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Introduction

Let £ be a left invariant sublaplacian on a stratified Lie group G and denote
by {E(N\):\ > 0} its spectral resolution. The «multiplier operator» m(£) can
be defined for any Borel measurable function m on [0, + ) by the spectral
theorem according to the prescription

m(L) = j:m(x) dEQ\).

More generally, for every ¢ > 0 consider the operator m(t£) defined by the
formula

m@L) = j:m(tx) dE(\)

and the maximal operator m.(L£) associated to the family of operators
{m@L)},., defined by

(0.1) mx(L) f(x) = sup |m(tL) fx)],
for all fin 8 and xe G.
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A natural problem is to find conditions on the function m which ensure the
boundedness of the multiplier operator m(£) or the maximal operator m, (L)
on various spaces of distributions on G. When G is the Heisenberg group a
criterion for the boundedness of the multiplier operator on the spaces L?,
1 < p < o, was given by De Michele and Mauceri [8] and Mauceri [15].
Hulanicki and Stein proved a Marcinkiewicz-type multiplier theorem for Hardy
spaces on any stratified group G ([11], p. 208). Their result was improved by
De Michele and Mauceri [9], who proved that if the function m satisfies a
fractional order smoothness condition of order s > Q(1/p — 1/2) + 1, where
Q is the homogeneous dimension of the group, then the multiplier operator
is bounded on the Hardy space H?, 0 < p < 1. Later Christ ([5]) proved that
smoothness of order s > Q/2 yields boundedness on L? for 1 < p < «. In [15]
Mauceri gave also a general condition for the boundedness of the maximal
operator mx(£) on L?, 1 < p < o, and from H' to L'. The condition involves
the behaviour at infinity of the Mellin transform of the function m. He also
gave an application to the almost everywhere convergence of the Riesz means
for the eigenfunction expansions of the sublaplacian.

In the first part of this paper we sharpen the multiplier theorem given in
[9] proving that if the function m satisfies a smoothness condition of order
s> Q(/p - 1/2), 0< p <1, then the multiplier operator m(£) is bounded
on H?. Christ’s result follows from this by duality and interpolation. As an
application of this result we study the boundedness of the strongly singular
multipliers Y(£)£ ~# exp (i£%), o > 0, Re (8) > 0, where v is a smooth «cutoff»
function which vanishes in a neighborhood of the origin and is identically 1
in a neighborhood of infinity. These multipliers were investigated in the con-
text of R" by Miyachi ([17]).

In the second part of the paper we extend the multiplier theorem to a vector-
valued setting. Namely we consider a Banach space % of functions on R
endowed with a dilation invariant norm ||, . We shall wiew the family of
operators {m(t£)},., as a «vector-valued multiplier» mapping a scalar
valued function fto the 9C-valued function m(+£) f. Our aim is to give condi-
tions on m which imply that for every test function f on G the function
(¢, x) » m(tL) f(x) satifies an a priori estimate

0.2) ([, ImC-2) /5 dx)"” < CIf g

for some p in (0, 1] or a corresponding estimate with | f| , replaced by | f|,
if 1 < p < . Estimate (0.2) implies that the operator f— m(-£) f extends to
a bounded linear operator from H” to the Bochner-Lebesgue space L?(C) of
all %-valued p-integrable functions on G. We study this problem when X is
either a Besov space defined in terms of the multiplicative structure of R or
the space C,(R ;) of all continuous functions vanishing at infinity on R, . In
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the first case estimate (0.2) can be viewed as a regularity result for the
«means» m(tL) f, t > 0, of the function f. Mixed norm estimates analogous
to (0.2) were studied in connection with the problem of regularity of spherical
means in [4], [20], [23], [19], [18], in the Euclidean case, and in [6], [16]
in the context of compact Lie groups. If I = Cy(R,) estimate (0.2) implies
the H” — L boundedness of the maximal operator m.(£) investigated in
[15]. Our result (Theorem 2.6 below) improves the results given there. Max-
imal multiplier theorems in the context of R” where given by J. L. Rubio de
Francia in [21]. Our Corollary 2.7 is a version for stratified groups of a result
of his.

1. The Multiplier Theorem

Some notation about stratified groups and Hardy spaces would be in order.
However, since the notation used in the literature is quite standard, to avoid
wasting of space, we refer the reader to the monograph by Folland and Stein
[11] for all unexplained terminology and notation. For a more concise ex-
position, the reader may also consult Section 1 of [9]. Let G be a stratified
group. Denote by {6,:¢ > 0} a family of dilations of the Lie algebra g of G;
following a common abuse of notation we shall also denote by {6,:¢> 0}
the induced family of dilations of G. Let { E(\): X > 0} be the spectral resolu-
tion of a left invariant sublaplacian £ on G. Since the spectral measure of {0}
is zero we shall regard our spectral multipliers as functions defined on R
rather than on [0, + ). If m is a bounded Borel function on R, the operator
m(£) is bounded on L?, the space of square integrable functions with respect
to Haar measure, and commutes with left translations. Thus, by the Schwartz
kernel theorem, there exists a tempered distribution k£ on G such that m(L) f
= f* k for all functions in the Schwartz space 8. Moreover, for every £ > 0
the distribution kernel of the operator m(t£) is k ;, where k ;- is the dis-
tribution obtained by «dilating and normalising by V¢ the distribution k»,
ie.

Ky fy = <k, f 08 )

for all fin 8 ([11], Lemma 6.29). Fors > 0and 1 < p,g < < let A, ,(R ) be the
space of all functions m on R ., whose pull-back m o exp via the exponential
map is in the Besov space A, ,(R). The norm of a function m in A, ,(R) is
the norm of m o exp in A}, ,(R). In particular we shall denote by H3(RR ) the
Sobolev space A3 ,(R+). Throughout this paper we shall denote by ¢ a func-
tion in CZ(R+) supported in (1/2,2), such that ZjeZ #(2/)\) = 1 for every
A > 0. The main result of this section is
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Theorem 1.1. Suppose that m is a function on R, which satisfies

(1.1) sup | ¢(+)m(2°)] s <
keZ

Jorsome s> Q(1/p — 1/2) and 0 < p < 1. Then the multiplier operator m(£)
extends to a bounded operator on H, if p< qg<1l,onL?if1 < g< «, and
on BMO.

The proof of Theorem 1.1 is merely a refinement of the arguments of [9].
We shall begin by establishing some weighted norm inequalities for the
distribution kernel of the operator m(£), when m is a function with compact
support in R4 . The key step is the following lemma, which is an improved
version of Lemma 3.1 in [9].

Lemma 1.2. Suppose that o« > 0, 1 < p < 2. Let m be a function in H3(R +)
supported in (1/2,2), where s > a/p + Q(1/p — 1/2). Let k be the distribu-
tion kernel of m(£). Then

(1.2) | X1 Y 'k(0)|? dx < Clm
for every multiindex I.

Proor. We first prove (1.2) in the case p = 2. A slight refinement of the
argument of Lemma 3.1 in [9] shows that (1.2) holds for s > (a + 1)/2 (we
only need to recall that the Fourier coefficients of a function F in H;(T)
satisfy the estimate >, (1 + |n|)*" <~ ?|F(n)| < C. |F |5 for every e>0).
Let ¥ be a function in CZ(R+) supported in (1/2,2) such that Y(\) =1 for
every A in the support of m. Given a bounded measurable function fon R ,
denote by k the distribution kernel of the operator Y(£) f(£). The previous
argument shows that f~ k is a bounded linear map from H3(R.) into
L*G, |x|*dx) for every s, a such that « >0 and s> (o + 1)/2 On the
other hand, by the Plancherel formula ([9], formula (3.7)) the map f+~ s

feL®NLYR,), extends to a bounded linear map from L*(R.) into L2.
Now fix 8, r > 0 such that r > 3/2. By interpolating between the H5(R.) —
L*(G, |x|* dx) estimate, which holds for s > (o + 1)/2, and the L*(R.) — L?
estimate, and letting o tend to infinity, we get that f - k, maps H >(R+) into
L*(G, |x|? dx) continuously. This proves estimate (1.2) for p=2and I=0.
The estimate for the other values of p can be obtained by Holder’s inequality.
The estimate for 7 # 0 follows from that for 7 = 0 as in the proof of Lemma 3.1
in [9]. This completes the proof.

Let k£ be a function in C*(G). For every positive integer N, denote by
P™(k; +) the right Taylor polynomial of k at x of homogeneous degree N
([111, p. 26). Set
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AMk(x,y) = k(x,y) — PM(k; p).
For r, R > 0 define
. _ p-Q-2r ) 2|,10+2r
wy, (ki R) =R [ <r® o @ 1A% KCe )Pl 7 2

By using Lemma 1.2 instead of Lemma 3.1 in [9], we obtain the following
refinement of Lemma 3.2 in [9].

Lemma 1.3. Let m be a function in H;(R ) supported in (1/2,2). Denote
by k the distribution kernel of m(£). Let r be a positive number, N a non-
negative integer such that N<r< N+ 1. If s> Q/2 + r, then there exist
positive constants 6, n and C such that

(1.3) wN,r(k;R)sC"m“fiimin{Rﬁ,R'"}.

ProoOF oF THEOREM 1.1. Argue as in the proof of Theorem 1.1 in [9], using
lemmata 1.2 and 1.3 instead of lemmata 3.1 and 3.2 therein to get the result
for 0 < g < 1. The case g > 1 follows by interpolation between the H' and the
BMO estimates.

As an application of Theorem 1.1 we discuss the boundedness of the
two-parameter family of operators m, g(£) = YL)L “Bexp (ILY, a>0,
Re(B) =20, where ¢ is a smooth «cutoff» function which vanishes in a
neighborhood of the origin and is identically 1 in a neighborhood of infinity.
In the Euclidean context sharp H” boundedness results have been given by
Miyachi ([17]) in the case o # 1 and by Peral ([20]) in the case o = 1. See
also [10].

Corollary 1.4. Suppose that o« > 0, Re (B) > 0, and Re (B)/a > Q|1/p — 1/2|.
Then the operator m,, 5(£) is bounded on H? if 0 <p < 1l,onLfifl<p<
and on BMO if p = .

ProOF. A direct calculation shows that for every nonnegative integer n and
large R

|6() 5(R*)| gz < CopgR™FO 1

(notice that the left hand side vanishes if R is small). By interpolation, a
similar estimate holds with a nonnegative s in place of #; hence the result for
0<p<1 and BMO follows directly from Theorem 1.1. The result for
1 < p < = follows by applying Stein’s complex interpolation theorem to the
analytic family of operators {m, z:0 < Re(B) < Q/2 + €}, e> 0.
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2. Vector-Valued Multipliers

" If A is a Banach space we denote by LP(A4), 0 < p < o, the Bochner-Lebesgue
space of all strongly measurable A-valued functions F on G, for which

1Flw = ([ 1roo1zax)

(with the usual modification when p = «). If 0 < p < 1 we denote by H?(A4)
the atomic Hardy space defined in terms of A-valued atoms (A-valued atoms
are defined as in the scalar case except that absolute values are to be replaced
by the norm in A). For a locally integrable A-valued function F we define the
maximal function

F#(0) = sup - J |F(») = Fyl 4y,

xeB |B| JB
where B stands for an arbitrary ball in G and F}, is the average of F over B.
Then BMO(A) is the space {FeL| :|F| smowy = 1F7 [« < ). We recall
that H'(B)* imbeds isometrically into BMO(B*) for every Banach space B.
The imbedding is surjective if B is reflexive (more generally if B* has the
Radon-Nikodym property ([2], [3]).

Let 3C be a separable Hilbert space. By a result of Marcinkiewicz and
Zygmund ([13]) if T is a bounded linear operator on L? the operator T ® Id
on L? ® 3C has a bounded extension T, to L?(3C). In particular we shall denote
by {dE,.(\)]} the L?(3C) projection-valued measure on R, associated to the
resolution of the identity {dE(\)} of the sublaplacian £. If X is another Hilbert
space we shall denote by ®(3C, X) the space of all bounded linear operators
from JC to X, endowed with the operator norm |+ |4 5 . Notice that for every
bounded continuous function M on R, with values in B(3C, X), ME,.(Q) =
E_ (MM for each Borel subset @ of R . Thus for every function F in L?(30)
the improper Riemann integral

M(L)F = J MO\ dE;,(NF
0
converges in L*(%) and defines a bounded linear operator M(£) from L?(3C)
into L*(). Moreover [ M(£)] 120 12630 = SUP x50 MW |5, 5c -

Definition 2.1. Let A and B be two Banach spaces such that A N 3C is dense
in A. If the operator M(L£) extends to a bounded operator from the Hardy
space HP(A) to LP(B) for some p € (0, 11 we say that M is a vector-valued
multiplier of HP(A) into LP(B). In this definition the pair (H”(A), LP(B)) should
be replaced by (LP(A), LP(B)) if 1 < p < « and by (L*(A), BMO(B)) if p = .
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As in the scalar case, given p € (0, 1] and spaces A, B one wishes to find con-
ditions on the operator-valued function M that guarantee that M is a
multiplier of H”(A) into L”(B). In this paper we shall consider this problem
in the following context. Let X denote the Banach space A;, J(R+), >0,
1 £ g < =, of all measurable functions f on R, whose pull back f o exp via
the exponential map is in the usual Besov space A;, ¢(R) ([1D). Thus

1z =170 explys

is a dilation invariant norm on . If m € & and A € R+ we shall denote by
m(+)\) the \-dilate of the function m, namely the function ¢ —» m(¢\). Thus the
map A — m(+)\) is a bounded, continuous X-valued function on R . , provided
that g < oo. We shall also view it as a ®(C, X) and a B(X*, C)-valued func-
tion, via the natural isometric identifications of I with ®(C, ) and with a
subspace of B(X*, C). Thus if & is the Hilbert space H3(R+) = A; ,(R+) we
shall denote by m(=£) both the operator of L? into L*(%C) defined by

m(-8)f = ["m(-NAENS,  fel’,
and the operator of L%(%*) into L? defined by
(m(+£), F) = ["(m(+£), dEc(NF),  FeLX*).

Our multiplier theorem is then

+ 6. If

(1 1
Theorem 2.1. Suppose that 0 < p < o, 3>0 and s > Q‘p 5

2 19()m(2 )] s < o0
keZ

then m(-£) extends to a bounded operator
(i) from H” to LP(A5 ((R+)) if 0<p <1;
(i) from L” to LP(AS ((R+)) if 1 <p < oo;
(iii) from L* to BMO(A; | (R+)) if p = <.

If p = 2 one can actually prove a sharper result. Indeed one has
Lemma 2.2. If m eA;,q(IRJ,), seER, 1 < g <, then m(-£) extends to a

bounded operator from L* to LZ(A; ,(R+)) and from LZ(AZ" 2(R+)) to L?,
whose norm does not exceed C|m| AS -
sy
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Proor. Assume first that g = 2. Since A = m(+)\) is a bounded, continuous
A3 ,(R)-valued function, m(+£) is a bounded operator from L?to L*(A; ,(R+))
and from LZ(A£;(IR+)) to L?, whose norm is sup, |m(s\) ||A; = ||m||A; -
The result for g # 2 follows by applying the [ , ], 7 interpolatibn method to
the bilinear maps (m, f) ~ m(+£)f from A] , X L? into LZ(A;'Z(TR+)) and
(m, F) » {m(+£), Fy from A3 ,(R+) x L*(A; %5(R+)) into L? for different
values of s ([1]).

We turn now to a description of the H?” — L? results. We begin by stating a
result for vector-valued singular integrals. Let A and B be two Banach spaces.
We consider kernels K which are strongly measurable functions defined on G
and with values in the space (A4, B) of all bounded linear operators from A
to B. We suppose that K|, , is locally integrable away from the origin. On
G X G we shall consider the measure du,(x, y) = |x|Q+ 2 dxdy, r> 0, and the
sets S, = {(x,)): |x| = 2R, |y| <R}, R>0.

Definition 2.2. If N is a nonnegative integer and r > 0 we say that K is a
kernel of type 9N (A, B) if there exists a polynomial P,(y) = 2. 1| < Na,(x)y’ ,
x,ye€G, of homogeneous degree N, whose coefficients a, are strongly
measurable ®(A, B)-valued functions on G such that

1/2
Ny, (K) = sup <R‘Q‘2’ “ | K(xp) — Py(3) IIi,Bdur(x,y)> < oo,
R>0 Sk

Definition 2.3. A linear operator T mapping A-valued functions into B-
valued functions is called a singular integral operator of type Ny (A, B) if
the following two conditions are satisfied:

() T is a bounded operator from L*(A) to L*(B);
(ii) there exists a kernel K of type N ~,/(4,B) such that

TF(x) = jG K(y~YF(xy)dy

for every F in L*(A) with compact support and for almost every x in the com-
plement of the support of F.

Theorem 2.3. Suppose that 0 < p < 1. If T is a singular integral operator of
type Ny (A, B) Jfor some noninteger r > Q(1/p — 1) and for N = [r] then T
can be extended to a bounded operator from H?(A) to LP(B). Moreover

17| HP(4), LP(B) <CT] 2@, 2@ mN,r(K )-
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Remarks. The proof of Theorem 2.3 is a simple adaptation to the vector-
valued case of proof of Theorem 2.1 in [9]. Related results on operator-valued
singular integrals can be found in [22].

We shall apply Theorem 2.3 in the following context. Let 9 denote the
Sobolev space H3(R+), s > 0. If m is a function in & by Lemma 2.2 the
operator m(s£) is bounded from L? to L* () and from L*(X*) to L2.
Moreover it commutes with left translations. Thus, by the Schwartz kernel
theorem, there exists a X-valued distribution K on G (i.e. a bounded linear
map from 8 into X) such that m(-L£)f = f* K for all fin 8. We shall show,
essentially, that K is a locally integrable function away from the origin and
satisfies conditions 9T ~.A(C,Y) and NN (Y*, C) for suitable N and r and for
certain Besov spaces Y of functions on R .

Remarks. If the function M is bounded on R. and k is the distribution
kernel of the operator m(£) then the X-valued distribution kernel K of the
operator m(+L£) is the continuous linear map f~ <k Nz f> from 8 into X,
because k s is the kernel of the operator m(t£) for every ¢ > 0.

If me C7(R.) the kernel & is in 8 ([15], Proposition 2.7). Thus K = k. is
a smooth X-valued function away from the origin. As in Section 1 we denote
by P§N ) the right Taylor polynomial of K at x of homogeneous degree N.
Notice that the coefficients of P®" are smooth X-valued functions of x on
G\ {0}. We also denote by A®K(x, y) the difference K(xy) — P™(y), for x,
yin G, x # 0. For every R > 0 and x in G\ {0} let K,(x) denote the R-dilate
of K(x) (as a distribution on R;). Then

AMK, (6, 7) = R™UANMK)R ™ 'x, R™1y)
and, by using the invariance of the norm in C, it is an easy matter to show that
R [ | AMK, )% duolx, ¥)
R
is independent of R. Thus

2.2) Ny, (K = ([ 1AMKx, )| dp,(x, ).

Lemma 2.4. Suppose that 0<p<1. Let Y denote the Besov space
Afyq(fRJr), 820, 1<g< . If meH;(Ry) is supported in (1/2,2) and
s> Q(/p — 1/2) + 8 then m(=£) is a bounded operator from H” to L*(Y)
and from HP(Y*) to LP, whose norm does not exceed C |m| H

ProOF. Assume first than m € C7((1/2,2)) and Y = A ,(R+), where nis a
nonnegative integer. We shall prove that m(-£) is a singular integral operator of
types SIZN,,(C, Y) and Ty, (Y™, C) for some r > Q(1/p — 1) and for N = [r].
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Let k£ and K be the kernels of m(£) and m(«L), respectively. By the previous
remarks k€8, Ke C*(G\{0}) and, for every x # 0, K(x) is the function
t = k ;(x). Therefore K eLlloc (Y) away from the origin. Since by Lemma 2.2
m(+£) is a bounded operator from L? to L%(Y) and from L?(Y*) to L? whose
norm is [m|y < C|m]| S by Theorem 2.3 and (2.2) we only need to show that

Ty, (KD = [[; 1ADKC )13 di,(6,9) < Clmlys.

Let p denote the dilation invariant differential operator #(d/dt) on R .. Then
™ 2 _ 5 (T iam 2 dt
”A K(x’y)"‘yzjgo 0 |p A k\/t—(x’y)i T
By the spectral theorem

P % k= [ToIm(N EV .

Let kY be the kernel of the operator p’m(L). Then, by a straightforward,
albeit tedious, computation

! AMK - (x,y) = ANk (x, y) = 1722 ANED (¢~ 1 2x, 1~ V%),

Therefore, interchanging the order of integration, performing the change of
variables (¢~ 'x,7”'y) = (£, %) and applying Lemma 1.3, we get that

n -] X d
H |AKCx, )3 di, 6, 9) = H J lo? ANk o (x, )| dp, (x, ne
s, i=0JJs; Jo t

n © - dt
SCZ ri(k(J,t )_
j=0Jo 4 t

2
< C”m"Ag,z

provided that ¢ > Q/2 + r + n. Choose r > Q(1/p — 1) and o such that s > o >
Q/2 + r + n. Since H;(R +) imbeds continuously in A3 ,(R.) we have proved
that 9T, (K) < C|m]| s Thus, by Theorem 2.3, the norm of m(+£), qua
operator from H” to L"(A" 2(R+)) and from H”(A; % (R.)) to L”, is bounded
by C|m)| S provided that s > o(/p—-1/2) + n. By interpolation, via the
[,16,0 So< 1, 1 € g < «, method, we obtain that if o > Q(1/p — 1/2) + B
and me A2 (R,) then the norm of m(-£), qua operator from H? to
LP(AS (FR+)) and from H”(A;#(R+)) to L?, is bounded by C|[m|[A., . Since
H3(R +) imbeds continuously in A7 (IR +) for s > g the lemma is proved form
in C2((1/2,2)). In general, if m is a functlon in H;(R +) supported in (1/2, 2),
we pick a sequence {m,} of functions in C3((1 /2, 2)) which converges to m
in H3(R+). Then m,(+£) converges to m(£) in the strong operator topology,
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qua operator from L? to L*(Y) and from L*(Y*) to L2. Since {m,(+£)} is also
a Cauchy sequence in ®(H?, L?(Y)) and in B(H?(Y*), L?), the lemma is
proved.

The following corollary extends the result of Lemma 2.4 to the range
O0<p<g

Corollary 2.5. Let Y denote the Besov space qu(ﬂh), B=20,1<qg< ~.
If m is a function in H5(R +) supported in (1/2,2) and s > Q|1/p — 1/2| + B,
then the operator m(s£) is bounded from L to LP(Y), if 1 < p < «, and
Jrom L* to BMO(Y), if p = c.

ProOOF. Assume first that 1 < g < o, so that Y is reflexive. If s > Q/2 + 8
the operator m(-£) is bounded from H'(Y*) to L' by Lemma 2.4. Thus
its transpose is a bounded operator from L* to BMO (YY) with the same norm.
Since the heat kernel w satisfies w(x) = w(x~!) for every x in G, the same
property holds for the kernel of the operator m(«£). Thus the transpose of
m(+L) is still m(+L). The result for 1 < p < « follows by interpolation between
the H' — L' and the L*> — L? estimates (Lemma 2.2) if p < 2 and the L? — L?
and the L” — BMO estimates if p > 2. To remove the restriction g > 1 choose
So> 1> Q|1/p—1/2| + B and 6€(0,1) such that s= (1 — 6)s, + s, and
apply the interpolation functor [ , ] 9,1 tO the bilinear map m,f)-m(L)f
from H3(R+) X L? to L”(A o(R4)), i=0,1. Since A2 (R+) imbeds con-
tinuously into Az »(R+), the result holds for g = oo,

ProoOF oF THEOREM 2.1. We prove (i). The proofs of (ii) and (iii) are similar.
Let m bt_e a function on R, satisfying (2.1) and ¢ be as in Section 1. Set mj()\)
= ¢(27/Nm(\) and p,(\) = m; (2’ M. Notice that |m;| = = |l HS and that
each Iy is supported in (1/2, 2) Hence the norm of W ( £) qua operator from
H? to L"(A 1(R+)), 0 < p < 1, is dominated by C“;L [ S (C independent of
J), by Corollary 2.5. Also, the dilation invariance of the A2 J(R+) norm
implies that m;(+£) has the same norm as pi(e £). Since m decomposes into
the sum 2’ jezmj, the norm of m(+£) can be estimated by 3,7 [m;] s>
which is convergent by (2.1). The proof of (i) is complete.

We now discuss some applications of the above results to maximal opera-
tors. Notice that the boundedness of the maximal operator m.(£) (see (0.1)
for the definition) from A? to L” if 0 < p < 1 and on L? if 1 < p < = is equi-
valent to
the boundedness of the vector-valued multiplier m(«£) from H? to LP(I”(R +))
if 0 < p <1 and from L? to LP(I*(R.)) if 1 < p < . Our main result con-
cerning maximal operators is the following.
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Theorem 2.6. Let m be a function on R, such that

2.2) 3 19(Im@E )] gy = D < o.

Then

() if s>Q0U/p—1/2) + 1/2, m(-L) extends to a bounded operator from
H? to LP(Cy(R+)), if 0< p < 1, and from L” to LP(Cy(R +)), if 1 < p < 2,
with norm not exceeding CD,;

(i) if 2<p< o and s>(Q-1)(1/2-1/p)+ 1/2, m(-£) extends to a
bounded operator from L? to LP(I*(R.)), with norm not exceeding CD.

Proor. Since Ag,l(ﬂh) imbeds continuously into Cy(R.) by Bernstein’s
Theorem ([12], Theorem 1), (i) is an immediate consequence of Theorem 2.1.

To prove (ii), assume first that s > Q/2. Then the distribution kernel of the
operator m(£) is in L', by Lemma 1.2. Therefore the associated maximal
operator my(£L) is bounded on L%, i.e. m(+£) is bounded from L% to
L*(*(R+)). Assume now that s = 1/2. By Lemma 2.2 m(-£) extends to a
bounded operator from L? to L*(A}/3(R+)), hence from L? to L*(C,(R ).
An easy interpolation argument concludes the proof.

Remark. In the Euclidean setting Dappa and Trebels ([7]) proved that the
maximal operator m.(£) is bounded on L, 1 < p <2, and of weak type
1 — 1, provided that

sup | ¢(+)m(2“e)| s < oo
jez 2
for some s > (Q + 1)/2.
We now turn to some applications of Theorem 2.1 and Theorem 2.6.

Corollary 2.7. Suppose that n is an integer larger than Q/2 and m is a func-
tion in C™(R ;) which vanishes if \ < 1 and satisfies the estimate

ImPN|<CN j=0,1,...,n

for some a > 1/2. Then the maximal operator m«(£) extends to a bounded
operator from H? to L? if 0<p <1 and on L? if 1 < p < « provided that

1 Q-2 1 _Q+2-1 1

W 20-0) P 2 4

(it must be understood that r, = < if a > Q/2).
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Proor. We retain the notation used in the proof of Theorem 2.1. An easy
computation shows that

".u'j"[-]g < C27 /% and ”P‘j”Hg < C2i-a)

The desired result is an immediate consequence of an interpolation argument,
Theorem 2.1 and Theorem 2.6.

Remark. Related results have been obtained in the Euclidean setting by
J.L. Rubio de Francia ([21], Theorem B).

We now discuss the boundedness of the maximal operator associated to
the Riesz means of £. We improve some results obtained by the first author
in [15].

For every ze C, with Re(g) > 0, set

m,(N) = (1 = N%, A>0.

Corollary 2.8. Let m, be as above. Then

@ if Re(z) > Q(1/p — 1/2), (m)«(L) extends to a bounded operator from
HP to L’ if0O<p<landon L if 1<p<2;

(i) if Re(2)>(Q — 1)(1/2 - 1/p) and 2 < p < o, (m)«(L) extends to a
bounded operator on L”.

Proor. Let ¢ a smooth «cutoff» fuction on R, which equals one if A < 1/2
and vanishes if \ > 3/4. Write m, = m} + m2 where m} = ym,. Since m. is the
restriction to R4 of a function in the Schwartz class of R, the distribution
kernel of the operator m.(£) is in the Schwartz class on the group G ([15],
Proposition 2.7); hence the associated maximal operator (722).(£) is bounded
from HP? to L? if 0<p<landon L” if 1 <p < oo.

Notice that m? is a compactly supported function in A35%*"*(R ) (hence
in HY*@*12* 4R, ) for every e > 0). The desired result follows at once from
Theorem 2.6.
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