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Abstract

G. David, J.-L. Journé and S. Semmes have shown that if b, and b, are para-
accretive functions on [R”, then the «7h Theorem» holds: A linear operator
T with Calderén-Zygmund kernel is bounded on L? if and only if 7b, € BMO,
T*b, e BMO and M,,2 TM,,l has the weak boundedness property. Conversely
they showed that when b, = b, = b, para-accretivity of b is necessary for the
Tb Theorem to hold. In this paper we show that para-accretivity of both b,
‘and b, is necessary for the 7h Theorem to hold in general. In addition, we give
a characterization of para-accretivity in terms of the weak boundedness property
and use this to give a sharp Th Theorem for Besov and Triebel-Lizorkin spaces.

1. Introduction

We begin by recalling the definitions necessary for the statement of the 7b
Theorem of G. David, J.-L. Journé and S. Semmes. For 0 < < 1, let C}(R")
denote the space of continuous functions f with compact support such that

|fC) — fO)]
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is finite. Suppose b; and b, are complex-valued bounded functions on R”, and
that T'is a linear operator such that sz TM,,l is continuous from C}(R") into its
dual C{(R") for all 0 < 5 < 1. Here M, denotes the operation of multiplication
by b. Suppose further that there is a continuous function K(x, y) on {(x, ) €
R" x R": x # y}, called the kernel of T, that represents T in the sense that

(1.1) My, TM, )W) = [, [ b2(OK(x, 2)by (D)o (PW(x) dx dy

for all ¢, Y € C(R™), 0 < 9 < 1, with supp ¢ Nsupp ¥ = ¢&. We suppose that
K(x, y) satisfies the following size and smoothness estimates for some e > 0:

(1.2) @) |Kx,»)| <Clx—y|™" for x,yeR",

|x — x'|
lx — |

() |K(x,y) — K(x', )| < C< > |x — y| =" for x, x’, y € R with

= x| < = px - |
5 s

ly =y

x — | > [x = y| =" for x, y, y' € R" with

(i) |K(x,») — K(x,»))| < C<

1
ly =y <5|x—y|-

Kernels with the above properties are called Calderon-Zygmund kernels. See
[DJS2] for details and examples.

A complex-valued bounded function is said to be para-accretive if ([DJS2])

(1.3) There is ¢ positive such that for every cube Q in R", there is a subcube
I with

= C.

1
‘ @ L b(x) dx

Note that the cube 7 in (1.3) satisfies

c
11| ?m;:lQl-

Finally, a linear operator T from C}(R") to C}R"), 0 <y < 1, is said to
satisfy the weak boundedness property if

(1.4) (TOW) < CIOM o] L 1 ¥ i



PARA-ACCRETIVE FUNCTIONS, THE WEAK BOUNDEDNESS PROPERTY AND THE 7b THEOREM 19

for all cubes Q and ¢, Y € C}(R") with support in Q. In [DJS2], this definition
is shown to be independent of ». We can now state the 7b Theorem of G.
David, J.-L. Journé and S. Semmes (see A. McIntosh and Y. Meyer [MM]
for the first version of the 76 Theorem).

The Th Theorem. ([DJS1], [DIS2]). Suppose b, and b, are para-accretive
Sfunctions on R" and that T is a linear operator such that sz TM,,1 is con-
tinuous from CYR"™) to CYR"Y for some 0<n<1, with a Calderon-
Zygmund kernel K(x,y), i.e., (1.1) and (1.2) (i), (ii), (iii) hold. Then T is
bounded on L* if and only if

(1.5) () Th, e BMO.
(ii) T*b, e BMO (where T* denotes the transpose of T).
(iii) My, TM, satisfies the weak boundedness property.

The reader is referred to Section 1 of [DJS2] for the definition of 7h, and
T*b,- we only point out here that (1.1) and (1.2)(ii) are needed to define 7b,
while (1.1) and (1.2)(iii) are needed for T*b,. We also mention in passing that
the hypothesis (1.2)(i) on the size of the kernel K(x, y) is not needed in the 7b
Theorem since it is already implied by the other hypotheses. See the end of
Section 3.

Conversely, it was shown ([DJS2; Proposition 1 in Section 9]) in the case
b, = b, = b is bounded, that if every linear operator T satifying (1.1), (1.2)
and (1.5) is bounded on L?, then b is para-accretive. The main result of this
paper is that this converse result holds in general-namely, the para-accretivity
of both b, and b, is necessary if the 76 Theorem is to hold. Two complex-
valued bounded functions b, and b, are said to be jointly para-accretive if
there is ¢ > 0 such that for every cube Q in R”, there is a subcube 7 with

}zc.

Theorem 1. Suppose b, and b, are complex-valued bounded functions. If b, is
not para-accretive, then there exists a linear operator T with kernel K satisfying
(1.1), (1.2) (), (i), (iii) (with € = 1) and such that

3

1
|—Q’—max H Lbl(x) dx

J‘ b,(x)dx
I

(1.6) (@) Th,eL™,
(ii)) T*b,e L™,
(iii) sz TML,l has the weak boundedness property,
@iv) TM,,1 fails to have the weak boundedness property if b, and b, are
Jointly para-accretive, while T fails to have the weak boundedness
property if b, and b, are not jointly para-accretive.



20 Y.-S. Han anD E.T. SAWYER

Note that by (1.6)(iv), the operator T in Theorem 1 is not bounded on L?
and thus the para-accretivity of b, is necessary for the 7b Theorem to hold.
By duality, the para-accretivity of b, is also necessary.

A fairly straightforward consequence of Theorem 1 and a lemma of Y.
Meyer ([M1]; Lemme 2) is the following characterization of para-accretivity
in terms of the weak boundedness property. We thank Rodolfo Torres for
discussions leading to this result. Let @ denote the set of linear operators 7'
with kernel K(x,y) satisfying (1.1) (with b, = b, = 1) and (1.2)(i) and (ii)
—but not necessarily (1.2)(iii)— and 7’1 = 0.

Theorem 2. A complex-valued bounded function b is para-accretive if and
only if for every T in C, T has the weak boundedness property (1.4) whenever
M,T does.

Remark. Theorem 2 remains true if € is replaced by the larger class C’ of
operators 7 with kernel satisfying (1.1) (with b; = b, = 1) and (1.2)(i) and (ii)
and 71 e BMO. See Section 3.

Note by contrast, that Lemme 2 of [M1] shows that for any bounded func-
tion b, M, T has the weak boundedness property whenever 7 in C does. We
now recall a result of P. G. Lemarié [L].

The T1 Theorem for Besov Spaces. ([L]). Suppose T in C satisfies the weak
boundedness property (1.4). Then T is bounded on the homogeneous Besov
space By for 1 < p,q < o and 0 < « < ¢, where e is the order of smoothness
of K in the first variable in (1.2)(ii).

As indicated in Section 14 of [DJS2], Lemarié’s Theorem yields a 7b
Theorem for Besov spaces —If T satisfies (1.1), (1.2)(i) and (ii) and Th, = 0,
and if Mb TMb has the weak boundedness property where b, is para-
accretive, then TMb is bounded on B"‘ 4 for 1< p,g< o and 0< a<e.
Note that exactly half of the asymmetric hypotheses in the Th Theorem (with
BMO replaced by 0) are needed here. The other half imply by duality that
szTis bounded on By'? for 1 < p,q < © and —e < a < 0. See Section 14
of [DJS2] where these results are interpolated to yield another proof of the
Th Theorem for L>. -

In order to reduce this 7h Theorem to the 71 Theorem of Lemarié, simply
observe that TMI,1 is in © and satisfies the weak boundedness property by the
«only if» half of Theorem 2. The «if» half of Theorem 2 shows that the para-
accretivity of b, cannot be removed.

The above considerations also apply to the homogeneous Triebel-Lizorkin
spaces F',’? once we have shown that the conclusion of Lemarié’s Theorem
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applies to F;’,"q in place of l%;‘"’ for1 < p,q < o and 0 < a < €. The following
result has been independently obtained by B. Jawerth, M. Taibleson and
G. Weiss ([HITW])).

Theorem 3. Suppose T in C satisfies the weak boundedness property. Then
T is bounded on F? for 1 < p,q < o and 0 < a < ¢, where ¢ is as in (1.2)(ii).

Theorem 3 is easily obtained by adapting the proof of the 7’1 Theorem for
L? outlined in Section 2 of [DJS2] and we will sketch the relevant details in
Section 4 below. We remark that M. Frazier, Y.-S. Han, B. Jawerth and
G. Weiss have shown ([FHJW]) that for 7'in C satisfying the weak boundedness
property and the additional smoothness (1.2)(iii), 7 maps F,?-atoms to 7’ 9.
molecules (and so is bounded on F'?) for 1 < p,q < =, 0 < a < €. Theorem
m is proved in Section (m + 1), m=1,2,3.

2. Proof of Theorem 1
The proof of Theorem 1 splits into two cases.

Case 1. b; and b, are jointly para-accretive.

We modify the construction in Proposition 1 of Section 9 of [DJS2] (of an
operator for which the Th Theorem fails for a non-para-accretive function
b = b, = b,) in the spirit of a para-product. The basic idea evolves from the
observation that if a Calderén-Zygmund kernel K(x, y) equals (1 + |x — y|) ™"
for |x — y| <N, —|x — y| ~"for 2N < |x — y| < N? and zero for |x — y| > 2N?
then |T1|,. < C and the weak boundedness constant C in (1.4) is at least
clog N. Suppose there is ¢ > 0 such that for every cube Q in R”, there is a sub-

1 ]
2.1) -——max{”}bl(x)dx},

cube 7 with
= C.
|| }

If b,, b, are bounded in absolute value by M, then (2.1) forces

f b,(x) dx
I

c
]”?A_IHIQ‘

and so the ratio of the side lengths of 7 and Q is bounded below by

=f|(%)"]
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where [x] denotes the greatest integer part of x. Since b, is not para-accretive,
we can find a cube Q,, for each k£ > 0, with the property

kn

1
| Qx| LbZ(x) dx

sup

S - .
cubesJC 30, k

Thus

2.2) ll—}|— J‘Jbz(x)dx S% for all cubes J C 3Q, with |J|/" > 6%|Q,|"".

Momentarily fix k with 6%"/k < c. Then (2.1) and (2.2) imply that for every
cube J C 3Q, with side length at least 6* times that of Oy, there is a cube 7 C J
of side length at least § times that of J such that

=cC.

1
TIT Lbl(x) dx

Let 5, denote the side length of Q;. For j=0,1,2,...,k— 1, let {J4)37 "
denote the «dyadic» decomposition of 3Q, into 3" & /" congruent subcubes
of side length &%s, with pairwise disjoint interiors. For each cube J{f whose triple
is contained in 3Q, let (J7)’ denote the translate of JJ by 6’s,(1, 1, ..., 1) and
then set

L1
H=g Ul

By (2.1), there is a subcube I{f of J{* with side length at least 6/*s,/3 and
satisfying

=c

1
‘ |TJ|‘ J‘Ij bl (X) dx

(we may suppose 6 < 1/3).
We must now smooth out these averages. We claim that there are Lipschitz
functions ¢/ satisfying

(2.3) (i) suppe’C I,
(i) |l <|F|7Y, for yeR",

; . y=y
(i) |ei() — 2l < C-l |I,;|1/nl
i

|4 71, for y, y' € R",

@) | [t dy| > /2,

where the constant C in (2.3)(iii) depends on M and c in (2.1). To construct
the <p{, simply choose go{ to be supported in I/ with values between 0 and
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|74) 71, and to take the value IIJfI ~! on I’ where v < 1 is so close to 1 that

, 1

>c- Miff\ﬂ{fl/llii >c/2

Property (2.3)(iii) follows if the ga{f are taken to be translates and dilates of
a fixed smooth ¢.
Now we claim there exist Lipschitz functions M satisfying

.3 .
(2.4) (@) suppylC —2~J{.

(i) 0K ¥/ <
315 —Jjn

(i) > ¥im=1, xe3Q, 0<j<k-1,
i=1

¥ — x|

() |09 = ¥i6)] < C i

) i

Define B8(x) on R to equal 1 for |x| < 1/2, 0 for |x| > 3/2 and to be linear on
each of the intervals [—3/2, —1/2] and [1/2, 3/2]. If the M are taken to be
appropriate dilates and translates of

Y) = II;IIA B(x),

then (2.4)(i)-(iv) hold immediately. Since v is a positive integral of characteristic
functions of parallelepipeds whose sidelengths lie between 1 and 3, property
(2.4)(v) would follow from (2.2) if only the cubes J in (2.2) were permitted
to be parallelepipeds contained in 3Q, with sidelengths at least 6%|Q;|"".
However, it is an easy exercise to verify that one may replace the subcubes 7
in the definition of para-accretive in (1.3) by parallepipeds. Indeed, if

b(x) d.
‘|QI ) "I

for a parallelepiped I contained in Q, then there is N large, depending only
on |b|~ and c, such that if {J;}}7, is the «dyadic» decomposition of Q into
congruent subcubes of sidelength |Q|*”/N and

I*=U{J:J,NI#J)},
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then

[T*\I|
9

|5]

1 l 1
’@ Lb(x) i E Lb(X) dx) -

C
2 _2,. .

It follows that

1 | c

for at least one of the cubes J;. This completes the proof of (2.4).

We wish to define an operator T, with kernel of the form
(2.5) Ky (x,») = 21 B U0)e ()
Jsl

where the 8/ are bounded constants so chosen that | Txb, | ,.. < C and the weak
boundedness constant for T My, (the best C in (1.4) with T = T, xMp) is of
the order of k. We will see that the size and smoothness estimates (1.2) for
K, , the boundedness of |T§¥b,| by C and the weak boundedness of M, T\ M,
with constant of the order of 1, all follow independently of the particular choice
of bounded B/s.

In order to define the constants B{, let

5 »
Q0=Qk’ QI:ZQ!(’ QZ:AEka"'a Qj=(3"21 j)Qk

k-1 k-1
for 1<j< [-——7—] - In the case 0 <j < [——vi—] » we define

Bl = {1/[ elNb,(Mdy if JcCQ
i 0 otherwise

1
In the case [ jl +1<j< k-1, we define

2
64={—1/J¢’;(y)b1(y)d)’ if JiCQ_,_;
: 0 otherwise

With this choice of B{ we calim the following properties:
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(2.6) () |Tyby|,-<C.
(i) |T#b,] ;- <C.
(i) |KiCx,»)| < Clx—y|™"
' x—-x'
() 1K06,) = KO, )] + K09 = KO | < O whenever

1
|x — x| <E|x—y|,

W) sz T,CM,,1 satisfies the weak boundedness property (1.4) with con-
stant C independent of &,

i) T, ka1 satisfies the weak boundedness property (1.4) only with con-
stant C > c'k.

We begin by proving the key properties (i) and (vi) that rely on our particular
choice of B{ To see (i), fix x in Q\Q,_; for some 0 </ < [(k — 1)/2] (where
Q_1 = ). We have

k-1
Tebi09 = 3 BB | el0bi0) dy
J 4

k-1
= 2 A;().
j=0
For0</j</-2andk—[+1<j<k—1,By)x) =0 for all i since supp ¥}
ng,_,=gif x,b{(x) # 0 and so then B{f = 0 by definition. Thus A j(x) = 0 for

these ranges of j. For

k-1

l+1<j<{ ] B{-'=1/j¢{f(y)b1(y)dy

whenever y/J(x) # 0 and so A,(x) = X, ¥J(x) = 1 by (2.4)(iii). Similarly,

A;(x)= -1 for [ ]+1<j<k—l—2.

Finally, if j is one of the four remaining cases, j=/—1,,k—1—1ork — I,
we simply use the crude estimate

14,091 < 20 =1

which follows from

Bl [ elbr(»dy| < 1.
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Altogether we obtain

k-1
@ Tb®|=| X 4,0
J=
[(k-1)/2] k—-1-2
<4+ X AW+ > AW
. Jj=l+1 ji=lkk-1)/2]+1
k-1 k-1
o5 557]
_ (4 if k even
~ (5 if k odd

Since, by the same argument, |7, (x)| < 2 for x outside @, _,,,,, we have
proved (2.6)(i).

-1
5 }+land

such that the triple of J{f lies in Q4. For any bounded functions ¢ and ¢
we have

: k
To see (vi), let J denote one of the cubes JJ with j = [

(2.8) (Teo, ¥ = 2,8 “ YOOI (x)(y) dx dy.
Jsl

If ¢ and ¢ are both supported in 5/, then all the integrals in the sum on the
2
taneously intersect the supports of x//{f and qo{.' if 8 is small enough (e.g. 6 < 1/60)
by (2.3)(@), (2.4)(i), the definition of J{.' * and some elementary geometry. In
particular, if ¥ = x; and ¢ = X,;b,, then in addition, supp ga{ C 5J whenever
supp ¥/ NJ # & and so

right side of (2.8) vanish for 0 <j < [ } since the cube 5J cannot simul-

k-1

2.9)  (TiXs,bi, X,) = 22 L Vi8] LJ ©l(»)b1(y) dy dx

J=lk=-1)/2]1+1 i
k-1

- 22 L Vi) dx

Jj=lk-1)/21+1 i

e[

by (2.4)(iii). We note in passing that (2.9) shows that the norm of 7, as an
operator on L? is of the order at least k. Now choose y Lipschitz with support
in vJ, taking the value 1 on J and choose ¢ Lipschitz with support in 5J,
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taking the value 1 on (5/7v)J. Take v so close to 1 that for 0 <7 <1,

k-1

.9y KTM, 0,95 2 C, [T] 2" 0 i 1 i -

where C, is independent of k. This proves (2.6)(vi).

The proofs of (ii) and (v), to which we now turn, are essentially the same
as those given for Proposition 1 in Section 9 of [DJS2] to prove the analogous
statements for their counterexample in the case b, = b,. In fact,

ITE5:0)] = | 5 8310) [ Wity dx|
Jsl
2, . C . ..
<3 W O

by (2.3)(v), (2.3)(0), (ii), and (2.4)(v). Since I has side length at least -31-51' g,
and JY has side length &’s;, it follows that

2C _
|Txb(0)| < % 2,36 1X,J';()’)
i

6C

<
= cb

which is (2.6)(ii).
To establish (v), we must show that

(2.10) KM, TiMy, 0, ¥3| < CIOI' 2 @]l iy 1¥] Lipy

for all ¢, ¥ € C}(R"™) with support in the cube Q. We use the argument in Sec-
tion 9 of [DJS2]. The point is that we only need small integrals for one of the
b;, in this case b, . Fix a cube Q of side length s and Lip n functions ¢,  with
support in Q. Then

@11) My, TeMy 0,95 = 3587 [ V00b, W)l 0)b1 (D)) dx dy
Js1

= 3B,
J
If &’s, > s, then we estimate Bj directly by
2 367/ 1\"
(2.12) |B;| < 2 V= |[¢I|LwM252"<T>

S2n

< el \n oo =]
C (5"Sk)” lllp”L "¢||L
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using (2.3)(iv) and (ii). If &’s; < s and x/ denotes the centre of J4, then

(2.13) B, =28 j [W(x) — YeD1b, ()Y@ (9by (e () dx dy

+ 25 W(x)B] J‘j by W)@ (b1 (M) () dx dy

Now
2 . . .
Q1) (Gl < 2650 Wl Mol || ol as
< C0 50" ¥l iy, 1] e
and
@19 D)< Wl 2uiel. 3| | [ vioorsoas|ofonas

n

N
<CE Wl elol e

using (2.3)(iv), (ii) and (2.4)(v). Altogether then, (2.11)-(2.15) yield
2n

|(szTka1(p’ ¢>| %}asc 5".5‘ )n

¥l =l el =

+ 2 [CS”(B’S/C)”IWIIL”,,,||¢||L»+C ¥l -lel -

j;ajsk<s
SC" Y] =llol e+ C" Y] iy L2l 1
SC" 2 Y] Lipy 12l Lips

and this completes the proof of (2.10) and hence that of (2.6)(v).
Finally, the kernel K, (x, y) satisfies

3

Ki(x, )| < G T
K0 2) C j:lx—yl=38Js, @' s

<Clx—-y[™"

by (2.3)(d), (ii), (iv) and (2.4)(i) which proves (2.6)(iii). If |x — x'| < % |x — x|,
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then

2 . . .
|Ki(x,3) = K (X', )| < — 2 2 W) = )] el

C jilx-y|=38Js, i

SCx—x| 3 @s)7 '@ 's)™"

Jilx=y|=38Js,

<Clx—x||x—y|=""!

by (2.3)(), (i), (iv) and 2.4)()-Gv). If |y — y'| < % lx — y|, then

2 o .
|Kie(x, ) = Kielx, )| < 2 2Vmlel») - 10|

Jilx—yl=38Js; i

<Cly-y| 2 @™t

Jilx=y]=38Js;
<Cly-yllx—y/""

by (2.3)(i)-(iii) and (2.4)(i)-(iii). This proves (2.6)(iv) and completes the proof
of the properties (2.6).

Before assembling the operators 7 to form an operator 7 satisfying the
conclusions (1.6)(i)-(iv) of Case 1, it is convenient to arrange for an additional
property of the cubes Q,:

(2.16) If 30, N3Q, # &, then either s; < 8's; or 5, < 8%s,..

To achieve this by induction, suppose Q;, ..., Q are dyadic cubes satisfying
(2.2) and (2.16). Let 8, consist of the (finitely many) dyadic cubes of side
length at least &’s, and at most 6~ “~'s, whose triples intersect 3Q,,
j=1,2,...,k. Then choose Q; , ; to be a dyadic cube not in §,, and satisfy-
ing (2.2). Now define, as in [DJS2],

@.17) T=3 T

k=1 k
The estimates (1.2)(i)-(iii) and (1.6)(i)-(iii) all follow easily from (2.6)(i)-(v)
and (2.17) and it remains only to check that TM,,1 fails to have the weak
boundedness property. For this, fix /> and ¢, ¢ € C}(R") supported in 57
(associated to Qys as above) so that (2.9) holds with /3 in place of k. Then

(2.18) (TMy 0, %) = 1" X TaMy @, ¥ + 2, k™ TysMy,_ o, ¥).
1 1 k=l 1

. 3 .
If 30, intersects 3Q;s and s;3 < 6% 5,3, then the separation of the supports of
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¥/ and ¢/ associated to Qs (see (2.3)(i) and (2.4)(i)) shows that
(TiaMp 0, %) = 0.

Of course (T}sM,, ¢, ¥ also vanishes if 30,3 N3Q;s = J. Thus if
(TisMp 0, ¥) # 0,

then by (2.16), sxs < 8"5;3. Suppose that 30, intersects 5J. From ss < 8° ;5
and (2.6)(i) we have

" Tk3Mb1(X6J) | Lo = | Tisby | 1 < C.

Thus
(TesMy 0,93 = [[ Kio(x, V)b (D)) dx dy
= [[ Kes (5, 0¥ 0B: D0 (3) = Xy (e (0] dx dy
+ {[ Kiea (v, 00908, (9)X (M) dx dy
=A+ B.
Now
Al < C | [ =21l MIx =" el dxdy
SCU* Y] gl ] iy
SCU"" Y pipy 1€l iy »
and

1B = | [ TisMy, (x)009 0 )

SCU Wl i=lel .-
< Cl']|l+2n/n"‘//" Lipn l]‘p"Lipn‘

Summing in k yields

kglk—2< Tk3Mbl¢a 'l’)l < Cn |J|1 + 2/ ||¢|| Lipn ”‘l’" Lipn®

0 <7< 1, and since (1.9)’ holds for 2, i.e.
17 TaMy 0, ¥ | 2 CIIT 2 o] L Il ip s
(2.18) shows that

KTMy 0, ¥3| = CHI" 2" o] Lo ¥l i -
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Letting / tend to infinity shows that TMI,1 fails to have the weak boundedness
property and this completes the proof of Theorem 1 in the case b; and b, are
jointly para-accretive.

Case 2. b, and b, are not jointly para-accretive.

In this case, the proof is simply a discrete version of the proof of Proposi-
tion 1 in Section 9 of [DJS2]. If Case 1 fails, then we can find a cube Q,, for
each k > 0, with the property

o |
J J

1
su ——max
cubesJCp3Qk |Qk| {
With k& momentarily fixed, and J{f and \,b{.' as in Case 1 (but with § = 1/2),
define the kernel of 7 by

K, )= 20 (&s) " "0vi).

Ji:FcQ,

s

} < 4/
k

Properties (2.6)(ii)-(v) hold for T} just as in Case 1. Property (2.6)(i) now has
the same proof as (2.6)(ii) and choosing nonnegative ¢, ¢ € C*(R") to be 1 on
Q, with support in 2Q,, we have

(T ¥) 2 ka ijKk(x, y)dxdy > Ck|Qyl,

i.e. T, satisfies the weak boundedness property (1.4) only with a constant
C > c’'k. With

=1
T= —5 Tys,
k;] k2 k3

(1.6)(i)-(iii) hold and T fails to have the weak boundedness property. This
completes the proof of Theorem 1.

3. Proof of Theorem 2

The «only if» half of Theorem 2 is a simple consequence of Theorem 1. If
b is not para-accretive, then Theorem 1, with b; = 1 and b, = b produces a
linear operator T with kernel K satisfying (1.2)(i), (ii) and (iii) such that
T1e L%, and M, T, but not 7, satisfies the weak boundedness property. This
operator T satisfies the requirements for membership in C except for 71 = 0.
This however can be remedied by considering instead 7' = T — II,, where I,
denotes the para-product operator

dt
t

3.1 Hg(f)C) = L Ve * (e * B)e, * )} (X)
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where ¥, ¢ € D with

j¢=1, j¢=o, lev%ﬂ for £0,

7:(x) = t‘"n(?—)-

Since, for 8 € BMO, the kernel of Il satisfies (1.2)(i), (ii), (iii) and ITg(1) = 8
and Il is bounded on L*(cf. [CM]), it follows that T'e € and M, T, but not
T, has the weak boundedness property. This proves the «only if» half of
Theorem 2.

We now prove the «if» half of Theorem 2 for the larger class of operators
C’. Suppose b is para-accretive, T e €', so that 71 e BMO, and M, T has the
weak boundedness property. We follow the idea of the proof of Meyer’s
Lemme 2 in [M1]. Fix for the moment a cube Q with center x, and § € D with
suppf C {xeR" |x| <4,1<ig<n}andf=1on{xeR"|x| <2,1<i<n}.
Let

and

Xo(%) = 6 lx ~ %o
- 1/n
!

and x; = 1 — X,. Then ¢ = ¢X, for all ¢ in C}(R"™) with supp ¢ C Q and so we
have

(3-2) My To(x) = b(x) JK (6 Ne () — e()]Xo(¥) dy

+ o(x)b(x) j K(x, »)x0(») dy

= p(x) + q(x)

where the equalities hold in the distribution sense.
Using the weak boundedness property of M, T and the size condition

|b)K(x, »)| < Clx —y| =",

the proof of Lemme 3 in [M1] shows that

p(x) = lim L | bX)K(x, M)e(y) — o()1Xe(¥) dy
x—y|>e€

e—0
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is actually a bounded function with

(3.3) |p()] <En; _ [BOIE@ ) o) = el [xo()] dy

lx -yl
L R T

< CIb] 101" @l 1ip, -

To estimate g(x), let §(x) denote the restriction of the distribution
Txo(x) = jK 6, %0 (¥) dy

to the open cube

In analogy with the argument on the bottom of page 246 of [M1], let a(x) be
a smooth AH'-atom with support in U. Then

jd(x)a(x) dx| = l j T1(x)a(x) dx — J [K(x, ) — K(xo, ¥)a()x;(y) dx dy

since T1 = Txo + TX,; and [a =0, and so

(3.4) ] [ awacoax| < 1Tt ngo el + Claln < Claln,

by (1.2)(ii).
Inequality (3.4) shows that § e BMO (U). We will now use the para-accre-
tivity of b to estimate the average

)
w,=——1| gx)dx.
2 19| Je
For this we need

Lemma 3.5. Suppose b is para-accretive and Q is a cube in R". Then there
is pedD with

ZCZ>03

suppp C @, ol sy, S GiIIQI ™™™ and ’ Lb(X)p(x) dx

where C, and C, are constants independent of Q.
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Assuming the lemma, we have for p as above,

CZ‘WQ| < I(bW ,P)l
= ‘(MbTXO:p> + (b(WQ - q~)lp>|
<C|Q|l+2"/n|IXO|ILip1, "p"Lipn + C"b"Lw"q~"}3M0

since M, T satisfies (1.4) and |p|,. < |Q| ™" with suppp C Q, and so
Golwgl < ClOI' 27| Q| =1 + C < C.

Thus |wQ| < C where Cis independent of Q and if ¢ € C}(R"™) with suppy C Q,
then

Kq, My-19)| = [<G, o) |
<C|Q| "‘P"qu\[’”Lw,

since § e BMO (U), and
KD, My-193| S C|B] 1|07 1l Q1" " ]l iy 1¥] 1
by (3.3). Using these inequalities and (3.2) we obtain

I(T¢s ‘p)l = |<p9Mb-l¢> + <q’Mb—'1‘l/>|
S CLb] 57 1=l Q1" 2 [0l iy 1¥] Lipsy

which is (1.4) since b~ is bounded if b is para-accretive.

It remains to prove Lemma 3.5. Since b is para-accretive, there is a cube

1
Ic=
C2Q

such that
| [,pedx| > sl0]
where 6 > 0 depends only on b. Fix § € D with
suppf C {xe R |x;| <1+¢1<ig<n}, 061

and

) =1 if |x] <1, 1<ign.



PARA-ACCRETIVE FUNCTIONS, THE WEAK BOUNDEDNESS PROPERTY AND THE 76 THEOREM 35

Let
_ X—X
p(x) =1Q| 70 L
illll/n
2

where x, is the centre of 7 and e > 0 is sufficiently small that suppp C 27 C Q,
and

) [ oeb) dx( = | [ pOOIb0) dx + j(l p(X)b(x) dx

+e)I\I

(1 + eI\] o
=6 ||b||LwI—TQT—l> 5 =G

For such p we have
165y < CIOIHII™""6] 1y, < C1lQI 7177
since
8|0| < Hlb(x)dx‘ < |b] -l

and this completes the proof of Lemma 3.5 and so also Theorem 2.

We close this section by proving the remark made in the introduction that
the size condition (1.2)(i) on the kernel of T is not needed in the 76 Theorem
for L. Suppose (1.1) and (1.2)(ii), (iii) hold and that sz TMb, satisfies the
weak boundedness property with b, and b, para-accretive. Fix x and y in R”
and let s = |[x — y| > 0. By Lemma 3.5, there are p; and p, in D with

S S —n—
supppch<y’§>s supppch<x’§>’ loil ipy < Cs™"77

and
|jbi(u)pi(u)du‘ >c¢>0 for i=1,2.
Thus
(3.6) 1K) < | [[ p2)ba (0K G, by (01 () du |

< | ([ £2b, IK G, ) = K, 0)1b, @)p1 (v) du v |
* ’ ” 02 ()b, (1)K (u, V)b, (v)p, (v) du dv |
=A + B.
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The smoothness conditions (1.2)(ii), (iii) yield

|K(x,y) — K(u,v)| < |K(x,y) — K(u,y)| + |K(u,y) — K(u, v)|
<Clx—y|™"

for u e supp p, and v e suppp,, and it follows that

A Clx =y 7 bil 1o | B2l |01 1 L2 ] 11
<Clx—-y|l~"

Since (1.1) holds and sz TM,,1 has the weak boundedness property,

B = [{My, TM,, py, p,) |
<" 2oyl Lipy 102 Lips
<Cs™"
=Clx—-y|™"

Combining the estimates for 4 and B with (3.6) yields (1.2)(ii) as required.

The above argument can easily be modified to show the same conclusion
if one of the smoothness conditions (1.2)(ii), (iii) is replaced by a Hérmander
condition. If both (1.2)(ii) and (iii) are replaced by Héormander conditions,
then the conclusion is that the integral size estimates

§T<|x—u|<2,|K(x’ v)l dv < C

and

Ir<[u—y|<2r|K(u’y)| dugC

hold for all x and y.

4. Proof of Theorem 3

As mentioned in the introduction, Theorem 3 is easily proved by adapting the
proof of the 71 Theorem for L? that is outlined in Section 2 of [DJS2]-the
main tool being the Calderén reproducing formula. The following sketch will
highlight the main differences.

Choose ¢ € C”(IR™) with support in the unit ball and mean value zero so that
- the identity operator is given by the Calderén reproducing formula

“4.1) I= r ¢s¢s£
0 N
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where

bs(x) = s~ "P(s ™ 'x)

and in the context of an operator, the symbol ¢, means convolution with
¢,(x). Formally (4.1) is

(asop
1= [

and it is an easy matter to find ¢ with this property. For fand g test functions
we have

4.2) (Tf,g> =IT If, g

ds dt

=j JI <¢s¢sT¢t¢tfvg>_—
o Jo s t

_ f j (16, Td10.S, deg) 2= 2
o Jo s t

and thus we need to estimate the kernel of the operator ¢,7¢,, which we
denote by ¢,T¢,(x,y). We have

Lemma 4.3. Suppose T has kernel K(x, y) satisfying (1.2)(i) and (ii) (but not
necessarily smoothness in the second variable, (1.2)(iii)) and that T1 = 0 and
T has the weak boundedness property (1.4). Then

s s \¢ (svi)
‘°g7H[(7> “] [GAD) + X~y

where the symbols N\ and V mean minimum and maximum respectively.

16 T6,%,9)] < C[l .

Assuming the lemma for the moment, we have

[CRENCHIIRS Cw(§>M(¢,f)(x)

where
w(@) =1+ |logr)(r<al)
and M denotes the Hardy-Littlewood maximal operator. Setting
6(r) = r~%w(r),

we obtain
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@4 [KTF, 8] <j j M “6.1), “|¢>sg|>e< )‘f o

1/q
<([; [wranen(3) 5 71"
s t
s Lrerre(3) 5 517
s
1/q’
<U M(t™ ¢, f)(x)? } U |s*,g(x)|7 } >
since JB<£>£ Jm0<—>£<oo for0<a<e,
0 t) s 0 t) t
© 1/q L] 1/q
<U<j [M(t-“qs,f)]qﬂ) (j |s°‘¢sg|"’—di>
0 t P 1] s

L
© _ dt 1/q © . ds 1/q'
(j |t ad’tfqu) <J |s“¢sg|? —>
0 0 s

by the Fefferman-Stein vector-valued inequality for 1 < p, g < o ([FS]),

= C1fgealtl e

Since (F%-9y = F,*¥, it follows from (4.4) that T is bounded on F% for
l<p,g<wand 0<a<e.

r

<

y 2 yid

Returning now to the lemma, we prove the estimate (4.3) in the crucial case
where s < ¢ and |x — y| < Ct. The three remaining cases: s < ¢ and |x — |
>Ct,t<sand |x—y| <Cs,t<s and |x — y| > Cs, are similar but easier.
Let no € C”(R") be 1 on the unit ball and 0 outside its double. Set 9, =1 — 7,.
Then following the proof of Lemma 7 in Section 6 of [DJS2], we have

4.5) b T, (x,) = H os(x — w)K(u, v)o,(v — y)du dv

= j os(x — WK(u, v)[o,(v - y) — ¢,(x — Y] dudv,

since T'1 = 0, and so

& Th,(x,y) = j os(x — WK(u, v)[o,(v — y) — d,(x — y)]no< >du dv

” és(x — W[K(u, v) = K(x, v)llo,(v — y) — ¢,(x — y)]m< >du dv=A+B
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since 1 = 5y + 7; and ¢,1 = 0. Now with Y(u) = ¢,(x — u) and

e(v) = [¢,(v — y) — P,(x — y)]no[ 0 ; x] ’
|A| = I(T‘Py Kb)l < Csn+2"||¢“mp,, "‘“|Lipn’

by the weak boundedness property (1.4),

< Cs"””[(%)t'"s""} {s™"s™")
< C<5>t-"
t

which is dominated by the right side of (4.3) when s<¢, |x — y| < Ct and
0 < e < 1. Using the smoothness of K(x,y) in x, (1.2)(ii), together with

_ _ _ lU—X| e—n
|¢:(v = ») — du(x y)l<C<—t+|v——x] o,

S ‘ -n IU—Xl e—n
mef,_ ool sy o

s\ -
sCsEt"’J lv—x| """ “dv+ C<—> t'"j |lv — x| ~"dv
lv—x|=¢ t tz|lv—x|lzs

<c<1 +1ogi><i> rn
s t

which is again dominated by the right side of (4.3) when s<¢ and
|x — y| < Ct. This proves (4.3) for this case and completes our sketch of the
proof of Theorem 3.

Remark. Theorem 3 remains true in the case p = g = 2 if the condition

dxds

T1 = 0is relaxed to the condition that |s~ ¢ (T1)(x)|? is an a-Carleson

measure for L? (i.e. (4.7) below holds). More precisely, if 71 # 0, then we
must add to (4.5) the correction term

Xis=cn j ¢s(x — WK (u, V)¢, (x — y) dudv = ¢ (T1)(X)p,(x — ¥)Xis<cn

and estimate in (4.2) the new term
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@ | [T [ x=caornmsie - nosomsmaar % &

=j ¢S(T1)(x)U J <¢>,(x—y)<1>,f(y)dy—‘-"f}zs,g(x)afx—“’i
0 JR® c-1s JrRN t s

=j 6o(TDOOP, f()beg(x) dx-2
0 JRr S

where
-]

dt
Ps = J. ¢t¢t_t'

satisfies |Py(x)| < Cs™" and, if ¢ * ¢(x) = 6(|x|) is radial, then

© |X‘ Cs~1)x|
P,(x) = j t'"0< >— = |x|~ "j 0()r"tdr=0
C-1s t t 0

for |x| > 2C™ s, since ¢ * ¢ is supported in double the unit ball and has mean
value zero.
The integral in (4.6) is at most

172
<”R |P.fO)? Is“"¢,(T1)(x)|2dx—> <ﬁ IS“¢sg(x)|2dx—>

and since the second factor is | g "F «.2» duality shows that 7" will be bounded
on F 2 provided (with f = I, k)

@7 ﬁp lPslah(x)lzls'“c/»s(Tl)(x)lzdx%scj ) dx
’:'+1 R’l

for all 4 in L%(R™). Characterizations of (4.7) can be found in [KS] and [NRS].
Finally, since the integral in (4.6) is

L” j‘o &, Lo (TDIP,Sf ](X)%g(x) dx = L" I, f(x)g ) dx

by (3.1), it follows that T is bounded on F 2 if and only if IT,, is bounded
on F »2_ (If T is bounded on F 2, then T has the weak boundedness property
and so T1 eBg“’ by [M2]. It then follows that I, satisfies the standard
estimates (1.2) (see [CM]) and the weak boundedness property is easily checked
to hold. Thus 7T —II,, is bounded on F$? by Theorem 3.) While (4.7) is
sufficient for this, we do not know if it is necessary.
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