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Abstract

In this paper we mainly introduce a min-max procedure to prove the existence
of positive solutions for certain semilinear elliptic equations in R™.

Introduction

In this paper, we investigate the existence of positive solutions for the follow-
ing semilinear elliptic equation in R™:

{—Au +u—qgX)ul’ 'u=0

o ue H'(RY),

+§, if N>3;1<p< 4, if N=1, 2 and ge L (R")

N
h I1<p<
where p<4

satisfies the following hypotheses:

Q?) q(x) >0 for every xeRN.
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There exists a positive constant, denoted as g, such that

3) lim g(x) = ¢

[x[— e
and there exist some positive constants C and 6 such that, for |x| large,
@ g(x) = g — Cexp (—6|x]).

Under the hypotheses (2), (3) and (4), we are able to prove the existence of
at least one positive solution to (1). However the main purpose of this paper
is to derive the result through a min-max procedure, similar in spirit to [6],
even though we have to replace (4) by a stronger hypothesis:

There exist some positive constants C and § such that, for |x| large,
) q(x) = g — Cexp (—(2 + 8)|x]|).

Without loss of generality we can assume that 6 < p — 1.

The existence of solutions of semilinear elliptic equations in R™ have
been investigated, among others, in [3], [8], [13], [14], [51, [2], [18], [19],
[11].

Weiyue Ding and Wei-Ming Ni established in [8] that (1) has at least one
positive solution if g(x) > 0 is radially symmetric and bounded, for large |x|,
N-Dp-1)

2

has proved that for N > 3 (1) has no positive solution if g(x) > 0, g € C»(R")
is radially symmetric and g(x)|x| ~ %~ P® =172 js nondecreasing in |x|. However,
very little is known for the existence of nontrivial solution of (1) if g(x) is not
radially symmetric. In [8] [13], variational methods are used to prove the
existence of a positive solution of (1) under various hypotheses, which ensure
the existence of the global minimum of the functional associated with (1).
Therefore when the minimum is not achieved the existence problem is left
open. It is proved by A. Bahri and P. L. Lions in [2] that if we consider the
problem on R¥\Q instead of RY, where Q is any smooth bounded open set,
then the existence of positive solution can be established even when the
minimum of the functional is not achieved. There the topology of R¥\Q has
been used. Our present situation is different since RY is a contractable set.
Therefore the technique developed in [2] cannot be applied directly. However,
with the observation we have here, we can modify the argument of [2] to
prove the existence of positive solution without using the topology of the
domain.

In [5] and [11] the existence of multiple solutions has been studied under
various hypotheses on g(x).

by ]x[’ where / satisfies 0 < I < - On the other hand Yi Li ([12])
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1. Preliminaries

We first introduce some notations. Let
{u,v)y = LRNVu Vv + uv

denote the inner product of H!(R") and

lul = Cu,uy'”?

T = {ueH'(RY): |u| =1}
r* = {ueX:u >0 almost everywhere in RV}.

Let

IRNWuIZ + u?

Jw) = (jRNq(x)Iulp“)Z/(pH)
LRNIVuP + u?
Jo(U) = <'[ Qoo|u|p+1>2/(p+l)
RN
S, = inf Jo(U)

ueH1(RN)\ {0}
S,=m®P-Vwdg = ;=234 ...

It is well known that S, is actually achieved by some radially symmetric
positive smooth function w, which satisfies the following equation

—Aw + 0 — guw? =0,
(6)

w e HY(RY).

It has also been proved by Kwong ([10]) recently that the positive solution
of (6) is actually unique up to translations. Furthermore we know exactly how
w behaves at + .

Theorem 1.1. Let g(x) e L°(R™) satisfy (2), (3) and (5). Then (1) has a
positive solution in H'(R™) for 1<p<(N+2)/(N-2),if N>3;1<p<
+oo, f N=1, 2.

Remark 1.1. The regularity of the solution found in Theorem 1.1 follows
from standard elliptic theory.

Proposition 1.1. Let w be the positive solution of (6), then w e C*(R") and
is radially symmetric after suitable translation, namely, » = w(|x|). Further-
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more, there exists some positive constant ¢ > 0, such that,
(7 o(|x)x|N P 2exp(|x]) > c  as |x| >

(8) (XX VD% exp(|x)) > —c as |x| >

The proof of the above proposition can be found in [2] and the references
there.

Proposition 1.2. Let ¢ C(RM)NLZ(RY), ¢ e C(RY) be radially sym-
metric and satisfy for some « >0, 320, YyeR

©) eO)exp (alx)lx’ > as |x] = oo,
(10) w190 exp ()1 + 1x1°) < .
Then

(Jawete + D009 dx) exp @l¥DIVE ~ 7 [ W@ exp (-axpdx as |y] = .

Proor. Since ¢, ¢ are radially symmetric, we only need to obtain the limit
for y = (|y],0,...,0), |y| = +=.

In the following we then assume that y = (||, 0, ..., 0). We first identify
the pointwise limit of the integrand.

o (x + Y)Y(x) exp (a|y])|y|°
= Y(®)e(x + y)exp (alx + y))|x + | exp (—a|x + y|) exp (@|y])|x + ¥| “#|y|®

The limit (9) implies that
o(x + y)exp (a|x + y))|x + y|F > v
pointwise as |y| = +. On the other hand,
lim |x+y["#|y|f =1
[¥]= +e

is obvious.
Using the fact that y = (|»|,0,...,0), we have

exp (—a|x + y|) exp (&|y]) = exp (—a(|x|* + 2x - y + |y|)*) exp (a|¥])
xX-y |x|2 >1/2>
=exp| —o|y|{1 +2"-+ "5 exp (a|y])
< | ‘( EER

1
exp (—alyl — oxy + O(T}'T» exp (| y]).
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Therefore

| llim exp (—a|x + y|) exp («|y|) = exp (—ax,).
- 4+
y=ho, .0

Putting the above calculations together, we obtain that

Jm e+ 0 exp @l YD1y 1 = 1) exp (~axy).
y=(|§|,0,+---.0)

It follows from (9) that

lo(x + Y)Y(x) exp (| y])|¥||
< ClYM)| exp (—alx + y))(1 + |x + y|) P exp (a|y)|y|®
< Cly()| exp (alx))A + |x + ¥))P|y[°.

For |y| > 2|x|,
lo(x + YW(x) exp (@] ¥)|¥|°| < Cl¥(x)| exp (a|x]).
For |y| < 2|x|,

lo(x + )Y exp (| YD1 Y|°| < ClY)| exp (|x])|x]°.

Now we can simply apply the Lebesgue dominated convergence theorem to
conclude the proof of Proposition 1.2.

To apply a min-max method, we need to analyze where the functional J
satisfies certain compactness condition. This has been well known by now. In
the following, we are going to state some compactness lemmas. For the proof,
see [13], [14] and [2].

Definition 1.1. J | is said to satisfy Palais-Smale condition at C', if for any
Palais-Smale sequence {u,} € X, namely, {u,} €X, J(u,) > C’, J|:(u,) —0
strongly in HYRY), there exists a subsequence of {u,} which converges
strongly in H'(RM).

Lemma. Let {u,} € X be a Palais-Smale sequence, then there exists a sub-
sequence (still denoted as {u,}) for which the following holds: there exists an
integer m > 0, sequences xf, Sor 1 < i< m, functions @, w; for 1 < i < m such
that

an —Ai+a=q|a"'a in RY, aeH'(RY)

12) ~Aw; + w; = Gu|wy|? T lw; in RY,  w;eH'(RY)

13) Ixi| >0, |x!-x/|>o0 as n—oew for I1<i#j<m
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m
u+ _Zl w,—(- - x;)
a4  u, - . -0 stronglyin HY(R™) as n—
i+ 2 wie —x)
i=1

m
lal? + 3 ol
i=

m
<j glal”*' + 3 qwlwil"“>
RN i=1 JRN

where we agree that in the case m = 0 the above holds without w; and x' . In
addition, if u, > 0 then 1 2 0, w; = 0 for all 1 < i < m. Therefore w; = w for
all 1 < i < m due to the uniqueness upto translation of positive solution of (6)
(see [10]).

This result immediately implies that if %, > 0 in the PS Lemma and (1) has
no positive solution, then

1s) J(u,) - >~ as n— o

p+1

(16) Ju,)—~ S,

where m > 1 is some integer.

We are going to use a contradiction argument for the existence of positive
solution of (1), namely, we start with the assumption that (1) has no positive
solution, then we know that (PS) condition fails only at levels {S,,}. Further-
more if we are able to construct some min-max value which is different from
{S,.}, the standard deformation lemma will give rise to a positive solution to
(1), hence a contradiction. The purpose of the next two sections is to construct
such a min-max value which is strictly between S; and S,.

2. Energy Estimates

The energy estimates given in this section play an important role for the proof
of the existence result. These estimates have essentially been given in [2], while
we do need a result which is slightly different from that in [2]. This kind of
phenomenon have been used by C. Taubes ([17]), A. Bahri and J. M. Coron
([1]), A. Bahri and P. L. Lions ([2]).

We first state a result which will be used later.

Lemma 2.1. Let p > 1 be any real number, then there exists some constant
C = C(p), such that, for any nonnegative real numbers a, b,

(A7) @+ b)P* ' za?* ' + 6P + (p + 1)(@”b + ab®) — Ca' P+ D2pP+ D2

(In fact, if p = 2, we may take C = C(p) =0.)
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Proor. Ifa=0orb =0, (17)is obvious. Otherwise we assume, without loss
of generality, that a<b, ab#0. Let x=a/b, then 0<x<1, (17) is
equivalent to the following:

(18) A+x0P 21+ %P+ (p+ D)(x + xP) — CxP+D2,
For x small, it follows from Taylor expansion that

p(p+1)
2

A+x)P " =1+(p+ Dx+ x% + o(x?),

therefore there exists some positive number §, = §,(p) between 0 and 1, such
that, (18) holds for 0 <x<é,, C=p+ 1. For §, < x < 1, we can choose
C = C(p) large enough to guarentee (18).

Lemma 2.2. Under the hypotheses of Theorem 1.1, there exists a large
number Ry, such that, for any R > Ry, |x;| 2 R, |x,| =R, VR < |x; — x| €
2 + 1/2+/R )min {|1x1], |x2|}, we have

(19) Ju, + 1 - uy) < S,

where 0 <t <1 and u; = (s — Xx;).

Proor. Let us first prove (19) for ¢ = 1/2, namely,

(20) Ju, + uy) < S,.
Let

A=e]?
then from (6) we know that
A= quw"“.
The following computation holds for large R.
Juy + ]2

([ atw +up?r)2 o>
- Jud|* + Jua]® + 20y, 1)

([ @ + 1" + [(@ = @)y +u)?* 1) O*D

2A + 2{uq, uy)
(jQw(ul + uz)PH _ J(qw _ q)*'(ul + uz)p+1)2/(p+l)

J(u1 + uz) =

N
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We first estimate j' u%u, . In the following C will denote some positive con-
stant independent of R.

ju‘l’u2 = jw(|x = x1)Po(]x — x,|) dx

> f ol — x)P(lx - x)) dx
[x—x|=<1

1
>— w(|lx — x,|)dx
CLx—xI\sl (I ZD
1
?Ew(’xl - X| +1)
1 _ |
> b = |0 2exp (~x, - )

The last inequality follows from (7).
Secondly we estimate Ju(l” D2y

J‘u§p+ 1)/2u§p+1)/2 — Iw(|x _ xl’)(p+ sz(]x _ le)(p+1)/2 dx

p+1)/2

< o(D)]x; — x,|4 "M% exp (—|x, — X))
<o(1) J ulu,

where (17) and Proposition 1.2 have been used.

Here and in the sequel, o(1) = 0 as R goes to .

Thirdly we estimate J(qt,o — @)t (uy + u)?*. Use (5), (7) and Proposi-
tion 1.2, we have

2
J(qw - (u + )t < C,ZJI (g — @) ul*?
2
<C 2 {exp(—Q2 + d)|xPw(|x — x;[)?* ' adx
i=1

2 2+6
sCZexp<———; |x,.|>
i=1

2 —_—
<C 3 exp _2;‘5 |, 3152|
i=1
2+
2VR

= o(1)|x; - le(l_N)/z exp (—|x; — x,[) = o(1) j ulu,
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where we have used the hypothesis

! )min{|x| %)
2\/} 1l» 2 .

According to Lemma 2.1 and the above estimates, we deduce that

[ ety + )P

1 1 1)72 1)72
zjq‘,,,(u"l’+ +u*h+ (p+ l)jqw(u’l’u2+ulu‘2’)— CIug’” 2y (P

=24 + (2p + 2) uy, uy) — cjugpn)/zugpﬂ)/z
224+ (2p + 2~ o(1)<uy, 1)
where we have used the fact that
J Gttty = quu‘z’ul = (U, Uy,

which follows from (6).
Therefore

2A + 2{uy, uy)
(jQuo(ul +up)Prt j(qco -t (u + uz)"+1>2/(p+1)

< 2A + 2uq, uy)
T QA+ 2p+ 2 — o(1)Kuy, up )PP

J(u, + uy) <

1
1 + Z(”l, u2>

+ 1 _ 1 2/(p+1)
<1 +'p—o()<u1’u2>>

A

1
1+ Z(ul, u2>

2p +2—o0(1)
(p+ 1A

=S,

uyg, uy)

. 1 2p +2—o0(1)
Notice that i < 0+ DA

estimates. Next we are going to prove (19).
Let

for R large, we obtain (20) from the above

Ul = tul
v =1 - Du,

where 0 << 1.
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|v, + 1)2”2 = |v 1%+ "vz”2 + 24V, Up)
= 2{uy|* + (1 = 02wy |* + 261 = )y, )
=+ 1 - DDA+ 2t(1 — )uy, uy)

quvl + Pt 2 cho|U1 + Pt - j(q‘:o — @)t v+ P

When ¢ or 1 — ¢tends to zero, v; + v, tends to u, or #; and J(v; + v,) conse-
quently converges to S; . Therefore there exists some small constant 6’ > 0, such
that, for any min {#,1 — ¢} < 6, (20) holds. Notice that '’ > 0 is independent
of R large. In the following we always assume that min {z,1 — ¢} > &'.

Arguing as before, we have,

jqeolvl + vy PH!
ST+ A - HPTHA + (p + DEPA = 1) + t(1 — DP)uy, )
_ Cjuf/"’“’ug(”“)
ST + A - HPTHA + (p + DEPA = £) + 1A = )P — o(1))uy, ty).
We have derived before that
[ @a= @) @+ w)P "t = 0(1)Cur, ).

Notice that min {#,1 — ¢} > é’, we have

j(q°° — @) v, + PP <oMEP = 1) + t(1 — D)y, uy).
Therefore
J(; + vy)

< @+ (1 - A+ 2t(1 — 1)Cuy, uy)
SHETT A - 0PTHA + (p+ DEPA - 1) + (1 - 1P = o(1))uy, upy Y PHY

2+ (-1} A
=X (tp+1 + (1 _ t)p+1)2/(p+1) AZ/(p+1)

2t(1 - 1)
o P+0-0H4
- <2(t”(1 -0+t -1)P
P+ 1 -0PhH4a

1 + <u15u2>

- 0(1)>(u1,uz>

Since
A 22/(12 +1)

47eFy = Si= S
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we have

22/(p+1) t2 + (1 _ t)Z
2 (tp+1 + (1 _ t)p+l)2/(p+1)

Jv; + 1)< S,

2t(1 — 1)
+0-0H4
4 <2(ﬂ’(1 -0+ t(l -1)P)

P +a-0n*hH4

1+ {uq, uy)

- 0(1)><u1, Uy)

Notice that we have the following inequalities:

22/(p+1) t2 + (1 _ t)l
21 <1 f 01
(21) 2 @ T+ (1= P H7@+D or
_ p(1 — _ AP
22) t(1 -1 tPA-0+t(1-1) for 0<t<1

2+ -1)? Pl —-Pt!

(21) follows from the convexity of the function x —» x?* /2, x > 0 and (22)
is elementary.
Since ¢ and 1 — ¢ are bounded away from zero, we have

2t(1 — 1)
P +0-0H4

20P1 -0+ t(1 — 1P

1+
PP +Q-0PtH4a

(up, ) <1+ < - 0(1)>(u1,u2)

for R sufficiently large.
Finally (19) follows from the above estimates.

3. The min-max Procedure

Let us define a map from I to the unit ball of RY

1 X
m(u) = ——j—|u|p+1dx
Julpsi J Ix]
where |u],,, denotes the L”**(R™) norm of u.
Clearly, m is continuous from T to R" and |m(u)| < 1.
Let

_ |u]?
I, = m(lul)“;a (yq|u|p+1>2/(p+1)
uel

where e RY and |a| < 1.
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It is well known that (1) has a positive solution, which is actually a constant
multiple of the global minimum of the functional J, if in}f: J) < S§;. (See
[13].) “e

In the following we always consider the case when inf,_;. J(») > S; .

If for some aeRY, |a| <1, I, =S,, then there exists some ueXZ™,
m(u) = a, such that J(u) = S;. This follows from the concentration-compact-
ness principle developed in [13]. In this case we will also obtain a solution
of (1) which is a constant multiple of the global minimum of J. See [13] for
details.

There is only one possibility left, namely,

I,> S, forevery aeR", la| < 1.
Fix any ae RY, |a| < 1, since I, > S, there exists some positive constant
R, such that,
1
23) Jw-y)< E(I” +8S) <1, forevery yeR", |y| = R;.
Let R > max {R,, R;} be very large. (In the following R is always supposed
to be very large), and

Br(0) = {xeR": |x| < R}

%=(0,...,0,R-+/R)

We define a map h, from dB,(0) to Z* by

w(s —xy)
ho(x)) = ——
T ole - x|
where x; € dB(0).
Since R > R;, we have
' 1
(24) J(hy(xy) < E(I” + 8)) <1, for x,€0BL(0).

We define another map A* from B.(0) to ™ by

to(s —x) + (1 = Hols — %)

h*(tx; + (1 — )%,) = [tw(e — x) + (1 — Hw(s — X,)|

where 0 < ¢ < 1, x; €3Bg(0). It is clear that h*|aBR(0) = hy.
It follows from Lemma 2.2 that

(25) J(h*(y)) < S, for all yeBg(0).
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We next define some min-max value. Let

(26) I' = {h: B,(0)— Z*: h is continuous, h|BBR(0) = hy)}
and
27) ¢, = inf max J(h(p)).

heTl yeBg(0)
We will prove that
Sl <Ia SCO<SZ-

(25) implies that ¢, < S, .
Consider the map

moh: B.(0)—RY

for hel.
It is quite obvious that
(28) lim m o hy(x,) = i B uniformly for x; € 3B.(0).
R+ %

By degree theory, for R large enough, we have
deg(m o h, Bx(0),a) = 1.

In particular there exists some y € B;(0), such that, m o h(y) = a, hence
c=21,>8;. .

The PS Lemma in Section 1 guarentees that J |, satisfies PS condition at
¢, if (1) has no solution. Then by using some standard deformation argument
and the maximum principle (see [16], [2]), ¢, is a critical value of J|. with
some corresponding critical point u > 0, i.e., J|(#) = 0. By scaling u we
obtain a positive solution of (1). Therefore in any case, (1) has a positive solu-
tion. The proof of Theorem 1.1 has been completed.

Remark 3.1. Under the hypotheses of Theorem 1.1, there exists a positive
solution u with
Ju)<S,.

Remark 3.2. If we repace RN by RY\ Q where Q is any bounded smooth open
set of RY, the proof still holds after simple modification.

With the observation in this paper, it is not difficult to see that we can
modify the arguments in [2] to prove the following result.
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Theorem 3.1.  Suppose that q(x) € L*(R") satisfy (2), (3) and (4), then (1) has
a positive solution in H'(RM) for1 <p< (N+2)/(N-2),if N>3;1<p<
+oo,if N=1, 2.

Acknowledgement. The authors want to express their sincere thanks to Pro-
fessor Nirenberg for his useful comments and encouragement.
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