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Abstract

In this paper we give a proof of the existence and uniqueness of smooth solu-
tions for the nonlinear semiconductor Boltzmann equation. The method used
allows to obtain global existence in time and uniqueness for dimensions 1 and
2. For dimension 3 we only can assure local existence in time and uniqueness.
First, we define a sequence of solutions for a linearized equation and then,
we prove the strong convergence of the sequence in a suitable space. The
method relies in the use of interpolation estimates in order to control the
decay of the solution when the wave vector goes to infinity.

1. Introduction

This paper is devoted to the Boltzmann equation of semiconductors, which
is the basic equation of the kinetic model of semiconductors. In this model,
each type of carriers is described by a distribution function f(x, k, t), where
x € R? is the spatial position, k € R? the wave vector of the carriers and 7 > 0,
the time. We will denote by d the space dimension, which will be equal to 1,
2 or 3.
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If all the physical constants are taken equal to unity, the Boltzmann equa-
tion, which gives the evolution of the distribution function, is written

af B
(1.1) 57 TRV~ Ex DVeS = Q1)

f(x! k! O) = fO(x! k)

where the electric field E(x, ¢) is coupled to the distribution function by the
Poisson equation

_ X—Jy
1.2) E(x,t) = C(d) Ld = p(y,t)dy
being
1.3) p(x, 1) =j‘ S, k, t)dk
R

the electric charge.
The velocity v(k) is a known function deduced from the band diagram and
the collision term Q(f) will be given here according to

(1.4) QN )x, k, 1) = ‘Ld [SCe, k', ) fCx, k', (A = f(x, k, 1)

- S(xa k’ k’)f(x’ k! t)(l _f(x’ k,s t))] dk’

where S(x, k, k') dk’ is the transition rate for an electron at the position x to
be scattered from a state k, into a state belonging to a small volume dk’
around the state k’.

We refer the reader to [1, 2, 3] for the physical background of (1.1)-(1.4).
We have neglected, in our model, the electron-electron scattering as well as
the generation-recombination processes.

In this paper, we show that the method used by P. Degond [5], to prove
the existence of solutions for the Vlasov-Fokker-Planck equation, is also
applicable to the Boltzmann equation of semiconductors, where nonlinear
integral operators are included. So, we give a proof of the existence and
uniqueness of global in time smooth solutions of (1.1)-(1.4) when the space
dimension is 1 or 2. For dimension 3 the method used only allows to prove
the existence and uniqueness of local in time smooth solutions. The global in
time existence for dimension 3 is still an open problem, like usually occurs in
Vlasov-Poisson type equations. The outline of the proof is essentially the
same as in [5]. We define a sequence of solutions (f”,E™) for a suitable
linearized equation and then we prove the strong convergence of this sequence.



GLOBAL EXISTENCE OF SOLUTIONS FOR THE NONLINEAR BOLTZMANN EQUATION 45

We have used the linearization proposed by F. Poupaud in [4]. In this last
reference, a proof of the existence and uniqueness of the semiconductor
Boltzmann equation is given, but when all the integrals on the wave vector
space are taken over a bounded domain. So, the control of the electric charge
is not there a problem. However, in order to control the electric charge, when
the integral which defines it is taken over R?, we need to estimate the decay
of the solution when the wave vector goes to infinity. This will be obtained
following the idea of [5] and using some estimates on the collision integral.

The outline of the paper is the following: in Section 2, we state the existence
and uniqueness theorem. Section 3 is devoted to the definition of the iterative
sequence on which the proof is based. We also give some a priori estimates.
In Section 4, we obtain the basic estimates which allow to prove the con-
vergence of the procedure in Section 5.

2. Existence and Uniqueness Theorem

We define the functional space

X = {@(x,7,2): R? x R x R? > R: o(x, y,2) € L°(R? x R, L'(R%))
and (1 + |2[)"?e(x, y,2) e L°(R X RY, L'(R)}

with v > d.
We assume the following considerations

2.1 S, k, k) =0; S,k k')ex
2.2) |V, k. kS| €X
(2.3) V. v(k) € L*(R%).

Now, we can state our main result.

Theorem 2.1. We suppose that the initial data f,(x, k) satisfies
2.4) 0<fo <15 foe WHIRM); (1 + [kI)*( fol + |Df) e L=(R?%); v>d
Then the semiconductor Boltzmann equation:

a
(25) a—{ + v(k)vxf_ E(xs t) Vk.f= Q(f), f(x! k, O) =f0(x’ k)

2.6) QUf)x, k, 1) = L" [Sx, &', K) f(x, k', )1 — f(x, k, 1))

— 80, k, k) f(x, k, (A - f(x, k', )] dk’
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@.7) E(x, 1) = C(d)j X7V o, 0)d
. ’ rd |x _ yld 4 y’ y

2.8 px, 1) = j‘ Sk, 0)dk
R’
with the assumptions (2.1), (2.2) and (2.3), admits a unique classical solution,
in a time interval [0, T[, where
T= o0 l:f d = l or 2,

and T is finite and depends on f,, S and v if d = 3.
This solution is such that

2.9 0<r<1

(2.10) feLy (0, T[, Wh'(R*)

(2.11) (1 + [k7*(| f| + |Df]) e L (10, T, L(R*?)
@.12) EeLy ([0, T[, W"=(R%).

3. The Iterative Sequence

As in [4], we define the following operators

3.1 A, K, 1) = jS(x, k', k) f(x, k', t) dk’

(3-2) B(f)(x, k, 1) = jS(x, k, k(1 = f(x, k', 1)) dk’.

Then, the collision term Q(f) can be written
Q(f)(x’ k, t) = A(f)(x7 k’ t)(l _f(x’ k’ t)) - B(f)(xs ka t)f(x’ k’ t)

and the Boltzmann equation (2.5) is given by

Y BV - Ex, 0V + NS = A
(3.3) ot

MS) = AS) + B(S)

The proof of the Theorem 2.1 will be based on the following iterative sequence
", E"):
We begin with

(34) fo(x, k: t) =f0(x’ k)
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Then, if we consider that f” is known, we can compute the charge p” and
the electric field E" according to

o, 1) = f P05, ke, £) dk
3.5)
E"(x, 1) = C(d)f T L

Finally f**! is defined as the solution of the following equation:

afn +1
(3.6) ot

f"+ l(x; k’ O) =f0(x’ k)

+ VR Ve f " = E"OG O Vi fM T NS = AT

Now we can state

Proposition 3.1. The functions " of the iterative sequence defined by (3.4),
(3.5) and (3.6) satisfy:

@ o<f"<l1
(i) f™ are uniformly bounded in L*([0, T*]; L'(R*?)) for any time T*.

Proor. We assume that (i) holds for f”. In view of (2.1), (3.1) and (3.2) we
have:

MM 20, AU 20

So since the source and the initial data for the equation (3.6) are non-negative
we get

fn+l 20‘

In the other hand we can also write

ad
[—67+ v(k) Ve — E"(x, 1) Ve + N(f7) |(1 = " 1) = B(f™),

(1 —fn+1)(xs k; 0) =1 _fo(x, k) 2 0
The same argument leads to
1-f"*1>0, ie f"*!<I1.

In order to prove (ii) we integrate (3.6) and we use the non negativity of \(f™)
to obtain
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1ol < 16k + [ 1o as
Now, thanks to (2.1) and (2.4) we get
A | = J‘ S0k S)<J S(x, k', k) dk) dx dk’
A FEOIN
17 OL < Lol + G [[ 1770

Now if we note by 8(¢) the solution of the linear equation
5(6) = C18), 80 = | /ol

it is a simple matter to check that

3.7 | f"(@®)|, < 8(¢) for every t>=0.

So, if we define C = Max 6(¢) we have
o, 7%

1f"®)|1 < C(fo, S, T*) forevery tel0,T*], T*<oo

and (ii) is proved.

4. The Basic Estimates

In order to obtain the strong convergence of f" we need to control the gradi-
ents of the functions. Furthermore, the use of interpolation inequalities (A.3)
and (A.4) of Appendix requieres L™ estimates on p" and V,p". There will be
essentially obtained, as in [5], using some estimates on the decay at infinity,
in the wave vector space, of f".

Lemma 4.1. We assume that f, satisfies the hypotheses (2.4). Then we have
for every n

@) p" is uniformly bounded in L*([0, T*], L*(R%)),
(i) E" is uniformly bounded in L=([0, T*], L™(R%)),

where

T*<oo jf d=1 or 2,
T*< T finiteif d=3.
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Proor. Multiplying equation (3.6) by (1 + |k|*)"? and defining
Y'x, k, 1) = (1 + |k|>)"*f(x, k, 1)
we get

aYn+1
at

4.1) + (k) V, YY" — E"x, )V, YL N(MY" T = R} + RS

RY™ = —y(E" k)1 + k|27
3 =AM + [k
From (4.1) we can obtain
“.2) 1Y" ' Olw < | Yolw + [ (IRT ' 0] + [R5 ] ds.
But,
R3(s) = (L + [k [ SCx, k', k) .f"(x, K', 5) Ak’
<IY"O) o + K" [ S0 k', k) dk’
and thanks to (2.1)
4.3) IRZ®)]= < CS, N Y™6) |-
On the other hand
(4.4) IRT* ) S YIE™S) | |1 + KT D2 H$) |-

Then, using the interpolation inequality (A.1) of Appendix and Proposition
3.1, we have

@.5) A+ KPP )| S CONSTIOIS Y ) 6
SCY™ @)LV
Now, using (A.2), (A.3), (3.7) and again Proposition 3.1

|E™(5) | < C@)| 0" 1?10")| &~

1o"@ 11 = 1f"®117? <86V = ()
4.6) 10" | < COHL )| SHS)E P YY) |
< C(, d)| Y7(5)| 2.

Thus,

4.7) IE™$)] < C(v, d)o(s)| Y™(s)| €~ P,



50 F.J. MUSTIELES

So, (4.7) becomes

.8) [Y" O <O+ G [ 1Y(9)] s

t - -
+ C3 JO SD(S) “ Yyt l(s) "01° 1/'y[| Yn"gi /v ds

where, from now on, C; will denote constants depending on f;, S, ¥ and d.
In order to estimate | Y"(t)|, we define

Ya() = Max {1, | Y"()) ]}
If d < 2, (4.8) simplifies into
Vns1@ S C1+ G, [ y(s)ds + Cs 1 o(shyn7 Y () (s) ds.
Now if we consider the solution «(#) of the linear equation
a(t) = [C, + Gio(D)]a(?); a(0) = C;
it is easy to prove [5] by induction on » that
Ya(t) <a(t) forevery t>0 and neN
and thus
49 |Y'®)|e<C(fo,S,T*,d,"), tel0,T*], T*<o; neNlN.
If d =3, (4.8) leads to
Va1 S Cy+ G, [ y3* N0 ds + Cs [ o()yn 1 ")y (s) ds.
Now, considering the solution «(¢) of the equation
a(?) = [C, + Cie®)]a(®)' V7 a(0) = C,

which exists in a time interval [0, T'[, where 7 depends on f,, S and 7 (through
C;, C, and G;j), the same reasoning can be applied to obtain

4.10)  |Y"(t)]|w < C(fy, S, T*,7) tel0, T*], T*<T, neN.
Now, the propositions (i) and (ii) are obvious from (4.6) and (4.7).
Lemma 4.2. We assume that f, satisfies the hypotheses (2.4). Then, con-
sidering Df as a vector '(V,.f, Vi f), we have:

(i) Df" is uniformly bounded in L*([0, T*], L'(R*%) N L™(R*?)),
(i) V,p" is uniformly bounded in L*([0, T*], L(R%),
(ii) V,E™ is uniformly bounded in L>([0, T*], L*(R%)),
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where

T*<ow if d=1 or 2,
T*< T finiteif d=23.

Proor. If we differentiate equation (3.6) with respect to (x, k), we obtain
4.11) %(Df "1 + v(k)V(Df" ) — E"(x, V(DY) + MDD

= DA(f") —f"+lD)\n + mann+1

= DA(fn)(l _fn+ 1) _fn+1DB(fn) + manfn+1

where 9" is the following matrix decomposed in 3 X 3 blocks

0 VE"
m" = .
—Vkv 0

Now, multiplying equation (4.11) by (1 + |k|?)*’? and defining
Z"(x, k, ) = (1 + |k|?)"*Df"(x, k, 1)
we get

aZn+ 1
at

4.12) + v(k)V,Z" Y — E™(x, )V, Z" T+ N2 !

1 1
=P+ Py + P+l + Py

P} = DA(S™( — f"* )1 + [k[)”2

Pg - _fn+lDB(fn)(1 + lkll)'y/Z
P731+1 — —'Y(En, k)(l + |k|2)(-y—2)/2Dfn+1
P:+1 — mnzn+l‘

From (4.12) we obtain

4.13) |Z"'(t)]»

< 2o + j;lIIP'{(S)IIw+ |P)]w + [P5*(9)]w + [ P3*1(5)] o] ds.

From now on, we will denote by y;(¢#) some known functions depending on
Jo» S, v and d; and obtained from the functions «(¢) defined in Lemma 4.1.
So the functions y;(¢) will satisfy

() e L*([0, T*])
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where T* < o if d =1 or 2, T* < T finite if d = 3, and T depends on f;, S
and 7.

Estimate on P}

1PI(O) ] < |1 = f" 1O ]| A + [£D?DAS™) |
< 1A + |kP2DAS™@) | -

But

(1+ KP2DAU™ = (U + K72 [V, SCx, k', K).S "k, K, 1)

+ (1 + |k j S, k', k) V, 1 f7(x, k', ) d.
So, we have

PO < 1Y O]+ —P72 19,806 &' ] die | +

+ 12701 O + k72 [ S b, Ry k|
and using hypotheses (2.1) and (2.2)

4.14) [P1(t)] < C(v, S)(et) + | Z7(2) | )
<SUO1 + |Z270) ] )

Estimate on P
P2 < [Y"* ') | DBUMO)] -
But

DB(f™ = [V, 1S, k, k)1 = f705, k', 00 dk” = [ SCxe, b, KV oS, K, ) .
Thus,
IDBUMO o < | [ V806 b k)| k| + 12700 o| [ S06, ko k0 ak |

and again from (2.1) and (2.2)

4.15) |DB(f™)(#) ]| < CS)(1 + |Z7(#)] )-
So, we have
(4.16) |P2() | < CS)a(@®)( + | Z7(2)| )

<00 + [Z270)] ).
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Estimate on P *!

[P} O] S VIE"@®)]o (1 + |k2Df" (1) |
and thanks to (4.7)

[P+ (1)) < CCv, )p@)a(t) ™D 2" (1) -

We recall that the function ¢(¢) = 8(t)*/¢, where 8(¢f) was obtained in Proposi-
tion 3.1, belongs to L*([0, T*]), for any T* < oo,
So, we get

(4.17) 1PV O] < YO Z7 (D) w-

Estimate on P} *!

P2 (O]e < |M' D] 2" (O] -
We use (2.3) and the interpolation inequality (A.4) to obtain
M (1) | < C@)1 + [p"t) o[l + Log (1 + |V:0"®) ] + [0"(®)]1]-
Now, from (3.7) and (4.6)

4.18) M) < COv, DL + ()1 + Log (1 + [Veo" @) | )] + 8()]
< YOIl + Log (1 + | V,:0"(1) | )]

But we have
Veo"(t) = [ V", k, 1) dk.

So, applying the interpolation inequality (A.2) we get

(4.19) 196" 01 < | [ 1970 b, 0] ak | < €O ) 200
and thus,
4200 [P O)a < ¥sOIL + Log (1 + [ Z"OIIIZ" O]

So, from (4.14), (4.16), (4.17) and (4.20), equation (4.13) becomes
@21) 2" Ole < 1 Zola + [, Y66 + [ Z76) | + 127 16)| ) ds

+ [t ¥s@1Z" ©)] o Log (1 + 127()] ) ds.
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In order to estimate |Z"(f)|. we define the function
Z,,(t) = Max {e’ Hzn(t)”eo}
and we obtain from (4.21)
2 1(8) S Ca + [ ¥1()@n 1 1(5) + 24(5)) Log 2,(5) ds.
Now, we consider the differential equation
B(f) = 2y,(NB() LogB(t);  BO) =C,
whose solution
B(2) = exp [(Log Ca)exp [ 207() dS]

exists in a time interval [0, T[ with T = o if d = 1 or 2, T finite and depending
on fy, S and v if d = 3.
So, the same argument as for Lemma 4.1 proves that

4.22) 12" < B@ < Cfo, S, T*,7,d);

T*<oo if d=1 or 2

T<T if d=3 , and neN.

for every te€]0, T*] {

Now, propositions (i) and (iii) are obvious from (4.18), (4.19) and (4.22).
In order to finish the proof of lemma, we have to estimate |Df"(¢)|;.
From (4.11) we can write

“.23) |Df"T' Ol

<1Dfols + [ IDAU™Os + |/ 'DNSME) 1 + 190DF ™ 5)]1] ds.
By considering the estimates (4.22) obtained above, we have
L DNSMO11 < DA™MD + IDBUMO IS @]
and thanks to (4.14), (4.15) and (3.7)
(4.24) [/ IDNSMO ] < ¥s (D)
Using (4.18) and (4.19),

(4.25) ["Df"** @), < 1M | |DF" D)1

<
<LO|DfO],.
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IDAGMO, < [[ 76 k', 1y dxdke [ |V, SCx, k', K| dk

+ [[ 1V S, ks 1) dx | [ SCx, K, k) k.
Applying hypotheses (2.1) and (2.2), and thanks to (3.7) we have

CONS Ol + 1D ®)]1]
VeI + | D" (@) ],

So, from (4.23), (4.24), (4.25) and (4.26) we obtain the following Gronwall
inequality

(4.26) | DA(SMD]

N N

IDF" @)1 < 1Dl + [ ¥n@ + [DF"*©)ls + D)) ds.

Now if we use the same reasoning as for estimates on Y"(¢) and Z"(¢) we can
write that

(4.27) IDf" )] < Cfy, S, T*, 7, d);

T*<ow if d=1 or 2

N.
T*<T if d=3 ; and ne

for every te€l0, T*] {

Thus, proposition (i) is proved from (4.22) and (4.27), and the proof of Lem-
ma 4.2 is finished.

5. Convergence of the Iterative Sequence

We consider an arbitrary finite time 7* (T* < T(f,, S, 7) if d = 3). Thanks
to Proposition 3.1 and Lemmas 4.1 and 4.2, we have got the following con-
vergences of subsequences

(5.1) fr=f in L=([0, T*],L°(R*)) weak-*
(5.2) (1 + K> =1+ |k|)7%f in L=(0, T*], L"(R*%)) weak-*
(5.3) (A + |k»*Df" = (1 + |k|»"*Df in L=([0, T*], L(R*%)) weak-*
(5.4) p"—p in L([0, T*], W"=(R?%) weak-*
(5.5 E"—E in L>(0, T*], W">(R%) weak-*.

To pass to the limit in the non-linear terms of equation (2.5) we need a strong
convergence. So, we state

Lemma 5.1. The functions (f",E"™) of the iterative sequence defined by
(3.4), (3.5) and (3.6) satisfy:
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(5.6) fr—f in L=([0, T*], L\(R*®)) strong
5.7 E"—E in L™(0,T*,L*(R%) strong

ProoF. The function f™*! — f" satisfies the following equation

(5.8) %(f”+1 =)+ vV (" = ) = EMx, V(T - )

+ NS =T =
AU =AU + B 1) = ETTHG )V + M = NS

Now, integrating (5.8) we can obtain
69 U =MOL< [ U1+ 10561 + Q5G] ds

Qi =(E"— E" YV Sf"

Q3 =AM - A7

Q5= N/ = NSNS
Estimate on Q7
We can state
(5.10) 101®[: < Cs| (™ = D)

The proof of (5.10) can be found in [5] and is omitted here. The idea of the
proof will be used in the proof of uniqueness.

Estimate on Q3

Using (2.1) we get

(5.11) 1031y < [[ 1" =" Mee, K, ) dedk’ [ Sex, k', k) dk
<SCEONS™ =" H9 |-

Estimate on Q}
|G D =MD O] < 1AGH = AU+ 1B = BUENE)] -

But

|BU™ = BUNMO: < [[ 1" =1 Mx, k', ) dxdk’ [ Sex, k, k) dk.
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So, applying (2.1) and (5.11) we have

(5.12) 1Q36) [, SCOI™ = "N, -
Now, from (5.9), (5.10), (5.11) and (5.12) we have

t
uv“hﬂmmsqﬁwﬂ—ﬂﬂwmw

cit”
<=5 Max_|(f! =[O0,
n: tefo, 74
which proves (5.6).
Now, it is clear that
(5.13) p"—p in L0, T*],L'(R%) strong

and using the interpolation inequality (A.3) and (5.4)

[(E" = E)(®)| < C@)] (0" — p)O|E V(0" — p)(®) |1
<G " - p®)| 1

which proves (5.7) and that the electric field £ found in (5.5) satisfies (2.7).

From the convergences (5.1)-(5.7), it is easy and classical to prove that the
function f found in (5.1) satisfies equation (2.5) for almost every time, and
that, since T* is arbitrary, Propositions 2.10, 2.11 and 2.12 are satisfied. Pro-
position 2.9 is obvious from Proposition 3.1(i). In order to finish the proof
of Theorem 2.1 it remains to prove the uniqueness.

Let (f1,E,) and (f, E,) be two solutions of (2.4)-(2.8) satisfying (2.9)-
(2.12). The function f; — f, satisfies the following equation

(5.14) %(fl = 1) + v()V(fy — o) — EVi(fy — o) + MU — o)
= A(f1) — A(S) + (E) — E)Vi o + (M) — MD)L2

and integrating (5.14) we get

5.15) [(fi - H)Ol: < L[n A - AUDO)

+ [(E; — E)Vie )6) |1 + |(MS) — M) |11 ds

But, as in the proof of Lemma 5.1

(5.16) [(A(f) — AUS |1 + [(MSD) = MNVLG) ] < G| (fi = HG s
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and
I8 - Byl < [[ (s 9 1B, - B, 9] vk

< [ l01(¥,5) = p2(3, )| dy H E_—;_l‘m_ |Viefa(x, k, 5)| dx dk.
Now, using (A.3), (A.2),

J\J-lx—ylg_— ‘kaz(x,k S)I dxdk

1d
< <jj |V fo(x, Kk, )| dxdk> <

< CO, DIDALG VA + [k D)€~V

>(d —1y/d
o

j\ lka2(°’ ka S)| dk

and thanks to (2.10) and (2.11)

(.17 [ (1 — Ey) Vi 2)©$) 1 < Gy j 101, 8) — p2(¥, 5)| dy
<G| -G

So, from (5.15), (5.16) and (5.17) we get

I = O < Cro j [ - 1)) ds

which proves that

[(fi=f)@®]1=0 forevery fand so f;=,;

and the proof of Theorem 2.1 is finished.

APPENDIX. Interpolation Inequalities

Lemma A.1. For a function f(k): R? - R, we have

(A.D) |1+ (KDY D2f | < CONAIA + K2 f 171

A2) j|f<k>|dk< Con )| FI- 271 + KBFIL for v>d.



GLOBAL EXISTENCE OF SOLUTIONS FOR THE NONLINEAR BOLTZMANN EQUATION 59
Proor. See [5].

Lemma A.2. Let p(x) be a function which belongs to L'(R%) N W *(R%) and
let E(x) be such that

B = jﬁpm dy.

Then we have

4.3 IE]. < C@lol 1o €2
(A-4) [VE o < C@I1 + [p][l + Log (1 + |V + o] 1.

Proor. See [5, 6, 7].
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