume preserving embeddings. Define

vol
£2: TPP - R by

L@y 2D = [ LInPX), 1PCO1d°X.

We also define for a given C* curve \, on F(M), NP = \/| p and
. d
LPP, at N N = J‘D [L(mD(X), 1 X1 + MX)EJ,.,(X)} d’X.

Theorem. The following conditions on a curve v, € Diff, (M) are equi-
valent.
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(i) There exists p,: M — R, a C* curve on F(M) such that
[L]"’z(x) = d”'t(nt(X))-
(i) For each D, wP is a critical point of

& .s:vol [1,(X), (X)) dt

on the set of curves n, on onl with fixed end point conditions Ny = 7P o
N, = n, and 3D, fixed (i.e. én, | 8D,).

(iii) There exzsts a C* curve \,€ (M) such that for each D, 3P, \P) is a
critical point of

t . :
jtl ‘s\?ol (> s N N dE
on the set of curves (n,,\)e€PP x $(D) with conditions M, = "'o
0, = n, and 4D, fixed (i.e. én, | 0D,).
Notice that v, and \, are related by

d\,
on = dt

Proor. We first prove that (i) implies (ii). Let D S M as before,

D
He = Pt l,,’(p)

and
t
= ["wPonP.

Thus by Lemma 1, (2, \P) is a critical point of @(n2, \?). By Lemma 2, we
conclude that (ii) holds.

We now prove that (ii) implies (i). Using Lemma 2 and Lemma 1 we get for
each D a function pP: nP(D) - R such that

(L], peey = duPlnP GO,

This shows that the Euler-Lagrange operator [L] 2 DC) is exact on 5P(D). Since
n2(D) can be chosen to be any given compact submamfold with boundary of
M (having the same dimension as M), this immediately implies that u” can
be taken as being the restriction to D of a globally defined 0-form g,.
Similarly, we can easily prove the equivalence between (iii) and (i) or (ii) by
using Lemmas 1 and 2 if we define A\, by

o —d)\‘.
Be © N = dt
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3. Hamiltonian Vector Fields

Let us consider a symplectic manifold M with volume element @ = " where
w = do is its canonical 2-form and " is the exterior power of order n. This
problem was studied by Lacomba and Losco [4] for the case where M is a
compact manifold with boundary.

We construct the principal fiber bundles P with structure group G and P,
with structure group G, as in the general theory.

In this case we define, for a given curve 7, in P,,; < P and the corresponding
curve Z, = #,-n, ! of vector fields on M, the Lagrangian

LIn/X), 2(X)] =iy xyo = &lZ,(X)].

For any compact submanifold with boundary D & M as in Section 2, this
induces a Lagrangian £2,: TP2 — R by

L@, 4Py = [ LinPCO, aP 01> x.

If n?2 is a critical point of Lt‘ £2 9,(X), #,(X)]dt on the set of curves 7,
(1]

on P2 with fixed endpoint conditions N, = nfz s Mp, = 1;2 and aD, fixed, the
main result implies the existence of a C* curve p,: M — R. From [4] and con-
sidering each D € M, we conclude that u, = H, is a Hamiltonian function and
Z, is the associated Hamiltonian vector field. This means that the critical
curves preserve not only the volume £, but also the symplectic from w.

Notice that the arbitrariness of H, permits to get any given Hamiltonian
vector field.

We remark that this construction is still valid if (M, w) is a non exact
symplectic manifold. Since w is closed, consider two different local expres-
sions w = da and w = d&. Hence, & = o + v where v is a closed form.

They produce two different but equivalent Lagrangians L, L such that
L = L + v. It can be proved that the corresponding integrals

" LRl X), (X)) dt
0

give the same variational principle.
Indeed, we can write in local coordinates

) L’x Loaln (X), 9,(X))dt = L’I dtJD{w[ 20X, 80,01 = dul 7,(X), 1,01} d¥x
- f:‘ dt [D [w(%, 6%) — dH(%, 5x)] d*"x.

A related result for non exact symplectic manifolds appears in [1].
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4. Free Boundary Problems

Free boundary problems, like a liquid incompressible homogeneous drop with
surface tension, or a free elastic body, can be studied by using methods like
those described in the previous sections. In this paper we will concentrate on
the example of the liquid drop. A setting for this, from the Hamiltonian point
of view can be found in [5]. However we may use part of that framework for
our purposes, within the variational approach.

Let us denote P, the principal bundle of embeddings of the unit closed ball
D c R3 into R®. Thus a curve 7, € P, represents a motion of the liquid drop.
Note that the base B of the bundle P, consists of the set of all £ < R* where
T is a 2-submanifold of R? diffeomorphic to dD. Obviously every T € B can
be written X = »(dD) for some n € P,;. The group acting on P, on the right,
is G, = Diff, (D).

The surface tension coefficient being 7 and the density being 1 and assuming
that gravitational forces are absent, we can write the Lagrangian for the liquid
drop as follows

1
£,y 1) = LEI 1, (X d°X — TL dx,

where dX, represents the area element on X, = 5,(3D).
Now suppose that 7, is a curve on P, which is a critical point of the func-

tional I:‘ £(n;, ,)dt on the set of curves 7, such that My = Mos M, = M fixed
(1]

(note that we are not imposing here the condition dD, fixed; thus variations
6v, are allowed such that they are not necessarily assumed to be parallel to
aD,).

As we did in Section 2 where we assumed the condition éy, | dD,, we can
show that the problem of finding a critical curve 7, as stated above is
equivalent to the problem at finding a critical curve (n,, \;) of the functional

31 dJn
a(n, >‘) = J‘ S(ﬂ, 67) + )‘t - dt
1 dt
on curves (g, \) with A € F(D), 5, € P, Ny = Mos M, =M fixed.
By a similar computation to the one performed before the statement of
Lemma 1 in Section 2, we can find that for a variation 6z, with 617,0 =0,
Bn,l = 0, we have

“(feL . doL 3
0= L JV[E(XpX)_Ea—x(X;x)'FV[Lt(X)] &x, d’x —

4 3]
j dtj u,(x)(&x,,r‘z)dE—rj dtj K()(6x,, i) dT
D, t, oD,

)
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where K is the mean curvature of D, and integrals on 4D, are both surface
integrals (here, we are implicitly assuming the standard Riemannian metric
given on R?).

The last term comes out as follows (see [5] for more details). A given varia-
tion 7, induces a variation »,.(dD) = D,,. Thus

d
—_ z
de JD:; d

A simple argument shows that equality to 0 for arbitrary variations éx, will
imply

= j K(6x,, 1) d.
e=0 D,

oL d oL
——— —= =V, for xeD,,
ax  dr ox He ‘

p(x) = —7K(x), for xeadD,,
the incompressibility condition J,,t = 1 comes out after variations 6\, are con-
sidered, as usual. Putting all this together and taking into account that

L(x, %) = %xz,

we finally get

0%x

a2 = " Vmeomn, on D
p: = 1K, on 04D,
J =1, on D.

We can write these equations in Eulerian (rather than Lagrangian) variables.
Namely let

Y= 0x o=l
= ot un
be the Eulerian velocity.
Then we get
k. _ v + (v-V
Y );

and J,,I = 1 implies V- v = 0. Thus

9
—5-+(v-V)v=-V#, on D,



182 HERNAN CENDRA AND ERNESTO A. LACOMBA

V-v=0, on D,
p: =2K, on 4D,.

These are precisely the equations of motion of the liquid drop with surface
tension.
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