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1. Introduction

On C" consider the 2# linear differential operators

_ _ -1
n o Z,=3,-

i ZZj, j=l,2,...,n.

-

(1.1) Z,=9,+

Together with the identity they generate a Lie algebra #” which is isomorphic
to the 2n + 1 dimensional Heisenberg algebra. The only non trivial commuta-
tion relations are

(1.2) [Z.
The operator L defined by

L= Ls 7.+ Z

L = ~—2—j§1 (Z,2,+ 2,Z)

is nonnegative, self-adjoint and elliptic. Hence it generates a diffusion
semigroup T*. Following Stein [8], we study g and g* functions associated to
this semigroup and apply the results to prove a multiplier theorem for the
Weyl transform.

The above operators in (1.1) generate a family of ’twisted translations’ and
using them we can define ’twisted convolution’ of functions on C”. It turns
out that the operator g is defined by a twisted convolution operator whose
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kernel is of Calderén-Zygmund type but it takes values in a Hilbert space.
Also twisted convolution operators with Calderon-Zygmund kernels can be
thought of as ordinary convolutions with the kernel having an oscillatory
factor. Such singular integral operators, called oscillatory singular integrals
have been studied by Ricci and Stein [5] and Chanillo and Christ [1]. We study
the g functions using oscillaroty singular integrals whose kernels are taking
values in a Hilbert space.

As an application of the LPS theory we prove a multiplier theorem for the
Weyl transform. The Weyl transform, which we denote by r takes functions
on C" into bounded operators on L*(R"). It enjoys most of the properties
of the ordinary Fourier transform. In analogy with the definition of Fourier
multipliers, we can define Weyl multipliers. In [4] Mauceri has studied Weyl
multipliers and has given sufficient conditions on an operator M € B(L*(R"))
so that it will be an L” multiplier for the Weyl transform. In this paper we
are concerned only with multipliers of the form ¢(H) where H is the Hermite
operator.

The multiplier theorem of Mauceri follows form a modified version of the
Calderon-Zygmund theory in the general setting of homogeneous spaces devel-
oped by Coifman and Weiss [2]. On the other hand we follow the method
used by Stein in his proof of Hormander-Mihlin multiplier theorem for the
Fourier transform. The same method was successfully employed by Strichartz
[9] to prove a multiplier theorem for the Spherical Harmonic expansions.
Recently the author [11] used the LPS theory for the Hermite semigroup
to prove a multiplier theorem for the Hermite expansions.

The plan of the paper is as follows. In the next section we briefly review
the relevant facts about twisted convolution and the Weyl transform and state
the main results of the paper. In Section 3 we apply Ricci-Stein theory of oscil-
latory singular integrals, after making necessary modifications, to study the
functions g and g¢. Finally, in Section 4 we prove a version of the multiplier
theorem for the Weyl transform.

2. Preliminaries and Main Results
Let
w(z, V) = exp <-—élm (z, 5))

and let dvdv stand for the Lebesgue measure on C". Then the product

@1 fxe@= [ /@~ vgW)a, v)dvds
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is called the twisted convolution of the functions f and g on C". It is well
known [3] that w satisfies the cocycle identities

(@) w(z,0) = w(z,2) = (0,2) =1
) w(z + v, Wuw(z, 1) = o(z,v + Wuw(v, u)

and that there exists an irreducible projective representation W of C” into a
separable Hilbert space H, such that

W(z + v) = w(z, )y W(2)W(v).

Given a function fin L}(C") its Weyl transform 7(f) is a bounded operator
on Hy, defined by

2.2 (f) = | S@W () dzdz.

The Weyl transform enjoys many of the properties of the ordinary Fourier
transform. Indeed we have an analogue of the Fourier inversion formula:

(2.3) f@@) = 2m)""tr (W(R)*7(f))
and the Plancherel formula:
(2.4) 1£13 = Cm) " 17N ks

where tr is the canonical semifinite trace on the algebra of bounded operators
on Hy and || is the Hilbert-Schmidt norm. Moreover, the Weyl
transform of the twisted convolution is the product of the Weyl transforms,

2.5 7(f % &) = 71(N)7(g).

Let A" be the Lie algebra generated by the following differential operators
and the identity:

2.6) Z=0,+%, Z=3-

Here 9, = 3/9z; and 5j = 0/0z;. Let U" stand for the universal enveloping

algebra of A". Let us take HW=L2(IR”) and consider the Schrodinger
representation defined by

2.6y W@)$(E) = exp {i(x, -;—y + E>}¢(€ 1)

where z = x + iy € C". The representation W extends to a representation of
the enveloping algebra denoted by dW. From (2.6) it follows that for every
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fin the Schwartz class

@7 n(Z,f) = 7(f)dW(Z) = ir()A}
@2.8) 7(Z,f) = 7(f)dW(Z) = ir()A;
where A ; and A7 are the ‘annihilation’ and creation operators defined by
2.9) A; =0/ + &, ji=1,2,...,n
(2.10) Ar= —a/agj + &, j=4L2,...,n
Let
1 n n
H= ) (4;A%+ AA) =,~§ (—8%/083+ £2)

be the Hermite operator. Let {®,} be the family of n-dimensional Hermite
functions which form an othonormal basis for L?(R") and let P, be the projec-
tion onto the eigenspace spanned by {®,: |o| = N}. Then H has the spectral
resolution

(2.11) H= Z (2N + n)P,,.
N=0
If we let
1 2 - -
L= —Ejgl (Zij + Zij)

then it follows that 7(Lf) = 7(f )H or more generally
(2.12) (@) f) = 1(S)d(H).

Let 77 be the semigroup generated by the operator L. Then following Stein
[8] we define the following Littlewood-Paley g and g* functions.

@13)  g(f,2? = [ 18, T @I at

@14)  a(h’ = [P @) dt

(2.15) gi(f,2)? = j:jcnt“"(l +t7 Yz — v|») k9, Tf(v)|* dv dv dt

It is easy to verify that g(f, 2) < cgx([; 2), k = 1. The following theorem is our
main result on the boundedness propertities of g and g* functions.
Theorem 2.1.

@ Clflp< e < Clflp 1<p<oo.
() |ex(NI, <Cl|fl,, p>2 provided k > n.
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The proof of this theorem will be given in the next section. We then want
to apply this theorem to prove a multiplier theorem of the Weyl transform.

Recall that the Weyl transform takes functions on C” into bounded oper-
ators on L?(R"). In analogy with the definition of Fourier multipliers, we say
that a bounded operator M on L*(R") is a Weyl multiplier on LP(C") if the
operator T, initially defined on L' NL” by

(2.16) (T ) = (/)M

extends to a bounded operator on L”(C"). Sufficient conditions on the oper-
ator M have been obtained by Mauceri [4] so that T,, is a bounded operator
on LP(C™. In this paper we consider only multipliers M of the form ¢(H)
where H is the Hermite operator.

To state our result on the multiplier theorem for Weyl transform we in-
troduce the following forward and backward difference operators

A+ d(N)=o(N + 1) — ¢(N)
A-¢(N) = d(N) — o(N - 1)

Theorem 2.2. Suppose that the function ¢ satisfies
(2.17) |A* AT ¢(N)| K CN~&+m

with k, m positive integers such that k + m=0,1,...,v, where v=n+1
when n is odd and v = n + 2 when n is even. Then ¢(H) is a Weyl multiplier
on LP(C"), 1< p< oo,

This theorem will be proved in Section 4. A good reference for the Weyl
transform is [5].

3. Oscillatory Integral and LPS Theory

The aim of this section is to prove Theorem 2.1 on the boundedness of g and
g& functions. That will be done by first studying oscillatory singular integrals
whose kernel takes values in a Hilbert space. To see how oscillatory singular
integrals enter the picture let us analyze the operator f— d,T"f more closely.

In view of the equation (2.12) if we take the Weyl transform of a9, T’f we get

(3.1 ’ 70,T*f) = 1(f)d,(e~ ")
In other words, d,T"f is given by a twisted convolution

(3.2 30, Tf(2) = f x k,(2)
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where k,(z) = 7~ 1(3,e~ ") is the inverse Weyl transform of d,e . Since
d,e~ " has the spectral resolution

(3-3) dqe~ =~ 3 @N+ne CV*7ip,
N=0
it is easy to calculate the kernel k, explicitly. Indeed, Peetre [5] has shown that

- m e
(3.4 7Py = @m) e~ WAl LY 1(7 |z|2>

where L;’V" are the Laguerre polynomials of degree N and type n — 1.
Recall that for & > —1, Laguerre polynomials Lg(x) are defined by the
equation

k

-x ora _ 1_ d -x k+o
(35) e X Lk(X) —7{" Z;k‘(e X ).

The Laguerre polynomials also satisfy the following generating function
relation

(3.6) >, %)k = (1 — r)~ @~ lg=*/A-1
k=0

In view of the relations (3.3), (3.4) and (3.6) we see that

3.7 k,(z) = (2w) "3, {(sinh £)~"e™ /4 1el*cothry
Writing out the twisted convolution f X k, we have

(3.8) aT'f@) = [ f@e™ "™k, (z - v) fv)dvdo
or equivalently

(3.9) 8, Tf() = |, e k(x = ) f(9) dy

where P(x,y) is a real valued polynomial in x and y.

The kernel k,(x) can be considered as taking values in the Hilbert space
L*(R*, tdt). The following lemma shows that it is a Calderén-Zygmund kernel.
Lemma 3.1. The kernel k, satisfies

() k@] <Clx ="
() |Vk)| < Clx]~1

where |+ | stand for the norm of L*(R*,tdt).



LITTLEWO0OD-PALEY-STEIN THEORY ON C” AND WEYL MULTIPLIERS 81

ProoF. Since
k,(x) = (2) "3, {(sinh £) =g~ /4 IxI" cothry
it is easy to see that the following estimate holds
Ikt(x)| < Ct'"'l(l + t"]x|2)‘"‘1_
From this it follows immediately that
||k,(x)||2 < le:t_z"' 1(1 + t—llXIZ)—Zn—zdt
< Clx| =4 j’:t—Zn—l(l yt -2
= Clx|~*"

as the ¢ integral is convergent. This proves (i). The proof of the second estimate
is similar. Any x; derivative will in effect bring down a factor of ¢~ 12 which
accounts for the extra factor |x| ~!. The details are omitted.

Thus the operator 3,T’f can be considered as a oscillatory singular integral
whose kernel takes values in the Hilbert space L(R*, ¢ dt). Having made this
observation we proceed to prove Theorem 2.1. In doing so we closely follow
Ricci-Stein [6]. As the first step we prove the following L2 result.

Proposition 3.1. For fe L*(C"),
1
18Dz = 3 1712

Proor. We have from the definition

[efidzdz= |

=]

0 ,[q:n tlatth(x)ldedZdt.

To the inner integral we apply the Plancherel formula (2.4). The result is
[ 10,7 @P dzdz = @m)~ "1 70, T %s.
Since 7(0,T*f) = 7(f)(0,e~*H),

[7@: T |25 = tr (7()@re~ HN*(r(F)@re = H)))
As 3,e” "™ is a self-adjoint operator and tr (4B) = tr (BA) we have

|70 Tf) 315 = tr (H(f)*7(f)H e~ *H).

Since {®,} form an orthonormal basis for L%(R"),

tr (T(f)*‘r(f)HZe—ZtH) - §0 @, T(f)*T(f)Hze_ZtHdaa)



82 S. THANGAVELU

which equals 3 _, (2|a| + n)%e~ 2@+ _ 7(f)*7(f)®,). Integrating the
last equation with respect to ¢ dt we get

leN1 = @m" 3 [[Clal + it > dt (2, 7(f)*1()%0)

1 1
=@m 7" () = L 113
Hence we have proved
1
le(N>= 2 I fl2-

To prove that g is bounded on L”(C") we split the operator 3,7"f into two
parts. Let a(x) be a Cg function supported in |x| < 1 such that a(x) = 1 for
|x| < 3/4. Let B(x) = 1 — a(x) and define
(3.10) Tof(x) = sz,,eip(x’y Yk, (x — Y)odx — y) f(») dy
(3.11) Tuf () = [, €7V ki(x = YBCx = ) S () dy

First we will take care of the local operator 7,. To do so, we first want to
prove that the operator

(3.12) Tof) = | , kix — ) fDalx — y)dy

is bounded from LP(R?*") to LP(R*", L(R*, t dt)). (Hereafter we simply say 7,
is bounded on L?(R*").) Observe that in view of Lemma 3.1 T}, is a vector
valued singular integral operator whose kernel satisfies the estimates

@ lk@ae)] < Clx| =,

(i) |V @at)] < Clx] >,

R27

So if we know that T, is bounded on L*(R*") then we can apply the following
theorem to conclude that T is bounded on LP(R*").

Theorem 3.2. (Stein [7].) Let k(x) be a C' function away from the origin
taking values in B(H,, H,) where H, and H, are Hilbert spaces. Assume that

@ [k <Clxl™",

(i) |Vk@)| < Clx] 7"

Let f(x) takes values in H, and T be defined by
T/ = [, kCx = ) S()dy.

If T is bounded on L*(R") it is also bounded on LP(R™), 1 < p < .
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To prove that T, is bounded on L*(R*") we need to know if T} is bounded
on L*(R*") or not.

Lemma 3.2. T, is bounded on L*(R?).

Proor. The operator f— d,T'fis bounded on L*(R*") and T, is a truncation
of this operator. Hence Ty is bounded on L*(R?"). For a proof see the corre-
sponding lemma in Ricci-Stein [6].

Lemma 3.3. T, is bounded on L*(R*").

PrOOF. As we have already mentioned we need only to prove that Tj is
bounded on L%. We write

Tof () = [ki(x = y)alx = ») f(3) dy
= [Pk (x = yalx — ) () dy
- j [eP&? — 11k, (x — Y)alx — ») f(¥) dy
= Tof () + T, f(X).

We will prove that
7 2 2
(3.13) [yer 1Tof@Idx<C  _ fO)Idy.

Since the kernel is supported in |x — y| <1, when |x| < 1 only the points
|¥| < 2 matter. Since P(y,y) = 0, e*» — 1 = O(|x — y|) and so the kernel
of T is integrable. Since T}, is already known to be bounded on L? this proves
(3.13). Since T, is translation invariant we also have

Jina 1T/ @< Cl, |f ) dy.

—h|=2

Integration with respect to 4 proves that T, is bounded on L*(R?*"). Hence by
the previous Theorem 3.1, T is bounded on LP(R*").

Now we use Lemma 3.3 to prove that Ty is bounded on L?(R*").
Proposition 3.2. T, is bounded on LP(R*), 1 <p < .
Proor. The proof is similar to the corresponding theorem in Ricci-Stein [6].

We give the details for the sake of completeness. We use the same trick as in
Lemma 3.3. We will first prove that

(3.14) Jyer I Tos@IPdx<Cf _ IfO)IPdy
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Tof@) = [ [ = 11k(x = alx = ).fO) dy + [k = Y = ) f(3) dy.

As before the kernel of the first integral is integrable and the second integral
is T,f. Hence we have (3.14).
It is easily verified that

P(x+ h,y + h) = P(x,y) + P(x, h) + P(h,y)

and therefore

oo ITs@IPax<Cl 70l ay

is also true. Integration with respect to 4 proves the Proposition.
Having taken care of T, we now turn our attention to the study of 7.
Again we repeat the arguments of Ricci-Stein [6] but this time we will not give

the details.
Let us take a partition of unity

1= j;_;w Yo (277x)
where ), is supported in 1/2 < |x| < 1 and write
k()B() = 2 k(x)BG)Ye(27x) = ,;) ki).

Jj=0

Let
(3.15) Tf®) = [, ") kix - ) f(9) dy.

For these operators we wish to prove that their norm as operators on L%(IR?")
satisfy

(3.16) | T;] <C27% for some e> 0.

To do this we consider T?T;and estimate the kernel of T?T;. For that pur-
pose we make the following observations regarding singular integral operators
whose kernels take values in B(H,, H,).

So, let k(x, y) take values in B(H;, H,) and f(x) take values in H; . Consider
the operator

(3.17) T = [ k(% )10).

Assume that T is bounded from L*(R", H,) into L%(R", H,). This operator T
has a formal adjoint T* which maps L%(R", H,) into L%(R", H,). Let k*(x, y)
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denote the adjoint of the operator k(x, y) which belongs to B(H,, H;). Then
it is easily verified that T* is given by

(3.18) T () = [K* (2, 0/ () dy.
From this it follows that

T*Tf() = [[ k*(, Dk(2, 2/ (2) dz dy.
Thus the kernel G(x, z) of T*T is

G(x,2) = [ k*(9, 0k(y, ) dy

which is a bounded operator on Hj.

Let us specialize these observations to our operator T;. The kernel of Tj~is
e’Pepi(x — y) which takes values in the Hilbert space L%(R*, ¢ dt). By taking
H, =C and H, = LX(R*,tdt) we can assume that the kernel belongs to
B(H,, H,). The action of e’F®» x kJ(x — y) on C is simply given by \ —
e'P&Ikl(x — y)\. Call this operator s,(x,). The adjoint of s,(x,) is then
given by

5706008 = [Te™ P kelx — gyt t.
Therefore, the kernel L;(x,2) of TJ*TJ is
Ly(x,2) = ([ Ki(y = Oki(y - 2)e'®O-2=P0D tdrdy.

Thus the kernel of T}7; is a scalar valued function which acts on H; by
multiplication. .

Having calculated the kernel of TJ*TJ now we can simply repeat the
arguments of Ricci-Stein. Since k, is a Calderén-Zygmund kernel the proof
given in [6] goes through without any change. This completes the proof that
T, is bounded on L?.

Now it is time to complete the proof of Theorem 3.1. Just now we showed
that g(f) is bounded on L?(C"). Since

1
le(Nl.= 2 (FATY

the reverse inequality can be proved as in Stein [7]. Deduction of (ii) from (i)
is routine and we refer to Stein [7] for details.
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4. Multiplier Theorem for the Weyl Transform

In this section we will prove Theorem 3.2. In view of Theorem 3.1 it is enough
to prove that

(4.1) 8 +1(F,2) < Cgi(f,2)

where F(z) = T, f(z) for k = n + 1. Recall that the operator T is defined by
means of the Weyl transform as 7(7, f) = 7(f)¢(H). Assume that the func-
tion ¢ satisfies the conditions stated in Theorem 3.2. Without loss of general-
ity we further assume that QN+ n) =0 for N<n + 1.

Let u(z,t) = T'f(z) and U(z, t) = T'F(z). Then it is easily verified that

“4.2) Uiz, t+s) = u(z,s) X M(t,2)

where M(t, z) is the function defined by
43) M@tz =Qm ™" Y ¢QN + n)e'(ZN““")‘e'l/“'z‘zL]’(,'1<% |z|2>.
N=0

Taking one derivative with respect to s, k derivatives with respect to ¢ and
setting ¢ = s we get
(4.4 0¥*1U(z,2t) = 3,Tf) X 0¥ M.

The following lemma translates the conditions on ¢ into properties of the
function M.

Lemma 4.1. Under the assumptions stated in Theorem 3.2 the following
estimates are true.

() [05M(1,2)| < Cr="~K,
@) [ 12195 M(t, 2)|* dzdz < Ct=" % if k is even,
(iii) j@n |22+ 2|0k M(t, 2)|* dzdz < Ct~" ¥+ if k is odd.

Assuming the lemma for a moment we witt complete the proof of Theorem 3.2.
We want to prove (4.1) when k = n + 1. Recall that

gei1(F,27 = [0 I T F()| dt.
From equation (4.4) we have
|9 THF@)| < [, 18, T ()] 195Mt, 2 - v)| dvdo

= le—vlstl/z + jlz—v|>t1/2 =A4,@) + B/(2).
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Applying Schwarz inequality and using (i) of Lemma 4.1 we get

AP 8kM(t,z — v)|*dvdp

vlstl/l 1172 |

|9, T'f(v)|> dv dv LZ_U|S

N

t="= 29, T'f(v)|* dv dv

Jllz—vl st172

SCt " E| (1 + 7Yz - 0D K0, T (v)|* dvdo
cr t

When k is even another application of Schwarz inequality together with (ii) gives

B,z < jl Iz — v =23, T ()| dv dv

z—v|>t1/2

|z — v|**|8¥M(t, z — v)|* dvdp

J‘Iz—u|>t1/2

<Cr %k L:n(l +t™ Yz — v|?) " ¥[8, T'f (v)|* dv db.
When k is odd we use (iii):

B@'< |, z - v| %729, T (v)|* dvdv

—U|>11/2 |

J.Iz—ul >1/2 |z~ v|2k+2|an(t,z - v)|2dz‘)dv

S Ct okl |z — v| =9, T*f(v)|* dvdd

IIz—vl >t1/2
<Ct Icn(l +t™ Yz — v]®) " *|8, T*f ()| dv db.
Hence
0¥ 1T Fz)|)> < Cr~ "%k L:"(l +t7 Yz — v»)~*a, T (v)|* dv dv.
Multiplying by #***! and integrating with respect to ¢ we get

g +1(F, 2)* < Cgi (f, 2)%

Hence Theorem 3.2 is proved when p > 2. But it is easy to see that the adjoint
of T, is also a multiplier of the same form and hence the Theorem 3.2 is com-
pletely proved.

Before going to the proof of Lemma 4.1 let us collect some facts about
Laguerre polynomials which will be needed in the proof. If we set

¢$(X) - r"— 1/2e—x/2L;xl(x)xa/2

n+auo
r,= "
then {¢;} forms an orthonormal system for L?(0, ). We also observe that
r, ~ n®as n — . The normalized Laguerre functions {¢} } satisfy the following

where
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generating function relation

(4.5) kz=:0¢;:<x)¢;:(y)r"

=T(a+ DA+ )" (=r)" 2= 2] Q(—xyr)">(1 - n"Y

where J, is the Bessel function of order . We also need the following recur-
sion relation satisfied by the Laguerre polynomials

4.6) kLI = (—x+2k+a—DLZ_,(0) — (k+a— DL _, ().

Finally the following asymptotic properties of the Bessel function are also
needed

1

4.7) 17.@)| < Clz|* 2]
1< 1.

4.8) |/ (i2) “V%

<
Cz z2

A good reference for all the above facts is Szego [10].

Let us start by proving (i). We write
1 2
P=5 |2*.

Since ¢ is a bounded function and

N+n-1 n—1
< N >~N

we have

o N! 172
|an(t, Z)‘ < CNZO (2N+ n)k+(n—1)/2e—(2N+n)I< 1)' > L;]_ l(p)e—p/z.

N+n-1!

Applying Schwarz inequality

0¥ M(t, 2)|* < C{ > 2N+ n)z'””'le'(ZN*”)'}
N=0

S -GN+ N! Y1 2
v - @N+nt . - -o (.
{Ngoe ((N+n—l)!> n (p)ye }

The first term is (— 1) * "~ ! times the 2k + n — 1 derivative of e~ "(1 — e~ %) "
and hence is bounded by constant times =2 =", In view of (4.5) we have the
formula
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N! _ n— _
Ly o)Ly (e ™"

- @N+nt
e ——
NE.—.:o (N+n-1)!

= _—T(n)(—1)" " D*sinh¢)~le <M~ @~DJ _ (ipcosech?).

n

| =

When p cosech? < 1, in view of (4.7) we get

o - N! ne ne -
I e TR A O (0

< CGsinh#) ™o~ @~ Dpn~I(cosecht)" "1 < Ct™"

On the other hand when p cosech 7 > 1 we use (4.8) to get the estimate

A N! - - -
B e TR A A L

< C(sinh l) - le—pcothtp -(n—- l)p - I/Z(COSCCh t) - 1/zepcosecht
= C(sinh t) - 1/2p -n+ l/ze— ptanht/Z.

Since p > sinh ¢ we get

> N!
2 N T o AN @LY (0)e ™0 < Clsinh )Mo A < O
N=0 - :

Hence |9¥M(t,2)|* < Ct~2¥~2" and (i) is proved.
To prove (ii) we make use of the recursion relation (4.6). We write it in the
following form :

pLl Y(p) = @N + mLi" () - (N + DLIZL (0) = OV + m = DLEL (0).
Let us set
Y(N) = 2N + n)fe= @N+MpN + n).
In view of the recursion relation, as QN+ n)=0for N<n + 1,
pIM(2,2) = 21IRN + mY(N) = NY(N — 1) = (N + mpy(N + DILY *(o)e ="
In terms of the operators A, and A_ we can write
POEM(t,2) = =2 INA- A Y(N) + nA_Y(N)ILY, (p)e™ 2.

Under the assumptions made on ¢ we observe that the effect of multiplying
8* M by p is essentially to change ¥(V) into N~ 'Y(V). Now we can iterate this
process. Since k is even in the present case after applying p(k/2) times we get
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p*2EM(t,2) = 23, (N)LY Y(p)e™*7
where we have an estimate of the form
|V N)| < C@N + n)/2e= N+,
Therefore,
[on 12174105 M (2, ) dz dz = C []0*"2 0% M2, )"~ dp
= C[7| B oee 0L o) [* do

since {¢% '(p)} form an orthonormal system the last integral is equal to
N -
Z‘pk(N)Z( +:: 1><CZ(2N+ n)k+n'~le—(2N+n)t<Ct_k_n.

This proves (ii). The proof of (iii) is similar. Hence the lemma.
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