Existence of Solutions for some Elliptic Problems with Critical Sobolev Exponents

Mario Zuluaga

1. Introduction

Let Ω be a bounded domain in \mathbb{R}^n with $n \ge 3$. In this paper we are concerned with the problem of finding $u \in H_0^1(\Omega)$ satisfying the nonlinear elliptic problems

(1.1)
$$\Delta u + |u|^{\frac{n+2}{n-2}} + f(x) = 0$$

in Ω and u(x) = 0 on $\partial \Omega$, and

(1.2)
$$\Delta u + u + |u|^{\frac{n+2}{n-2}} + f(x) = 0$$

in Ω and u(x) = 0 on $\partial \Omega$, when of $f \in L^{\infty}(\Omega)$.

The exponent q = (n+2)/(n-2) is critical for the Sobolev embedding of $H_0^1(\Omega)$ in $L^{q+1}(\Omega)$. This embedding is not compact and therefore the operator $F: H_0^1(\Omega) \to H_0^1(\Omega)$, for which its fixed points are solutions of (1.1) or (1.2), is not compact. For these reasons, standard fixed-points methods can not be applied to find solutions of (1.1) and (1.2). In this paper we study (1.1) and (1.2) by making use of a fixed point theorem as well as one from approximation methods. Problems of type (1.1) and (1.2) have been studied in [2] and [4]. In these papers the authors find positive solutions. Their methods are variational and their work is related to the Yamabe Problem. For a complete description of the Problem of Yamabe, we refer to [6].

If f = 0, it is well known that the equation (1.1) has no positive solutions. (See [2 p. 422].) If $f \neq 0$ we will see in Theorem 3.3 that the equation (1.1) has a nontrivial solution and in the case f > 0, by the maximum principle, we have that the equation (1.1) has a positive solution.

Also, if f = 0, the equation (1.2) has a positive solution in the case that $1 \in (0, \lambda_1)$, where λ_1 denote the first eigenvalue of $-\Delta$ with zero Dirichlet condition on Ω . (See [2, p. 441].) If $f \neq 0$, we will see in Theorem 3.4 that equation (1.2) has nontrivial solution and that if f > 0 then the solution is positive.

2. Preliminaries

Let $g: \Omega \times \mathbb{R} \to \mathbb{R}$ be defined by $g(x, u) = |u|^s + f$ in the case of problem (1.1), or $g(x, u) = u + |u|^s + f$, in the case of problem (1.2), and $0 < s \le (n + 2)/(n - 2)$. Then the operator of Nemytsky $G: L^{s+1}(\Omega) \to L^{\frac{s+1}{s}}(\Omega)$ defined by G(u)(x) = g(x, u(x)) is continuous and bounded, so that for every $\epsilon > 0$ there exists $r = r(\epsilon)$ such that if $\|u\|_{L^{s+1}(\Omega)} \le r$, then $\|g(x, u) - g(x, 0)\|_{L^{(s+1)/s}(\Omega)} \le \epsilon$ and we have the following inequality, (see [5, p. 26]),

For short, we will indicate $\|\cdot\|_{L^p(\Omega)} = \|\cdot\|_p$, for all p > 0.

It is well-known (see [1, p. 40]) that if $1 \le s + 1 < 2n/(n-2)$, $n \ge 3$, the inclusion $H_0^1(\Omega) \to L^{s+1}(\Omega)$ is completely continuous. If $1 \le s + 1 \le 2n/(n-2)$ the inclusion is only continuous and we have

$$||u||_{s+1} \leqslant \hat{K}(s)||u||_{1,2},$$

where $\|\cdot\|_{1,2}$ is the norm of the space $H_0^1(\Omega)$. In the case s=1, $\widehat{K}(1)=1/\sqrt{\lambda_1}$, where λ_1 is the first eigenvalue of the operator $-\Delta$.

$$s = \frac{n+2}{n-2}$$

then

$$\widehat{K}\left(\frac{n+2}{n-2}\right) = \frac{n-1}{n-2} \frac{1}{\sqrt{n}}.$$

(see [1, p. 41]).

Since Measure $(\Omega) = |\Omega|$ is finite then

$$||u||_{s+1} \le |\Omega|^{\frac{1}{s+1} - \frac{n-2}{2n}} \cdot ||u||_{\frac{2n}{n-2}}.$$

EXISTENCE OF SOLUTIONS FOR SOME ELLIPTIC PROBLEMS WITH CRITICAL SOBOLEV EXPONENTS 185

$$(2.2) - (2.4)$$
 yield, for all $u \in H_0^1(\Omega)$,

$$||u||_{s+1} \leqslant K(s)||u||_{1,2},$$

where

$$K(s) = \frac{1}{\sqrt{n}} \frac{n-1}{n-2} |\Omega|^{\frac{1}{s+1} - \frac{n-2}{2n}}.$$

Solutions of (1.1) and (1.2). Let

$$g(x, u) = |u|^s + f$$
 or $g(x, u) = |u|^s + u + f$, $s \le \frac{n+2}{n-2}$.

We say that $u \in H_0^1(\Omega)$ is a weak solution of (1.1) and (1.2) respectively, if for all $v \in H_0^1(\Omega)$

(2.6)
$$\langle u, v \rangle_{1,2} = \int_{\Omega} g(x, u(x))v(x) dx.$$

For $u \in H_0^1(\Omega)$ fixed, the right side of (2.6) defines a linear, continuous functional. Then by Riesz's Theorem there exists $F: H_0^1(\Omega) \to H_0^1(\Omega)$ such that, for all $v \in H_0^1(\Omega)$,

(2.7)
$$\langle F(u), v \rangle_{1,2} = \int_{\Omega} g(x, u) v$$

Then, by virtue of (2.6) and (2.7), $u \in H_0^1(\Omega)$ is a weak solution of (1.1) or (1.2) if and only if u is a fixed point of F. It is well-known that only for s < (n+2)/(n-2), F is completely continuous. Our main tool will be the following Theorem due to Krasnosel'skii.

Theorem 2.1. Let $F: H \to H$ be a completely continuous operator defined on a Hilbert space H. Let $D \subset H$ be an open and bounded set such that $0 \notin \partial D$. Suppose that for all $u \in \partial D$, $\langle F(u), u \rangle \leqslant ||u||^2$. Then F has a fixed point in \bar{D} .

Proof. See [1, p. 271].

3. The Main Results

First, we are concerned with the following general problem

(3.1)
$$\Delta u + g(x, u) = 0 \quad \text{in} \quad \Omega,$$

$$u(x) = 0 \quad \text{on} \quad \partial \Omega,$$

where $g: \overline{\Omega} \times \mathbb{R} \to \mathbb{R}$ is measurable in x, continuous in u and satisfies

$$|g(x,u)| \leqslant a(x) + b|u|^s,$$

where $a(x) \in L^{\frac{s+1}{s}}(\Omega)$, b > 0, 1 < s+1 < 2n/(n-2) and $n \ge 3$. Then we have

Theorem 3.1. Suppose that g(x, u) satisfies (3.2) and 0 < s < 1, then (3.1) has a weak solution.

PROOF. In the same way as (2.1) we have

(3.3)
$$\|g(x,u)\|_{\frac{s+1}{s}} \le \left[\left(\frac{\|u\|_{s+1}}{r} \right)^{s+1} + 1 \right]^{\frac{s}{s+1}} \epsilon + \|g(x,0)\|_{\frac{s+1}{s}}.$$

(2.5), (2.7) and (3.3) give

$$(3.4) \quad \langle F(u), u \rangle_{1,2} \leqslant \left\{ \left[\left(\frac{K}{r} \|u\|_{1,2} \right)^{s+1} + 1 \right]^{\frac{s}{s+1}} \epsilon + \|g(x,0)\|_{\frac{s+1}{s}} \right\} K \|u\|_{1,2}.$$

We claim that there exists y > 0 such that for $||u||_{1,2} = y$

$$\left\{ \left[\left(\frac{K}{r} y \right)^{s+1} + 1 \right]^{\frac{s}{s+1}} \epsilon + \|g(x,0)\|_{\frac{s+1}{s}} \right\} K y \leqslant y^2.$$

Since 0 < s < 1 it is easy to see that, for y > 0 sufficiently large, we get (3.5). For (3.4) and (3.5) we have that $\langle F(u), u \rangle_{1,2} \le ||u||_{1,2}^2$, where $||u||_{1,2}$ is sufficiently large. Then Theorem 3.1 follows from Theorem 2.1.

Remark. Theorem 3.1 is a consequence of Theorem 2.5 in [3] (see Example 2.9, p. 122). There, Example 2.9 is done from a variational point of view.

Theorem 3.2. Suppose that g(x, u) satisfies (3.2) and s = 1. Then (3.1) has a weak solution if $\lambda_1 > b$.

PROOF. If $||u||_2 \le r$ then $||g(x, u)||_2 \le ||a(x)||_2 + br$. Let $\epsilon = ||a(x)||_2 + br$. (3.5) yields

$$(3.6) (K^2y^2 + r^2)^{1/2} \frac{\epsilon}{r} + \|g(x,0)\|_2 \leqslant \frac{y}{K}.$$

It is clear that there exists y > 0 such that y satisfies (3.6) if

$$(3.7) \qquad \frac{1}{K^2} > K^2 \frac{\epsilon^2}{r^2}.$$

EXISTENCE OF SOLUTIONS FOR SOME ELLIPTIC PROBLEMS WITH CRITICAL SOBOLEV EXPONENTS 187

In this case, we know that $K^2 = \frac{1}{\lambda_1}$, therefore (3.7) is equivalent to

(3.8)
$$\lambda_1 > \frac{\|a(x)\|_2}{r} + b.$$

For r sufficiently large we get (3.8). Theorem 2.1 now implies our result.

Now we will return to our main problems (1.1) and (1.2). We have the following

Theorem 3.3. Assume that $f \in L^{\infty}(\Omega)$. Suppose that at least one of the following inequalities holds

(3.9)
$$||f||_{\infty} < B(n)|\Omega|^{-\frac{n+2}{2n}}, \quad if \quad |\Omega| > 1,$$

or

(3.10)
$$||f||_{\infty} < B(n), \quad if \quad |\Omega| \leq 1,$$

where

$$B(n) = \frac{\frac{4}{n+2} \left(\frac{n-2}{n+2}\right)^{\frac{n-2}{4}}}{\left(\frac{n-1}{n-2} \frac{1}{\sqrt{n}}\right)^{\frac{n+2}{2}}}, \quad n \geqslant 3.$$

Then problem (1.1) has at least a weak solution if we assume that $\partial\Omega$ is sufficiently smooth.

PROOF. First we will consider the following problem

(3.11)
$$\Delta u + |u|^{s} + f = 0 \quad \text{in} \quad \Omega, \\ u(x) = 0 \quad \text{on} \quad \partial \Omega,$$

and
$$1 < s < \frac{n+2}{n-2}$$

Let $g(x, u) = |u|^s + f$. As in Theorems 3.1 and 3.2, the problem (3.11) has a weak solution $u_s \in H_0^1(\Omega)$ if there exists y > 0 such that

(3.12)
$$\left[\left(\frac{K}{r} y \right)^{s+1} + 1 \right]^{\frac{s}{s+1}} \epsilon + \|f\|_{\frac{s+1}{s}} \leqslant \frac{y}{K},$$

where K is the constant in (2.5). In this case, it is easy to see that $r = r(\epsilon) = \epsilon^{1/s}$.

Therefore (3.12) becomes

$$(3.13) [(K^2x)^{s+1} + \epsilon^{\frac{s+1}{s}}]^{\frac{s}{s+1}} + ||f||_{\frac{s+1}{s}} \leq x,$$

where x = y/K.

Since we can take ϵ sufficiently small, (3.13) has a solution x > 0 if

$$(3.14) (K^2x)^s + ||f||_{\frac{s+1}{s}} < x$$

has a solution x > 0.

Now, it is easy to see that (3.14) has the solution

$$x_0 = \left(\frac{1}{sK^{2s}}\right)^{\frac{1}{s-1}}$$

if

(3.15)
$$||f||_{\frac{s+1}{s}} < \frac{\left(\frac{1}{s}\right)^{\frac{1}{s-1}} - \left(\frac{1}{s}\right)^{\frac{s}{s-1}}}{K^{\frac{2s}{s-1}}} = \lambda(s).$$

Finally,

(3.16)
$$\lim_{s \to \frac{n-2}{n-2}} \lambda(s) = B(n).$$

Also, for $s \in R$ such that $1 < s < \frac{n+2}{n-2}$ we have

$$\|f\|_{\frac{s+1}{s}} \leqslant \|f\|_{\infty} |\Omega|^{\frac{s}{s+1}}.$$

Therefore, if $|\Omega| > 1$, (3.9) yields

(3.17)
$$||f||_{\frac{s+1}{s}} \leq ||f||_{\infty} |\Omega|^{\frac{s}{s+1}} < ||f||_{\infty} |\Omega|^{\frac{n+2}{2n}} < B(n).$$

Or, if $|\Omega| \leq 1$, by (3.10) we have

(3.18)
$$||f||_{\frac{s+1}{s}} \leq ||f||_{\infty} < B(n).$$

Using (3.16), (3.17) and (3.18) we get that there exists s_0 such that $1 < s_0 < \frac{n+2}{n-2}$ and, if $s \in \left(s_0, \frac{n+2}{n-2}\right)$, then (3.14) has a solution x > 0 and therefore (3.11) has a weak solution.

Now, by Theorem 2.1 we have that for $s \in \left(s_0, \frac{n+2}{n-2}\right)$ the weak solution $u_s \in H_0^1(\Omega)$ of (3.11) satisfies,

(3.19)
$$||u_s||_{1,2} \leq y_0 = Kx_0 = \left(\frac{1}{s}\right)^{\frac{1}{s-1}} K^{\frac{1+s}{1-s}}.$$

By (3.19) we obtain that for $s \in \left(s_0, \frac{n+2}{n-2}\right)$ the set $\{u_s\}$, such that u_s is a weak solution of (3.11), is bounded. Then there exists $\{u_k\} \subset \{u_s\}$ such that

(3.20)
$$W \lim_{k \to \frac{n+2}{n-2}} u_k = u_{\frac{n+2}{n-2}},$$

for some $u_{\frac{n+2}{n-2}} \in H^1_0(\Omega)$. (W lim indicates weak limit.) For simplicity we will use $\frac{n+2}{n-2} = N$.

For simplicity we will use
$$\frac{n+2}{n-2} = N$$
.

Our next step is to show that u_N is a weak solution of (1.1).

Since $f \in L^{\infty}(\Omega)$, by an iterative argument called a bootstrapping procedure, (see [1, p. 50], we can see that $u_s \in H_0^1(\Omega)$, the weak solution of (3.11), satisfies that $u_s \in C^{0,\alpha}(\bar{\Omega})$, and since $\partial\Omega$ is sufficiently smooth, u_s is, in particular, continuous on $\bar{\Omega}$.

As in (2.7) let $F_s: H_0^1(\Omega) \to H_0^1(\Omega)$ be defined as

$$\langle F_s(u), v \rangle_{1,2} = \langle |u|^s + f, v \rangle_2,$$

for all $v \in H_0^1(\Omega)$.

For s < N, F_s is completely continuous. As we saw, there exists $s_0 < N$ such that for $s \in (s_0, N)$, $F_s(u_s) = u_s$, where u_s is a weak solution of (3.11).

Let $\{u_k\}$ a subsequence of $\{u_s\}$, $s \in (s_0, N)$, such that $u_k \rightharpoonup u_N$ if $k \rightarrow N$. (\rightarrow denotes weak convergence). By (3.21) we have

$$\langle F_k(u_k), v \rangle_{1,2} = \langle u_k, v \rangle_{1,2} = \langle |u_k|^k + f, v \rangle_2,$$

for all $v \in H_0^1(\Omega)$. And therefore, for all $v \in H_0^1(\Omega)$

(3.23)
$$\lim_{k \to N} \langle |u_k|^k + f, v \rangle_2 = \langle u_N, v \rangle_{1,2}.$$

On the other hand, u_k , $k \in (s_0, N)$, is continuous. Hence

$$\lim_{r\to N}||u_k|^r-|u_k|^N|^{\frac{2n}{n+2}}=0,$$

and by Lebesgue's dominated convergence Theorem we have that $|u_k|^r \to |u_k|^N$ in $L^{\frac{2n}{n+2}}(\Omega)$ if $r \to N$. Now, for each $v \in H^1_0(\Omega)$ fixed, $\langle v, \bullet \rangle_2$ defines a linear and bounded functional on $L^{\frac{2n}{n+2}}(\Omega)$. Hence, for all $v \in H_0^1(\Omega)$

(3.24)
$$\lim_{r \to N} \langle |u_k|^r + f, v \rangle_2 = \langle |u_k|^N + f, v \rangle_2.$$

Also, $\{u_k\} \subset H^1_{0,\Omega}(\Omega)$ is bounded, and since $H^1_0(\Omega)$ is embedded in $L^{\frac{2n}{n+2}}(\Omega)$, $\{u_k\}$ is bounded in $L^{\frac{2n}{n+2}}(\Omega)$ as well. Furthermore the Nemytsky operator defined by $|u|^N$ is bounded, so that $\{|u_k|^N\}$ is bounded in $L^{\frac{2n}{n+2}}(\Omega)$. Therefore, there exists $h\epsilon_{L^{2n/(n+2)}}(\Omega)$ and a subsequence of $\{u_k\}$, labeled in the same form, such that for all $v \in H_0^1(\Omega)$

(3.25)
$$\lim_{k \to N} \langle |u_k|^N + f, v \rangle_2 = \langle h + f, v \rangle_2.$$

By (3.24) and (3.25) we get

(3.26)
$$\lim_{r,k\to N} \langle |u_k|^r + f, v \rangle_2 = \langle h + f, v \rangle_2,$$

for each $v \in H_0^1(\Omega)$. (3.23) and (3.26) yield

$$(3.27) \qquad \langle h + f, v \rangle_2 = \langle u_N, v \rangle_{1.2},$$

for each $v \in H_0^1(\Omega)$.

Also, since $u_k \rightharpoonup u_N$ in $H_0^1(\Omega)$, we have

(3.28)
$$\lim_{k \to N} \langle |u_k|^r + f, v \rangle_2 = \langle |u_N|^r + f, v \rangle_2,$$

for all $v \in H_0^1(\Omega)$, and r < N. (3.23), (3.26), (3.27) and (3.28) yield

(3.29)
$$\lim_{r \to N} \langle |u_N|^r + f, v \rangle_2 = \langle h + f, v \rangle_2,$$

for each $v \in H^1_0(\Omega)$. Since $|u_N|^r v \le (|u_N|^N + 1)|v|$, by Lebesgue's dominated convergence Theorem we have

(3.30)
$$\lim_{r \to N} \langle |u_N|^r + f, v \rangle_2 = \langle |u_N|^N + f, v \rangle_2,$$

for each $v \in H_0^1(\Omega)$. (3.30) and (3.29) yield

$$(3.31) \qquad \langle |u_N|^N + f, v \rangle_2 = \langle u_N, v \rangle_{1,2},$$

for each $v \in H_0^1(\Omega)$. By (3.31) we have that $u_N \in H_0^1(\Omega)$ is a weak solution of (1.1).

Theorem 3.4. For $f \in L^{\infty}(\Omega)$ and for $n \ge 5$, suppose that

$$(3.32) |\Omega|^{2/n} < L(n),$$

and that at least one of following inequalities holds

(3.33)
$$||f||_{\infty} < \frac{A(n)}{|\Omega|^{\frac{n+2}{2n}}}, \quad if \quad |\Omega| > 1,$$

or

(3.34)
$$||f||_{\infty} < A(n), \quad if \quad |\Omega| \le 1,$$

where

(3.35)
$$L(n) = \frac{\left[\frac{4}{n+2} \left(\frac{n-2}{n+2}\right)^{\frac{n-2}{4}}\right]^{\frac{2}{n}} - \left(\frac{n-1}{n-2} \frac{1}{\sqrt{n}}\right)^{2\frac{n+2}{n-2}}}{\left(\frac{n-1}{n-2} \frac{1}{\sqrt{n}}\right)^{2}}$$

and

(3.36)
$$A(n) = \frac{\left(\frac{n-2}{n+2}\right)^{\frac{n^2-4}{8n}} - \left(\frac{n-2}{n+2}\right)^{\frac{(n+2)^2}{8n}}}{\left[\left(\frac{n-1}{n-2}\frac{1}{\sqrt{n}}\right)^2 |\Omega|^{\frac{2}{n}} + \left(\frac{n-1}{n-2}\frac{1}{\sqrt{n}}\right)^{\frac{2(n+2)}{n-2}}\right]^{\frac{n-2}{4}}}.$$

Then problem (1.2) has at least a weak solution if we suppose that $\partial\Omega$ is sufficiently smooth.

PROOF. As in Theorem 3.3 we will consider here the problem

(3.37)
$$\Delta u + u + |u|^{s} + f = 0 \quad \text{in} \quad \Omega, \\ u(x) = 0 \quad \text{on} \quad \partial \Omega,$$

with
$$1 < s < \frac{n+2}{n-2}$$
.

Let $g(x, u) = u + |u|^s + f$. Then if $||u||_{s+1} \le r$, $||u + |u|^s ||_{\frac{s+1}{s}} \le \epsilon$ and the relationship betwen r and ϵ can be taken to be

(3.38)
$$r|\Omega|^{\frac{s-1}{s+1}} + r^s = \epsilon.$$

As in the Theorem 3.3, problem (3.37) has a weak solution whenever there exists x > 0 such that

$$(3.39) [(K^2x)^{s+1} + r^{s+1}]^{\frac{s}{s+1}} \frac{\epsilon}{r^s} + ||f||_{\frac{s+1}{s}} \leq x.$$

If we take

$$(3.40) r = K^2,$$

K as in (2.5), then (3.39) becomes

(3.41)
$$(x^{s+1}+1)^{\frac{s}{s+1}}\epsilon + \|f\|_{\frac{s+1}{s}} \leqslant x.$$

Now, it is easy to see that

$$x_0 = \left(\frac{1}{s}\right)^{\frac{s}{s^2 - 1}} e^{-\left(\frac{1}{s - 1}\right)}$$

is a solution of (3.41) if the following two inequalities hold:

$$\left(3.42\right) \qquad \qquad \epsilon^{\frac{s+1}{s-1}} < \left(\frac{1}{s}\right)^{\frac{1}{s-1}} - \left(\frac{1}{s}\right)^{\frac{s}{s-1}}$$

and

(3.43)
$$||f||_{\frac{s+1}{s}} < \frac{\left(\frac{1}{s}\right)^{\frac{s}{s^2-1}} - \left(\frac{1}{s}\right)^{\frac{s^2}{s^2-1}}}{\frac{1}{s-1}}.$$

Now, by (3.38), $\epsilon = |\Omega|^{\frac{s-1}{s+1}}K^2 + K^{2s}$, K as in (2.5). If we take the limit when $s \to N$, in both sides of (3.42) we obtain (3.32). Then (3.32) implies that there exists $s_1 \in R$, $1 < s_1 < N$, such that for all $s \in (s_1, N)$ the inequality (3.42) holds. Also, by (3.33) or (3.34) there exists $s_2 < N$ such that, for all $s \in (s_2, N)$ the inequality holds. Let $s_0 = \text{Max}\{s_1, s_2\}$; then for all $s \in (s_0, N)$ problem (3.37) has a weak solution. We may argue as in Theorem 3.3 and repeat all the formulas in (3.23) to (3.30) and obtain that there exists $u_N \in H_0^1(\Omega)$ a weak solution of the problem (1.2).

Remarks. If $|\Omega| < 1$, Theorem 3.4 holds for $n \ge 4$ and in that case, for $n \ge 5$, (3.32) is superfluous.

I am gratefult to Dr. Yu Takeuchi who showed me that

$$\lim_{n\to\infty} A(n) = \lim_{n\to\infty} B(n) = \lim_{n\to\infty} L(n) = \infty.$$

Following the same argument of Theorem 3.4 we have the following

Theorem 3.5. For $f \in L^{\infty}(\Omega)$ and $n \ge 4$ suppose that

$$(3.44) |\lambda| |\Omega|^{2/n} < L(n),$$

and that at least one of following inequalities holds

(3.45)
$$||f||_{\infty} < \frac{A(|\lambda|, n)}{|\Omega|^{\frac{n+2}{2n}}}, \quad if \quad |\Omega| > 1$$

or

(3.46)
$$||f||_{\infty} < A(|\lambda|, n), \quad if \quad |\Omega| \le 1,$$

Existence of Solutions for some Elliptic Problems with Critical Sobolev Exponents 193

where

$$(3.47) \quad A(|\lambda|, n) = \frac{\left(\frac{n-2}{n+2}\right)^{\frac{n^2-4}{8n}} - \left(\frac{n-2}{n+2}\right)^{\frac{(n+2)^2}{8n}}}{\left[\left(\frac{n-1}{n-2}\frac{1}{\sqrt{n}}\right)^2 |\lambda| |\Omega|^{\frac{2}{n}} + \left(\frac{n-1}{n-2}\frac{1}{\sqrt{n}}\right)^{\frac{2(n+2)}{n-2}}\right]^{\frac{n-2}{4}}}.$$

Then the problem

(3.48)
$$\Delta u + \lambda u + |u|^N + f = 0 \quad \text{in} \quad \Omega, \\ u(x) = 0 \quad \text{on} \quad \partial \Omega,$$

has at least a weak solution.

If we suppose that f > 0 on Ω then, by the Maximum principle for the operator Δ , we have that problems (1.1), (1.2) and (3.48) for $\lambda \ge 0$, have positive solutions.

Finally, in Theorem 3.4, if $|\Omega|$ is sufficiently small then $\epsilon = |\Omega|^{\frac{s-1}{s+1}} + r^s$ is small too $(r = K^2)$. Then inequality (3.41) holds for some $x > ||f||_{\infty}$. We conclude by saying that Problem (1.2) has a weak solution if $|\Omega|$ is sufficiently small.

References

- [1] Berger, M. Nonlinearity and Functional Analysis. Academic Press, 1977.
- [2] Brezis, H. and Niremberg, L. Positive Solutions of Nonlinear Elliptic Equations involving Critical Sobolev Exponents. Comm. Pure Appl. Math. 36(1983), 437-477.
- [3] Chow, S. and Hale, J. Methods of Bifurcation Theory. Springer-Verlag, 1982.
- [4] Escobar, J. Positive Solutions for some semilinear Elliptic Equations with Critical Sobolev Exponents. Comm. Pure Appl. Math. 50(1987), 623-657.
- [5] Krasnosel'skii, M. Topological Methods in the Theory of Nonlinear Integral Equations. Pergamon Press, 1964.
- [6] Lee, J. and Parker, T. The Yamabe Problem. Bull. Amer. Math. Soc. 17(1987), 37-91.

Recibido: 5 de julio de 1988.

Mario Zuluaga
Departamento de Matemáticas
Universidad Nacional de Colombia
Bogotá, D.E.
COLOMBIA