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Résumé

On considére le probléme du contrdle ponctuel (c’est-a dire au moyen d’une
masse de Dirac située en un point fixé) des vibrations d’une plaque Q. Sous
des conditions aux limites générales, incluant les plaques posées ou encastrées,
mais excluant (et pour cause) le cas ou existent des vibrations propres
multiples, nous montrons la contrdlabilité des combinaisons linéaires finies
des fonctions propres en tout point de Q qui n’est zéro d’aucune fonction pro-
pre et en tout temps strictement supérieur a la moitié de la surface de la pla-
que. Ce résultat est optimal car aucune combinaison linéaire finie non nulle
de fonctions propres n’est ponctuellement contrélable en un temps strictement
inférieur a la moitié de la surface de la plaque. Sous la méme condition sur
le temps, mais pour un domaine Q quelconque de R?, on résout le probléme
du contrdle spectral interne, c’est-a-dire que pour tout disque ouvert w C Q,
une combinaison linéaire finie quelconque des fonctions propres peut étre
ramenée a 1’équilibre au moyen d’un contrdle 42 e D0, T) X Q) tel que
supp(#) C (0, T) X w.

Abstract

We consider the problem of controlling pointwise (by means of a time depend-
ent Dirac measure supported by a given point) the motion of a vibrating plate
Q. Under general boundary conditions, including the special cases of simply
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supported or clamped plates, but of course excluding the cases where some
multiple eigenvalues exist for the biharmonic operator, we show the control-
lability of finite linear combinations of the eigenfunctions at any point of Q
where no eigenfunction vanishes at any time greater than half of the plate’s
area. This result is optimal since no finite linear combination of the eigen-
functions other than 0 is pointwise controllable at a time smaller than half of
the plate’s area. Under the same condition on the time, but for an arbitrary
domain Q in R?, we solve the problem of internal spectral control, which
means that for any open disk w C Q, any finite linear combination of the
eigenfunctions can be set to equilibrium by means of a control function
he D0, T) x Q) supported in (0, T) X w.

1. Introduction and Functional Setting

In order to make the theory more transparent, we shall consider the general
case of a second order conservative evolution equation and apply only at the
end our abstract results to the specific case of a 2-dimensional vibrating plate.
Let Q be a bounded domain of R" (or a compact N-dimensional manifold
without boundary) and A4 a positive self-adjoint operator in H = L*(Q). We
assume that A4 satisfies the following properties

(1.1) A is coercive on H.
(1.2) D(AY? c C(@) with continuous imbedding.

Given T> 0, £€Q and [°, y']1 € D(A?) x L%Q), we are interested in the
existence of a control function h e L*(]0, T[) such that supp (4) C [0, T] and
for which the unique generalized solution y of

y'+Ay=h)d(x - § in ]0,T],
(1.3) 70, %) = y°(»),
y'0,%) = y'() in Q,

satisfies y(T, x) = y'(T, x) = 0in Q. If such a control & exists, we shall say that
the state [y°, y'] is «pointwise exactly L2-controllable in £ at time T'».

The possibility of solving this «pointwise exact controllability problem» is
related to the amount of information revealed by the restriction to [0, 7'] of
t— ¢(t, £) where ¢ is an arbitrary solution of the homogeneous equation

(1.4 "+ A¢ =0 in ]0,T], ¢eCO,T; V)NCY0, T; H)

with V = D(AY?), H = L*(Q). (Note that as a consequence of (1.2) we have
é(t, £) € C([0, T] for any such solution ¢). In fact if any [y°, y'] from a dense
subset of ¥ x H is exactly L2-controllable in ¢ at time T, then any solution
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¢ of the homogeneous equation (1.4) such that ¢(¢, £) vanishes identically on
10, TT is the trivial solution ¢ = 0. Conversely, if any solution ¢ of the
homogeneous equation (1.4) such that ¢(z, £) vanishes identically on ]0, T is
the trivial solution ¢ =0, then for each (¢°, ¢') e V x H, we consider the
(clearly well-defined) norm

(1.5) P&, 8" = {[ 6’ par)"”,

where ¢ is the solution of equation (1.4) with initial data (¢°, ¢'). The follow-
ing result then follows from the general HUM method of J. L. Lions ([17, 18,
19)).

Proposition 1.1. A given state [¥°, y'] € V X H is exactly L*-controllable at
¢ in time T if and only if there exists a constant C > 0 such that for every
(4% ¢ eV xH,

(1.6) |Jo @' = 8% dx| < Cp°, 6.

As was clearly established in [6], the set of pointwise exactly L2-controllable
states (always a dense subset of V' X H when p is a norm) is usually com-
plicated and more precisely depends on the observation point £ in a very com-
plicated and unstable way, even in the simplest case of the standard vibrating
string with fixed end! The only reasonable thing to be expected in general is
that (1.6) might hold true when both y° and y! are finite linear combinations
of the eigenfunctions of A, assuming that no eigenfunction vanishes at £, This
implies in particular that all eigenvalues of A are simple, a condition that we
shall assume in most of this text (Sections 2, 3 and 5). The controllability of
all states for which y° and y! are finite linear combinations of the eigenfunc-
tions of A is what we shall call «pointwise spectral controllability». Taking
account of the form of the general solutions to the homogeneous equation,
it is natural to apply the methods of harmonic analysis to solve this problem.
Indeed, any solution of (1.4) can be written as a series

$(t, ) = 3] [ da®) cos VN + Y, () sin VN7 )

where the functions ¢,, ¥, are eigenfunctions of A associated to the eigen-
values \,, or in complex form

o(t, %) = 21 p;(x)e’™s!

where the p; stand for the (positive or negative) square roots of the eigenvalues
\,.. Thus for fixed x, it is a linear combination of some complex exponentials,
the properties of which will be the key point of this work. Our main result
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will, maybe surprinsingly, turn out to be a consequence of one among the
deepest classical results on harmonic analysis from the «sixties», namely the
Beurling Malliavin criterion for computing the completeness radius of a family
of complex exponentials. The application of this powerful machinery to our
problem is the object of Sections 2 and 3 of this paper. The case of a vibrating
plate with constant Lamé coefficients is a special case of our abstract result
obtained for N = 2 and A = A? with relevant boundary conditions. In Section 4,
we shall combine the result of Section 2 with, essentially, a biorthogonality
technique in the spirit of [2, 16, 22] to solve the easier problem of «internal
spectral controllability» under slightly relaxed conditions on the domain.
However we feel that much more should be done in this last direction, as
already strongly suggested by the special cases considered in [6, 11, 15]. Finally
in Section 5, we consider some additional examples and we discuss the relation-
ship between spectral controllability and some uniqueness questions.

2. Some Properties of the Completeness Radius of a Family
of Complex Exponentials

The main tool from harmonic analysis that we shall use in this paper is the
notion of completeness radius and its characterization by some estimates.

2.1. Definition and some properties of the Completeness Radius

Definition 2.1.1. Let A = {\,},., be a sequence of distinct real numbers.
Consider all the functions of the form

2.1 f@) = 35 fie™,
keJ

J being any finite subset of Z. The completeness radius of A is defined as
R(A) = sup {A > 0: the functions f of the form (2.1) are dense in C([ — A4, A])}.

In particular, if the functions f of the form (2.1) are dense in C([—A, A]) for
all A >0, we set R(A) = co. On the other hand, if the density fails for all
A >0, we set R(A) = 0.

Remark 2.1.2. A classical result from the theory of nonharmonic Fourier
series (¢f. e.g. [24, Theorem 8 p. 129]) asserts that either the functions of the
form (2.1) are dense in C([a, b]), or no complex exponential of the form e™
with » different from all \,, can be obtained as a limit of functions of the form
(2.1) in C([a, b]). This interesting alternative is the main idea for the proof of
Proposition 2.2.1 below.



POINTWISE AND SPECTRAL CONTROL OF PLATE VIBRATIONS §

Remark 2.1.3. For all pe|l, +o) we also have

R(A) = sup {A > 0: the functions f of the form (2.1)
are dense in LP([—A, A]},

with the same conventions in the limiting cases R(A) = 0, « (sée [24]). In the
sequel we shall be especially concerned by the case p = 2.

2.2. A «Density-Controllability» Alternative

The main result of this section is the following

Proposition 2.2.1. Let A= ()} be a sequence of real numbers. Then

we have the following properties

neZ

(1) For each T > 2R(A) and for each n € Z there exists a constant C,, such
that

@2) AR A LG

for each function f of the form (2.1) with ne J.
(2) On the other hand for each T < 2R(A) and for each finite sequence
{a,),r Of complex numbers having a non zero term, there exists no con-

stant C > 0 such that
T 172
< CU |f(t)|2dt}
0

for each f of the form (2.1) with FC J.

2.2 2 anfy

neF

As a first step we will establish the following lemma.

Lemma 2.2.2. Let I=(0,T) and let A= {\,},., be a sequence of real
numbers. Assume that the set of functions of the form (2.1) is not dense in
L*(I). Then, for each n € Z there exist a constant C, such that (2.2) holds for
each function f of the form (2.1) with ne J.

Proor. If (2.2) is not satisfied for some n, we can find a sequence of func-
tions {f7} of the form (2.1) such that |f?| =1 and [;|f"()|*dx—0 as
p— +oo. It follows that the constant 1 is the limit in L*(/) of some functions
g of the form

(2.3) g) = k% gre™e,
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where J is a finite subset of Z — {n}, and: u; = A, — \,,. By repeated integra-
tion in #, we deduce that all polynomials of ¢ with complex coefficients are also
limits in L*(I) of some functions g of the form (2.3). Indeed, let pe N, e > 0
and g of the form (2.3) be such that

P — 3 et
keJ

e
2

where | |, stands for the norm in L*(I). By integrating in ¢, we deduce easily
the estimate

eiukt g
+(p+1) D
123 keJ Kk

<(p+ DeT'?

L]

P - (p+ 1) D&
keJ

where | | stands for the norm in L*(I). Hence, in particular

ipgt

e &
P (p+ 1) D& +(p+1) 32k
keJ 117 keJ Wi

< (p + DeT.
2

Then by approximating the constant (p + 1) 2, ., (8/m) in L*(I) by
functions of the form (2.3), we find a sequence of coefficients {gj}, ., for
which

<2(p+ 1eT.
2

tp+1 _ Z g;ceiukt
keJ

This proves the claim by induction on p since it has been proved already for
p = 0. Finally by the Stone-Weierstrass density theorem, the functions g of the
form (2.3) are dense in L*(I), and the same property follows at once for func-
tions f of the form (2.1).

Proor or ProposrTioN 2.2.1. It follows clearly from the definition of R(A) that
for each T > 2R(A) the functions f of the form (2.1) are not dense in L%(0, T),
and therefore assertion 1) is an immediate consequence of Lemma 2.2.2. On the
other hand for each finite set F C Z, if we denote by A’ the set {\,},.7_p»
then classically R(A’) = R(A). As a consequence for each 7' < 2R(A), the set of
functions f of the form (2.1) with JNF = & is dense in L*(0, T'), and therefore
for each non trivial sequence {a,},.r of complex numbers, the function
a(t) = D) ae™!
keF

can be approached in L*0,T) by functions f of the form (2.1) with
JNF = . By taking the difference we find a sequence of functions of the
form (2.1) tending to 0 in L%(0, T') and for which the left-hand side in (2.2)’
is constant and positive. This clearly establishes assertion 2).
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2.3. Computation of a Beurling-Malliavin Density

The main result of this section is the following

Theorem 2.3.1. Let A= {\,},., be a sequence of real numbers. Assume
that we have for some d*,d” 20and 0 <a <1

2.4 #{heA:0K NSt} =dt+ 0@
and

#{NeA: -t SN0} =d t+ O@F°).
Then we have

2.5) R(A) = nd, d=max{d*,d }.

Theorem 2.3.1. will be a consequence of the famous Beurling-Malliavin
Theorem. In the important special case where d* = d~, it will be sufficient
to verify the following lemma.

Lemma 2.3.2. Let A = {\,},. be a sequence of real numbers. Assume that
we have for somed>20and 0 < a<1

2.6) #(NeA:0OSANKt) =dt+ O(t*)and # [(NeA: —t <A< 0} =dt + O@).

Let us represent the generic compact interval of R by w = [w,, w,] and define
for each € > 0 the set

2.7 Q = {w|]|o| " #(ANw) —d| = €}.

Then if we represent each interval » by a point in the upper half-plane through
the formulas

2.8) T =(x,y) with x=(w; +w)/2 and y=|o|=w,— w,

we have

dxdy
. v . ———— < 00,
2.9 e>0 jjT(ﬂE) [5x4 )

for every € > 0.

Proor. As a consequence of hypothesis (2.6) we have immediately

#(ANw) — dlo| = Ofw|* + |w,|*}.
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therefore we only need to check that for each K > 0, the set

AK) = {(,»)eRE0< y < K(Jx + p|* + |x — ¥}

J’ dxdy
T T <®
AKK) 1+x“+ y

AKK)C B = {(x,y) e R:0 <y < M(1 + x»)*%}

satisfies

But obviously

for some constant M related to K. Finally we have

dxdy - +eodx M@ +x3*/? dy
pl+x*+y" 7 J 0 1+x2+y?

+ 0
<Mj 1+ x)*?"ldx < 0.

The result follows immediately.

In order to complete the proof of Theorem 2.3.1, it will be useful to recall
the main concepts required to formulate the general Beurling-Malliavin
Theorem.

Definition 2.3.3. A sequence of distinct real numbers A = {\,},_, is said to
be regular with Beurling-Malliavin density equal to d > 0 if for each ¢ > 0, the
set Q, given by (2.7) satisfies (2.9) with T given by (2.8).

We now recall the main result of [1].

Theorem 2.3.4. (Beurling-Malliavin.) Let A = {\,}
distinct real numbers. Then

ncz be a sequence of

(a) If A is regular with Beurling-Malliavin density equal to d > 0, we have
R(A) = wd.

(b) If A is not regular, then
R(A) = wd,

where d is the infimum of all Beurling-Malliavin densities of regular sequences
of distinct real numbers containing A.



POINTWISE AND SPECTRAL CONTROL OF PLATE VIBRATIONS 9

Proor oF THEOREM 2.3.1. (@) If d* =d~, the result of Lemma 2.3.2.
precisely means that A is regular with Beurling-Malliavin density equal to d,
and (a) from the statement of Theorem 2.3.4. gives exactly (2.5).

(b) Otherwise, one easily finds that any regular sequence of distinct real
numbers containing A has a density at least equal to d. On the other hand by
«completing» A it is rather straightforward to build a sequence of distinct real
‘numbers containing A and satisfying (2.6). As a consequence of Lemma 2.3.2.,
such a sequence must be regular with Beurling-Malliavin density equal to d.
Then (2.5) follows at once from (b) in the statement of Theorem 2.3.4.

By combining the results of Proposition 2.2.1 and Theorem 2.3.1, we
obtain

Corollary 2.3.5. Let A = {\,},., be a sequence of real numbers. Assume
that we have for somed” >20,d” 20and 0 <a <1

2.9 #{AeA:0
#{NeA: —t

At} =dt+ 0@ and
NS0} =d7t+ O@).

non

Then letting d = max {d*,d ™}, we have the following properties

(1) Foreach T > 2wd and for each n € Z there exists a constant C, such that

Al < Gl [ 170 a} ™,

for each function f of the form (2.1) with ne J.
(2) On the other hand for each T < 2wd and for each finite sequence
{an} . Of complex numbers having a non zero term, there exists no

constant C > 0 such that
T 172
< C{ j |ft)? dt}
0

for each f of the form (2.1) with F C J.

2 oty

neF

The special case where d* = d~ is especially important for the sequel (Sec-
tions 3 and 4) and therefore we state it separately for the reader’s convenience

Corollary 2.3.6. Let A = {\,},., be a sequence of real numbers. Assume
that we have for some d 20 and 0 < a <1

QA #(NeAOKNKt) =dt+ O@t*)and # {(NeA: —t <N <0} =df + O(7).

Then we have the following properties
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(1) Foreach T > 2nd and for each n € Z there exists a constant C, such that

T 172
FARS CnUO |f(t)|2dt} ,

for each function f of the form (2.1) with ne J.
(2) On the other hand for each T < 2wd and for each finite sequence
{a,},cr Of complex numbers having a non zero term, there exists no

constant C > 0 such that
T 1/2
< CU If(t)lzdt}
0

for each f of the form (2.1) with F C J.

Z anfn

neF

3. Application to Spectral Pointwise Control of some Plate
Models

3.1. An Abstract Controllability Result

The main result of the section is the following.

Theorem 3.1.1. Let Q be a bounded domain of RN (or a compact N-
dimensional manifold without boundary) and A a positive self-adjoint
operator in H = L*(Q) satisfying conditions (1.1) and (1.2) with A~ compact.
We denote by A* = {)\j}l sjstw the increasing sequence of eigenvalues of
A%, We assume that all the eigenvalues \; are simple and that we have for
somed>20and 0<a<l1

3.1 #{NEATIN ) =dt+ O(@).

Let £€Q be any point at which no eigenfunction of A vanishes, and let us
denote by D the vector space of all (finite) linear combinations of the eigen-
functions of A. Then

(1) or every T> 2xd, and (y",y') € D X D, there exists h = h(t) € L*(0, T)
with supp (h) C [0, T] and such that the unique solution y of (1.3)
satisfies (T, x) = y'(T,x) =0 in Q.

(2) This result is optimal: as soon as T < 2wd, there is no (¥°,y")e D x D
except the trivial state (0,0) for which such a control h exists.

Proor. This is a straightforward consequence of Proposition 1.1 and Cor-
ollary 2.3.6 applied with A = A* U(—A™). Indeed any solution of (1.4) with
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initial data in D X D has the form

u(t,x) = Y, {u;cos N\t + v;sin 2} ¢;(%),
JjeJ
where the functions ®; denote an orthonormal sequence of eigenfunctions of
A and the coefficients #; and v; and given by the formulas

1
u; = L u(0,X)¢p;(X) dx,  v;= Tj L u'(0, x)¢; (x) dx.

It is then clear that a direct application of Corollary 2.3.6 to the function
@) = u(z, £) with u as above provides exactly the result by taking into account
Proposition 1.1.

3.2. Application to Simply Supported Plates

Let @ be a bounded domain in R®. We denote by A* = N}i<j< 1+ the
increasing sequence of eigenvalues of (—A) in H é(ﬂ): it is known that under
very general assumptions on {, for instance if dQ is smooth, the counting
function n(t) = # {\e A*:\ <t} where each A\ e A™ is repeated according to
its multiplicity satisfies the so called Weyl formula:

3.2 n(t) = dt + O(tV?) with d = (1/4x)vol (Q).

As a special consequence of Theorem 3.1.1 we find

Theorem 3.2.1. Let Q be a bounded domain in R?* satisfying the « Weyl for-
mula», assume that all eigenvalues of (—4A) in H (1)((2) are simple and let us
denote by D the vector space of all ( finite) linear combinations of the eigen-
JSunctions of (—A) in H (I)(Q). Let finally £ = (&4, &) €Q be any point at which
no eigenfunction of (—A4) in H (‘,(Q) vanishes. Then

For every T > (1/2)vol(Q), and (¥°, ¥')e D X D, there exists h = h(t) €
L*0, T') with supp (h) C [0, T] such that the unique solution ¥ of

¥, + A = h()d,(x,y) in 10, T[ X Q,

¥ =A¥ =0 on [0, T] x 09,
¥(0; x, ) = ¥, y) in Q,
¥,0;x,) = ¥'(x) in Q,

satisfies ¥(T, *) = ¥ (T, *) = 0.

This result is optimal: more precisely if T < (1/2) vol (2), no non-zero finite
linear combination of the eigenfunctions of (—A) in H (’,(Q) is pointwise L*-
controllable.
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When Q is a rectangle of the form (0, 7) x (0, L), with (L/7)* ¢Q, let D
denote the vector space of finite linear combinations of the basic eigenfunc-
tions sin mxsin (nwy/L), me N, n e N. We have the following result:

Proposition 3.2.2. Let £ = (£, &) €Q be fixed with £,/7 ¢ Q, &/L ¢ Q. For
each T> (1/2)xL and each (¥°,¥') e D x D, there exists h = h(t) € L*(0, T)
with supp (h) C [0, T'] and such that the unique solution ¥ of

¥, + A% = h()d,(x,y) in 10, T[XQ,

¥ =A¥ =0 on [0,T]xaQ,
¥(0;x,¥) = ¥°(x,y) in Q,
¥,(0;x,) = ¥'(x) in Q,

satisfies ¥(T, ) = ¥ (T, +) = 0.

3.3. Application to the Case of Clamped Plates and Other Boundary
Conditions

Let Q be a rectangle or a bounded domain in R? with a smooth boundary. We
denote by A* = { the increasing sequence of the square roots of

the eigenvalues of A% with relevant homogeneous boundary conditions: under
very general assumptions on these boundary conditions, the counting function

)‘j}lsjs + oo

n'(t) = #{heAt:\< 1)

where each Ae A™ is repeated according to its multiplicity still satisfies the
Weyl formula (3.1) with the same value of d. As a consequence of Theorem 3.1.1
we find for instance

Theorem 3.3.1. Let Q be a bounded smooth domain or a rectangle in R
for which all the eigenvalues of A* in H 3 (Q) are simple, and let us denote by
D the vector space of all ( finite) linear combinations of the eigenfunctions of
A?in H2(Q). Let finally £ = (&, £,) € Q be any point at which no eigenfunction
of A% in HZ(Q) vanishes. Then

For every T> (1/2)vol(Q), and (¥°, ¥')e D x D, there exists h = h(t) €
L*0, T) with supp (k) C [0, T'] such that the unique solution ¥ of

¥, + A% = h()8,(x,y) in 10, T[xQ,

¥=|V¥ =0 on [0, T] % 39,
¥(0; x,) = ¥°(x, ) in Q,
¥,(0;x,) = ¥'(x) in Q,

satisfies W(T, +) = ¥ (T, +) = 0.
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This result is optimal: more precisely if T < (1/2)vol (), no non zero finite
linear combination of the eigenfunctions of A* in HX(Q) is pointwise L*-
controllable.

ProOOF. Let Q be a bounded smooth domain or a rectangle in R?> for which
all the eigenvalues of A% in H (2)(9) are simple. Then Ivrii [10] asserts that under
general positivity conditions, the fact that A with the given boundary conditions
is elliptic in the sense of Shapiro-Lopatinskii implies that the counting function
n'(t) satisfies (3.1). It is rather easy to check (cf. e.g. Wloka [23]) that the opera-
tor A%in H (2,(9) satisfies the Shapiro-Lopatinskii condition, therefore Theorem
3.1.1. is applicable. (For a related weaker property cf. also Plejel [21].)

Remark 3.3.2. Of course the difficulty in general will be to determine the
«strategic points» &= (£, &) at which no eigenfunction of A% in H (2,(9)
vanishes. Even when ( is a rectangle of the form (0, =) X (0, L), the eigenfunc-
tions of A? in H2(Q) become more complicated than in the case of simply sup-
ported plates, and it is probably not so easy to find the strategic points. We
know, however, that in the absence of multiple eigenvalues, almost every
point is strategic.

Remark 3.3.3. In Section 5, the case of variable Lamé coefficients will be
treated.

4. Some Applications to Spectral Internal Control

Let Q be a bounded domain of R" (or a compact N-dimensional manifold
without boundary) and A4 a positive self-adjoint operator with compact resol-
vant in H = L*(Q). Let {)\j} 1sjs + be the increasing (without taking care of
multiplicity) sequence of eigenvalues of A and for each j, let

F;= (ueLXQ): Au = \u}.
Then we have the following

Theorem 4.1. Assume that A has the following properties
(1) For every j, the conditions u eF; and u = 0 on some non-empty open
set imply u = 0.
(2) There is a finite Ty, > 0 for which the functions
Dy [uje"‘/g’ + vje"'*/g’}, J finite subset of N — {0)
JjeJ

where the u; and v; are complex coefficients that are not dense in
L0, T,; C).
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Then for each T> T, there are functions {f;}, ;. , . of class C* with
compact support in (0, T) such that we have the following properties
(@) For every ¥ € LX), the unique solution u of
@.1) u"+ Au =fj(t)‘I'(x) in RxQ, u(0,x) =u'(0,x)=0in Q
Sulfills u(T, ) €F; and u'(T, ) =0.
(b) For every w non-empty open subset of Q, and every ¢ eF;, there exists
¥ — D(Q) with compact support in w such that the unique solution

u of (3.1) satisfies u(T) = ¢ and u'(T) = 0. Moreover the solution v
of

4.2) v'+ Av =f}(t)\Il(x) in RxQ, u(0,x) =u'(0,x) =0 in Q

Julfills v(T) = 0 and v'(T) = —)\jqo.

Proor. Let u; = \}’? for all j. We shall prove the result in five steps.

(1) First of all it follows from (2) that for each j fixed, the function sin (u,?)
is not a limit in L*(0, T,; C) of finite linear combinations of the func-
tions exp (+ipu,?) for k # j. Indeed in such a case, the function exp (iujt)
would be a limit in L2%(0, Ty; C) of finite linear combinations of the
functions exp (xip,t) for k£ # j and of the function exp(—ipjt), which
by an argument similar to the proof of Lemma 2.2.2 would contradict
property (2).

(2) In particular, there exists hjeLz(O, Ty; C) for which
jOT" hi(e*"'dt =0 for k#j; IOT° hy(t) sin (u;7) dt # 0.

Replacing hj by either its real or its imaginary part, we may assume
h;e L*(©0, Ty; R).

(3) Let now T> Ty, 0< 9 < (T — Tp)/2 and

Byt ) =0 on (=, ),
hj(t’ 7’) = hj(t - 17) on (7’: TO + 7’)’
hy(tyn) = 0 on (Ty +, +).

For every k # j, we clearly have

(72, mye =" dt = 0.
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On the other hand, if y is small enough we have
T .
jo h,(, m) sin (u;) dt 0.

For such a fixed 1, let h;(¢, ) = h;(¢). Define also p. € D(0, €) with p. 20
and [p.(x)dx =1, and let us introduce h;* p.=h; . Then for each
e €(0,7n) we have hj,é € D(0, T'). In addition,

T
jhje(t)e*"“k'dt=0 for k#j,
o

T T
limj h;, (O)sin(\1) dt = j hy(t) sin (A1) dt # 0.

e~0 JO 0

By selecting € > 0 small enough and replacing hj,e by some proportional
function, we obtain g;€D(0, T) such that

3)  [g0e*mrdt=0 fork=j and [ g()sin(ur)dl=1.
We can, in fact, also assume
T
(4.4) jo g;(t)cos ptdt = 0.
As a matter of fact, if
T

jogj(t) cosptdt =10,

let g](t) = g;(t + @) + cg;(?), a # 0 being taken small enough. Then

j:g;‘(t) cos,tdt = cl + L)ng(t) cos p,(t — ) dt

= (¢ + cos (au))] + sin (ap)),
vanishes for
c= —cos (auj) — sin (auj)/I.
Taking ¢ as above we have
T . T .
jo gj’.“(t) sinp;tdt = c + L) g;(t)sinp,(t — @) dt

=c+ cos (op) — Isin (op))
= —(I + 1/D)sin(ap) #0

for o small.
We can then replace g; by )\g;‘ with \ # 0 properly chosen.
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(4) Let f;() = g;(T — 1) for 1€ [0, T1]. The solution of (4.1) is given by

u(t, x) = Lf,-(t = 9){ 2510 () ¥ (9] s
with
¥, = Proij(‘If) =P,¥, for me{l,2,..}.

In particular we have

T

MRﬂ=I

0

8/(5){ 35in (k) ¥ ()} dis

T
=2 {J‘O g,(s)sin (V’ms)} ¥, (%)

= ¥;(x).
On the other hand for ¢ close to T we have
rt
w(t,0) = | S5t = 9){ Dsin () ¥ (0] d.
JO m

Therefore

rT

ST = )] Ssin () ¥ (9 dis

u'(T, x)

Y,

T
2 U £5(5) sin () dsz ¥,,(x) =0,
0

m

since integration by parts gives

T T

I g;(s)sin (pps)ds = =N\, I g;(s) cos (pps) ds = 0.

0 0

for everym e N — {0}. This establishes (a) with u(T, «) = ¥;. Moreover
we notice that 4’ = v is the solution of (4.2) with initial data (0, 0) and
satisfies v(T, ¢) = 0; v'(T, ¢) = u'(T, ) = —Au(T, +) = -NY;.

(5) To establish (b), we now use hypothesis (1). Indeed, for a fixed integer j,
we consider an orthonormal basis {¢;, . . ., ¢,} of F;. To finish the proof
we just need to show that we can find ¥ € D(Q) with support in w such that
P;¥ = ¢, (say). In the opposite case, the linear form defined by

¥ e D(w) - j Y (X)), (x) dx
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would vanish on the intersection of the kernels of the linear forms
defined by

¥ eD(w) - j Y (X) o (x) dx, k>2.

By a standard result of linear algebra we would deduce the existence of
real coefficients {cay]}, ., for which

j Y(x)p, (x)dx = kZ]z ap | Yo, (%) dx,

for all ¥ € D(w). This immediately implies that for every x € w,

01(0) = 2 yor(x).
k=2

This is in contradiction with hypothesis (1) and the linear independence
of { Pk } k=1

Let us now denote by D the vector space of all (finite) linear combinations
of the eigenfunctions of 4 and assume that all hypotheses of Theorem 4.1 are
satisfied. Then by an immediate calculation we obtain the following result.

Corollary 4.2. For each (¥°, y') € D x D, there exists h € D((0, T) X Q) with
supp (h) C (0, T) X w and such that the unique solution y of
y'+Ay=htx) in 0,T)xQ,
4.5) 0,9 =y in Q,
yO,0)=y'0) in Q

satisfies y(T, ) = y'(T, ) = 0.
In particular, in the case of vibrating plates we obtain

Corollary 4.3. Let Q be a bounded smooth domain or a rectangle in R? and
let us denote by D the vector space of all (finite) linear combinations of the
eigenfunctions of (—A) in H (1)(9). Then for any T > (1/2) vol(Q) and each
(¥°, ¥ e D x D, there exists he D((0, T) x Q) with supp () C (0, T) X w
and such that the unique solution ¥ of
¥, + A®Y = h(t,x,y) in (0,T)XQ,
¥=A¥=0 on [0,T] x 49,
¥(0;x,) = ¥°(x,») in Q,
¥,(0;x,5) = ¥'(x) in Q,

4.6)

-~

-~
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satisfies Y(T, ) = ¥ ,(T, *) = 0. In addition the same result is valid for the
equation

Y, +AY =ht,x,y) in 0,T)XQ,

¥ =|V¥| =0 on [0,T] x99,

¥(0;x,y) = ¥(x,y) in Q,

¥,(0;x,y) = ¥'(x) in Q.

4.6)

Proor. Property (1) is clearly satisfied in both cases. It is therefore sufficient
to check (2) for all T, > (1/2) vol (Q). In the case of (4.6), when all the eigen-
values of (—A) in H (1,(9) are simple, this follows at once from the Weyl for-
mula and Corollary 2.3.6. In fact, by considering for instance some artificial
additional frequencies or by using a generalization of the Beurling-Malliavin
theory for exponential-polynomial series, it is possible to extend Corollary
2.3.6 in the more general situation of a counting function allowing arbitrary
finite repetitions of the frequencies. Then the Weyl formula implies (2)
without requiring the eigenvalues of (—A) in H (1,((2) to be simple. The rest is
clear. The same proof works for (4.6).

Remark 4.4. 1In the case of (4.6) in a rectangle, by using some results of J. P.
Kahane [13], S. Jaffard [11] established the (in a sense stronger) result of exact
internal controllability of any state with a finite energy, for any T > 0.
However this result does not seem to imply immediately the existence of a C*
control for states (¥°, ¥!)eD x D. The result of [11] has been recently
generalized in arbitrarily many dimensions (for a product of intervals) by V.
Komornik [15]. On the other hand, no such internal controllability result
seems to be known for the clamped plate equation.

This theory is also applicable to cases where the open set  is replaced by
a compact manifold without boundary. We obtain for instance the following
result, valid in any dimension N > 1.

Corollary 4.5. Let * be the unit sphere of R", and let us denote by (—4y) the
Laplace-Beltrami operator on £ and by D the vector space of all ( finite) linear
combinations of the eigenfunctions of (—Ay). For all T > 0, and all w non-empty
open subset of T, and for each (¥°, ¥') € D x D, there exists h € D((0, T) X X)
with supp (h) C (0, T) X w and such that the unique solution ¥ of

Y, + ALY =hto) in (0,T)XE,
4.7 ¥(0;0) =¥%0) on X
¥,(0;0)=¥0) on T

satisfies ¥(T, ) = ¥ (T, ») = 0.
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Proor. Property (1) is clearly satisfied. Property (2) is a rather immediate
consequence of the fact that the inverses of the positive eigenvalues of (—A;)
are summable. (Cf. e.g. [24], Theorem 15 p. 139.)

Remark 4.6. The control functions constructed here are of a special type. Their
construction ultimately relies on the existence of a sequence of functions «bior-
thogonal» to some complex exponentials, a technique already widely used (cf.
e.g., H. O. Fattorini [2], J. Lagnese [16], D. L. Russel [22]) in control theory.

Remark 4.7. It seems rather reasonable to conjecture that the internal spectral
controllability for the above plate equation is valid for general 2-dimensional
domains and for every T > 0. The study of this conjecture and some related
problems will be the object of further research.

5. Possible Extensions and Additional Remarks

5.1. One-Dimensional Vibrating Systems

We consider first the equation of vibrating strings
u,— (@xu), =0 on Rx(0,L)
ut,0)=u(t,L)y=0 on R,

where a is smooth and bounded from below by a positive constant. Let 4 be
the (strongly elliptic) unbounded operator on L*(0, L) defined by

D) = H*NHL0,L); Av= —(a(x)v,), for veD(A).
The solutions are of the form

ut, )= D, uew,(x)
nezZ - {0}

where A = {\,},., is given by A* U(—A¥) and A* = (N} i<j< +w 1S the
increasing sequence of eigenvalues of A% in H{(0, L). Here Weyl’s formula
implies (¢f. e.g. Hormander [8], p. 273)

n@) = ct + O(t'?)

for some ¢ > 0. Hence, by Theorem 3.1.1 we obtain that, appart from the
nodal points (zeroes of the eigenfunctions of A) pointwise spectral con-
trollability holds true for all times 7> 2«c. This result extends to pointwise
control some previous result of J. Lagnese [16] concerning internal exact con-
trollability of strings.
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Similarly we can consider vibrating beams given by
Uy + (@Xyy)y =0 on R X (0,L)
with either of the following boundary conditions
u(t,0)=u(t,L)=u,(t,0)=u,(t,L)=0 on R,
or
ut,0) =u(t,L)=u,(,0)=u,(t,L)=0 on R.

Here of course a(x) is assumed smooth and bounded from below by some
positive constant. Here Theorem 3.1.1 provides pointwise spectral con-
trollability for all times 7' > 0 since the completeness radius of the correspond-
ing complex exponentials is obviously 0. Actually in such cases the result can
also be deduced by means of a variant of Ingham’s Lemma (cf. [9.5]).

5.2. The Case of Plates with Nonconstant Lamé Coefficients

We deal with a similar case as in Section 3.3 except that the bilaplacian is now
replaced by

. 4p N
. i,j;,za"Jm"] . i j 3 ( it AN+2p B )

The functions \ and p are the Lamé coefficients which we suppose to be non-
constant in the plate, but C*. In order to obtain a «Weyl’s formula» for this
operator, we have to check that the assumptions given in [10] are fulfilled.
The operator is symmetric since

Au,oy =S| 228, ud v+ — :
(Au,v) § 3 %40Vt 30N+ 2p) IAuAv

The principal symbol of A is (4u/3)(1 + N/(\ + 2u))|£|* which is positive
definite. Thus we only have to check the Shapiro-Lopatinskii condition on the
boundary. It is a condition on the principal part of the operator which must
hold at each point x, of the boundary. Here, the principal part of A is a bipla-
cian multiplied by the smooth function @ = (4x/3)(1 + A\/(\ + 2p)). Thus, up
to the multiplicative factor a(x,), the condition to check is exactly the same
as if we had A = A? with the corresponding boundary conditions, and the con-
clusion will be the same as for the bilaplacian; namely, for simply supported
or clamped plates, formula (3.1) will hold with d = (1/4x) vol (Q), and thus,
also the conclusion of the analog of Theorem 3.2.1.
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5.3 Uniqueness and the Schrondinger Equation

In Section 3, we have given precisely the minimal time for pointwise spectral
controllability. Is is clear that a time T of pointwise spectral controllability
is also a uniqueness time in the sense that the trace of a solution at the ob-
servation point on (0, T) determines the solution. In the case of second order
problems (1.3)-(1.4), it is conjectured (cf. Kahane [14]) that the minimal uni-
queness time is equal to the minimal time for pointwise spectral controllabi-
lity.

Now let Q be a bounded domain of R? and A a positive self-adjoint operator
in H = L*(Q). We assume that A satisfies the properties (1.1) and (1.2). Given
T>0, t€Q and »° a finite linear combination of the eigenfunctions of A,
we are interested in the existence of a control function # € L*(]0, T'[) such that
supp (h) C [0, T]1 and for which the unique generalized solution y of the
Schrodinger type equation

y—iAy=h@®)dx—-§ in 10,T[, »0,x)=)°%%x) in Q,
satisfies
¥ T,x)=y'(T,x)=0 in Q.
The solutions of the homogeneous equation ¢’ — i4A¢ = 0 are here given by

o, %) = 2, d.e™'w, (),
nz1

where the numbers A\, are the eigenvalues of A and the functions w, are the
associated eigenfunctions. For a given £ = (¢, £,) € Q, let

J@) =o(t, 9 = 2231 a,e™,

Assume that the Weyl formula (3.1) holds for A with d > 0: then by Cor-
ollary 2.3.5 the minimal time for spectral controllability is easily seen to be
also positive (more precisely equal to 2nd).

On the other hand, let us show that any positive time T is in fact a «unique-
ness time». From the Weyl formula (3.1), the properties of the initial data and
the standard estimates on |w,|. we deduce that the coefficients «, have at
most polynomial growth. Suppose that f vanishes identically on [0, T'] and let
¢ be a C” nonnegative function supported inside [—7/2, 0] with integral 1.
Then the convolution product ¢ * f vanishes identically on [0, 7/2] and we
have

(e * )O) = D) a,d\)e™ = 3] ¢ e,
nzl1 nzl
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where the sequence (c,) is quickly decreasing, hence ¢ * f is C*. Let

() = (¢ * D)

where w(¢) is in the Schwartz class with a compactly supported Fourier
transform. Then y is in the Schwartz class with

WO =1 N *al® =] 3 edy, | * 50.

Since the numbers \,, are all positive, and w has a compactly supported Fourier
transform, the Fourier transform of y vanishes on (— o, 8] for some 3. Hence
g(t) = e®Y(¢) is a C* function which vanishes identically on [0, 7/2] and
whose Fourier transform is supported by [0, + ). A well known theorem of
Helson and Szego (cf. [7]) asserts that if g e L%(R) has its Fourier transform
supported in [0, + o), then either g = 0 or Log |g(¢)|/(1 + %) € L'(R): in par-
ticular if g vanishes on an interval we must conclude that g = 0. In our case
we conclude that = 0 for any choice of functions ¢, w as above. It then
follows immediately that f = 0, hence uniqueness is established for any 7' > 0.

As a conclusion, in the case of the above Schrédinger equation, for all times
between 0 and the minimal spectral controllability time 7, = 2xd, there exists
a dense family of pointwise controllable states, but none of them is a finite
linear combination of the eigenfunctions of A. It would be, of course, of
interest to decide what happens for our plate models for small positive times,
and in particular to settle Kahane’s conjecture.

5.4. The Plate Equation in Higher Dimensions

In dimensions higher than or equal to 3, the calculations are very similar to
those in dimension 2 and we shall not repeat them. The results, on the other
hand, are quite different: for instance, for a 3-dimensional «plate» the Weyl
formula now gives

N = N2 + 0N,

hence the Beurling-Malliavin density of the \, is infinity and for no finite
T > 0 we have pointwise spectral controllability. The uniqueness problem is
also open in this case. However, if we consider the associated Schrodinger
equation, then the eigenvalues are positive and the proof of Section 5.2 is still
applicable. Thus here, any positive time is a uniqueness time, while there is
no finite time for pointwise spectral controllability!

Acknowledgement. The authors are grateful to Alejandro Uribe who taught
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