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Introduction
Much of this paper will be concerned with the proof of the following

Theorem 1. Suppose d >3, r = max {d, 3d — 4)/2}. If VELI’OC(IR"), then
the differential inequality |Au| < V|Vu| has the strong unique continuation
property in the following sense: If u belongs to the Sobolev space WP and if

loc
|Au| < V|Vu| and

lim R‘Nj |Vul” =0
R-0 x| <R

for all N then u is constant.

Here we are using the notational convention

In one sense Theorem 1 is just an e improvement on a result of Y. M. Kim
[10] stating the same with r = (3d — 2)/2 (r = d would be best possible; the
result in [10] is itself a refinement of previous work [7], [8], [2]). However,
we think it is of interest from the technical point of view. This is because of
the counterexamples of Jerison and others [7], [8], [2] which show that no
improvement on Kim’s result can be obtained by the «Carleman method» as
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156 THOMAS H. WOLFF

it is usually applied-i.e. as a direct consequence of a «Carleman» (weighted
Sobolev) inequality.

The main point of this paper is in Section 4 where we give a variant of the
Carleman method which in some circumstances lets one use the information
in the Carleman inequalities more efficiently. We believe our method can be
developed further, but seemingly difficult questions in real analysis come up
and so far we have not been able to deal with them. See the remarks and con-
jecture at the end of Section 4.

In addition to this we give a partly new approach to proving the Carleman
inequalities. Roughly speaking, the idea is that regardless of what weight one
wants to use they just reflect properties of the Taylor remainder of the fun-
damental solution for A. So we make the main estimates with the weight |x| ~"
(the natural weight in the context of the Taylor remainder) and pass from
these estimates to better estimates with respect to other weights using oscula-
tion by functions of the form c¢|x — b| ~". See formula (3.1) and the proof of
Proposition 3.2, and the proof of Lemma 5.1.

Here is an outline of the paper: In Section 1 we do asymptotics for the
remainder term in the Taylor expansion of the fundamental solution and
in Section 2 we apply this asymptotics to prove certain L” — L7 estimates.
Much of what we do in these two sections in probably not new —the methods
certainly are not, although we could not find references for the actual results.
In Section 3 we pass to the Carleman inequalities that we need for Theorem 1.
In Section 4 we give a real variable lemma we need for our modified Carleman
method, and then prove Theorem 1. The approach to Carleman inequalities
in Sections 1-3 leads naturally to refinements of various known results. In
Section 5 we make some observations of this type. In particular, we show how
to lessen the differentiability assumptions in a result of Sogge [15] on unique
continuation for variable coefficient operators.

We assume d > 3 throughout the paper. Theorem 1 (with r = 2) is known
when d = 2. It may be derived by reading between the lines in [3] and is also
a special case of [10]. We will use the notation x < y to mean «x is less than
or equal to a constant times y» and x = y for «x <y and y < x».

1. Taylor Expansion of the Fundamental Solution
Notation. T',(x) =T'(x,y) =c4|x—y 2-4d: the solution vanishing at infinity
of the equation AT, =6,.

p’: the degree n — 1 Taylor polynomial at the origin of the function T',.
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bl
x|

IL(x,y) = Iyl"‘2< > T, y) — p2(x)).

For x,y € R? we denote
x
r=r =T and 0=0Ay=4xoye[0,7r]

the unoriented angle subtended by x and y at the origin.
If neZ™ it is easily seen (¢f. [13]) that

(1.1) =) = [L,06,9)117 7P AF() dy

for all fe C;"(ﬂ%d\ {0}). We claim the following estimates on 7,.

Proposition 1.1.

. _ 1\
n- () 7)

) . . 1
(i) |V, =n? ** min{n, |1 —r|"'}|x|™/ when |x—y|>—2—;|y|.

IbiR

<sn? 2%y when |x-y|< n

@

(ii) We can write I,(x,y) = Re(a(r, 0)e™®) for a suitable complex valued
function a satisfying

i J , .
]gr_’ diefa(r, 0)| < n??~%sinf|' " ¥ J(|sinf| + |1 — )~ 17"

when |sin 6| > o

Here i and j run through Z* U {0}, V’ means j " gradient and the constants
depend on d, i, j. As discussed in the introduction, it seems unlikely that
Proposition 1.1 is new. We also want to note that C. Sogge’s approach to
unique continuation problems (e.g. [15], [16]) is based on related if less explicit
asymptotics, and that E. Sawyer [13] had earlier used essentially (ii) of Prop-
osition 1.1 to study unique continuation in R* where the more delicate estimate
(iii) is not needed.

Proor oF (i) AND (ii)). Homogeneity considerations reduce to the case where
y is (say) the first standard basis element e. The Taylor expansion of T', is
>’ Z, where Z,, a suitable normalization of the k™ zonal harmonic, satisfies
|Z, ()| < k% 3|x|* (cf. [21]) and therefore also |V/Z,| < k%~ 3*/|x|* ~/ (use that
fharmonic implies |V/(x)| < r~'max {|f(»)|: |¥ — a| < r} with r = |x|/k).Thus
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V(x| - |x| ~"TY)| = |VipZ)

-1
< "Z kd—3+jlx|k—j
k=0

n—1
<nllx ™ 3 k4 x
k=0

A calculation with the product rule gives

n-1
1.2) VI = ¥ 7D s w1 77 5 kR
=0
Statement (i) follows since |x|¥ ~/~" < 1 when |x — e| < 1/2n. We also obtain
\VII, — |x| ""T)| s n?"2*/ when |x—e|>1/2n, 1 —=1/n<|x| <1+ 1/n.
Since |V/(|x| ~"TI',)| = n? ?*/|x|/ when |x—e|>1/2n and |x| >1-1/n
we obtain (ii) in the region 1 — 1/n < |x| <1 + 1/n. When |x| > 1 + 1/n, (1.2)
implies (ii) as follows: bound the right side of (1.2) by estimates k=3 < n?~3
and then summing a geometric series, use the triangle inequality and the
bound |V/(|x| ~"T,)| = n?~?*/|x|~/. When |x| < 1 — 1/n we use instead |x|"I,
= >, Z, and obtain

k=zn

V(XL = 35 kT3 x|/

kzn
s 73 - )7

By the product rule |V/1,| s n?™3*/|x| 71 — |x|)~", and (ii) is proved.
PRrooOF OF (iii). There are various methods for doing such asymptotics and
we use a method based on contour integration. Similar arguments may be

found in [19], p. 158, [17] and in numerous places in [20]. There are two cases
depending on whether d is even or odd.

PROOF OF (iii) WHEN d 1s EVEN. We write

2-d
_ _ X Yy
Cdl)’ld le —)’lz 4= Ca m - m
— cdl(e—i9 _ r)(ei0 _ r)ll—d/Z
= f(r)

where f(z) = cyl(e™"® — z)(e’® — 2)]* ~%? is analytic except for poles at e*.
It follows that

1,(x,y) = 1" "Ry(r)
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where R, = f — p, and p,, is the degree n — 1 Taylor polynomial for f at zero.
If |z| is small then by elementary complex variables

1
27 "R, (2) = =— ETEOE —2) 7 de

27 Jiei =12

= ~(Res + Res ) /(OG -7

. 1
+ lim —— R?"'f(s“)(?—z)‘lds“

R-w 2T Jjt|=

F=eil F=e—i

1.3) 27"R,(2) = —( Res + Res 0)(;'”f(r)(§ ~ 27}

since the limit term is zero. By analytic continuation (1.3) is valid for all z.
The residues may be evaluated by taking d/2 — 2 derivatives. Carrying this
out with z=r,

I,(x, y) = Re(e™a(r, 6)
where a(r, 0) is a finite sum of terms of the form
aklm(Sin 0)1 —d/2-—k(e—i0 _ r)— 1 —leImG,

@y, being constants with |ay,,,| = n™, and k + 1 + m = d/2 — 2. If (as we are
assuming) n|sin 6| is bounded away from zero, the main term is the term with
m = d/2 — 2 and we obtain

la(r, 8)| < n®*~2|sinf|'~¥*|e~ 10 — | !
= n??=2|sin6|' = ?*(|sin6| + [1 —r])~ L.
i i
Similarly we can estimate derivatives 27 07 a(r, 0). Each r-derivative pro-
duces a factor of (e’ — r)~! while each 6 derivative produces at worst a fac-
tor of |sinf| ~!. Estimate (iii) follows.

PROOF OF (iii) WHEN d 1s oDD. The reason things are a bit more complicated
here is of course that [(z — e'%)(z — e )]'"%? is multivalued. We fix
0 € (0, 7) and let 6, and 6, be sufficiently close to —6 and 6 respectively. Let
v = {€":0, <1<06,) and let fy 4 be the branch of [(z — e*)(z — €"3)] 12
defined on C\ v and with f6,6,(0) close to 1. We will write f instead of Jo6,
when no confusion will result. With g = (d — 3)/2, and C; a suitable constant,

d? dif

'do7 dog 0,=-0,0,=6
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gives a branch of the function [(z — e®)(z — e %] 2. Any such branch
changes sign across v and therefore agrees with |e® — r|>~“ for r < 1 and with
—|e*® — r|>~? for r > 1, or viceversa. That means lyld‘z(I‘y(x) — ph(x)) has
the form
d? d?
C,—— ——R,(r

where C, is a suitable constant, f = f,,le2 is as above, p, is the degree n — 1
Taylor polynomial of f at z= 0, and

f@r) —p,(r) when 0<r<1
Rn(r) =
{—f(r)—p,,(r) when r>1.
Therefore

d? d?
L(x,y) = CZEG_‘{ W(’—"Rn(r))

6,=~0,0,=0

We now rewrite r~ "R, (r) using contour integration.
Denote

J fdz =1im | fdz
y- M1 Jy

J fdz =1lim | fdz
v+ ril Jvy

Let
T, = {re'11<r< )
oriented with r decreasing and
T, = {re'®z1<r< )

oriented with r increasing. With v oriented counterclockwise, and |z| small,

27i

1
Z'"(f(Z)-Pn(Z))=—j §TNE - 2T @) dE
le1=1/2

1

27” Y-+

CTME - T de

1
(1.4) 27 (@) - pa(2)) = -?j £ - 0T ds
v+
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since f changes sign across . By analytic continuation (1.4) is valid for
z€ C\v. Now integration over the countour 7,7, 7, implies

il

1
—.L”?“"(f—r)"f(f)ds“ O<r<1i
rIf) = par)) = b 1

2r7(r) + ;j -0 dE > )

T,+T,
where the 27~ "f(r) term comes from the residue at ¢ = r. In either case,

1
r_"Rn(r)=;J\ FTME =T ds

T,+T,

i.e.

(1.5  r "R, (r) = -l—l {e‘i("‘ MZJ 1=t = 1) " fy o (€"2t) dt
™

1

_ e—i(n—l)ﬂl j t—n(eiolt _ r)— lfoloz(eiﬂlt)dt3 .
1

Now define the quantities

dk dl dm J‘w

Lium = —& —1 — |t~ ™"t — r)~'f(e'%) dt
km = drk de’ doy

1

It is clear that ,,, has the following form:

Lo = k,e"’"‘j =2t — 1)~ 1Kl — o)~ If(e!2r) dt.

1

An induction on m shows that 7., has the following form:

i+j=m J1

Lim = 2 I 12t — )T TRt — &) T IS (€ 28) Py, (8, 61, 62) d,

Dijrim eing polynomials in ¢ of degree <i+/ with coefficients which are
smooth functions of 6,0, and independent of n. We claim that

(1.6) Ly (7, —0,0)] < n™%|sin 8] 2!~ ™(|sin ] + |1 — r|)~ 'K

Proor oF (1.6). Clearly
|Ik1m(r, -0, 0)1

s 3 Jt'"|ei9t—r|'1"“i(lt—l|+|sin0|)"/2"'j(t—l)"l’zt”jdt.

i+j=m J1
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We can estimate ¢ < [sin6] ~!|e’®t — r| and ¢ < |sin6] ~!((z — 1) + |sin 6)),
and therefore

|1y (rs —0,0)] S

2 |sin6| "'"'j £t — r| T R — 1+ [singl) V27 e — 1) 2 at
i+j=sm 1

(4.7 < [sing| =270 J 7~ 1) e — |7 K ar.
1

If r<1+ |sinf| we can estimate |e’®t — r| = |sin6| + |1 — r|, and (1.6)
follows since

j -1V "dt<sn V2
1

(1+r/2 o
7% and j

If r>1+ |sinf| we split the integral in (1.7) into L Qe

When ¢ < (1 + r)/2 we have |e’’t — r| = |sinf| + |1 — | and can argue as
before. On the other hand

J. t7et —r| "1k - 1) 2 dt
a1+n/2

s(r|sin0|)-1-"J )/zt‘”(t—l)_l/zdt
+7

1+r]t-"
2

B _ 1k r—1 1+k 1 l_t_r 1-n
==D [r|sin0|} " 2

Sn—l/Z(r_ 1)—1—k

=n~'2(|1 - r| + |sing|) ' ¥

< (rlsinBl)“"‘n‘l/z[

and (1.6) follows; we used r — 1 > |sin@| > 1/2n and to derive the next to
last line, the fact that (£x)*(1 + x) ™’ is uniformly bounded over ¢ > 0 and
0 < x< 1 for any fixed a > 0.
A term
i(n-1)6 dq dq ®

1.8 - —-i(n—-1)0, t-—n i02t _ -1 i02t dt
(1.8) e P AT e r” fe™)
0,=
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is a sum at terms (—i(n — 1))"qum(r, —6,6) with m + p = q. The result of
taking ir — and j6 — derivatives of a term (1.8) is a sum of bounded constants
times terms (—in)’l; ;. m+s(—0,0) with s + £ = j and is therefore

< Z Z np—l/zlsinel—(m+q+t+s+1/2)|ei0_r|-1—i
m+p=q t+s=j

For |sin@| = 1/n the worst terms here are the terms with p = g and we con-
clude that d'*//dr' d§’ of a term (1.8) is

< nd/2—2|sin01—(q+j+1/2)|ei0 _ I'I_l—i.

This and a similar estimate for the contribution from the second term in
(1.5) prove (iii), so we are done with Proposition 1.1.

Now we let o be a multiindex. We derive an expression like (1.1) for
|x| “"D°f(x). If « and B are multiindices then 8 < « means that §8; < «; for
eachje{l,...,d}.

Lemma 1.1. If fe C5(R*\ {0}) then

(1.9)  |x|7"D%f(x)

n+ o
= Osgsan'ﬁ‘uaen(xw‘““*'[ fo:“’(I“ 1 (6 ¥) — |yid‘2<m> I'(x, y))

|x]|
|y @rd=2+ D Af(y)dy + D*F f T(x, p)|x| =D Af() dyJ

where u,, are fixed (i.e. independent of f) functions homogeneous of degree
zero and smooth on the unit sphere with bounds independent of n, and u ,, = 1.

Remarks. (1) The convergence of the first set of integrals follows from
Proposition 1.1().

(2) We are mainly interested in the case || < 2, and in this case (1.9) may
be written in simplified form. If |« — 8| = 1 one can differentiate under the
integral sign in the second integral. If |a — 8] = 2 and D* ~# is a mixed partial

one can still do this provided one interprets the resulting integral as a principal
2

d . .
value. If D~ # = = then one obtains an extra é-function term. See e.g. [5]

J
p. 99. We obtain the following:

Corollary 1.1. If |a| <1, or if |a| =2 and D* = - — with i # j, then
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(1.10) |x|~"D*f(x)
=, 2 P g ()| x]'% 7! jD,‘i“BIH G MY~ 2 D Af(y) dy

where we interpret the integral as a principal value if |« — 3| = 2. The formula
remains valid when

d2

2 ’
dxj

o

provided the left hand side is replaced by |x| ‘”(D“f(x) - %A f(x)>-

ProOF OF LEMMA 1.1. We use induction on |a|, and when « = 0 it reduces
to (1.1). Suppose it is proved for multiindices of length less than |«|. Write
down (1.1) with n + |«| instead of n and take the D* derivative using the
product rule:

x| =+ leDrg = f L, Gy~ @D AL () dy,

31 nlfluge (x|~ DD A1 )
0<sB=sa

n+ |«
ID<n+|a|(x,y) |y[?- 2<'|y|'> I‘(x,y)>ly|“”*'“'*"'Z)Af(y)dy

D~ jr(x, x| =+ 1D Af(y) dy

where the v,4, satisfy the same conditions as the u,4, and v, = 1. As men-
tioned above, the differentiation under the integral sign is justified because of
Proposition 1.1(i). Isolate the 8 = 0 term on the left hand side and multiply
by fac/!*:

DY) _

1) —5— I _0<%: nP1v, ()] x| =@+ DD~ Bf )
=«a

n+ o
+|X“M[j:Da<n+hﬂQ:y)_lyV 2<ny:> Im&)°>

| y| Tl d=DAL(y) dy

+ D* jl‘(x, Y)x| @+ leD Af(y) dy] :
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The |x|'*[ ] term has the form of the 8 = 0 term in (1.9). The quantity
|x| = ®*1BDD=B£(x) may be evaluated using the inductive hypothesis with o
replaced by @ — 3 and n by n + |B|. The sum over 8 becomes

> nPlog,onMu, g g Gl E
0<Bsal0=sy=sa-8

n+ |al
HD,?"M<I,,+ @ 0) — Iyl""z(m> I‘(x,y))lyl Tl 4= Af(y) dy

|x]
+ D"F-y f T'(x, »)|x| =@+ 1D Af(y) dy] :

Let

o=6+7, Uyon = — Z VapnUho - B,v,n+18]»
B+y=o

then the above expression is

n+|al
S nllu, e j D=1, 0~ (2 Fre
0<osa |x|
<|y| Tl =D AL (y) dy
+De° j T'(x, y)lx| =@+ 1*P Af(y) dy}
and we obtain (1.9).

Lemma 1.2. Let A(x,y) be any term n“3|u°,3,,(x)|x||“'mD;"‘ﬁIH|u|(x,y),
0 < B < o, Uy, as above.

. n+ e
) |AC,y) - ”'Bluaan(x)lxlla_BlDf_B|y|d"2<|l%‘|> I'(x, y)l < pd-2+lel

1
h -yl <=1y
when |x ~ y| < 5—|y|
(i) |ACx,p)| s n?3*1elmin (n,|1 — 7|~} when |x — y| >%|y|.

(iii) A(x,y) = Re(e™’q(x, y)) where the amplitude q satisfies

|D[DZg| < n¥?= 21| y| = 1| x| ~Iel|sin g|* =42 eI~ I7l(|sin ] + |1 — r[)~"

1
h inf| > ~—-
when |sin 6| o
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Proor. Parts (i) and (ii) follow immediately from the corresponding parts
of Proposition 1.1. Part (iii) also follows this way but there is some calcula-
tion involved, which we sketch for the reader’s convenience. First consider any

d i d k—i
function b(r, 6). Denote by 6* any derivative of the form <r?17> <%> .
Then for any o and 7, D;be(r, 0) is a sum of terms of the form

x| =1l ]~ g, y)skb

where k < |o| + |7| and u denotes any fixed (i.e. independent of b) function
homogeneous of degree zero in each variable (u(\x, ny) = u(x, y)) and smooth
on §?~! x §?~, This may be proved easily by induction on |a| + |7|. Consider
now the expression for I, o in (iii) of Proposition 1.1. Using the product rule
to calculate 6%(e’®*1%P%;), we may write D2 ~PI

n+|o @S @ sum of terms

u(x, ;
Re < |x|( L ;yt)a oitn+ |a|)0n15ka>
with kK + 1 < |o — 8| and u as above. Absorbing e!*!? as well as relevant fac-
tors u,g, into u(x, y), we may therefore write A(x, y) as a sum of terms

Re (u(x, y)e™"°n's*a)

where now k + /< |af.
Le. q(x,) is a sum of terms n'u(x, y)“a. If we take D;D; of such a term
we obtain terms of the form

n'|y| ™ x| = 1lu(x, y)sk +ma

where k + I < |a|, m < |o| + |7|. Proposition 1.1 implies (after a calculation)
that such a term is

< nl+d/2—2|sin0|1—d/2—(k+m)(|sin0| + ‘1 _ r|)'1|y|‘|’||x|‘|”|.

The worst terms here are the terms with k = 0, / = |a|, m = |o| + |7|, and
we obtain (iii).

d2
Proposition 1.2. When |a| < 1, or |a| =2 and D* # oz Ve have

J

x| "D (x) = flf;”(x, Ny~ a2 Af () dy

. 2
where I satisfies (i)-(iii) below. When D* = i have
J
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1
|| ‘"(D“f(x) - gAf(x)) - jl,f“’(x,'wlyl S d=2+ D Af(y) dy

where I® satisfies (i)-(iii).

O If|lx-y < b then
2n

1100, )| s | p|472F 1l|x — |~ @24 led
when |o| < 1, and
1100, ) = |91°DE@ e, )| < my|? ™ e — y| 7@
when |a| = 2.

G If |x -yl = l_yl_ then

2n

x|

1 - =L
|y

-1
[ I9(x, y)| < n?= 31/ min {n, ] .
(iii) Choose a coordinate system on the unit sphere S°~1, let e and f be
variables on $*~*, D], D] denote differentiation in the given coordinate

. 1
system. Then for |sin6| > TN

I(x, y) = Re (e™q(x, »))
where

(S

-1
! > '
Remarks. (1) The form of the estimates in (iii) (the fact that the right hand side

increases with |g| and |7|) shows they are independent of the coordinate system.
(2) A similar expression of the form

|D; D} I(se, tf)| < n""'*‘”z‘zlsinﬂl"”2"""'|"<|sin9| +

x| “M(D*f(x) — P (D) Af(X)) = jln‘“’(x, Y)y|~era-2+leb Af(y)

could be given for higher derivatives.

(3) The kernel I is of course obtained from Corollary 1.1. Thus it is a
sum of terms of the type in Lemma 1.2. Part (ii) of Proposition 1.2 then
follows immediately from (ii) of Lemma 1.2. Parts (i) and (iii) follow the same
way after some manipulations with the product rule and (for (iii)) to compare
derivatives in R? with derivatives on the sphere. We leave them to the reader.
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2. Estimates from Spheres to Spheres

Notation. If K is a function on R? X R?, s, ¢ > 0 then K* is the function on
§9-1 x §9-1 defined by K*(e, f) = K(se, tf).

We fix a coordinate system S¢ ! and sufficiently large constants {C;} and,
for A € (0, 1), denote by X, any function from S?~! x §9~ ! to [0, 1] satisfing
the following: X, (x, ) = 0 if [sin6(x, ¥)| < \/100 or |sin 6(x, y)| > 100\, and
[D*x\| < C A~ l*l_ We denote by x* any function from $¢~! x $?~ ' to [0, 1]
satisfying: x"(x, y) = 0 if |sin f(x, )| > 100\, and |D*x*| < Cj,A~!*\. That is,
X, is smooth cutoff to |sinf| = \ and x* is a smooth cutoff to [sin6| < \.

We will identify a kernel with the operator it induces, and denote the norm
of an operator acting from L?(X, p) to L?(Y,») by |T| LPG, gy~ LY, py> OT
|T|,-q if there is no confusion.

Proposition 2.1.  Let y be a smooth function on R? x R? with y(x, y) = 1 when
1 1 v\ 7k
e =y >— 3], ¥lx,y) = 0 when |x - y| < 5,7 1> and |VEy| < <%>
Let I be as in Proposition 1.2 and K = yI®. Then for 1<p <2,
1 1 1

? 7 - N 200m

< nd/Zr— 1/r-1+ ]a|)\—d/2r+ 1<

» XK@ maps LP(S?~") to LP(S*~ ") with norm

-1
+ )\> - If in addition N < 32_0 then X,

L5
t

then x, may be replaced by x* here.

Remarks. (1) This will be proved by applying oscillating integral lemmas to
the asymptotics in Proposition 1.2 (iii). This type of argument is very standard
by now and has been used in closely related contexts by C. Sogge [15, 16]. We
want to point out that only the most simpleminded mapping properties of
oscillating integrals are used in our version, namely the «variable coefficient
Plancherel» of Hormander [6] (or see [18], p. 347).

(2) In proving Theorem 1, we use only the case || = 1. The other cases are
used in Section 5.

Lemma 2.1. Suppose 1 < p,q < «, (X, w), (Y, »), (Z,0), (W, 1) are measure
spaces, {T,,},cy ,ew iS @ measurable family of operators from LP(X, ) to

LYZ, v) and the kernel
n(w,y) = | Tuy | LP(X, )~ LA(Z, o)

defines a bounded operator f— jn(w, NS dv(y) from LP(Y, ») to LYW, 1)
with norm N. For f: X X Y — C define f,(x) = f(x, y) etc. Then T defined by
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(T = | T () d¥(3)

is a bounded operator from LP (X X Y,p X v) = LYZ X W, o X 1) with norm
< N.

PROOF. 1771 = ([ || Tl a0 [y, dr0))

LU(Z)

(j (j' | Top ol Loz dV(y)) dT(w))l/q
(J( n(W,J’)"f;"Lp(X) d,,(y))da(w)>1/q
N( 15 o ()"

=N"f||p'

1 1 1
Lemma 2.2. Supposel < p<2, ; - F = i (X, p) and (Y, v) are measure
spaces, K: X x Y- C and u: X > R*, v: Y= R*. Define

A = sup | @CIv() "KM ey, viopm
X

B = sup |@)v(»)) ™ PK ) 1o weow
y

Then the norm of f— jK(x, WS dv(y) as an operator from LP(Y,v) to
LP(X,p) is < (AB)Y2.

Proor. If u = v =1 this follows by interpolation: the norm of K from L'
to L™ is < B and the norm from L’ to L® is < A. The general case may be
reduced to the case # = v = 1 by observing that the norm of the operator in
question is the same as the norm from L?(Y, v») to L¥ (X, up) of the operator

[ [0 PR, y)o()7f () dv()
(=7 [ud ™" Kee yo) = 770D dn))-

Lemma 2.3. Suppose A, B are dics in R~ with radii 8, e respectively, § <
Suppose 0: A X B = Ris C*, ae Cj(A X B). Assume that on supp a we have
|DEDP6| < Cope’ ~'#16 1! and at each point the matrix V,V,0 has at least m
eigenvalues wrth magnitude > C~'6~1. Furthermore suppose |D°‘D‘3a| <
Cope” P16~1I. Then the kernel a(x,y)e™®* is LP(dy)— L” (dx) bounded
wzth norm < (6e)(d P (ne)=™7 for 1 < p <2, where the implicit constant
depends on d, C, {C,g}.
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Proor. It is enough to do the p = 2 case since the p = 1 case is easy and
the rest follows by interpolation. We can assume A, B centered at zero. Con-
sider instead the scaled kernel K(x, y) = a(bx, €»)e™*®*< on D(0, 1) x D(0, 1)
and write it as d(x, y)e"™*» where 7 = ne, d(x,y) = a(6x, ey) and G(x, y) =
€~ 10(8x, ey). This reduces us to the case 6 = € = 1. If m = d — 1 we would now
be done by [18], p. 347. In general, we can assume by a partition of unity and
linear change of coordinates that all eigenvalues of Vny_ﬁ are = 1, where we
let X (respectively, ¥) denote the first m coordinates of x(y) and X(j) be the
last d — 1 — m coordinates. If we fix X, 7 and let K;; be the operator f—
je"'w("’y)d(x, ) f(») dy acting from L3>(R™, dy) to L*(R™, d%) we have a norm
bound 7~™2 by [18], p. 347. By (for example) Lemma 2.1 the norm of K is
also < 7~™? and the lemma follows.

Lemma 2.4. Suppose 0: R x R" 1> R, ae Cy(R*~ ! x R?~1). Assume
|x —y|=p for all x,yesuppa, and on supp a, we have |Dny‘30| =<
Copp' ™11~ 181 and V,V,0 has at least m eigenvalues with magnitude > (Cp) ™.
Assume moreover that |V2V5a| < Copp” =181 Then a(x, y)e™®®? is [P — L”
bounded with norm < p?@=YP(np)=™7 1< p<2.

Proor. Again need only be done when p = 2. Let T be the operator in
question. Let {g;} bea partition of unity subordinate to a covering by discs
of radius p and with each point belonging to a bounded number of them.
Let T; be the operator with kernel g;(x) a(x, y)e™’*». For each j there are
a bounded number of k such that Tj*Tk or TJT,;" or T,;“T} or T, TJ* is non-
zero and it follows (e.g. Cotlar’s lemma) that | 7’| < sup; | 7;|. On the other
hand T; satisfies the hypothesis of Lemma 2.3 (6 = ¢ = const - p)-the result
follows.

PROOF OF PrROPOSITION 2.1.  We will assume |a| = 1 to simplify the notation.
This is no loss of generality because both estimates (ii) and (iii) in Proposition
1.2 (which are the basis of the proof) depend on « through the factor n'®l
and the same is true of the estimate in Proposition 2.1. We then fix « and drop
the « superscripts, e.g. we write K%' for K. We also define

(2.1) D(n, X) - nd/Zr—l/r)\—d/Zr+ 1.
1 200 200
There are two cases ——— <A< ——and A > 200, In the first case we use
200n n n

Proposition 1.2(ii) to conclude that

1-32
t

XK., < "~ min {
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For fixed e, the set {feS?~': XK, (e, f) # 0} has measure =n~“~ Y, so

-1
— d-2-@-v/rf |y _ S .
sup XK gy S 1 ( -2+ )\>
Likewise Y
A d !
Sl}p ”X Kfzt"L"(de) <n ~2—(d—1)/r< 1-2] + >\>
so we get (e.g. by Lemma 2.2)
A d-2-@d-1)/ s !
st -2-@d-1/r _2
leKn||p_,p,5n ( 1 ; +)\>

oo t)o-2] )
)

as claimed. For the case A > 200/n, we first observe following e.g. C. Sogge
[14] that the phase function 8: S9! x §¢~! in Proposition 1.2 has the prop-
erty that VxVy() (relative to a coordinate system) has d — 2 eigenvalues with
magnitude =~ |sinf|~'. If we let @ be the amplitude function in Proposi-
tion 1.2 (iii) and

zD(n,x)<’1——“:-

1-5

; >a(se, tf)

d(e,f) = nl—d/Z)\d/2—1<)\ +

then we have |[DZDfa| <\~ U=/ *180_Tt follows by the product rule that also
[D;"Dﬁ(xxa")l < A\~ Uel+18D_ Thus in local coordinates on S?~?, x, de’™’ satisfies
the hypothesis of Lemma 2.4 with m = d — 2, p = const - \. We obtain

2.2) | x, de™® ||,,_.pl < N2@=D/P ()= @-2/F
-1
I O e IR S Ve
nlp-p ;

which works out to

-1
+Q.

s S
K21y = D [1- 2
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Proposition 2.2. Fix o with |a| < 2. For sufficiently large ve R* there is a
kernel L such that (with the same modification as in Proposition 1.2 when

d2
D* = ——2>
dx;

|x| ~*D%f(x) = deLff’)(x, NyI"7Af () dy

and L = M + N where for suitable C,

o 1 1 2 —|af
1) ifl<p,q< o with— — —=
@) if1<p,q 2 g p

with norm bounded independently of v.
(i) N®(x,») =0 if |x — y| < (200»)'|y|, and for any \ > (200») ~ "

then M® maps L*(R?) to LY(R%)

" X)\Ny(a)st ”p—»p’ < (Sf) -@d-2+ |a|)/2V|a] - ID(V, )\)

f s\° . t
—-— ) < —>
. < <‘1.._s_
t

t\'=*

d—2+ | ,
S tals

-1
+)\> s if %<S<2t,

Here p is defined to be the number in [0, 1) such that v —

200
a integer. X, may be replaced by X" if A < —-
14

Proor. We fix a and drop the o superscripts. We also assume for notational

2 d—2+ |a|

d .
purposes that D # =y Write v =n + > — p, where neZ, and p

is as above. Define

L,,(x, y) — ‘xl -@d-2+ |cr|)/2+p|y| -@d-2+ |a|)/2—pIn(x’ y)
Then
fLy(x,y)lyl TYAf(p)dy = |x| T @2 H b2 e jln(x,y)lyl rd=2+leb A £(y)

- |x| _(d_2+|a|)/2+plxl '"D"‘f(x)

= x| "D (x).
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Also define M,=(1 —y)L,, N,=yL,, ¢y as in Proposition 2.1. Then (i)
follows from (i) of Proposition 1.2 which implies |M,| < |x — y| ~@~2*leD
when |a| < 1 and may be treated as a fractional integral, and that M, may be
treated as a (truncated) singular integral when |a| = 2. As for (ii), Proposition

2.1. implies
-1
. >\>

8 s\° . t
<7 ) lf S<'2‘_’
-1
+>\> s{<’1—5
t
t\'-*
<—> s if s> 2t.
L s

In Section 5 we will also want a certain variant on Proposition 2.2. Let e,
be a point of S9! and, for given », let ¢: 89~ ! — R be such that ¢(e) = 1 if
le — eg| <Cr=12, ¢(e) =0 if |e— ey >2Cy~V? and |D%p| < (v~ /%)~ ol
(here C is a suitable constant). For A\ > 100C» ~ /% consider the kernel

$(@xx(e, IN(se, tf)

where N® is as in Proposition 2.2. We claim

S

"X Nst" <n?al—-1D(n )\)<£>p(st)_(d-2+!af)/2< 1-=
MYy p—p = > t

and we have

-1
+>\> . if %<s<2t,

Proposition 2.3. With notation as in Proposition 2.2

|#(ex, (e, NIN(se, 1) | = (Av ) =@ D7 sty = @2+ 1b2, =1y, )

.<<|1_5

t
1-p

O

- P ¢
<§>’ l:f S<Ea

-1
+)\> s if %SS<2t,

s> 2t.

Proor. Exactly as for Proposition 2.2 except that we use Lemma 2.3 instead
of 2.4, with e = \, 8 = n~'/2, The effect is that instead of (2.2) we have

~ inf
|| ¢X)\ae “p—»p’

<n- d- 1)/2p’)\(d— 1)/p'(nx) -d- 2)/p"
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The extra factor of (n'/2\) =@~ V’/P' remains throughout the proof and we end
up with Proposition 2.3.

3. Carleman Inequalities

. o1 1 1 .. .
Notation. Fix p and r with T and a multiindex « with |a| =1,

!

and let L, = Lff’) be the kernels in Proposition 2.2.

Ifx,ye R welets=|x|,t=|y|, o =log(l/s), 7 = log (1/¢). If ¥ C R then
v« = {seR:log(1/s) eV}, A(Y) = {xe R?: |x| € 1«}.

The characteristic function of a set E will be denoted 1,. We keep the nota-
tion from Section 2, e.g. the functions X, .

The purpose of this section is to prove Carleman type inequalities needed
for Theorem 1. We actually prove two inequalities-the first will be used when
d < 4 and the second when d > 5.

Proposition 3.1. Suppose r = d. If v is large enough, v — (d — 1)/2 is not an
integer, and 8,y C R are intervals with min {|8|, ||} = »~' then, with the
notation |y|' = min {|v|, 1}, we have

| LaepyLodaggyl porpr S (min {[7[', 18] ]Y2 714,

-1
The implicit constant depends on dist <V - d T Z>~

To state the other inequality we fix ¥: R* — R increasing and convex. We
have then (for fe Cj(R%\ {0})

ER) eV ODY(x) = [ P,(x, e Af () dy

— o~ (@) — ¥(0) =¥ (0)(7— o))
where P,(x,y) = e "W v@ T o Ly‘p,(.a)(x,y).
This is because of the following calculation:

eV\P(U)DO‘f(x) = "W - V¥(9) in - vw’(a)Daf(x)
= [eWOVOIL L &Y AFG) dy
— I ev(\lx(o) - W(U)U)Lw//(a) (X, y)e —v(Y(1) - ﬂV(U))eV\P(T) Af(y) dy

= [P, »)e® Af () dy.
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Proposition 3.2. Suppose d < r < o, and y: R* - R is C? and satisfies the
Sfollowing conditions: there is C > 0 such that C~' < y'(0) < C for all o, and
Sfor any 6 >0 there is C; > 0 such that " (0) > Cse™%°. Then for v large
enough and f3,7 intervals with min {|B|, |Y|} > »~' and with the notation
[7|” = min {|7|, »~"?}, and 6 = min {|B]", |¥|"}, e = max {|B]", |7|"}, we have

6(1—(d+1)/r)/2 (r < d+ 1)

1 g1y P Lagy-1gy Ly py = ¥4 7277872 2 1 + log (¢/0) (r=d+1)
e(l—(d+l)/r)/2 (r > d + 1)

Remarks. (1) Note that our intervals ¢ ~ v,  ~!8 are contained in R*, i.e.,
Proposition 3.2 is actually an estimate on functions supported in D(0, 1).

(2) The assumptions on ¥ are not the most general possible. For example,
instead of the upper bound on ¢’ we could assume that for every 6 > 0 there
exists C; > 0 such that ' < Cse®”. What is significant (as in previous work
on similar problems) is to have some kind of «strict convexity» hypothesis,
i.e. lower bound on " /y’. The first example in [8] or [2] shows that Proposi-
tion 3.2 fails when y(o) = o, r = (3d — 2)/2, |v| = |B| = .

(3) A version of Proposition 3.1 could be proved also when v — (d — 1)/2
is an integer, but there would be a dependence on ||, |8| which blows up as
| 7| = o or |8] = . This of course is the same phenomenon as appeared in
[9]. Actually Proposition 3.1 and 3.2 are just convenient ways of recording
the information in Section 2 and (in Section 4) we probably could have worked
instead with Proposition 2.2 directly.

(4) The crucial point for us will be the dependence on |y| and |3| when |v]
and |@| are less than the critical numbers 1 in Proposition 3.1, » ~? in Prop-
osition 3.2. See Corollary 3.1 below where we state what we actually use.

(5) As far as why we necd both Propositions 3.1 and 3.2: 3.2 is a much
stronger inequality and we need that when d > 5. On the other hand, nothing
like 3.2 can be true when r = d (as is the case when d < 4) because the problem is
the scale invariant, and a scale invariant «strict convexity» hypothesis would
have to be of the form ¢"/y’ > const., which is incompatible with ¥’ being
bounded. (Of course one needs ¥’ bounded for the application to the SUCP.)

Proors. Propositions 3.1 and 3.2 both follow by integrating out Proposition
2.2 with respect to the radial variable. The following fact will be useful.

Lemma 3.1. Suppose A > 0, p > 0. Then for intervals v C R,
le="* (x| + 0! | Ly SN 'min (X, |7, 072"

where the implicit constant only depends on r' € (1, ).
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This seems to be most easily proved by splitting into six cases according to
the relative sizes of \, |v|, and p~ 2,

ProoOF oF ProposITION 3.1. Since the right hand side of the inequality is
always larger than or equal to 1 it will suffice to prove it for N, in place
of L,. Choose a partition of unity on S?~! x §?~! consisting of functions
{V2,-1} and x”_1 where j runs from 1 to log, ». Fix j and let A = 2%y~1 and
consider

3.2)

x )y
IA('y) (x)x)\<W ’ m)Nv(xa y) lA(B) »

p—p

Also let n(s, f) be the LP(S?~ 1) - L7 (S~ 1) norm of the kernel (,N,)™.
Regard R? as S9! x R* with measure df x s?~!ds and apply Lemma 2.1,
then Lemma 2.2 with u(s) = s 7%, v(¢) = t~%. This gives

LP(B4, t%~1dt) > LP (v4, 5%~ 1 ds) norm of n(s, t)

(3.2) <
<@AB)?,
where

A = sup |s7Pt4Pn(s, t)]| LG, i/
s€Y, *

_ d/p' .d/p
B = tseug |s“#t“"n(s, 1) Le(y,, ds/s)

Using Proposition 2.2 to estimate n we have (with 6 = dist (n — (d — 1)/2, 2))

As D(V, k) sup "K(S, t) ” Ld’(ﬁ*, di/t)?

where

KGs, 1) (Jo—7+N7! if |o-7<1
s, 1) =
e dlo=1l if lo—1/>1

and D(»,\) = »/2-V4\V2_ Using Lemma 3.1 with p = 0,

(o — 7| + )\)_lﬂm(g*,m/,) =[(jo -7 + >\)_1|ILd’(B,dT)
<X\ 'min {}\, |8]}"*

and of course |~ ™| 4o 4,0 < min {1, |8]}%. We conclude
v

A 'min (), |B]}VY if |8 <1
| K(s, 1) "Ld’(B*,dt/t) = { A-1d if |8 >1
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A<{Vl/2_1/d)‘_l/2min{7\, BV if |8l <1

(N if |8 >1
so in fact
(3.3) A < pV/2=1a\ =172 in (], 18]}V
for all 8.

There is an analogous estimate for B where ||’ substitutes for |8| in (3.3),
hence an estimate for (3.2). Also we have the same estimate for

A
LAy X No L)l pr e
when \ = »~!. Summing over \ we obtain

11,.N,1

AB® ||p~p'

< V1/2—l/d ' Z )\—I/Zmin {)\’ |'3[f}l/2d’min {)\’ l,ylr]l/Zd'
A=20y-1,0s slog, v

A()

< [Vmin Hﬁl/’ ],Y|I}]l/2"l/d

and Proposition 3.1 follows.

PRrooF oF ProposiTION 3.2. Convexity of ¢ implies that ¥(7) — y(o) — ¥'(0)( — 0)
is positive and in fact > k(o) min {1, (r — 0)?} where k(o) denotes any lower
bound for ¥”/2 on the interval (¢ — 1, ¢ + 1). We are assuming there is such
a bound of the form Cze ™% for any given 6 > 0.

Write P, = Q, + R, where Q,(respectively, R,) comes from substituting
M,(N,) for L, in the definition of P,. Then |Q,| < |M,| < |x —y| " “~? and
since Q, vanishes for |x — y| > » ! it follows (e.g. from Lemma 2.2) that Q,
is I” —» L” bounded with norm < »%7~1. So it suffices to prove Proposi-
tion 3.2 for R, instead of P,. Introduce the same partition of unity as in the
proof of Proposition 3.1 and consider

3.4 I lA(.p— 17)X>\Rv lA(\b—lB) "p—*p"

We bound (3.4) as in the proof of Proposition 3.1, i.e. use Lemma 2.1, then
2.2 with u(s) = s7%, v(t) = t~? to obtain (3.4) < (4B)'"?

A = D(»,\) sup " e "YW M = Y@ — ¥ ()T~ "))n(s, t)(St)d/p' ” LY -18.d1)>
s

- - - ’ - / ’
B = D(v,\)sup e~ *¥O=¥@ VO Dy(s 1)ty | 1oy - 1y a0y
t

To calculate A4, fix s and consider separately the contributions to the L™ norm
from ¢ '8N {|o — 7| > 1} and ¥ '8N {|o — 7| < 1}, using the lower bounds



178 TuoMmas H. WoOLFF

¥(r) — Y(o) — Y'(0)(r — o) = Cgs‘S min {1, (6 — 7)?}. Estimating the exponential
factor by its value when |o — 7| = 1 and using Proposition 2.2 we see that the
contribution from ¢ '8N {|o — 7| > 1} is < D(y, e~ "*’s® =472 which may
be made < »~7 for any given T by choosing é small. The other is

a-d/mn/2 —Cyrs¥(a—D%| . _ -r /r
3.5 s ([,-ge (o= +N"dr)"".
Here |{~'8| = |8| because of the boundedness assumptions on ¥’ so by

Lemma 3.1,

(3.5) s 5422\~ min {(ss%) V2, \, 8]}

s)\—lmin {V—l/l’)\’ 16“1/#

provided 6 <1 —d/r. It follows that A <\~ 'min {(» Y2\, |8]}"D(», ).
Similar (not identical!) estimates can be made for B leading to the same bound
except that || is replaced with |y|. Therefore

I Lag-1pRoLag-1gl o

< V(d—2)/2r Z )\—d/Zr[min {V—I/Z, )\’ IB' } min {V_1/2,>\, l,yl }]I/Zr’.
=2Jy-1
Ozjilogzv
Proposition 3.2 follows by doing the sum separately over A < min {|3|", |v]"},
min {|B]"”, |7} <X <max {|B8]", |¥|"}, N >max {|B8]", |7]|"}.

We record the following formal consequence which is what is actually used
in the proof of Theorem 1.

Corollary 3.1. Let r = max {d,(3d — 4)/2}. If d > 5 then |1, 1,P,|p-p S
G If d=3 or 4 then |1, . L,|p-py s @YV 2" provided
v — (d — 1)/2 is kept bounded away from the integers.

Proor. This is just index juggling. The d< 4 case is the easiest. The d> 5
case splits into subcases d = 5, 6, or > 7 corresponding to the three alternatives
in Proposition 3.2. We explain only the d> 7 case. We have (since here
r=GBd-4)/2>d+1,|8l=w, |8]"=vV% 6=|v]", e=»"1?

I

P, < pGd- 2)/8(|,Y| n\G3d - 6)/4

,
AW~ 1y) p-p

= VIY " ll(Vl/Zl,Yln)Gd— 10)/4

< vyl

Remark. The proof of Proposition 3.1 also proves the Jerison-Kenig result:
If we take o =0, r=d/2, and keep » — (d — 2)/2 bounded away from the
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integers, then we obtain (instead of (3.3))
A < VI_Z/d)\_lmin {)\, |ﬁ‘l]l_2/d-
Using this estimate and continuing as before, we eventually obtain

I1,0,Ls1 <C,

Ay) AB " p-p

which is Jerison-Kenig if ¥ = 8 = R (and gives nothing better for other |7/,
|8|, as one must expect anyway since the Jerison-Kenig bound is the same, as
the bound for fractional integrals).

Conversely, it seems likely that other known proofs of the Jerison-Kenig
result could be modified to give Proposition 3.1.

4. Proof of Theorem 1
The main point is the following lemma.

Lemma 4.1. Suppose p is a positive measure on R without atoms and such
that

1
lim —logu({x:|x| > T}) = —oo.
T T
Define p, for k € R by du, (x) = e** du(x). Suppose N € R* . Then there are dis-
joint intervals I,CR and numbers kje [N, 2N] such that (with C a positive
universal constant)

) 1
@) pe, (L) > > | i, |
(i) > |Ij| 1> CN.
ProOOE. Suppose p satisfies the hypotheses and fix k € R. Let a; be a number

such that p, ((— 0, ay)) = | | /4, and let b, be a number such that p, ((by, <))
= | uk| /4. These a, and b, exist since p, is finite and continuous. Define

Vi = [k, Dyl.

1
Claim. nNy,| < ———r--
aim 7 'yj| E=7]

In the proof we assume j > k. We may suppose b, > a;; else there is nothing
to prove. If x> b, and y < a; then x > |, Nv,| + », so that
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&l ((bk, ) 1 J’w (J-k)x
= d
(B, ) e ((By, ) Jo, € b ()
j 1 a
> eU— Bl m j_w eU=hw due(»)
=)

— e(j— v Ny
M'k(( —®, aj))

" B " ” I"’j " 2 I‘Lj((blo co))ﬂk(( — o, aj))
> eV RNl (b, )y ((— 0, a))

1

— el =Pl

1 :
~ el 1|

and |v,Nv,| < 4log2/(j — k), proving the claim.

Now we restrict , /, etc. to lie in [N, 2N]. If there is k£ with |v,| < 1/Nthere
is nothing to prove. Otherwise define v, to be minimal if |v;Nvi| > |v;[/2
implies ;| > |v,|/2. Consider the collection of all minimal intervals and take
a subcover with the Besicovitch property (the subcover is the union of two
families of pairwise disjoint intervals, and every minimal interval is contained
in the union of two subcover intervals). Such a subcover exists because the
faster-than-exponential decay implies an upper bound on the lengths of the
Y- We will be done if we show the subcover intervals have property (ii).

For any v, we can find a chain k = ky, k,, ... with |'ykj+1| < |'ij|/2 and
|'ij+ . ﬂvkj| > |‘ykj| /2. Such a chain must terminte at a minimal interval e,
+1 ij
s |v, Nv, |7'<2|v, | '. The geometric decrease of the |v, | then shows

J j+1 Jj+1 J

since we are assuming a lower bound |v| > 1/N. The claim shows |k;

|k — k| =17, |~'. There must be a subcover interval v, with v, Nv,| >
|7k |/2, and minimality of v, implies |7, | > |v,|/2 so that |k, —j| = |7 -
k=1 <k =kl + [k = J1 S 17 |70 4 Iyl 7F s vl

So we associated a subcover interval v; to each interval v, , in such a way that

| {k: v, associated to v, }| s |v;| 7.

Then

| {k: 7, associted to v}

N = |[N,2N]| € >,
<2l

In proving Theorem 1 in the d < 4 case we will need to restrict the possible
values of kj. Hence the following
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Corollary 4.1. Suppose me R, be R. Then Lemma 4.1 remains true if the
following modifications are made: the numbers kj are required to belong to
the arithmetic progression {mn + b:neZ}; and (ii) is replaced by

(i) 2 max (|| ™', m} = N.
J

Proor. This is actually a corollary of the proof of Lemma 4.1. We carry out
the same argument requiring all the values %, j, etc., to belong to the given
arithmetic progression. The only change is in the last paragraph of the proof
where we now have associated a subcover interval v;to each v in such a way that

card {k: 7, associated to v} < max {1, (m|v,)) ™)

since the right-hand side is the cardinality of the set of arithmetic progression
elements lying within |7,/ ™! of J.

In finishing the proof we may assume m < N; otherwise there is nothing to
prove as we may take {Ij] to be a singleton. When m < N, we have

Nsmcard{mn+ b:N<mn+ b<2N}

<m > card {k: v, associated to 7,

subcover intervals v;
< m Y max (1, (m]v,)) ™!}
= S max (m, v, 7).
We now finish Theorem 1.

First of all, if y: (0, o) — R is increasing and convex and ¥’ is bounded then
the formula

@1 eVOD"f(x) = [ L, (x, y)e"*® AFO)dy

derived for CJ(D(0, 1)\ {0}) functions in Section 3 extends to functions in
W with support in D(0, 1) and such that | Vf| ',y @04 19 | opco. )
vanish faster than any power of r as r — 0. This is standard. First, if supp f
does not contain the origin then it follows using a mollifier. The general case
follows using a cutoff function near 0 and controlling the error terms by the
infinite order vanishing (and the fact that y(7) < C7).

In particular (4.1) is valid for ¢u if u is as in Theorem 1 and ¢ € C;; with
¢ = 1 in a neighborhood of 0 since the infinite order vanishing of Au follows
from that of Vu using Hélder’s inequality.

Let r = max {d, 3d — 4)/2}. Asin, e.g. [9], Theorem 1 will follow if we show
there is o > 0 such that 0 < S, <1 and |V, pe, s » <€ imply u vanishes
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identically on D(0, S,). So let € be small enough and suppose | V| .-, s » <€

but Vu does not vanish identically on D(0, S,). Let S; < S, be such that Vu does
not vanish identically on D(0, S;) and choose ¢ € Cy with ¢ = 1 on D(0, S;)
and supp ¢ C D(0, Sy). Let f= ¢u.

We first consider the d > 5 case.

Let Y(0) = 0 — (¢ + 1)”? (any other function satisfying the hypotheses of
Proposition 3.2 would do as well). Define a measure x on R by

p) =, VIV

AW~y

The infinite order vanishing implies p has the faster-than-exponential decay
property assumed in Lemma 4.1. With notation as in Lemma 4.1 we have

mM=[, (VI

AW -1y

where » = k/p. For N sufficiently large, we let {1;} be the intervals from
Lemma 4.1. We may assume they have length > 1/N (else drop all but one
of them and expand that one to length 1/N). Fix j and denote I by I, kj by
k, and » = k/p. We have

Il <2 E*VIvf?

AW -1

r\p/r W p\p’P
<2(J.A(\P‘II)V) (jA(\I/—‘I)(e |Vf| )
r\2/r /T ¥ D
S (o V) @I e AT

The last line follows from Corollary 3.1 since |y ~'I| = |I| (as ¢’ is bounded
away from 0 and «) and » = N. We calculate Af = A(¢u) by the product rule:

|Af] = |¢Au+ 2V¢ Vu + uAg|
< oV|Vu| + |2V Vu + u Ag|
S VIVf] + |uVe| + [2Vo Vu + uAg|
= V|Vf| + E,

where E € L” is supported in {x:S; < |x| < Sp}. Thus
r\2/T r v
4.2 liad = ([ gy V) OIDP (1] + [ 1eVE).

Now we use the usual trick: |u,| grows faster than e*¥© as k — o while
the last term in (4.2) is O(e*¥©?). So for large enough N the last term may
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be absorbed leading to

r / r
el = ([ gy V") OVHD" i
r -1
Lw_m V' > NI

We now sum over j. Using (ii) of Lemma 4.1,

r -1
juw_uj) V2 §(NII,~|) 21

which is a contradiction if €, is small. This finishes the high dimensional case.

If d = 3 or 4 the argument is similar. Now we take y(0) = 0. We define u as
above, but now instead of choosing the IJ by Lemma 4.1 we use Corollary 4.1.
Thus there are disjoint intervals IJ such that for each j there is kj with

d-1 1
-1 PR — SN
pki-— 5 mod 1

and
1 -
Mkj(Ij)ZE"I‘-kj"’ 2imax {1, ||~} > N.
J
We now fix a value of j and argue as above. The only difference is that in
applying Corollary 3.1 we obtain a factor (Nmin { |7, 1})©~?/% instead of
(N|I])Y". We end up with

Lm V' (Nmin {1, [I|})~@-272

and therefore
f V"= >,(Nmin {1, |I,|]})~@~272
U AW -1 ; J

J
> {3 @Vmin (1,17~}
J
=1

=

by Corollary 4.1. This is a contradiction as before.

We now have a question: does Lemma 4.1 extend to R? in the following
form? Suppose y is a measure on R? with faster —than— exponential decay
(say, absolutely continuous) and define dp, (x) = e** du(x). Then there should
be rectangles [Rj} such that
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(i) the R; are disjoint,
(ii) for each j there is ke[-N,N] X --- X [-N, N] such that mR) =
| mel /2 for all T> 0,
(iii) >1|R,| ™! > C'N? where C only depends on d.

Remarks. (1) We believe that an affirmative answer should lead to a proof
of the WUCP for |Au| < V|Vu| with ¥ e L?, although we do not have a reduc-
tion of one problem to the other.

(2) Natural examples are a Gaussian and surface measure on the unit
sphere. For the Gaussian, the R ; are cubes with equal side length and in the
surface measure case they are the covering of the sphere by rectangles with
dimensions N™! x (N"? x . .- x N~'/2) familiar in connection with Stein’s
restriction problem and so forth. In both examples, the order N is attained.
The second example shows that the R; cannot in general be taken with sides
parallel to the axes.

(3) Weaker disjointness conditions than (i) would also be of interest, e.g.

(0% | Eij||f, = | Eij|| forall p< o,
or

(1)” the number of R i containing any given point is bounded by a power of
log N.

We can answer the question affirmatively with (i)” replacing (i) if d = 2.
Of course, the answer is also affirmative when d = 1 (Lemma 4.1). The two
dimensional result and partial results in higher dimensions will appear in a
subsequent paper. The author can now prove the WUCP for |Au| < Alu| +
B|Vu|, AeL*’?, Be L, r > d, along the lines described above.

5. Further Results

The effect of the «osculation by |x| ~"» argument in the proof of (3.1) was that
by using weights with a sufficient amount of «convexity» one could localize
in the radial variable to intervals of (logarithmic) length »~!2. One can ask
whether it is possible to localize also in the other variables (i.e., to discs of radius
n~1?) by the same kind of argument. It turns out that this is possible in some
cases and we will present consequences for the weak unique continuation
problem. Our main goal is the following refinement of a result of C. Sogge [15].

Theorem 5.1. Suppose
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is an elliptic operator with C'*" coefficients (0 <n <1 —2/d), and VeL’
where r = (d — 2)/2n. Suppose ue W*? satisfies |Lu| < V|u| + C |Vu| and
vanishes on an open set. Then u = 0.

Remarks. (1) This result with n = 1 — 2/d implies Sogge’s (he proved the
same assuming L has C” coefficients). As far as the minimal regularity is con-
cerned, nothing better than Lip 1 is possible even if r = c, as was shown by
Plis [11]. Lip1 is known to be sufficient when r = o through work of
Aronszajn, Cordes and Hormander in the 1950’s. The argument below can be
adapted to give this (only a linear change of variables is used in place of
Lemma 5.6) but so can many other arguments. The new point is that there are
L’ results with less than C* coefficients. It appears likely that the optimal
result for the WUCP will be that it holds provided L has Lip 1 coefficients and
Ve L¥2. Sogge pointed out that if the main conjecture on L” — L behavior
of oscillating integrals could be established (i.e., an affirmative answer given
to the first question at the end of [6] when r = g) then the argument below
could be used to prove the WUCP with Lip 1 coefficients and Ve L] _ for any
given r > d/2. This is because the L” — L” conjecture would improve the
estimate in (iii) of Lemma 5.2 below. The general conjecture in [6] has been
disproved by Bairgain.

(2) The argument will be based on freezing of coefficients —this is made
possible by the localization effect in Lemma 5.1 below. Sogge used yDO
calculus which is naturally less efficient if one cares about the minimal
regularity of the coefficients. On the other hand it must be pointed out that
Sogge also treated the SUCP. One would expect this to be possible by our
method also, but not without significant changes.

(3) The same kind of localization effect may be used to refine some results
of Chanillo-Sawyer [4]. We discuss this at the end of the section.

We let R% = {xeR%x; > 0} be the upper half space.

Lemma 5.1. Suppose d/2 < r < «. Let v be sufficiently large. For a e R%
denote D, = D(a,v""?a;) and T,(x) =1+ (|x — a|*/4a,x,;). Then for
fe C(R%) we have

@ lx;°f1 o S I Fa—yx;_d/r_ "Af | e
(D) |x;"Vf| oy = p (@B IT, px;—yAf %

(iii) || xd—l' f” LP(D) < V(d —-2)/4r+1/2 " I‘va—‘ de—ll Af ” e

We recall that 1/p — 1/p’ = 1/r. Also, we remark that the point of the
functions I',”is that T';” = 1 on D, (since |x — a|*/4a,x, < » ') and I';” dies
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off very fast outside D, so that e.g. Lemma 5.5 below is valid. His of course
the Hessian matrix.

Lemma 5.1 will be a consequence of the following estimate with respect to
the «natural» weights.

Lemma 5.2. Suppose d/2 < r < . Fix e € R" and denote D = D(e, v~'?|e]),
Q= {xeR%|x| > |e|/10, x-e> 0}. Then for fe C5(Q),

@ 11X 7 Ny = X777 AS 1,
(ll) ” 'xl -v Vf”LP(D) < y(d—Z)/4r— 1/2” |x|1—vAf"p
(i) x| "Hl oy < v 242 |3 7V AS |-

Proor oF LEMMA 5.1. There are three identical arguments for (i), (ii), (iii).
We will do (iii).

Define a* = (a;,...,a;_1, —ay). Apply (iii) of Lemma 5.2 taking the origin
to be at a*, and with 2» instead of ». Observe that the assumption that fe Cg(Q)
is in fact satisfied. We get

" |X _ a*l _szf"I}’(D) < V(d—Z)/2r+ 1/2 " IX _ a*l —ZvAf"p.
Now |x — a*| % = (4a,) "'x;'T,(x) ~'. Accordingly
(4ad)—v||11‘;-vxd—v f”LP(D) < V(d—2)/2r+1/2(4ad)—vi|Fa—vx;vAf"p

and now we are done, since ',/ = 1 on D.

Proor oF LEMMA 5.2. The reader will observe that part (i) can be derived
from [9]. All three parts follow readily from our Propositions 2.2 and 2.3 by
the same kind of arguments as we used in Section 3, only somewhat easier.
Accordingly we will omit the details of the calculations.

The estimates in Lemma 5.2 scale correctly, so we may assume e is a unit
vector. Recall the kernels L*, M®, N® from Section 2. For any fixed m, the
kernel |x|"L¢, . |y| ™™ maps |y| ~*Af to |x| “*D%f (or to |x| ~/(D°f — (1/d) Af)
if D* = d?/dx?). So to prove Lemma 5.2 it will suffice to show that for some

fixed m and sufficiently large » we have bounds
1] 47 =2L 2] ™| Loy - 7'y < 1 (@=0)
(5.1 " ]x|m_1L:‘|)’|_m”y(n)-»u’(p) < V(d—2)/4r-1/2 (|a| =1)
HX™LEY ™™ oy gy < 722 (o = 2)

In fact it will suffice to prove the bounds (5.1) with the powers of x dropped
from the left hand side (they are = 1 on D) and with L replaced by N} (the
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corresponding bounds for M are easy estimates on fractional integrals when
|| <2 or singular integrals when || = 2). Thus we will prove that

HN:‘ly| _m"LP(ﬂ)—»LP'(D) s l (a = 0)
(5'2) "N:‘l-yl _m'|LP(n)-+LP(D) = v(d—Z)/4r— 172 (|a| = 1)
INYIIL " am@y oy S 7472412 (ol =2

provided the fixed positive number m is sufficiently large.
Let Y be a smooth function which is 1 on the double of D, 0 outside the
triple and has the natural bounds. Fix « and write

S(x,y) = N(x, »)¥(x)
T(x,y) = N (x, »)(1 — ¥(x))

Consider first S. Let ¥, (x, ¥) denote smooth cutoffs to |x — y| = \, such that

1= Z 2N
A=2Jp—1
1s2/=<p172

on supp S. Then with the X, , K* notation used in Sections 2 and 3, and with
C a suitable constant, (y,S)* will be

0, if |s—t>C\,

XN, if |s—1]>C\,

X" N+ ; 1 x, 8%, if CT\<|s—t|<C\
[<2i%n

Using Proposition 2.2, and summing a geometric series in the case C™I\ <
|s — | < C\, we obtain
-1
+ )\> s

with D(»,\) as in (2.1). Lemmas 2.1 and 2.2 may thus be applied (take
u=v=1 in Lemma 2.2) to give (use Lemma 3.1 with p =0, |y| =X\ to
calculate the relevant L norms)

(671, =000 15

(5.2a) [¥sS |-y = %17 1D, NV
and therefore also
(5.3) ASIZ ™™ 5oy S 117 1D0, NV

since |y| ™™ =1 on supp S.
Now we need the following observation.



188 TuoMas H. WoLFF

Lemma 5.3. Suppose S: R? x R? — R is such that S(x, y) = 0 for |x — y| > e.
Then (1<p<2,1/r=1/p—1/p’)

IS1,-, = €IS]

p-p p-p”

To prove this (easier than finding a reference!) let {Bj] be a covering of R?
by balls with radius e and finite overlap (i.e., no point belongs to more than
C of them where C is a fixed constant). Let EJ be the dciuble of B;. The {B}]
still have finite overlap, and S(x, y) = 0 if x€B;, y &‘Bj. So

15712 < zj ISF1?
J Bj
< Zj 1860 )P
J Bj J
<3 |SGcs NI (Holder)
J J
<3 I f12
J J

=P £ 5.
Applying this in our situation when |a| = 1 or 2 we obtain from (5.3)

a=0: |8y ™" ,uy S v D@, YT,
a=1: [WS|y "], , S D@\,
a=2: |WSIy|™"|,., S vD(, WAV

Now we sum over A = 2/» 7!, 1 <2/ < »'/2. For a = 1 or 2 we have a con-
vergent geometric series with the main term being the A\ = » =1/ term, and we
obtain

"Sly' —m“pﬁp < y(d——Z)/4r— 172+ || - 1.

For « = 0 there are several cases according to the relative sizes of r and
(d + 2)/2, but we always get |S|y| ™| < 1 (in fact, it is clear that only
the case r = d/2 has to be considered).

Now we consider T'|y|~™. Choose a smooth cutoff J(x,y) = J(6,,) with
J =1 when 0, is less than C~'»~'"? (for suitable large C) and J = 0 when
0, >2C " '»~2 Write T=JT + (1 — J)T. (JT)*" will vanish if |s — 7| is
small compared with »~'/2, and when |s — ¢| = » /> we can write

p—p

-1
(JT)SI — XV N::tst + E X)\N:H.
A=2Jp—1
1s2isp1/2
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We may apply Proposition 2.2 to the summands and then sum a geometric
series obtaining (remember we can assume |s — ¢| = » /%)
-1
+ u'1/2> .

[T)™| 1-—

pop < t—(d—2+ |a|)/2V|ot| - ID(V, V_l/2)<

Likewise ((1 — J)T);may be written as

NS
A=20p—1/2
1<2i<p1/2
We then apply Proposition 2.3 (which was included for this purpose) to
estimate the action of X, N*¥ from L? to L”(D,), where D,= {eeS? %
see D}, and sum a geometric series to obtain
-1
4+ -1/ 2>

-1

Also (T|y| =™ = 0 if |s — 1| is large compared with » ~'/? or if |¢| < 1/10.
Denoting (for suitable C)

1@ - N1y

b < t—(d—2+ |a|)/2V|tx| = ID(V, V—1/2)<’ 1-2

and therefore the same estimate for 7. Thus

s

"(Tb’l —m)st"p_.p, < (~@-2+ Ial)/z—mv|a| -1,,Gd-4)/4r~ 1/2< 1-2

Q(S, t) =
-1
e ([ B S PRVIRE SRR
0 (otherwise),
we have
196, )] rsa-145 = vV/* for any ¢,
" Q(sv t) "L”(rd— 1dt) = V1/2r for any s,

provided m has been chosen large enough that there is no trouble at infinity.
Lemmas 2.1, 2.2 therefore imply

(54 ITIY ™™ oy 17y S ¥/ 1y G4 D74 =172

and therefore also (by Hélder’s inequality)

" lel -m "LP(Q)—»LP(D) < Vla[ - ly(d—2)/4r— 1/2_

Lemma 5.2 follows.
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In Lemma 5.2 we needed the assumption r > d/2 because otherwise the
«fractional integration» part M was unbounded if & = 0. On the other hand
the estimates in the above argument work perfectly well if r < d/2. We record
what we proved in case o = 0 for use in connection with the Chanillo-Sawyer
results at the end of the section.

Lemma 5.2. Let m be a sufficiently large fixed positive number. If e is a unit
vector, D = D(e,»™'/%),Q = {x:x-e >0, |x| > 1/10}, Y and {, are as above,
S(x, ) = ¥, INY(x, ), T(x,») = (1 = Y, YINJ(x,¥), then for fe L),
1 s 2_] < l/1/2

0 1SSy = v~ D, | £,
@) 17f |y = OO 432y |

Proor. (i) Follows directly from (5.3) and (ii) from (5.4).

To prove Theorem 5.1 we need a version of Lemma 5.1 with the Laplacian
replaced by a variable coefficient operator. This will work out because the disc
D is small enough to permit a good approximation of the variable coefficient
operator by constant coefficient one. Since the coefficients are C!*" and the
linear term can be eliminated by changing coordinates (geodesic normal coor-
dinates or something similar) we expect an approximation on D to within
O(»~V21+m) je., the following lemma.

Lemma 5.4. There is constant 3 > 0 so that if L is as in Theorem 1, B is a
suitable constant depending on ellipticity bounds for L in |x| < 1, then for
any > 0, if a € R? is such that | a| < 1 and a, is sufficiently small (depending
on bounds for ellipticity and C* *" bounds for coefficients when |x| < 1), and
if v is sufficiently large and if we set D, = D(a, ad/B\/; ) then

) "xd—v f”L”([_)a) < p@-/4r+ 1/2( " Bvxd-va ”p +E,)
@) 1% Vf | ooy = ¥4 24~ VAT Py LS |, + E))
@) |7 |y s 1Ty 5 °LS |, + E,

where
E, =@ 0" x T, H |, + |x;" T 7 Vf | .
The proof will be by a suitable change of variables and approximation by

the Laplace operator as described above. Before getting into this, let us use
Lemma 5.4 to prove Theorem 5.1. We need one other (elementary) lemma.
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Lemma 5.5. Let {a’} be a collection of points such that the discs

cover R% and have finite overlap. Then for any o >0, 2, iTa X)L C,
independently of x € R% and v, provided v is sufficiently large.

Proor. We first observe that if | — b| < ad/\/; then T',(x) > < CT'p(x) ~*0”
for suitable constants C and o,. This may be seen as follows: If |x — a| <
2ad/\/; then both sides are =~ 1. If

2a
|x —a| > =% then =~
v %y byx,

so for suitable oy < 1,

L S g
da,x, 4b,x,

lx_blZ ag
>(1+——1 >
4b,x,
P VAN _ 2\ —agy
<1+_|’f_”_l> <<1+|x__b_l___> .
da,x, 4b,x,

It follows that the discrete sum in Lemma 5.5 may be replaced by an integral
ie.

and

da
P ; —ay < Fa —qpov T
2T/ Li (x P0:

The integral is scale invariant so we may assume x; = 1. Then (let 8 = qp)

_ 2\ —-Bv
[ () "y,
RA -1 da,x,
4ad by t 2\ —-Bv
Lot T (e () T

_ < 4a, >B”<1 + ad>d”1
(1 +a,) NA
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da °° 4a by da
P—BV le/ZJ‘ < d > (1+a d-1 d
J‘R‘i “ AaNr) o \(1+ay)* o

- V1/2 Jveo 4ad Brv—-d+1 dad
o \ (1 +ay)’ a,

<1

for large », since the integrand dies rapidly when |a, — 1| > » "2,

ProOF oF THEOREM 5.1. By the usual Carleman argument it will suffice to
prove that there is p > 0 depending only on ellipticity and C'*” bounds for
L inside the unit disc, such that

5.5) %7°f 1, + 125791, < 135 °L S,

for all fe C5(D(0, p) N R% ), where e = 1/2 — (d — 2)/4r > 0. We remark that
in addition to (5.5) we will also prove

.5y |x;"H |, < »'~“lx;°Lf],

for fe Cy(D(0, p) N RR% ), with e as above. To choose p, we first choose a small
enough 7 and then choose p according to the «sufficiently small» in Lemma 5.4.

To prove (5.5), (5.5), cover D(0, p) with discs Dj = (aj , a{,/B v ) with
finite overlap, write down the conclusion of Lemma 5.4(i) for each a’, raise
to the power p, and sum over j, obtaining

Z j;-) |xd—va|p < Vp(d—Z)/4r+p/2<Z j |xd—uLf|pI-va—jﬁvp + ZE‘:J) .
J 'j J J

Do the same for the conclusions of Lemma 5.4(ii) and (iii) after multiplying
through by » and »©@~2/47+1/2 pespectively. Writing out E_; in longhand, we get

/o
ZJ |x¢;VH |p + szj\ |xd—vvf|p + Z Vp(d—2)/4r+p/2<j lxd_'f]p'>p P
i Jp; 7 i Jp; J D,

< yp(d—Z)/4r+p/2$ {j' Ix‘;uLflpl-\a—ijp + (V—l/2t)p(l+n) j' lxd—v f|pra—jﬁvp

+ j!x,;”VfV’r"’””}-

The Dj cover the support of fso the first sum on the left hand side dominates
|x; "H,| 7. Likewise the second sum dominates »”|x;” Vf |7, and (using that

¢' C 77 the third sum dominates »*@~ 2" *22|x2"f| P On the right side
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we use Lemma 5.5 to bound 2T a‘jﬁ"” by a constant, and we also use a, < p.
The resulting inequality is

Iz H AL + P15 Vf | + w2 g7

< P DA LF |2 4 (07 )P D + |V |2),

Our assumption on r says that y?@~2/4r+p/2),-(+vp/2 _ 1 Qo for small 7
we can bootstrap the second term on the right side. We can also bootstrap the
third term obtaining

|x7"H 5 + v |x; " V|5 + pP@m A2 | X 2op | 7,
< Vp(d—Z)/4r+p/2||xd—uLf”p
p

which is equivalent to (5.5), (5.5).

It remains to prove Lemma 5.4. The following lemma provides the
necessary change of coordinates.

Lemma 5.6. Suppose L is as in Theorem 5.1. Then for p € R and ¢ > 0 small
enough there is a C* (actually C®) diffeomorphism T:R% - R? with

() T(p) = p, and there is a linear map S: R® - R? with (8x), = x; and such
that Tx = p + S(x — p) when |x — p| > e.
(i) |DT(x) -S| s |x~-pl, |[DPPTH|s1, |DT7'()-S7'slx-pl,
|D*T~'(x)| s 1.
(iii) L(fo T) = (Af) o T+ O(lx = p|**"|H,| © T) + O(|Vf| o T) when
|x — p| < e€/2.

All bounds depend only on ellipticity and C'*" bounds for L near p (and
not on e).

ProoF. Let us first do the case where a;(p) =4, i (Kronecker delta). We would
like to start by choosing geodesic normal coordinates. We do not actually have
geodesic normal coordinates unless a; is C?, but we can use a second order
approximation to them. We give this construction for the reader’s conve-
nience:

By assumption we have a;,(x) = 6,; = {,(x — p) + O(|x — p|**") where t;are
linear functions with f; = ;. We claim there are second order homogeneous
polynomials Q, with

. 1/ di;
To see this let A = N\ G "I
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de;;
Qg + Ay + —— dx, =0.
. o 470
It follows that there are homogeneous quadratics Q; with e do. = ik and
 AXk

J
tuat they satisfy

d’Q; d’Q;,  dy

dx.dxk dxidxk dxk =0
2 d2
for all i, j, k and Qj+ Q’+£’ =0.
dx; dx;

Now define 7(x) = x + ¢(x)Q(x — p) where Q = (Q;---Q,) and ¢(x) =1
when |x — p| < €/2, ¢(x) = 0 when |x — p| > ¢ and |D%¢| < 1%,

Then T(x) = xif x = p or [x — p| > ¢, and a short calculation proves |D*T|
<1, |DT(x) — I| s |x — p|. This implies if ¢ is small that T is a diffeomor-
phism of R? and 7~ satisfies the same bounds. Thus it remains to prove (iii).
By choice of Q we have

550, + 4,6~ )b + 92 —p))(a,-n+ e p)

l

= amn + 0(|X - plz)-
On the other hand, if we denote y = Tx then with the summation convention

a dy, dy, d*f ta d’y, df
Vidx; dx; dyndy, Ydx;dx; dy,

(5.6) L(fo T)x) =

Up to terms of order |x — p{l *7 we have a; = 51‘,’ +4,x —p) and

Ay a0y,
= 8y +
dx; ™ dx;

x-p)

when |x = p| <e. It follows that the first term on the right in (5.6) is
0(|x—p|””[Hfo T|). The second term is clearly O(|Vf| o T) so we are
done with the case where a;(p) = 6,;- We can reduce the general case to this
case by a preliminary affine change of variables: explictly, let 4 = (a;;(p)) and
choose S so that S*S=A""! and (8x), = x, (this is possible for any posi-
tive symmetric A ~!). The preceding argument then applies to the opera-
tor L(fo S) o S~! in place of L giving a change of variable T}, and we let
T=So0T,.

Now, in the situation of Lemma 5.4, we can apply Lemma 5.6 with p = a
and e = a,/2 (provided |a| < 1 and g, is small enough). We obtain a change



UNIQUE CONTINUATION FOR |Au| < V|Vu| AND RELATED PROBLEMS 195

of variables 7,. In order to proceed we now need some further elementary
properties of our weights especially as to how they behave under 7,.

Lemma 5.7.

(@) I';”oT,<T_/ ™ for a suitable fixed constant 7.
('i'i) For any € > 0 we will have x;” o T, < x;"T'; provided a, is sufficiently
small.
Moreover (i) and (ii) also hold for T a'l.
(iii) For any given k, |x — a|*T';” < (v~'?a)*T' " provided v is large enough.
Proor. Part (iii) follows from the rapid decay of I', outside D,. To prove
() and (ii) we consider the regions |x — a| < a,/2 and |x — a| > a,/2 sep-
arately. We abbreviate 7, by 7.
In the first region, we have (Tx), = x, + O(|x — a|?) by (ii) of Lemma 5.6
(and the fact that (Sx) = x,) and therefore

x—al?
(Tx),; > xd<l - C|—4}d—|—>-
If € is given then by making @, small we make this larger than or equal to
x;(1 — Ce|x — a|2/4adxd) = x,; T,lx ~C'¢ which gives (ii). As for (i), we have
Lipschitz bounds on T and therefore I',(7x) > (1 + C|x — a|*/4a,x,) for
suitable C hence I',(Tx) >T,(x)¢". In the region |x —a| > a,/2 (i) is a
tautology and (i) again follows from the Lipschitz property of 7. Since all of
this followed from (i) and (ii) of Lemma 5.6 it also holds for 7.

ProoF oF LEMMA 5.4. We will prove (i) and then indicate the modifications
necessary to get (ii) and (iii). Where B was unspecified, we now specify it so
be an upper bound for the Lipschitz norms of the 7, and T, a‘l. o below is
another fixed constant. D = D(a, ad/\/v_) and D = D(a, a,/B V).

We justify the following string of inequalities below.

||xd_ny|| Lp([—)) = ” (xd_pr) ° T_l " LP(D)
S |T79g Hyo sl ey + I(T707 V(0 T™H) o

s "xd_vao T—1||LP(D) + “Xd_”V(fo T_ 1) "LP(D)
(5.7) < V(d—z)/4r+1/2"A(f° T—l)xd—yrs-v”p
(5.8) < V(d—z)/4r+1/2(” (Lf) o T—lxd—vl-\a—v"p

+ |lx—al'"TH o T lx" T,
+ (V) e T™x" T,

- -1
+|x;"T;"Hyo T "Lp(|x—a|>(ad/4BZ)))



196 TroMas H. WOLFF

"xd_”Hf“Lp(b) < V(d—z)/4r+1/2(" (Lf) o T—de—vl-\:;"p

+ (V—I/Zad)l +n"Hfo T-—lx‘;vlwa—v/Zﬂp
—1..- -
+ ) o T T,
+ V—100||xd—v1-1t;-v/2Hfo T—l"p)
d—-2)/4r+1/2 - -
<y )/4r + ("xdvra auLf”p

+ [(V—I/Zad)1+11 + V—~100] ”xc;-vl-va—‘av
+ X" T Vf ] ).

f"p

Justification. First inequality: 7 is bilipshitz and 7-'D < D. Second inequality:
|H,o T7Y s |Hyo 7| + |V(fo T7Y| if T has bounded first and second
derivatives. Third inequality: Lemma 5.7 (ii) and the fact that I' ;" = 1 on D.
Forth inequality: Lemma 5.1. Fifth inequality (5.7) < (5.8): split R% in the two
regions |x — a| < a,/4B and |x — a| > a,/4B. The last two terms in (5.8) bound
the L” norm in (5.7) over the region |x — a| > a,/4B by the same calculation
that was used to justify the second inequality. When |x — a| < a,/4B we know
that |T,x — a| < a,/4, so we can write down (iii) of Lemma 5.6 for the func-
tion fo T-! and then compose with 7~! obtaining

L) e T =Afe T+ O(T x~a|'*"|H,q 1) + O(V(f o T™H)).

Also |T™'x — a| is comparable with |x — a| and |Ho 1| may be replaced
by [Hyo T™!| + |(Vf) o T™*| and |[V(f o T™)| by |[Vf] © T~! as in the second
inequality. This shows (5.7) < (5.8). To pass from (5.8) to the next line we
estimate the second term in the parenthesis using Lemma 5.7 (iii) and the last
term using that I',” %is < » ¥ for any fixed k when |x — a| > a,/4B. Finally
the last inequality follows by reversing the change of variables and using
Lemma 5.7(i)) and (ii). One can take o = /5 with v as in Lemma 5.7(i).
Lemma 5.4 follows since (»~%a,)'*" + » ' may be made less than
(rv~V%1*7 for any given 7 by making » large and a, small.

To obtain (i) of Lemma 5.4, we start with |x,”Vf| 55, , make the change
of variables 7! and then use (ii) of Lemma 5.1 to obtain an expression like
(5.7) but with »©@ 274712 jj place of »©@~ 2747+ 1/2_ Tq obtain (iii) of Lemma
5.4 we start with |x;’f| » 5 and proceed the same.

Now we prove a refinement of a result of Chanillo-Sawyer [4]. Recall (see
[4] and references there) that the «Fefferman-Phong class» F, is defined by
the condition Ve F, if and only if | V| -4 < C, 1" for all ¢ and all balls
B of radius ¢. The F, norm is the smallest possible C,,.

Theorem 5.2. Suppose d >4, r>d/2 — 1 and V is a function with suffi-
ciently small F, norm. Then the inequality |Au| < V|u| has the WUCP in the

sense that if ue leo’cp, |Au| < V|ul|, u vanishes on an open set then u = 0.
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Remark. Chanillo-Sawyer required r > d/2 — 1/2 but they also treated the
SUCP. An identical result to Theorem 5.2 has been proved independently by
Ruiz-Vega [12] by a different argument. It should be pointed out that their
version was circulated several months before ours. We include the result here
only because it follows very easily from what we have been doing.

Proor. By an argument in [4], it suffices to prove the following:

Lemma 5.8. If VeF, then we have |x;"Vu|, s |x;”V ™' Au|, for all ue
C‘:(IR‘Z,) and sufficiently large v.

Covering R% by a family of discs D(a’, »~*"?a’) and using Lemma 5.5 as

in the proof of Theorem 5.1, we see it will suffice to prove

Lemma 5.8'. IfVeF,then |x;"Vu| g, < [T, %x;"V ™" Au| 12 uniformly
in aeR% and v sufficiently large, and u'e C3(R%).

This is a variant on Lemma 5.1 and again we reduce to a lemma in terms
of the weights |x| .

Lemma 5.8". If k is a large enough fixed positive number then, letting e be
a unit vector, v large enough, and defining

D=D(,v "%, Q= {x]x|>1/10,x-e>0)
we have
" |x| —vVu”LZ(D) s "(1 + Vl/zlx - el)k|x\ _”V_lAu"LZ(n)

Jor all ue Cj(Q).

Proor oF LEMMA 5.8'. (assuming 5.8”). We may take a to be such that
a,=1/2.
Using Lemma 5.8” and the argument in the proof of Lemma 5.1, we obtain

"xd_vVu“Lz(Da) = ”I‘s_v(l + Vl/z}x - el)kXd_VV_l Au "Lz'

However, (1 + »"?|x — e|)*I';” s T'/”? by part (iii) of Lemma 5.6.

Proor or LEmmMA 5.8”. It will suffice to show
(5.9) [ V2L VY2f | oy s 1+ 9% |x = e)f | 2.

If fe L*(Q), where L, = L?. It is known (see references in [4]) that this kind of
inequality is true if L, is replaced by |x — y|2'd (and therefore also if L, is
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replaced by M,) provided V e F, for some r > 1. So it will suffice to prove (5.9)
with L, replaced by N,. We write N, = S + T as in the proof of Lemma 5.2
and will prove (5.9) with L, replaced by N,. We write N, = S + T as in the
proof of Lemma 5.2 and will prove (5.9) separately for S and for 7. To deal

with S, write § = >, ¥»S as in the proof of Lemma 5.2. To estimate
p—1 y—1/2
T
(5.10) | V6 240 (6, NSO VN2 1200y - L2y -

It will suffice (by a partition of unity and Cotlar’s Lemma as in the proof of
Lemma 2.4) to estimate the action on fuctions supported in a ball of radius
\. If B is such a ball, f vanishes off B and B is a suitable fixed multiple of
B then, using Holder’s inequality and Lemma 5.2,

| V" 11;(23') " (‘p)\S)VVZf "p’

I
V152 | VY2f | v~ Do, N7
S |V £ 12y~ De, N

I V2 S)VV2f |2 <
<

Now use the definition of F, to estimate | V| .5 < A"~ 2. Substituting this
in we obtain an estimate (5.10) s (»\)¢ =272 -1, By our assumption on r the
power of »\ here is negative and we may sum over \ to obtain

| VY2SVY2) 20y 120y S 1-

Now we have to consider T. Write

T(x,y) = Zo T(x, y)9,(») = Z}) T;(x, ),
j= Jj=

where

o — 1, if 25" V2<|y—e| <2/t y12
77 (0, otherwise.

Consider a given T;. We know from Lemma 5.2’ that 7 is bounded from
LP(@, |y|™ dy) to LP(D, dx) with norm < »©®?~?/4=32 Therefore 7} is bound-
ed from L”(Q, |y|™ dy) to L”(D, dx) with norm < y®?¢~2/47=3/2_ Therefore T;
is bounded from L?(Q, dy) to L?(D, dx) with norm

<+ 2jV—1/2)mV(3d—2)/4r—3/2.

Using Holder’s inequality as in the estimation for S, V2TV'/? is bounded
from L*(Q, dy) to L*(D, dx) with norm
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jo—1/2 3d —2)/4r—3/2
S 1+ 27y AR Y | e s 1-1ap |V | Lo, -1

< (1 + 2jV - 1/2)mV(3d— 2)/4r— 3/2(2jV - 1/2)d/2r— lV -@d/2r-1)/2
- 2j(d/2r— l)(l + 2jV—1/2)mV(d— 2)/4r—-1/2

< 2j(d/2r- l)(l + ZJV - 1/2)m

by choice of r. The last expression may be bounded by 2 (1 + »'/2|y — e|)¥
for appropriate k if y is such that T}(x, ) is nonzero for some x, and therefore
we obtain

VATV Yf | <2771+ vy = e F
We may now sum over j to obtain
[V 2TVf o< A+ 02y = e 1,

and we are done.
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