On Pseudospheres

John L. Lewis and Andrew Vogel Dedicated to the memory of Allen Shields

1. Introduction

Denote points in Euclidean space, \mathbb{R}^n , by $x = (x_1, \ldots, x_n)$ and let \bar{E} , ∂E , denote the closure and boundary of $E \subset \mathbb{R}^n$, respectively. Put $B(x, r) = \{y: |y - x| < r\}$ when r > 0. Define k dimensional Hausdorff measure, $1 \le k \le n$, in \mathbb{R}^n as follows: for fixed $\delta > 0$ and $E \subset \mathbb{R}^n$, let $L(\delta) = \{B(x_i, r_i)\}$ be such that $E \subset \bigcup B(x_i, r_i)$ and $0 < r_i < \delta$, $i = 1, 2, \ldots$ Set

$$\phi_{\delta}^{k}(E) = \inf_{L(\delta)} \sum \alpha(k) r_{i}^{k},$$

where $\alpha(k)$ denotes the volume of the unit ball in \mathbb{R}^k . Then

$$H^k(E) = \lim_{\delta \to 0} \phi_{\delta}^k(E), \qquad 1 \leqslant k \leqslant n.$$

Let D be a bounded domain in \mathbb{R}^n with $0 \in D$ and $H^{n-1}(\partial D) < +\infty$. We shall say D is a pseudo sphere if

- (a) ∂D is homeomorphic to the unit sphere, S, in \mathbb{R}^n
- (b) $g(0) = a \int_{\partial D} g \, dH^{n-1}$, whenever g is harmonic in D and continuous on \bar{D} .

In (b), a denotes a constant. The construction of pseudo spheres in \mathbb{R}^2 , which are not circles, was first done by Keldysh and Lavrentiev to show the existence of domains not of Smirnov type (see [11, Ch. 3]). Also a completely different proof of existence has been given by Duren, Shapiro, and Shields in [3] (see also [2, Ch. 10]). Both proofs are heavily reliant on conformal mapping and \mathbb{R}^2 facts, such as: the logarithm of the gradient of a harmonic function is subharmonic.

In [12, p. 347], Shapiro asked whether there exists a pseudo sphere in \mathbb{R}^n which is not a sphere. In this paper we answer Shapiro's question in the affirmative and even prove a little more:

Theorem 1. There exists a pseudo sphere D in \mathbb{R}^n , $n \ge 3$, which is not a sphere. In fact D can be chosen so that there is a homeomorphism f from \mathbb{R}^n to \mathbb{R}^n with $f(S) = \partial D$ and

$$c(\beta)^{-1}|x-y|^{1/\beta} \le |f(x)-f(y)| \le c(\beta)|x-y|^{\beta},$$

whenever $\beta \in (0, 1)$ and $|x - y| \leq 1/2$.

In Theorem 1, as in the sequel, $c(\beta)$ denotes a positive constant depending only on β and n. Also, c will denote a positive constant depending only on n, not necessarily the same at each occurrence. Our method of proof is inspired by the proof of Keldysh and Lavrentiev in [9]. Here though conformal mapping techniques are not available. We outline our proof with a = 1 in (b). Let Ω be a bounded domain with $0 \in \Omega$ and let G be Green's function for Ω with pole at 0. That is,

$$G(x) - \frac{1}{n(n-2)\alpha(n)} |x|^{2-n}, \quad x \in \mathbb{R}^n,$$

is harmonic in Ω and G has boundary value 0 in the sense of Perron-Wiener-Brelot. It is known that if $\partial\Omega$ is sufficiently smooth, then

$$\nabla G(x) = \left(\frac{\partial G}{\partial x_1}, \cdots, \frac{\partial G}{\partial x_n}\right)$$

extends continuously to $\bar{\Omega} - \{0\}$. Under this assumption suppose that $|\nabla G| \ge 1$ on $\partial\Omega$. In Section 2, given ϵ , $0 < \epsilon \le \epsilon_0$, we add smooth bumps to $\partial\Omega$ by «pushing out» $\partial\Omega$ along certain small surface elements in $\{x \in \partial\Omega \colon |\nabla G(x)| > 1 + \epsilon\}$ of approximate side length r, $0 < r \le r_0$. Let Ω' , G' be the smooth domain, and Green's function with pole at 0, obtained from this process. Then $\Omega \subset \Omega'$ and we shall choose the bumps so that for $\epsilon \le t \le 1$,

(1.1)
$$H^{n-1}(\partial \Omega') \geqslant H^{n-1}(\partial \Omega) + \eta(t)H^{n-1}\{x: |\nabla G(x)| > 1 + t\},$$

where η is a positive function on $(0, \infty)$. It turns out that η can be chosen independent of Ω, Ω' . We note from the Hopf boundary maximum principle (see [6, Lemma 3.4]) and $|\nabla G| \ge 1$ on $\partial \Omega$, that $|\nabla G'| \ge 1$ on $\partial \Omega \cap \partial \Omega'$. Also from Schauder type estimates, it will follow that $|\nabla G'| \ge 1$ on the bumps. Hence,

$$(1.2) |\nabla G'(x)| \geqslant 1, x \in \partial \Omega'.$$

Next we modify the identity mapping slightly in a neighborhood of each bump, to get h, a homeomorphism from \mathbb{R}^n into \mathbb{R}^n , with $h(\partial\Omega) = \partial\Omega'$. In Section 3 using a lemma of Wolff ([14, Lemma 2.7]) we will show the bumps can be chosen so that

$$(1.3) \qquad \int_{\partial\Omega'} |\nabla G'| \log |\nabla G'| dH^{n-1} \leqslant \int_{\partial\Omega} |\nabla G| \log |\nabla G| dH^{n-1}.$$

The proof of (1.3) is somewhat involved, but luckily much of the hardwork has been done for us by Wolff.

In Section 4 we use (1.1)-(1.3) and induction to construct D. More specifically put $D_0 = B(0, \rho)$ and let

$$G_0(x) = \frac{1}{n(n-2)\alpha(n)} (|x|^{2-n} - \rho^{2-n}), \qquad x \in B(0,\rho),$$

be Green's function for $B(0, \rho)$, where ρ is chosen so that if $x \in \partial B(0, \rho)$, then

$$|\nabla G(x)| = \frac{1}{n\alpha(n)} \rho^{1-n} = 2.$$

We put $\Omega=D_0$ and modify Ω as above to obtain $\Omega'=D_1$, $G'=G_1$, with ϵ replaced by ϵ_1 and h by h_1 . Suppose D_k has been constructed for $0 \le k \le m$. Again we put $\Omega=D_m$ and modify Ω as above to obtain $\Omega'=D_{m+1}$, $G'=G_{m+1}$, with ϵ replaced by $\epsilon_{m+1}=2^{-(m+1)}\epsilon_0$, and h by h_{m+1} . By induction we get $(D_k)_0^\infty$, $(h_k)_1^\infty$, $(G_k)_0^\infty$, satisfying (1.1), (1.2), with Ω' , Ω , replaced by D_{k+1} , D_k , respectively. Let $h_0(x)=\rho x$, and let $f_k=h_k\circ h_{k-1}\circ\cdots\circ h_0$, where \circ denotes composition. Then it will follow from our construction for $k=1,2,\ldots$, that

(1.5)
$$c(\beta)^{-1}|x-y|^{1/\beta} \le |f_k(x) - f_k(y)| \le c(\beta)|x-y|^{\beta},$$

when $x, y \in \mathbb{R}^n$ and $|x - y| \le 1/4$. Moreover, each f_k is a homeomorphism from \mathbb{R}^n to \mathbb{R}^n with $f_k(S) = \partial D_k$. Set $D = \bigcup_{0}^{\infty} D_k$, and note from (1.5) that there exists a subsequence (f_{n_k}) of (f_k) which converges to a homeomorphism f of \mathbb{R}^n , satisfying the conclusions of Theorem 1. Thus (a) in the definition of a pseudo sphere is valid. To prove (b) we first note from Green's Theorem and (1.2) that

$$(1.6) 1 = \int_{\partial D_k} |\nabla G_k| dH^{n-1} \geqslant H^{n-1}(\partial D_k),$$

for k = 0, 1, ... Second, observe for each $\delta > 0$ that

(1.7)
$$\lim_{k \to \infty} H^{n-1}\{x \in \partial D_k : |\nabla G_k(x)| > 1 + \delta\} = 0,$$

since otherwise we could use (1.1) and iteration to get a contradiction to (1.6) for large k. Next from (1.2), (1.3), and iteration we deduce that for $\alpha > 1$, $k = 0, 1, \ldots$

$$(1.8)\log\alpha\int_{\{|\nabla G_k|>\alpha\}}|\nabla G_k|\ dH^{n-1}\leqslant \int_{\partial D_k}|\nabla G_k|\log|\nabla G_k|\ dH^{n-1}\leqslant c<+\infty.$$

Also in Section 4 we show that as $k \to \infty$,

$$(1.9) H^{n-1}|_{\partial D_{n_k}} \to H^{n-1}|_{\partial D},$$

weakly as measures on \mathbb{R}^n . Let $g \ge 0$ be a harmonic function in D which is continuous on \overline{D} . Then from (1.2), (1.9), and Green's Theorem we get

(1.10)
$$g(0) = \int_{\partial D_{n_k}} g |\nabla G_{n_k}| dH^{n-1} \geqslant \int_{\partial D_{n_k}} g dH^{n-1} \to \int_{\partial D} g dH^{n-1},$$

as $k \to \infty$. To obtain the reverse inequality for fixed $\delta < 10^{-3}$ and $\alpha > 10^{3}$, put

$$\begin{split} E_k &= \{x \in \partial D_{n_k} \colon 1 \leqslant \left| \nabla G_{n_k}(x) \right| \leqslant 1 + \delta\} \\ F_k &= \{x \in \partial D_{n_k} \colon 1 + \delta < \left| \nabla G_{n_k}(x) \right| \leqslant \alpha\} \\ L_k &= \{x \in \partial D_{n_k} \colon \left| \nabla G_{n_k}(x) \right| > \alpha\}, \end{split}$$

for k = 0, 1, 2, ... Then

$$g(0) = \int_{\partial D_{n_k}} g |\nabla G_{n_k}| dH^{n-1} = \int_{E_k} \cdots + \int_{F_k} \cdots + \int_{L_k} \cdots = I_1 + I_2 + I_3.$$

Clearly,

$$|I_1| \leqslant (1+\delta) \int_{\partial D_{n_0}} g \, dH^{n-1}.$$

Also from (1.7) we find that

$$|I_2| \leqslant \alpha \|g\|_{\infty} H^{n-1} \{x \in \partial D_{n_k} \colon 1 + \delta < |\nabla G_{n_k}| \} \to 0,$$

as $k \to \infty$. Here, $\|g\|_{\infty}$ denotes the maximum of g in \bar{D} . Using (1.8) we get

$$|I_3| \leqslant \|g\|_{\infty} \int_{\{|\nabla G_{n_k}| > \alpha\}} |\nabla G_{n_k}| dH^{n-1} \leqslant \frac{c}{\log \alpha} \|g\|_{\infty}.$$

Letting $k \to \infty$ we obtain from the above estimates and (1.9) that

$$g(0) \leqslant (1+\delta) \int_{\partial D} g \, dH^{n-1} + \frac{c}{\log \alpha} \|g\|_{\infty}.$$

Finally letting $\delta \to 0$, $\alpha \to \infty$, we have

$$g(0) \leqslant \int_{\partial D} g \, dH^{n-1}.$$

In view of (1.10) we conclude that

(1.11)
$$g(0) = \int_{\partial D} g \, dH^{n-1}$$

when $g \ge 0$ is continuous on \bar{D} and harmonic in D. From (1.11) with $g \equiv 1$ we note that, $H^{n-1}(\partial D) = 1$. If g_1 is continuous on \bar{D} , harmonic in D, and $g_1 - m \ge 0$ in \bar{D} , then from (1.11) and the above note we deduce

$$g_1(0) = (g_1 - m)(0) + m = \int_{\partial D} (g_1 - m) dH^{n-1} + m = \int_{\partial D} g_1 dH^{n-1}.$$

Thus, D is a pseudo sphere. The initial bumps on D_1 will be chosen to have low peaks relative to those added to form D_k , $k \ge 2$, in order to guarantee that D is not a ball.

We remark that D will be regular for the Dirichlet problem, so each continuous function on ∂D will have a harmonic extension to D which is continuous on \bar{D} . From (1.11) it follows that harmonic measure and H^{n-1} measure on ∂D are equal (see [7, Ch. 8] for the Dirichlet problem). Moreover, since $H^{n-1}(\partial D)=1$, it follows (see [4, Section 5.8]) that D is of finite perimeter. Thus several other measures are equal to H^{n-1} measure on ∂D (see [5, Thm. 4.5.19, (16)] and [5, Thm. 3.2.26]). Also D will be a nontangentially accessible (NTA) domain in the sense of Kenig and Jerison [8]. Using the corkscrew condition for NTA domains ((i) in Section 3) it is easily deduced that every point in ∂D lies in the measure theoretic boundary of D (see [4, Section 5.8]). Hence D satisfies the hypotheses of Theorem 1 in [10], from which we conclude

$$\sup \{ |\nabla G^*(x)| : x \in D - B(0, \rho/2) \} = +\infty,$$

where G^* is Green's function for D with pole at 0. Next we remark that this paper leaves open the very interesting question as to whether f in Theorem 1 can also be chosen for some K > 1 to be a K quasiconformal mapping from \mathbb{R}^n to \mathbb{R}^n , $n \ge 3$. In \mathbb{R}^2 it follows from a criteria of Ahlfors (see [1, Ch. 4]) and the Keldysh-Lavrentiev construction that the answer to the above question is yes, and in fact K can be chosen arbitrary near 1.

Finally the authors would like to thank J. Heinonen, J. Vaisala, and D. Sullivan for some helpful conversations.

2. Preliminary reductions

If $x \in \mathbb{R}^n$, we let $x' = (x_1, \dots, x_{n-1})$ and shall write, $x = (x', x_n)$. We assume throughout this section that Ω is a bounded domain of class C^4 with $0 \in \Omega$.

More specifically, for each $y \in \partial \Omega$ there exists s > 0 such that $B(y, s) \cap \partial \Omega$ is a part of the graph of a four-times continuously differentiable function, defined on a hyperplane in \mathbb{R}^n , and $B(y, s) \cap \Omega$ lies above the graph. From compactness and a standard convering argument it follows for each r > 0 that there exists, $y^1, y^2, \ldots, y^N \in \partial \Omega$, such that

$$\partial\Omega\subset\bigcup_{i=1}^N B(y^i,100r)$$
 and $B(y^i,10r)\cap B(y^j,10r)=\emptyset$, $i\neq j$

Moreover, if $0 < r < r_0$, r_0 sufficiently small, and $y = (y', y_n) \in \{y^i\}_1^N$, then from the implicit function theorem we see there exists $\theta = \theta(\cdot, y)$, four-times continuously differentiable on $\mathbb{R}^{n-1}(\theta \in C^4(\mathbb{R}^{n-1}))$, with $\theta(0) = 0$, $\nabla'\theta(0) = 0$, such that after a possible rotation of axes:

$$\partial\Omega \cap B(y, 1000r^{1/2}) \subseteq \{(x' + y', \theta(x') + y_n) : x' \in \mathbb{R}^{n-1}\},$$

$$\Omega \cap B(y, 1000r^{1/2}) \subseteq \{(x' + y', x_n) : x_n - y_n > \theta(x'), x' \in \mathbb{R}^{n-1}\}$$

Here ∇' denotes the \mathbb{R}^{n-1} gradient. Put

$$M_1 = \max_{y \in \{y, i\}_1^N} \left\{ \max_{x \in \partial \Omega \cap B(y, 1000r^{1/2})} \sum |\partial_{\alpha}' \theta(x', y)| \right\}$$

where the sum is taken over all multi-indexes $\alpha = (\alpha_1, \ldots, \alpha_{n-1})$ with $|\alpha| = \sum_{j=1}^{n-1} \alpha_j$, and $0 \le |\alpha| \le 4$. Also, ∂'_{α} denotes the corresponding partial derivative with respect to $(x')^{\alpha}$, $x' \in \mathbb{R}^{n-1}$. Given ϵ , $0 < \epsilon < \sigma_0 \le 10^{-3}$, choose $r_0 > 0$ so small that for $0 < r \le r_0$

$$(2.1) M_1 r^{1/2} \le 10^{-3} r^{1/4} < 10^{-9} \epsilon^4.$$

Again this choice is possible by compactness of $\partial\Omega$. In this section and the next section we allow r_0 to vary. At the end of this section we will fix σ_0 at a number, satisfying several conditions, which depends only on n. r_0 will depend on ϵ , M_1 , n, and M_2 , defined below.

As in Section 1 let G be Green's function for Ω with pole at 0 and assume $|\nabla G| \geqslant 1$ on $\partial \Omega$. Let

$$M_2 = \max_{y \in \{y, \hat{y}\}_1^N} \left\{ \max_{x \in \bar{\Omega} \cap B(y, 1000r^{1/2})} \sum |\partial_{\alpha} G(x)| \right\},$$

where now $\alpha = (\alpha_1, \alpha_2, \dots, \alpha_n)$, $0 \le |\alpha| \le 4$, and ∂_{α} denotes the corresponding partial derivative with respect to x^{α} , $x \in \bar{\Omega}$. From Schauder's Theorem (see [6, Ch. 6]), it is clear that $M_2 < +\infty$. We choose r_0 still smaller, if necessary, so that in addition to the above conditions, we have

$$(2.2) M_2 r^{1/2} \le 10^{-3} r^{1/4} < 10^{-9} \epsilon^4.$$

Let *l* be the largest nonnegative integer such that $2^{-l}\sigma_0 > \epsilon$ and put $\sigma_k = 2^{-k}\sigma_0$, for $k = 0, 1, \ldots$ Set

$$E_k = \{x \in \partial\Omega: 1 + \sigma_k < |\nabla G(x)| \le 1 + \sigma_{k-1}\}, \qquad 1 \le k \le l+1,$$

$$E_0 = \{x \in \partial\Omega: |\nabla G(x)| > 1 + \sigma_0\}.$$

Let ψ , $0 \le \psi \le 1$, be a fixed C^{∞} function on \mathbb{R}^{n-1} with $\max_{\mathbb{R}^{n-1}} \psi = 1$ and support in the unit ball of \mathbb{R}^{n-1} , to be specified in Section 3. We form a domain Ω' of class C^4 by adding smooth bumps to $\partial\Omega$. More specifically, let L be the set of all $y \in \{y^i\}_1^N$ for which

$$B(y, 100r) \cap \bigcup_{k=0}^{i+1} E_k \neq \emptyset$$
.

For fixed $y = (y', y_n) \in L$, let j be the smallest nonnegative integer with

$$(2.3) B(y, 100r) \cap E_j \neq \emptyset.$$

Put

$$\xi(x') = \theta(x') - \sigma_i^2 r \lambda_i^{-1} \psi(\lambda_i x'/r) + y_n, \qquad x' \in \mathbb{R}^{n-1},$$

where $(\lambda_j)_0^{\infty}$ is an increasing sequence of positive numbers with $\lambda_j \ge 1/\sigma_j$, $j = 0, 1, \ldots$, which will be defined explicitly in Section 3. Also $(\lambda_j)_0^{\infty}$ will depend only on σ_0 . Define Ω' by

(i)
$$\Omega - \bigcup_{z \in L} B(z, 10r) = \Omega' - \bigcup_{z \in L} B(z, 10r),$$

(ii)
$$\partial \Omega' \cap B(y, 10r) = \{(x' + y', \xi(x')) : x' \in \mathbb{R}^{n-1}\} \cap B(y, 10r),$$

(iii)
$$\Omega' \cap B(y, 10r) = \{(x' + y', x_n) : x_n > \xi(x')\} \cap B(y, 10r).$$

Thus for each $y \in L$ and smallest j, $0 \le j \le l+1$, satisfying (2.3), we add a bump to Ω under y, as defined above, to get Ω' . Clearly Ω' is of class C^4 . Moreover, if r_0 is small enough, we claim as in (1.2) that

$$|\nabla G'(x)| \geqslant 1, \qquad x \in \partial \Omega'.$$

Indeed, if $x \in \partial \Omega' \cap \partial \Omega$, then it follows from the Hopf boundary maximum principle that (2.4) is true. To prove (2.4) for $x \in \partial \Omega' - \partial \Omega$, we let, $\hat{B}(t) = \{x' \in \mathbb{R}^{n-1}: |x'| < t\}$. We shall need the following lemma of Schauder type. In Lemma 1, ϕ , γ , are C^k functions on $\hat{B}(2)$, $k \ge 3$. Moreover, $\phi < 1/4$, and $\| \cdot \|_k$ denotes the C^k norm on $\hat{B}(2)$. Also, $c' = c'(\cdot, k)$, is an increasing function on $(0, \infty)$ which depends only on k.

Lemma 1. Let

$$H = \{(x', x_n): |x'| < 1 \text{ and } \phi(x') < x_n < 1\}.$$

Let u be harmonic in H, with $|u| \le M_3 < +\infty$, and suppose that $u = \gamma$ continuously on $\{(x', \phi(x'))\} \cap \partial H$. Then for $k \ge 3$

$$\sum_{0 \le |\alpha| \le k} |\partial_{\alpha} u(x)| \le c'(\|\phi\|_{k})(\|\gamma\|_{k} + M_{3}), \qquad x \in B(0, 1/2) \cap \bar{H}.$$

Lemma 1 is given in [6, Corollary 6.7] for $C^{2,\alpha}$ domains with a constant depending on H. However, the proof is essentially unchanged if $C^{2,\alpha}$ is replaced by C^k , and $c'(\cdot)$ can be used for the resulting constant (see the remark following Lemma 6.5 in [6]). To prove (2.4) on a bump, we first let

$$Z(y,t) = \{(x',x_n): |x_n - y_n| < t, |x' - y'| < t\}$$

and note that since ψ has support in $\hat{B}(1)$,

$$(2.5) \qquad (\partial\Omega' - \partial\Omega) \cap B(y, 10r) \subseteq Z(y, r\lambda_i^{-1}),$$

whenever $y \in L$ and j is the smallest integer satisfying (2.3). Second, observe from the Hopf boundary maximum principle and (2.5) that to prove (2.4) on a bump it suffices to show

$$(2.6) |\nabla G^*(x)| \geqslant 1, x \in \bar{Z}(y, r\lambda_i^{-1}) \cap \partial \bar{\Omega}^*,$$

where Ω^* is obtained from Ω by adding just one bump at y as above, and G^* is the Green's function for Ω^* with pole at 0. To prove (2.6) let

$$F = \bar{Z}(y, r\lambda_j^{-1}) \cap \bar{\Omega}^*$$

and

$$M_4 = \max_{x \in F} |\nabla G^*(x)|.$$

Then from the mean value theorem of calculus and the fact that G = 0 on $\partial\Omega$, we deduce

$$(2.7) 0 \leqslant G^* - G \leqslant cM_4 \sigma_j^2 \lambda_j^{-1} r$$

on $\partial\Omega$. Since G^*-G is harmonic in Ω , we see from the maximum principle for harmonic functions that (2.7) also holds in Ω . From (2.1), (2.2), (2.7), and the fact that

$$\nabla G(y) = \left(0, \cdots, \frac{\partial G(y)}{\partial y_n}\right)$$

we get for x in $\bar{\Omega} \cap \bar{B}(y, 20 \, r \, \lambda_i^{-1})$,

$$(2.8) |G^{*}(x) - |\nabla G(y)|(x_{n} - y_{n})|$$

$$\leq cM_{4}\sigma_{j}^{2}\lambda_{j}^{-1}r + |G(x) - |\nabla G(y)|(x_{n} - y_{n})|$$

$$\leq cM_{4}\sigma_{j}^{2}\lambda_{j}^{-1}r + \int_{y_{n} + \theta(x' - y')}^{x_{n}} \left| \frac{\partial G}{\partial t_{n}}(x', t_{n}) - \frac{\partial G}{\partial t_{n}}(y', y_{n}) \right| dt_{n}$$

$$+ |\nabla G(y)| |\theta(x' - y')|$$

$$\leq cM_{4}\sigma_{j}^{2}\lambda_{j}^{-1}r + cM_{2}(\lambda_{j}^{-1}r)^{2} + cM_{2}M_{1}(\lambda_{j}^{-1}r)^{2}$$

$$\leq c(M_{4}\sigma_{j}^{2} + \epsilon^{2})\lambda_{j}^{-1}r.$$

Put, $\beta = 10r/\lambda_i$,

$$\phi(x') = \beta^{-1}(\xi(\beta x') - y_n), \qquad x' \in \widehat{B}(2),$$

$$u(x) = \beta^{-1}G^*(\beta x + y) - |\nabla G(y)|x_n, \qquad x \in H,$$

where H is defined relative to ϕ as in Lemma 1. Using (2.1) it is easily checked that $\|\phi\|_4 \le c\sigma_j^2 \|\psi\|_4 + c\epsilon^2$. Since $u = -|\nabla G(y)|\phi$ on $\partial H \cap B(1)$, we find from this inequality, (2.8), and Lemma 1 with k = 4 that

$$|\nabla u(x)| \leq c'(\|\phi\|_4)(M_4\sigma_i^2 + c\sigma_i^2|\nabla G(y)| + c\epsilon^2|\nabla G(y)| + c\epsilon^2)$$

 $x \in B(0, 1/2) \cap H$, where

$$c'(\|\phi\|_4) \leq c'(\|\psi\|_4 + 1) = c_0.$$

From this inequality and the fact that $\epsilon \leq 2\sigma_i$, $|\nabla G(y)| \geq 1$, we deduce

$$(2.9) ||\nabla G^*(x)| - |\nabla G(y)|| \le c_0 M_4 \sigma_i^2 + c_1 \sigma_i^2 |\nabla G(y)|,$$

for $x \in \bar{Z}(y, r\lambda_i^{-1}) \cap \bar{\Omega}^*$. Let σ_0 , $0 < \sigma_0 \le 10^{-3}$, be so small that

$$(2.10) c_0 + c_1 < 10^{-3} \sigma_0^{-1}.$$

Choosing x so that

$$|\nabla G^*(x)| = M_4,$$

we conclude from the triangle inequality and (2.9) that

$$M_4(1-c_0\sigma_i^2) \leq (1+c_1\sigma_i^2)|\nabla G(y)|.$$

Hence,

(2.11)
$$M_4 \leq (1 + 2c_0\sigma_i^2)(1 + c_1\sigma_i^2)|\nabla G(y)|.$$

Now from (2.2), (2.3), we see that $|\nabla G(y)| \ge 1 + \sigma_j/2$. Using this fact, (2.10), and (2.11), in (2.9), we deduce

$$|\nabla G^*(x)| \ge (1 - 2(c_0 + c_1)\sigma_j^2)|\nabla G(y)| \ge 1 + \frac{1}{4}\sigma_j.$$

Hence (2.6) is valid. From our earlier remarks it now follows that (2.4) is valid.

If

$$c_2 = \int_{\mathbb{R}^{n-1}} |\nabla' \psi(x')|^2 dx',$$

and

(2.12)
$$\sigma_0 \leqslant c_2 \leqslant \alpha (n-1) \left(\max_{\mathbb{R}^{n-1}} |\nabla' \psi| \right)^2 \leqslant \sigma_0^{-1} 10^{-6},$$

then from (2.1), it follows that

$$(2.13) \ H^{n-1}(Z(y,r\lambda_{j}^{-1})\cap\partial\Omega') = \int_{\hat{B}(r\lambda_{j}^{-1})} \sqrt{1+|\nabla'\xi|^{2}} \, dx'$$

$$\geqslant \int_{\hat{B}(r\lambda_{j}^{-1})} \sqrt{1+\sigma_{j}^{4}|\nabla'\psi(\lambda_{j}r^{-1}x')|^{2}} \, dx' - \epsilon^{8}\alpha(n-1)(r/\lambda_{j})^{(n-1)}$$

$$= \left(\int_{\hat{B}(1)} \sqrt{1+\sigma_{j}^{4}|\nabla'\psi(x')|^{2}} \, dx'\right) (r/\lambda_{j})^{(n-1)} - \epsilon^{8}\alpha(n-1)(r/\lambda_{j})^{(n-1)}$$

$$\geqslant \left(1+\frac{1}{4}\sigma_{j}^{4}c_{2}-\epsilon^{8}\right)\alpha(n-1)(r/\lambda_{j})^{(n-1)}$$

$$\geqslant \frac{1}{8}\sigma_{j}^{4}c_{2}\alpha(n-1)(r\lambda_{j}^{-1})^{(n-1)} + H^{n-1}(Z(y,r\lambda_{j}^{-1})\cap\partial\Omega).$$

Given $t \ge \epsilon$, let k be the least nonnegative integer such that $t \ge \sigma_k$, $0 \le k \le l+1$. Let J=J(k), be the set of all i such that (2.3) holds with $y=y^i$ and $j \le k$. From (2.1) it is clear that

$$(2.14) H^{n-1}\{x \in \partial\Omega: |\nabla G(x)| \geqslant 1+t\} \leqslant H^{n-1}\left(\bigcup_{i \in J} B(y^i, 100r) \cap \partial\Omega\right)$$

$$\leqslant 2\sum_{i \in J} \alpha(n-1)(100r)^{n-1}.$$

Using (2.13), (2.14), and (2.5) we deduce

$$(2.15) H^{n-1}(\partial\Omega') \geqslant H^{n-1}(\partial\Omega) + \frac{c_3\sigma_k^4}{\lambda_k^{n-1}}H^{n-1}\{x \in \partial\Omega: |\nabla G(x)| > 1+t\},$$

where $c_3 > 0$ depends only on n. Let

$$\eta(t) = \begin{cases} \frac{c_3 \sigma_0^4}{\lambda_o^{n-1}}, & \sigma_0 \leqslant t \\ \frac{c_3 \sigma_k^4}{\lambda_k^{n-1}}, & \sigma_k \leqslant t < \sigma_{k-1}, & k = 1, 2, \dots \end{cases}$$

Clearly η does not depend on Ω or Ω' . Rewriting (2.15) in terms of η we obtain (1.1).

Next we define the homeomorphism h mentioned in Section 1. If $y \in L$ and j is the smallest positive integer for which (2.3) holds, define h on Z(y, r) by $h(x) = (x', h^*(x))$, where

$$h^*(x', x_n) = \begin{cases} \frac{(r + y_n - \xi(x' - y'))(x_n - r - y_n)}{r - \theta(x' - y')} + r + y_n, & x \in Z(y, r) \cap \Omega \\ \frac{(\xi(x' - y') + r - y_n)(x_n + r - y_n)}{r + \theta(x' - y')} - r + y_n, & x \in Z(y, r) \cap (\mathbb{R}^n - \Omega) \end{cases}$$

Define h(x) = x in the complement of the union of all Z(y, r) for which (2.3) holds. We note that h restricted to Z(y, r) = Z is simply a projection by lines parallel to the x_n axis of $Z \cap (\mathbb{R}^n - \Omega)$, $Z \cap \Omega$, respectively onto $Z \cap (\mathbb{R}^n - \Omega')$, $Z \cap \Omega'$, which keeps $\partial Z(y, r)$ fixed. Thus, h is a homeomorphism from \mathbb{R}^n to \mathbb{R}^n with $h(\bar{\Omega}) = \bar{\Omega}'$. Moreover, using (2.1) it is easily checked that

$$(2.16) (1 - c_4 \sigma_0^2)|x - z| \le |h(x) - h(z)| \le (1 + c_4 \sigma_0^2)|x - z|,$$

when $x, z \in \mathbb{R}^n$ and

$$(2.17) |x-z| - c_4 \sigma_0^2 r \le |h(x) - h(z)| \le |x-z| + c_4 \sigma_0^2 r,$$

when |x-z| > r. Also for use in proving (1.9) we shall show for $x, z \in \partial \Omega$, that

$$|h(x) - h(z)| \ge (1 - c_5 r^{1/2})|x - z|.$$

Indeed, suppose $x, z \in \partial \Omega$, $5r \le |x-z| < 100r^{1/2}$, $x \in B(w, 100r)$, and $z \in B(y, 100r)$, where $w, y \in \{y^i\}_1^N$. Let θ be defined relative to y as previously and recall that $B(y, 1000r^{1/2}) \cap \partial \Omega$ can be expressed in terms of θ . Let $\nu(p)$ denote the outer unit normal to p in $\partial \Omega$ and let • denote inner product. Then

$$|\nu(y) \cdot \nu(w)| = (1 + |\nabla \theta(w' - y')|^2)^{-1/2} > 1 - \frac{1}{4} M_1^2 |w' - y'|^2.$$

Thus if δ denotes the angle between $\nu(y)$ and $\nu(w)$, then

$$\delta < 4M_1|w'-y'| < 164M_1|x-z|$$
.

Next suppose $h(x) = (v', v_n)$ and $v' \neq x'$. Then we can draw the right triangle with vertices x, h(x), and $P = (v', x_n)$. Let l_1, l_2 , and l_3 be the sides of this triangle connecting x to h(x), h(x) to P, and P to x, respectively. Then from the definition of h we see that v(w) is parallel to l_1 , and so l_1, l_2 form an angle δ at h(x). Also, |x - h(x)| < r, so from trigonometry and the above inequality,

$$|v'-x'| < r\sin\delta < 164M_1r|x-z|.$$

From this inequality and (2.1) we deduce

$$|h(z) - h(x)| > |v' - z'|$$

$$\geqslant |x' - z'| - |v' - x'|$$

$$> (1 - cM_1^2 r)|x - z|$$

$$> (1 - c_5 r^{1/2})|x - z|.$$

Hence (2.18) is valid when $5r \le |x-z| < 100r^{1/2}$. If |x-z| < 5r, then (2.18) remains true as follows easily from the fact that the bumps are greater than 6r apart. If $100r^{1/2} \le |x-z|$ then it follows from (2.17) that (2.18) is true. Finally in this section we fix σ_0 to be the largest number for which (2.10), (2.12), hold and

$$(2.19) c_4 \sigma_0^2 \leqslant \frac{1}{2} \cdot$$

Note from (2.12) that $0 < \sigma_0 \le 10^{-3}$.

3. Wolff's lemma

To prove (1.3) in Section 1 we shall need some definitions. Let Ω_1 be a bounded domain. If diam $\Omega_1 = 1$, then Ω_1 is an NTA domain with constant A if it has the following properties:

- (i) (Corkscrew condition.) For each $x \in \partial \Omega_1$, $0 < r < A^{-1}$, there are points $P_r(x) \in \Omega_1$, $Q_r(x) \in \mathbb{R}^n \Omega_1$, with $|P_r(x) x| \le Ar$, $|Q_r(x) x| \le Ar$, and dist $(P_r(x), \partial \Omega_1) \ge A^{-1}r$, dist $(Q_r(x), \partial \Omega_1) \ge A^{-1}r$,
- (ii) (Harnack chain condition.) For each $x, y \in \Omega_1$ there is a path γ from x to y with length $(\gamma) \le A|x-y|$ and dist $(\gamma(t), \partial\Omega_1) \ge A^{-1} \min \{|\gamma(t)-x|, |\gamma(t)-y|\}$.

In general Ω_1 is an NTA domain with constant A, if a scaling of it with diameter 1 has constant A. Ω_1 is said to be Lipschitz on scale t with constant A, provided for each $z \in \partial \Omega_1$, there is a coordinate system such that $\partial \Omega_1 \cap B(z, t)$ is the

graph of a Lipschitz function defined on \mathbb{R}^{n-1} with Lipschitz norm less than or equal to A. Moreover, $\Omega_1 \cap B(x, t)$ lies above the graph of this function.

Now suppose for some $w \in \partial \Omega_1$ and t > 0 that after a possible rotation of coordinates,

(3.1)
$$\partial \Omega_1 \cap B(w, t) = \{x: x_n = w_n\} \cap B(w, t)$$
$$\Omega_1 \cap B(w, t) = \{x: x_n > w_n\} \cap B(w, t)$$

Let $p \le 0$ be a C^{∞} function with support in $\hat{B}(1)$, suppose $\lambda > 2 \max_{\mathbb{R}^{n-1}} |p| + 1$, and define $\Omega_2 \supset \Omega_1$ as follows:

(a)
$$\Omega_1 - B(w, t) = \Omega_2 - B(w, t)$$
,

(b)
$$\partial \Omega_2 \cap B(w, t) = \{(x' + w', w_n + t\lambda^{-1}p(t^{-1}\lambda x')): x' \in \mathbb{R}^{n-1}\} \cap B(w, t),$$

(c)
$$\Omega_2 \cap B(w, t) = \{(x' + w', x_n): x_n > w_n + t\lambda^{-1}p(t^{-1}\lambda x')\} \cap B(w, t).$$

Let \hat{p} be the continuous harmonic extension of p to $(\mathbb{R}^n)^+ = \{(x', x_n): x_n > 0\}$ and put

$$\Lambda(p) = \int_{\mathbb{R}^{n-1}} \left(\left(\frac{\partial \hat{p}}{\partial x_n} \right)^3 - 3 |\nabla' p|^2 \frac{\partial \hat{p}}{\partial x_n} \right) (x', 0) \, dx'$$

where $\nabla' p$, as in Section 2, is the \mathbb{R}^{n-1} gradient. Next if $d = \operatorname{diam} \Omega_1$, we assume

$$(3.2) B(0, d/A) \subseteq \Omega_1 \subseteq B(0, Ad).$$

Denote Green's functions for Ω_1 , Ω_2 , with pole at 0, by G_1 , G_2 , respectively, and let ω_1 be harmonic measure on Ω_1 with respect to 0. If $\partial \Omega_1$ is sufficiently smooth we observe that

$$\omega_1(E) = \int_{E \cap \partial \Omega_1} |\nabla G_1| dH^{n-1}, \qquad E \text{ Borel.}$$

Then Wolff proved [14, Lemma 2.7].

Lemma 2. Let Ω_1 be NTA and Lipschitz on scale t with constant A. Suppose Ω_1 satisfies (3.1), (3.2), and Ω_2 is obtained by adding a bump to Ω_1 as in (a)-(c). If $\Lambda(p) < 0$, then there exists $\lambda^* = \lambda^*(A, p)$, $c_6 = c_6(A, p)$, such that for $\lambda \ge \lambda^*$,

$$\int_{\partial\Omega_2} |\nabla G_2| \log |\nabla G_2| dH^{n-1} \leq \int_{\partial\Omega_1} |\nabla G_1| \log |\nabla G_1| dH^{n-1} - \frac{c_6}{\lambda^{n-1}} \omega_1(B(w,t)).$$

Actually Wolff proves this Lemma only in \mathbb{R}^3 , but the proof for \mathbb{R}^n , $n \ge 3$, is essentially unchanged. To show the existence of $p \le 0$ for which $\Lambda(p) < 0$, Wolff first shows that $\Lambda(q) < 0$ for n = 3 when $q(x') = -|x' + e_3|^{-1}$, $x' \in \mathbb{R}^3$,

 $e_3 = (0, 0, 1)$. In view of this function, the natural function to consider for $n \ge 3$ is

$$q(x') = -|x' + e_n|^{2-n}, e_n = (0, ..., 0, 1), x' \in \mathbb{R}^{n-1},$$

for which $\hat{q}(x) = -|x + e_n|^{2-n}$, $x \in (\mathbb{R}^n)^+$. Then

$$\Lambda(q) = (n-1)(n-2)^3 \alpha (n-1) \int_0^\infty (r^2+1)^{-3n/2} (1-3r^2) r^{n-2} dr$$

$$= -\frac{(n-1)(n-2)^4 \alpha (n-1) \Gamma(n-1/2) \Gamma(n/2-1/2)}{4 \Gamma(3n/2)} < 0,$$

where Γ denotes the Euler gamma function and the integral was evaluated using the substitution $r = \tan \theta$, as well as, the beta function. Let Φ , $0 \le \Phi \le 1$, be a C^{∞} function on \mathbb{R}^{n-1} with support in $\hat{B}(2)$, $|\nabla'\Phi| \le 1000$, and $\Phi = 1$ on $\hat{B}(1)$. Now if

$$q_m(x') = \Phi(m^{-1}x')q(x'), \qquad x' \in \mathbb{R}^{n-1},$$

then it follows easily from properties of conjugate harmonic functions (see [13, Ch. 6]) that

$$\Lambda(q_m) \to \Lambda(q)$$
 as $m \to \infty$.

Taking a suitable dilation of q_m for large m, we get $p \le 0$ in $C^{\infty}(\mathbb{R}^{n-1})$ with supp $p \subseteq \hat{B}(1)$, and $\Lambda(p) < 0$.

We now define ψ and $(\lambda_k)_0^\infty$ introduced in Section 2. Let ψ , $0 \le \psi \le 1$, be a fixed $C^\infty(\mathbb{R}^{n-1})$ function with support in $\widehat{B}(1)$, $\max_{\mathbb{R}^{n-1}} \psi = 1$, and $\Lambda(\psi) > 0$. Recall that $\sigma_k = 2^{-k}\sigma_0$, $k = 0, 1, \ldots$, and define λ_k as follows: let A = 200 in Lemma 2 and $p = -\sigma_k^2\psi$. Let $\lambda_k' = \max{\{\sigma_k^{-1}, b_k^{-1}, \lambda_k^*\}}$, $k = 0, 1, \ldots$, where $b_k = c_6(200, -\sigma_k^2\psi)$, $\lambda_k^* = \lambda^*(200, -\sigma_k^2\psi)$. Put $\lambda_m = \max_{0 \le k \le m} \lambda_k'$, $m = 0, 1, \ldots$ and note that $(\lambda_k)_0^\infty$ depends only on n since σ_0 and ψ are fixed.

Let Ω , Ω' , ϵ , r, L, and $(E_k)_0^{l+1}$, be as in Section 2 and suppose also that Ω is NTA with constant 100. Moreover, we assume $B(0, \rho) \subseteq \Omega \subseteq B(0, 2)$, where ρ is as in (1.4). From our choice of r we see that Ω is Lipschitz on scale $r^{1/2}$ with constant 2. In order to apply Lemma 2, we need to add flat bumps under each $y \in L$. For fixed $y \in L$ let j be the smallest nonnegative integer for which (2.3) holds, *i.e.*

$$B(y, 100r) \cap E_i \neq \emptyset$$
.

Suppose that $L = \{z_1, z_2, \dots, z_m\}$ and put $L_k = \{z_1, \dots, z_k\}$, $1 \le k \le m$. For fixed $y \in L$ we assume that $B(y, 1000r^{1/2}) \cap \Omega$, $B(y, 1000r^{1/2}) \cap \partial \Omega$, can be

expressed as in Section 2 relative to θ . Let

$$\hat{\xi}(x') = -100 M_1 r^2 \Phi\left(\frac{x'}{r}\right) + \left(1 - \Phi\left(\frac{x'}{r}\right)\right) \theta(x') + y_n, \qquad x' \in \mathbb{R}^{n-1},$$

$$\tilde{\xi}(x') = \hat{\xi}(x') - \sigma_i^2 r \lambda_i^{-1} \psi(\lambda_i x'/r), \qquad x' \in \mathbb{R}^{n-1},$$

where Φ was defined earlier in Section 3 and M_1 is as in (2.1). Define $\hat{\Omega}_k$, $1 \le k \le m$, as follows:

$$\hat{\Omega}_k - \bigcup_{z \in L} B(z, 10r) = \Omega - \bigcup_{z \in L_k} B(z, 10r),$$

(II)
$$\partial \hat{\Omega}_k \cap B(y, 10r) = \{(x' + y', \hat{\xi}(x')) : x' \in \mathbb{R}^{n-1}\} \cap B(y, 10r),$$

(IÎI)
$$\hat{\Omega}_k \cap B(y, 10r) = \{ (x' + y', x_n) : x_n > \hat{\xi}(x') \} \cap B(y, 10r),$$

for each $y \in L_k$. $\tilde{\Omega}_k \supseteq \hat{\Omega}_m$, $1 \le k \le m$, is defined similarly by

(I)
$$\widetilde{\Omega}_k - \bigcup_{z \in L_k} B(z, 10r) = \widehat{\Omega}_m - \bigcup_{z \in L_k} B(z, 10r),$$

$$(\tilde{\Pi}) \qquad \partial \tilde{\Omega}_k \cap B(y, 10r) = \{ (x' + y', \tilde{\xi}(x')) : x' \in \mathbb{R}^{n-1} \} \cap B(y, 10r),$$

(III)
$$\tilde{\Omega}_k \cap B(y, 10r) = \{ (x' + y', x_n) : x_n > \tilde{\xi}(x') \} \cap B(y, 10r),$$

for each $y \in L_k$. From (2.1) and the definition of Ω' we see that $\hat{\Omega}_m \supseteq \Omega$, $\tilde{\Omega}_m \supseteq \Omega'$. Using the fact that Ω is NTA with constant 100 and local smoothness of $\hat{\Omega}_k$, $\tilde{\Omega}_k$, it is easily checked that $\hat{\Omega}_k$, $\tilde{\Omega}_k$, $1 \le k \le m$, are NTA and Lipschitz on scale r with constant 200. Let $\hat{\Omega}_0 = \Omega$, $\tilde{\Omega}_0 = \hat{\Omega}_m$. We first apply Lemma 2 with t = r, $\Omega_1 = \tilde{\Omega}_0$, $\Omega_2 = \tilde{\Omega}_1$, after a possible rotation. We next apply Lemma 2 with $\Omega_1 = \tilde{\Omega}_1$ and $\Omega_2 = \tilde{\Omega}_2$, ..., etc. Let \hat{G}_k , \tilde{G}_k , $\hat{\omega}_k$, $\tilde{\omega}_k$, be the Green's functions and harmonic measures relative to 0 for $\hat{\Omega}_k$, $\tilde{\Omega}_k$. Applying the above argument m times we obtain an inequality for $\hat{G}_m = \tilde{G}_0$ and \tilde{G}_m . Using the definition of $(\lambda_k)_0^\infty$, we conclude

$$(3.3) \int_{\partial \tilde{\Omega}_m} |\nabla \tilde{G}_m| \log |\nabla \tilde{G}_m| dH^{n-1}$$

$$\leq \int_{\partial \tilde{\Omega}_m} |\nabla \hat{G}_m| \log |\nabla \hat{G}_m| dH^{n-1} - c(\lambda_{l+1})^{-(n-1)} \sum_{k=0}^{m-1} \tilde{\omega}_k (B(z_{k+1}, 2r)).$$

Next we define a function τ on [0, 1] by $\tau(s) = \min \{\lambda_k : \sigma_k \le s\}$, $0 < s \le 1$. Choosing r_0 still smaller, if necessary, we assume, as we may, that for $0 < r \le r_0$,

$$(3.4) r^{1/16} \leqslant \tau(\epsilon)^{-(n-1)}.$$

Note that $\tau(\epsilon) = \lambda_{l+1}$.

To prove (1.3) we must show that \hat{G}_m , \tilde{G}_m , in (3.3) can be replaced by G, G', with an error term at most,

$$c\tau(\epsilon)^{-(n-1)}\sum_{k=0}^{m-1}\tilde{\omega}_k(B(z_k,2r)).$$

To do so we introduce Ω'_k , $0 \le k \le m$, defined by, $\Omega'_0 = \Omega'$, and for $1 \le k \le m$,

(I')
$$\Omega'_k - \bigcup_{z \in L_k} B(z, 10r) = \Omega' - \bigcup_{z \in L_k} B(z, 10r),$$

(II')
$$\partial \Omega'_k \cap B(y, 10r) = \{(x' + y', \tilde{\xi}(x')) : x' \in \mathbb{R}^{n-1}\} \cap B(y, 10r),$$

(III')
$$\Omega'_k \cap B(y, 10r) = \{ (x' + y', x_n) : x_n > \tilde{\xi}(x') \} \cap B(y, 10r),$$

for each $y \in L_k$. Denote the corresponding Green's functions and harmonic measures relative to 0, by G'_k , ω'_k , $0 \le k \le m$. We shall also need the following facts about the NTA domain Ω_1 with constant A satisfying (3.2). If $z \in \partial \Omega_1$, then

(3.5)
$$c(A)^{-1}\omega_{1}(B(z,t)) \leq t^{n-2} \max_{B(z,t) \cap \Omega_{1}} G_{1}$$
$$\leq c(A)t^{n-2}G_{1}(P_{t})$$
$$\leq c(A)\omega_{1}(B(z,t)),$$

for $0 < t < A^{-1}$, where $P_t = P_t(z)$. Moreover,

(3.6)
$$\omega_1(B(z,2t)) \leqslant c(A)\omega_1(B(z,t)).$$

(3.6) is called the doubling inequality for harmonic measure. If $z \in \partial \Omega_1$ and u, v are two positive harmonic functions in Ω_1 which vanish continuously on $\partial \Omega_1 - B(z, t)$, and $P_t = P_t(z)$, then for $x \in \Omega_1 - B(z, 2t)$

(3.7)
$$c(A)^{-1}u(P_t)/v(P_t) \le u(x)/v(x) \le c(A)u(P_t)/v(P_t).$$

Moreover, (3.7) is valid when u and v vanish on $\partial\Omega_1 \cap B(z, 2t)$, and $x \in B(z, t) \cap \Omega_1$. (3.7) is called the rate inequality. Finally there exists $\mu = \mu(A) > 0$ so that for z and P_t as above, and $x \in B(z, t) \cap \Omega_1$,

(3.8)
$$G_1(x) \leq c(|x-z|/t)^{\mu}G_1(P_t).$$

For the proof of (3.5)-(3.8) see [8, Sections 4 and 5].

From (3.5), (3.6), (3.8) with $t = A^{-1}$, and the fact that $\omega_1(B(z, A^{-1})) \ge c(A)^{-1}$, when $z \in \partial \Omega_1$, we see there exists $\nu(A)$, $0 < \nu < 1$, with

(3.9)
$$c(A)^{-1}t^{1/\nu} \le \omega_1(B(z,t)) \le c(A)t^{\mu+n-2}, \quad 0 < t < A^{-1}.$$

We claim that

(3.10)
$$\sum_{k=0}^{m-1} \omega_k^*(B(z_{k+1}, 6r)) \leqslant c \sum_{k=0}^{m-1} \omega_k^+(B(z_{k+1}, 6r)),$$

whenever * and + are elements of $\{^{\land}, \sim, '\}$. Indeed from our construction and the maximum principle for harmonic functions we have,

$$\hat{\omega}_0(B(z_{k+1}, 6r) - B(z_{k+1}, 2r)) \leq \omega_j^*(B(z_{k+1}, 6r) - B(z_{k+1}, 2r))$$

$$\leq \tilde{\omega}_m(B(z_{k+1}, 6r) - B(z_{k+1}, 2r)),$$

when $0 \le j \le m$, $0 \le k \le m-1$, and $* \in \{^{\land}, \sim, '\}$. Summing and using the doubling inequality it follows that

$$c^{-1}\sum_{k=0}^{m-1}\hat{\omega}_0(B(z_{k+1},6r))\leqslant \sum_{k=0}^{m-1}\omega_k^*(B(z_{k+1},6r))\leqslant c\sum_{k=0}^{m-1}\tilde{\omega}_m(B(z_{k+1},6r)).$$

On the other hand, from the maximum principle we deduce

$$\sum_{k=0}^{m-1} \tilde{\omega}_m(B(z_{k+1}, 6r)) \leqslant \sum_{k=0}^{m-1} \hat{\omega}_0(B(z_{k+1}, 6r)).$$

Hence our claim is true. We shall show for $0 \le k \le m-1$ that

$$(3.11) \int_{\partial \Omega'_{k}} |\nabla G'_{k}| \log |\nabla G'_{k}| dH^{n-1}$$

$$\leq \int_{\partial \Omega'_{k+1}} |\nabla G'_{k+1}| \log |\nabla G'_{k+1}| dH^{n-1} + cr^{1/2} \omega'_{k} (B(z_{k+1}, 6r)),$$

$$(3.12) \int_{\partial \hat{\Omega}_{k+1}} |\nabla \hat{G}_{k+1}| \log |\nabla \hat{G}_{k+1}| dH^{n-1}$$

$$\leq \int_{\partial \hat{\Omega}_{k}} |\nabla \hat{G}_{k}| \log |\nabla \hat{G}_{k}| dH^{n-1} + cr^{1/2} \hat{\omega}_{k} (B(z_{k+1}, 6r)).$$

Summing (3.11) and using (3.10), it then follows that

$$(3.13) \int_{\partial\Omega'} |\nabla G'| \log |\nabla G'| dH^{n-1}$$

$$\leq \int_{\partial\tilde{\Omega}_m} |\nabla \tilde{G}_m| \log |\nabla \tilde{G}_m| dH^{n-1} + cr^{1/2} \sum_{k=0}^{m-1} \tilde{\omega}_k (B(z_{k+1}, 6r)),$$

where we have used the fact that $\Omega_0' = \Omega_0$, $\Omega_m' = \tilde{\Omega}_m$.

Summing (3.12) and using (3.10), we find

$$(3.14) \int_{\partial \hat{\Omega}_m} |\nabla \hat{G}_m| \log |\nabla \hat{G}_m| dH^{n-1}$$

$$\leq \int_{\partial \Omega} |\nabla G| \log |\nabla G| dH^{n-1} + cr^{1/2} \sum_{k=0}^{m-1} \hat{\omega}_k (B(z_{k+1}, 6r)),$$

since $\hat{\Omega}_0 = \Omega$. Putting (3.13), (3.14), into (3.3) and using (3.6) we get (1.3) provided r_0 is small enough, thanks to (3.4). Thus (1.3) is true once we prove (3.11)-(3.12).

We prove only (3.11), (3.12), for k = 0, since the proof of all the other inequalities is the same. To prove (3.12) for k = 0 we first observe from (3.5) that

(3.15)
$$\max_{B(z_1, 6r) \cap \hat{\Omega}_1} \hat{G}_1 \leqslant cr^{2-n} \hat{\omega}_1(B(z_1, 6r)).$$

Using (3.15), (2.1), and applying Lemma 1 with k = 4 after scaling $B(x_1, 6r) \cap \hat{\Omega}_1$, we find for x, y in the closure of $B(z_1, 3r) \cap \hat{\Omega}_1$,

$$|\nabla \hat{G}_1(x) - \nabla \hat{G}_1(y)| \leq c|x - y|r^{-n}\hat{\omega}_1(B(z_1, 6r)),$$

while from (3.15), a barrier argument, (3.5)-(3.6) and (ii), we have

$$(3.17) c^{-1}r^{1-n}\hat{\omega}_1(B(z_1,6r)) \leq |\nabla \hat{G}_1(x)| \leq cr^{1-n}\hat{\omega}_1(B(z_1,6r)).$$

Clearly (3.17) and (3.9) imply

when x is in the closure of $B(z_1, 3r) \cap \hat{\Omega}_1$. Using (3.16)-(3.18), (3.6), (2.1), and parametrizing $\partial \Omega$ and $\partial \hat{\Omega}_1$ in terms of θ and $\hat{\xi}$, for $y = z_1$, we obtain with $z_1 = (y', y_n)$, $\hat{x} = (x' + y', \hat{\xi}(x'))$, $x = (x' + y', \theta(x') + y_n)$,

$$\begin{split} \left| \int_{\partial\Omega \cap B(z_{1}, 3r)} |\nabla \hat{G}_{1}| \log |\nabla \hat{G}_{1}| dH^{n-1} - \int_{\partial\hat{\Omega}_{1} \cap B(z_{1}, 3r)} |\nabla \hat{G}_{1}| \log |\nabla \hat{G}_{1}| dH^{n-1} \right| \\ & \leq \int_{\hat{B}(3r)} ||\nabla \hat{G}_{1}| \log |\nabla \hat{G}_{1}| |(x)| \sqrt{1 + |\nabla' \hat{\theta}(x')|^{2}} - \sqrt{1 + |\nabla' \hat{\xi}(x')|^{2}} | dx' \\ & + \int_{\hat{B}(3r)} ||\nabla \hat{G}_{1}| (x) - |\nabla \hat{G}_{1}| (\hat{x})| |\log |\nabla \hat{G}_{1}(x)| |\sqrt{1 + |\nabla' \hat{\xi}(x')|^{2}} dx' \end{split}$$

$$+ \int_{\hat{B}(3r)} |\nabla \hat{G}_{1}|(\hat{x})|\log |\nabla \hat{G}_{1}(x)| - \log |\nabla \hat{G}_{1}(\hat{x})|| \sqrt{1 + |\nabla' \hat{\xi}(x')|^{2}} dx'$$

$$\leq (-cM_{1}^{2}r^{2}\log r - cM_{1}r\log r + \log (1 + M_{1}r))\hat{\omega}_{1}(B(z_{1}, 6r))$$

$$\leq cr^{1/2}\hat{\omega}_{1}(B(z_{1}, 6r)).$$

Next from (3.17), (2.1) and the fact that each point of $B(z_1, 6r) \cap \partial \hat{\Omega}_1$ lies within 200 $M_1 r^2$ of a point of $B(z_1, 6r) \cap \partial \Omega$, we get

$$(3.20) (\hat{G}_1 - G)(x) \leqslant cM_1 r^{3-n} \hat{\omega}_1(B(z_1, 6r))$$

for $x \in \partial \Omega$. From the maximum principle for harmonic functions and the fact that $\Omega \subseteq \hat{\Omega}_1$, we conclude this inequality holds in Ω . Let $\phi(x') = \theta(6rx')/6r$, and define H relative to ϕ as in Lemma 1. Put

$$u(x) = \frac{1}{6r} (\hat{G}_1(6rx + z_1) - G(6rx + z_1)), \qquad x \in \bar{H},$$

$$\phi_1(x') = \frac{1}{6r} (\hat{\xi}(6rx') - y_n),$$

$$H_1 = \{x: |x'| < 8, \phi_1(x') < x_n < 2\},$$

$$u_1(x) = \frac{1}{6r} \hat{G}_1(6rx + z_1), \qquad x \in \bar{H}_1.$$

We note from (2.1) that

(3.21)
$$\max\{\|\phi\|_4, \|\phi_1\|_4\} \leqslant cM_1r.$$

Using (3.20), (3.21), we first apply Lemma 1 with u, H, replaced by u_1 , H_1 . As in (3.16) we get

(3.22)
$$\sum_{0 \le |\alpha| \le 4} |\partial_{\alpha} u_1(x)| \le cr^{1-n} \hat{\omega}_1(B(z_1, 6r)), \qquad x \in H.$$

We note that $u_1 = 0$ on $\partial H_1 \cap \{(x', \phi_1(x'))\}$ and $u = u_1 = \gamma$ on $\partial H \cap \{(x', \phi(x'))\}$. Using these notes and (3.21)-(3.22) we deduce

(3.23)
$$\sum_{|\alpha|=0}^{3} |\partial_{\alpha}' \gamma(x', \phi(x'))| = \sum_{|\alpha|=0}^{3} |\partial_{\alpha}' (u_{1}(x', \phi(x')) - u_{1}(x', \phi_{1}(x')))|$$
$$\leq c M_{1} r^{2-n} \hat{\omega}_{1}(B(z_{1}, 6r)).$$

Applying Lemma 1 to u and H, with k = 3 we find from (3.20)-(3.23)

$$\sum_{|\alpha|=0}^{3} \left| \partial_{\alpha} u(x) \right| \leqslant c M_1 r^{2-n} \hat{\omega}_1(B(z_1, 6r)),$$

for $x \in B(0, 1/2) \cap H$. Hence if $x \in B(z_1, 3r) \cap \bar{\Omega}$, then

$$(3.24) |\nabla \hat{G}_1 - \nabla G|(x) \leqslant cM_1 r^{2-n} \hat{\omega}_1(B(z_1, 6r)) \leqslant c |\nabla \hat{G}_1(x)| M_1 r,$$

where the last inequality is just (3.17). From (3.24) and (2.1) we obtain

$$(3.25) \left| \int_{\partial\Omega \cap B(z_{1},3r)} |\nabla G| \log |\nabla G| dH^{n-1} - \int_{\partial\Omega \cap B(z_{1},3r)} |\nabla \widehat{G}_{1}| \log |\nabla \widehat{G}_{1}| dH^{n-1} \right|$$

$$\leq \int_{\partial\Omega \cap B(z_{1},3r)} ||\nabla G| - |\nabla \widehat{G}_{1}|| |\log |\nabla G|| dH^{n-1} + \int_{\partial\Omega \cap B(z_{1},3r)} |\nabla \widehat{G}_{1}|$$

$$\times \left| \log \left(\frac{|\nabla G|}{|\nabla \widehat{G}_{1}|} \right) \right| dH^{n-1}$$

$$\leq -cM_{1}r \log r \, \hat{\omega}_{1}(B(z_{1},6r)) + \hat{\omega}_{1}(B(z_{1},6r)) \log (1 + cM_{1}r)$$

$$\leq cr^{1/2} \hat{\omega}_{1}(B(z_{1},6r)).$$

Let $P = P_{3r}(z_1)$ and let $G(\bullet, Y)$ denote Green's function with pole at $Y \in \Omega$. Following Wolff (see [14, (2.7)]) we first note fom (3.20) and the rate inequality (3.7) with $u = \hat{G}_1 - G$, $v = G(\bullet, P)$, t = 2r, that

$$G(x, P)^{-1}(\hat{G}_1 - G)(x) \le cM_1 r \hat{\omega}_1(B(z_1, 6r)), \quad x \in \Omega - B(z_1, 3r).$$

Second, given w in $\partial\Omega - B(z_1, 3r)$, we apply the rate inequality with $u = G(\bullet, P)$, $v = G(\bullet, P_t(w))$, $t = 2|w - z_1|$ in $\Omega - B(z_1, t)$, provided $0 \in \Omega - B(z_1, 2t)$. We get for x = 0,

$$t^{n-2}G(P_t(w), P) \leq cG(0, P)/G(0, P_t(w)).$$

If $0 \in B(z_1, 2t)$, then it follows easily from Harnack's inequality and $t \ge \rho/2$ (since $B(0, \rho) \subseteq \Omega$) that

$$G(P_t(w), P) \leqslant ct^{2-n}G(0, P).$$

From the above inequalities, (3.8) and Harnack's inequality, we find for $P_t = P_t(w)$,

$$G(P_t, P) \leqslant ct^{2-n}(r/t)^{\mu}$$
.

Third, we use the rate inequality in $B(w, 10^{-3}t) \cap \Omega$ with $u = \hat{G}(\bullet, P)$, $v = \hat{G}_1(\bullet, 0)$; the above inequalities, (3.5) and (3.6), to obtain

$$r^{-1}(\hat{\omega}_1(B(z_1, 6r)))^{-1}M_1^{-1}(\hat{G}_1 - G)(x)\hat{G}_1(x, 0)^{-1} \leq cG(x, P)\hat{G}_1(x, 0)^{-1} \leq c(r/t)^{\mu}(\hat{\omega}_1(B(z_1, t)))^{-1},$$

for $x \in B(w, 10^{-3}t) \cap \Omega$. Letting $x \to w$ and using (2.1) we conclude from this inequality that

$$(3.26) (|\nabla \hat{G}_1|^{-1}|\nabla \hat{G}_1 - \nabla G|)(w) \leq c r^{3/4 + \mu} \hat{\omega}_1(B(z_1, 6r))(\hat{\omega}_1(B(z_1, t)))^{-1}|z_1 - w|^{-\mu}.$$

Now

$$(3.27) \left| \int_{\partial\Omega - B(z_1, 3r)} |\nabla G| \log |\nabla G| dH^{n-1} - \int_{\partial\hat{\Omega}_1 - B(z_1, 3r)} |\nabla \hat{G}_1| \log |\nabla \hat{G}_1| dH^{n-1} \right|$$

$$\leq \int_{\partial\Omega - B(z_1, 3r)} ||\nabla G| - |\nabla \hat{G}_1|| |\log |\nabla G|| dH^{n-1}$$

$$+ \int_{\partial\Omega - B(z_1, 3r)} |\nabla \hat{G}_1| |\log (|\nabla G|/|\nabla \hat{G}_1|)| dH^{n-1}$$

$$= I_1 + I_2.$$

If $F_k = B(z_1, 3^{k+1}r) - B(z_1, 3^kr)$, k = 1, 2, ... then from (3.26) we have

$$I_{1} \leq \sum_{k=1}^{\infty} \int_{F_{k} \cap \partial \Omega} ||\nabla G| - |\nabla \hat{G}_{1}| |\log |\nabla G|| dH^{n-1}$$

$$\leq -cr^{3/4 + \mu} \log r \, \hat{\omega}_{1}(B(z_{1}, 6r)) \left(\sum_{k=1}^{\infty} k3^{-k\mu} \right) r^{-\mu}$$

$$\leq cr^{1/2} \hat{\omega}_{1}(B(z_{1}, 6r)).$$

A similar estimate holds for I_2 . Using these estimates in (3.27) we get

$$(3.28) \left| \int_{\partial \Omega - B(z_1, 3r)} |\nabla G| \log |\nabla G| dH^{n-1} - \int_{\partial \hat{\Omega}_1 - B(z_1, 3r)} |\nabla \hat{G}_1| \log |\nabla \hat{G}_1| dH^{n-1} \right| \\ \leqslant cr^{1/2} \hat{\omega}_1(B(z_1, 6r)).$$

Next, since

$$\hat{\omega}_1(B(z_1, 6r)) \leq \hat{\omega}_0(B(z_1, 6r)),$$

we can replace $\hat{\omega}_1$ by $\hat{\omega}_0$ in (3.28), (3.25), and (3.19). Doing this and combining (3.28), (3.25), (3.19), we conclude that (3.12) is true for k = 0.

To prove (3.11) for k=0, let j be the smallest positive integer such that $E_j\cap B(z_1,10r)\neq\emptyset$. Put $r'=10r/\lambda_j$ and let $z\in B(z_1,6r)\cap\partial\Omega_1'$. Then it is easily checked that (3.16)-(3.18) hold with $\hat{G}_1,\hat{\omega}_1,r,z_1$, replaced by G_1',ω_1',r',z , respectively, when $x,y\in B(z,3r')$. Now from (3.4) we have

(3.29)
$$\frac{r}{10} \ge \frac{r}{\lambda_j} \ge \frac{r}{\lambda_{l+1}} = \frac{r}{\tau(\epsilon)} \ge r^{\gamma}$$

where

$$\gamma = 1 + \frac{1}{16(n-1)} \leqslant \frac{33}{32}.$$

Let z^* be the point in $\partial\Omega'$ obtained by projecting z in the rotated x_n direction onto $\partial\Omega'$. Then from the new version of (3.16)-(3.18), and the fact that

$$|z - z^*| < 200 M_1 r^2 < r'$$

thanks to (2.1), (3.29) we find

$$\begin{aligned} |(|\nabla G_1'| \log |\nabla G_1'|)(z) - (|\nabla G_1'| \log |\nabla G_1'|)(z^*)| \\ & \leq ||\nabla G_1'|(z) - |\nabla G_1'|(z^*)| \log r' + |\nabla G_1'(z)| \log (|\nabla G_1'|(z)/|\nabla G_1'|(z^*))| \\ & \leq -cM_1 r^2 \log (r')(|\nabla G_1'(z)|/r'). \end{aligned}$$

Using this inequality, (3.29), and parametrizing $\partial\Omega'$, $\partial\Omega'_1$, we get as in (3.19)

$$\left| \int_{\partial \Omega' \cap B(z_1, 3r)} |\nabla G_1'| \log |\nabla G_1'| dH^{n-1} - \int_{\partial \Omega_1' \cap B(z_1, 3r)} |\nabla G_1'| \log |\nabla G_1'| dH^{n-1} \right| \\ \leq cr^{1/2} \omega_1' (B(z_1, 6r)).$$

Next suppose $z \in \partial \Omega'$ and observe as in (3.20) that

$$(3.31) \ (G_1' - G')(z) \leqslant c M_1 r^2 (r')^{1-n} \omega_1' (B(z_1, 6r')) \leqslant c M_1 r^2 (r')^{1-n} \omega_1' (B(z_1, 6r)).$$

It follows from the maximum principle for harmonic functions that (3.31) holds in Ω' . If $z = (\bar{z} + y', \xi(\bar{z})) \in \partial \Omega'$, put

$$\phi'(x') = \frac{1}{6r'} (\xi(6r'x' + \bar{z}) - \xi(\bar{z})),$$

$$H' = \{x: |x'| < 1, \phi'(x') < x_n < 1\},$$

$$u'(x) = \frac{1}{6r'} (G'_1(6r'x + z) - G(6r'x + z)), \qquad x \in \bar{H}',$$

$$\phi'_1(x') = \frac{1}{6r'} (\tilde{\xi}(6r'x' + \bar{z}) - \xi(\bar{z})),$$

$$H'_1 = \{x: |x'| < 8, \phi'_1(x') < x_n < 2\},$$

$$u'_1 = \frac{1}{6r'} G'_1(6r'x + z), \qquad x \in \bar{H}'_1.$$

We note that

$$\|\phi'\|_4 + \|\phi_1'\|_4 \leqslant c,$$

$$\|\phi' - \phi_1'\|_4 \leqslant cM_1r.$$

Using these inequalities in place of (3.21) and Lemma 1 we get

$$\sum_{0 \le |\alpha| \le 4} |\partial_{\alpha} u_{1}'(x)| \le c(r')^{1-n} \omega_{1}'(B(z,6r')) \le c(r')^{1-n} \omega_{1}'(B(z_{1},6r))$$

in H'. Also, as in (3.23), we see for $u' = \gamma'$ on $\partial H' \cap \{(x', \phi'(x'))\}$, that

$$\sum_{|\alpha|=0}^{3} |\partial_{\alpha}' \gamma'|(x') \leqslant c M_1 r(r')^{1-n} \omega_1'(B(z_1, 6r)).$$

From this inequality, (3.31) and Lemma 1 it follows as in (3.24) that

$$(3.32) \quad |\nabla G_1' - \nabla G'|(x) \leqslant cM_1 r^2 (r')^{-n} \omega_1' (B(z_1, 6r)) \leqslant cM_1 (r^2 / r') \omega_1' (B(z_1, 6r)) (\omega_1' (B(z_1, 6r')))^{-1} |\nabla G_1'(x)|,$$

 $x \in B(z, 3r') \cap \overline{\Omega}'$. We cover $\partial \Omega' \cap B(z_1, 3r)$ by at most $c(r/r')^{n-1}$ balls, B(z, 3r'), $z \in \partial \Omega' \cap B(z_1, 3r)$. Using (3.32) in each ball and arguing as in (3.25) we have

$$|\int_{\partial\Omega' \cap B(z_1', 3r)} |\nabla G'| \log |\nabla G'| dH^{n-1} - \int_{\partial\Omega' \cap B(z_1, 3r)} |\nabla G_1'| \log |\nabla G_1'| dH^{n-1}|$$

$$\leq -c M_1 r (r/r')^n \log r \, \omega_1' (B(z_1, 6r))$$

$$\leq c r^{1/2} \omega_1' (B(z_1, 6r)),$$

thanks to (3.29) and (2.1).

At this point we can use (3.31) in place of (3.20) and repeat the argument following (3.25) in the proof of (3.12) (for k=0), since only NTA estimates were used. From (3.28) with G, \hat{G}_1 , $\hat{\omega}_1$, replaced by G', G'_1 , ω'_0 and (3.30), (3.33), with ω'_1 replaced by ω'_0 , we conclude that (3.11) holds when k=0. From our earlier remarks we now deduce that (1.3) is true.

4. Proof of Theorem 1

Recall that ψ , $0 \le \psi \le 1$, is a fixed C^{∞} function with support in $\hat{B}(1)$, $\max_{\mathbb{R}^{n-1}} \psi = 1$, and $\Lambda(\psi) > 0$. Also σ_0 , $0 < \sigma_0 \le 10^{-3}$, was chosen to be the largest number for which (2.10), (2.12), and (2.19) are true. Finally, given ϵ , $0 < \epsilon \le \sigma_0$, we note that $r_0 = r_0(\epsilon, M_1, M_2)$, was chosen so small that the inequalities in Sections 2 and 3 are true for $0 < r \le r_0$.

We elaborate on the induction argument for the construction of D which was outlined in Section 1. Let $D_0 = B(0, \rho)$, where ρ satisfies (1.4). Put $\epsilon_0 = \sigma_0$ and $\epsilon_k = 2^{-k} \epsilon_0$, $k = 0, 1, 2, \ldots$ Choose a covering, $L_1 = \{B(z_{0i}, t_{0i})\}$, $1 \le i \le k_0$ of ∂D_0 such that $t_{0i} \le 1/2$, $i = 1, 2, \ldots, k_0$, and

$$\alpha(n-1)\sum_{i=1}^{k_0}t_{0i}^{n-1}\leqslant H^{n-1}(\partial D_0)-\frac{1}{2}$$

By compactness of D_0 we may assume $k_0 < \infty$. Let $2r_1' > 0$ denote the distance from ∂D_0 to $\mathbb{R}^n - \bigcup_1^{k_0} B(z_{0i}, t_{0i})$. We set $\Omega = D_0$, $\epsilon = \epsilon_1$, and apply the results in Section 2 with $r = r_1$, where r_1 is the smaller of $10^{-9}\rho$, r_1' , and $r_0 = r_0(\epsilon_1, M_1, M_2)$. Here M_1, M_2 , are defined relative to D_0 , G_0 . Let $D_1 = \Omega'$ be the domain obtained by adding smooth bumps to D_0 and $h_1 = h$ the homeomorphism from \mathbb{R}^n to \mathbb{R}^n , which satisfies (2.16)-(2.18) with $r = r_1$. Moreover, $h_1(\partial D_0) = \partial D_1$. By induction, suppose for some $m \ge 1$ we have defined sequences: $(D_k)_0^m$, $(L_k)_1^m$, $(r_k')_1^m$, $(r_k)_1^m$, $(h_k)_1^m$. Let $L_{m+1} = \{B(z_{mi}, t_{mi})\}_{1}^{k_m}$, be a covering of ∂D_m such that $t_{mi} \le 2^{-(m+1)}$, $1 \le i \le k_m$, and

(4.1)
$$\alpha(n-1) \sum_{1}^{k_m} t_{mi}^{n-1} \leqslant H^{n-1}(\partial D_m) - 2^{-(m+1)}$$

Let $2r'_{m+1} > 0$ be the distance from ∂D_m to $\mathbb{R}^n - \bigcup_{1}^k B(z_{mi}, t_{mi})$. Let $\Omega = D_m$, $\epsilon = \epsilon_m$, and $r = r_{m+1}$, where r_{m+1} is the smaller of $10^{-4m}r_m\rho$, r'_{m+1} , and $r_0(\epsilon_{m+1}, M_1, M_2)$. Here M_1, M_2 , are defined relative to D_m, G_m . Adding smooth bumps to Ω as in Section 2 we obtain $D_{m+1} = \Omega' \supseteq D_m$ and h_{m+1} a homeomorhism from \mathbb{R}^n to \mathbb{R}^n which satisfies (2.16)-(2.18) with $r = r_{m+1}$. Moreover, $h_{m+1}(\partial D_m) = \partial D_{m+1}$. By induction we get, $(D_k)_0^\infty$, $(H_k)_0^\infty$, $(r'_k)_1^\infty$, $(r_k)_1^\infty$, and $(h_k)_1^\infty$. From our work in Section 2 we see that (1.1), (1.2), are true with Ω , Ω' , G, G', replaced by D_k , D_{k+1} , G_k , G_{k+1} , respectively, $K = 0, 1, \ldots$ We claim that D_k , $K = 1, 2, \ldots$ is NTA with constant 100. Indeed, since

 $0 \le \psi \le 1$ and $r_k \le 10^{-4k} \rho$, k = 1, 2, ..., it follows from the definition of D_k , by way of the triangle inequality, that

$$(4.2) B(0,\rho) \subseteq D_k \subseteq B(0,2\rho), k=1,2,\ldots$$

To prove D_k satisfies the corkscrew condition (i) in the definition of an NTA domain, we proceed by induction. If $0 < s < \rho$, and $z \in \partial D_0$, note that $B(z,s) \cap D_0$, $B(z,s) \cap (\mathbb{R}^n - D_0)$, each contain a ball of radius s/4. From this note and the fact that ∂D_1 lies within r_1 distance of ∂D_0 , we deduce for $4r_1^{1/2} \le s < \rho$, and $z \in \partial D_1$ that $B(z,s) \cap D_0$, $B(z,s) \cap (\mathbb{R}^n - D_0)$, each contain a ball of radius,

$$(1-r_1)\frac{s}{4}-r_1\geqslant \frac{1}{4}s(1-2r_1^{1/2})=s_1.$$

If $0 < s \le 4r_1^{1/2}$, then from our choice of $r_1 = r$, we have $z \in B(y, 100r_1)$, for some $y \in \{y^i\}_1^N$. Moreover, $B(y, 1000r_1^{1/2}) \cap D_1$, $B(y, 1000r_1^{1/2}) \cap \partial D_1$, can be expressed as in Section 2 relative to ξ . From (2.12) and (2.1) we observe that $|\nabla \xi| \le 10^{-3}$. Using these facts and a little geometry it is easily seen that the above inequality remains valid when $0 < s \le 4r_1^{1/2}$. By induction, suppose we have shown for some $m \ge 1$, that if $z \in \partial D_m$ and $0 < s < \rho$, then $B(z, s) \cap D_m$, $B(z, s) \cap (\mathbb{R}^n - D_m)$, each contain a ball of radius

(4.3)
$$\frac{1}{4}s\left(1-2\sum_{k=1}^{m}r_{k}^{1/2}\right)=s_{m}.$$

If $4r_{m+1}^{1/2} \leq s < \rho$, and $z \in \partial D_{m+1}$, then since ∂D_{m+1} lies within r_{m+1} of ∂D_m , we deduce from (4.3) that $B(z,s) \cap D_{m+1}$, $B(z,s) \cap (\mathbb{R}^n - D_{m+1})$, each contain a ball of radius

$$\frac{1}{4}(s-r_{m+1})\left(1-\sum_{k=1}^{m}r_{k}^{1/2}\right)-r_{m+1}\geqslant \frac{1}{4}s\left(1-2\sum_{k=1}^{m+1}r_{k}^{1/2}\right)=s_{m+1}.$$

If $0 < s < 4r_{m+1}^{1/2}$, it follows from local smoothness of D_{m+1} that $B(z,s) \cap D_{m+1}$, $B(z,s) \cap (\mathbb{R}^n - D_{m+1})$, each contain a ball of radius s_{m+1} . Thus by induction we have shown for $z \in \partial D_k$, $k = 0, 1, \ldots$, that $B(z,s) \cap D_k$, $B(z,s) \cap (\mathbb{R}^n - D_k)$, both contain a ball of radius

$$s_k \geqslant \frac{1}{4} s \left(1 - 2 \sum_{m=1}^{\infty} r_m^{1/2} \right) \geqslant \frac{1}{8} s,$$

when $0 < s < \rho$. Scalling D_k to have diameter 1, we see that (i) in Section 3 holds with A = 16.

To prove (ii), we proceed similarly. Suppose by induction, we have shown for some nonnegative integer m that whenever $x, z \in D_m$, we can join x to z by a curve γ with parameter interval, [0, 1], in such a way that $\gamma(0) = x$, $\gamma(1) = z$, and

(4.4) (a) dist
$$(\gamma(t), \partial D_m) \ge \frac{1}{16} \left(1 - 2 \sum_{k=1}^m r_k^{1/4} \right) \min \{ |\gamma(t) - x|, |\gamma(t) - z| \},$$

(4.5) (b)
$$\operatorname{length} \gamma \leq 3 \left(1 + \sum_{k=1}^{m} r_k^{1/4} \right) |x - z|.$$

In case m=0, replace the sums in (4.4), (4.5) by 0. From inspection we see that (4.4), (4.5) hold when m=0, since $D_0=B(0,\rho)$. Next suppose $x,z\in D_{m+1}$ and $4r_{m+1}^{1/2}\leqslant |x-z|$. Since $D_m\subseteq D_{m+1}$, we note that (4.4) and (4.5) hold trivially unless either $x\notin D_m$ or $z\notin D_m$. If $x\notin D_m$, then $x\in B(y,r_{m+1})\cap D_{m+1}$

for some $y \in \{y_j\}_1^N$, $y \in \partial D_m$, and $x = (x', x_n)$ in the corresponding rotated coordinate system. Put $x^* = (x', x_n + r_{m+1})$ and observe that $x^* \in D_m$. If $x \in D_m$, we also let $x^* = x$. Applying the same argument to z we get $x^*, z^* \in D_m$. Let γ^* be the curve joining x^* to z^* which satisfies (4.4), (4.5). If $x \neq x^*$, we modify γ^* as follows. Let t_0 , $0 < t_0 < 1$, be the largest t with $\gamma^*(t) \in \overline{B}(y, r_{m+1}^{3/4})$. If $\gamma^*(t_0) = w = (w', w_n)$, we join x, w, to $\overline{x} = (x', y_n + r_{m+1}^{3/4})$, $\overline{w} = (w', y_n + r_{m+1}^{3/4})$, respectively by line segments, l_1, l_2 . We then join \overline{x} to \overline{w} by a line segment l_3 . Let $l_1 + l_2 + l_3$ denote the resulting curve from x to w with parameter interval $[0, t_0]$. If $z \notin D_m$, we see there exists $\hat{y} \in \{y^i\}_1^N$ and largest t_1 , $0 < t_0 < t_1 < 1$, such that $z \in B(\hat{y}, r_{m+1})$, and

$$\{\gamma^*(t): 0 \leq t < t_1\} \cap \bar{B}(\hat{y}, r_{m+1}^{3/4}) = \emptyset.$$

As above, we get line segments \tilde{l}_1 , \tilde{l}_2 , \tilde{l}_3 , with $\tilde{l}_1+\tilde{l}_2+\tilde{l}_3$ joining $\gamma^*(t_1)$ to z. Moreover, $\tilde{l}_1+\tilde{l}_2+\tilde{l}_3$ has parameter interval $[t_1,1]$. Let $\hat{\gamma}=\gamma^*$ on $[t_0,t_1]$ and if $x \notin D_m$, then $\hat{\gamma}=l_1+l_2+l_3$ on $[0,t_0]$. Otherwise, $\hat{\gamma}=\gamma^*$ on $[0,t_0]$. If $z \notin D_m$, then $\hat{\gamma}=\tilde{l}_1+\tilde{l}_2+\tilde{l}_3$ on $[t_1,1]$, while if $z\in D_m$, then $\hat{\gamma}=\gamma^*$ on $[t_1,1]$. From (4.5) we deduce

(4.6)
$$\operatorname{length} \hat{\gamma} \leq \operatorname{length} \gamma^* + 10r_{m+1}^{3/4}$$

$$\leq 3\left(1 + \sum_{k=1}^{m} r_k^{1/4}\right) |x^* - z^*| + 10r_{m+1}^{3/4}$$

$$\leq 3\left(1 + \sum_{k=1}^{m} r_k^{1/4}\right) |x - z| + 12r_{m+1}^{3/4}$$

$$\leq 3\left(1 + \sum_{k=1}^{m+1} r_k^{1/4}\right) |x - z|.$$

Moreover, from local smoothness of ∂D_{m+1} it is easily checked for $t \in [0, t_0] \cup [t_1, 1]$, that

$$\operatorname{dist}(\hat{\gamma}(t), \partial D_{m+1}) \geqslant \frac{1}{16} \left(1 - 2 \sum_{k=1}^{m+1} r_k^{1/4} \right) \min \left\{ |\hat{\gamma}(t) - x|, |\hat{\gamma}(t) - z| \right\}.$$

If $t \in [t_0, t_1]$, then by construction

$$\min\{|\hat{\gamma}(t) - x|, |\hat{\gamma}(t) - z|\} \ge r_{m+1}^{3/4} - r_{m+1}$$
$$\ge \frac{1}{2} r_{m+1}^{3/4}.$$

Using this inequality, (4.4), and the fact that $\gamma^* = \hat{\gamma}$ on $[t_0, t_1]$ we get for $t \in [t_0, t_1]$,

$$(4.7) \operatorname{dist}(\hat{\gamma}(t), \partial D_{m+1}) \geqslant \frac{1}{16} \left(1 - 2 \sum_{k=1}^{m} r_k^{1/4} \right) \min \left\{ |\hat{\gamma}(t) - x^*|, |\hat{\gamma}(t) - z^*| \right\}$$

$$\geqslant \frac{1}{16} \left(1 - 2 \sum_{k=1}^{m} r_k^{1/4} \right) \min \left\{ |\hat{\gamma}(t) - x|, |\hat{\gamma}(t) - z| \right\} - \frac{r_{m+1}}{16}$$

$$\geqslant \frac{1}{16} \left(1 - 2 \sum_{k=1}^{m+1} r_k^{1/4} \right) \min \left\{ |\hat{\gamma}(t) - x|, |\hat{\gamma}(t) - z| \right\}.$$

If $|x-z| < 4r_{m+1}^{1/2}$, then from local smoothness of ∂D_{m+1} , we see there exists $\hat{\gamma}$ for which (4.6) and (4.7) hold. Thus by induction, we obtain (4.4), (4.5), for $m=0,1,2,\ldots$ Since $\sum_{1}^{\infty} r_k^{1/4} \leq 1/10$, we conclude that D_m , $m=0,1,\ldots$, is NTA with constant 100. From this fact, (4.2), and our work in Section 3 we now find that (1.3) holds with $\Omega=D_k$, $\Omega'=D_{k+1}$, $k=0,1,\ldots$

Next let $h_0(x) = \rho x$, and $f_k = h_k \circ h_{k-1} \circ \cdots \circ h_0$. Then f_k is a homeomorphism from \mathbb{R}^n to \mathbb{R}^n with $f_k(S) = \partial D_k$. From (2.16), (2.19), and iteration, we find

(4.8)
$$2^{-k}\rho|x-z| \leq \rho(1-c_4\sigma_0^2)^k|x-z| \\ \leq |f_k(x)-f_k(z)| \\ \leq \rho(1+c_4\sigma_0^2)^k|x-z| \\ \leq \rho 2^k|x-z|,$$

for $x, z \in \mathbb{R}^n$. If $r_j < |x - z|$ for some $j \ge 1$, then from (4.8) and the fact that $r_{k+1} \le 10^{-4k} r_k \rho$, we deduce for $l \ge j$,

$$|r_{l+1}| < 2^{-l}\rho |x-z| \le |f_l(x) - f_l(z)|.$$

From this inequality, (2.17), (2.19) and iteration we find for k > j,

$$|f_j(x) - f_j(z)| - \frac{1}{2} \sum_{m=j+1}^k r_m \le |f_k(x) - f_k(z)| \le |f_j(x) - f_j(z)| + \frac{1}{2} \sum_{m=j+1}^k r_m.$$

Using the above inequality, (4.8) with j = k, and the fact that

$$\sum_{m=j+1}^{\infty} r_m \leqslant \rho 10^{-j} r_j \leqslant \rho 10^{-j} |x-z|,$$

we get

$$(4.9) 2^{-(j+1)}\rho|x-z| \le |f_k(x)-f_k(z)| \le \rho 2^{j+1}|x-z|.$$

Given $\beta \in (0, 1)$, we have

$$2^{j+1} \le c(\beta)|x-z|^{\beta-1}.$$

when $r_j \leq |x-z| \leq r_{j-1}$, $j=2,3,\ldots$ for some $c(\beta)$, independent of j. Here we have used, $r_m \leq c10^{-m^2}$, $m=1,2,\ldots$, which follows easily from our choice of $(r_m)_1^{\infty}$. Using the above inequality in (4.9), we obtain

$$c(\beta)^{-1}|x-z|^{1/\beta} \le |f_k(x)-f_k(z)| \le c(\beta)|x-z|^{\beta},$$

for $|x-z| \leq 1/4$. Hence (1.5) is true. As in Section 1 we put $D = \bigcup_0^\infty D_k$ and choose a subsequence (f_{n_k}) of (f_k) such that (f_{n_k}) converges uniformly to f on compact subsets of \mathbb{R}^n . We claim that D is not a sphere. Indeed, since $\max_{\mathbb{R}^{n-1}} \psi = 1$, and (2.1), (3.4) hold for r_1 , ϵ_0 , D_1 , we see that if $\rho_1 = \rho + (2\lambda_0)^{-1}\sigma_0^2r_1$, then $D_1 \cap (\mathbb{R}^n - B(0, \rho_1)) \neq \emptyset$. Also, by construction, there exists $x_0 \in \partial D_1$ with $|x_0| = \rho$. Using the definition of $(r_m)_1^\infty$ and the triangle inequality we see that $f(x_0) \in \partial D$ and $|f(x_0)| < \rho_1$. Therefore, D is not a sphere.

It remains only to prove (1.9) in order to obtain Theorem 1 from the remarks in Section 1. To this end let

$$p_j(x) = f \circ f_j^{-1}(x) = \lim_{k \to \infty} h_{n_k} \circ \cdots \circ h_{j+1}(x),$$

when $x \in \partial D_j$ and j = 1, 2, ... Iterating (2.18) we deduce that if

$$e_j = \prod_{m=j+1}^{\infty} (1 - c_5 r_m^{1/2}),$$

then

$$|e_j|x-y| \le |p_j(x)-p_j(y)|, \quad x, y \in \partial D_j.$$

If q_i denotes the inverse of p_i , it follows that

$$|q_i(x) - q_i(y)| \le e_i^{-1}|x - y|,$$

when $x, y \in \partial D$. Next we use Kirsbraun's Theorem ([5, 2.10.43]) to extend q_j to \mathbb{R}^n (also denoted q_j) in such a way that (4.10) holds whenever $x, y \in \mathbb{R}^n$. From (4.10) it is easily seen by comparing coverings of each set that

(4.11)
$$H^{n-1}(q_i(F)) \leq e_i^{1-n} H^{n-1}(F), \qquad F \subseteq \mathbb{R}^n.$$

 $j=1,2,\ldots$ Let $g\geqslant 0$ be a continuous function on \mathbb{R}^n , and put $\nu(E)=H^{n-1}(q_i^{-1}(E)\cap\partial D)$. Then from (4.11) with $F=q_i^{-1}(E)\cap\partial D$, we have

$$H^{n-1}(E\cap \partial D_j)\leqslant e_j^{1-n}\nu(E).$$

Also from the usual change of variables formula [5, Thm. 2.4.18] and the above inequality we get

$$(4.12) e_j^{n-1} \int_{\partial D_i} g \, dH^{n-1} \leqslant \int_{\mathbb{R}^n} g \, d\nu = \int_{\partial D} g \circ q_j \, dH^{n-1}.$$

Letting $j \to \infty$, $j \in (n_k)_1^{\infty}$, we obtain from the definition of $(r_k)_1^{\infty}$ that $e_j \to 1$, while

$$\int_{\partial D} g \circ q_j dH^{n-1} \to \int_{\partial D} g dH^{n-1},$$

since $q_{n_k}(x) \to x$, uniformly on compact subsets of \mathbb{R}^n . Hence from (4.12) we have

(4.13)
$$\limsup_{k\to\infty} \int_{\partial D_{n_k}} g \, dH^{n-1} \leqslant \int_{\partial D} g \, dH^{n-1}.$$

On the other hand from our choice of $(r_k)_1^{\infty}$ we see that L_m , m = 1, 2, ..., is a covering for D. Thus if ϕ_{δ}^{n-1} is as in Section 1, then

$$\phi_{2-m}^{n-1}(\partial D) \leqslant H^{n-1}(\partial D_m) - 2^{-m}.$$

Letting $m \to \infty$, we find

$$(4.14) H^{n-1}(\partial D) \leqslant \liminf_{m \to \infty} H^{n-1}(\partial D_m).$$

From (4.13), (4.14), it follows that if $0 \le g \le 1$ on \overline{D} , then

$$\begin{split} H^{n-1}(\partial D) &\leqslant \liminf_{k \to \infty} H^{n-1}(\partial D_{n_k}) \\ &\leqslant \liminf_{k \to \infty} \int_{\partial D_{n_k}} g \, dH^{n-1} + \limsup_{k \to \infty} \int_{\partial D_{n_k}} (1-g) \, dH^{n-1} \\ &\leqslant \limsup_{k \to \infty} \int_{\partial D_{n_k}} g \, dH^{n-1} + \int_{\partial D} (1-g) \, dH^{n-1} \\ &\leqslant \int_{\partial D} g \, dH^{n-1} + \int_{\partial D} (1-g) \, dH^{n-1} \\ &= H^{n-1}(\partial D). \end{split}$$

Thus equality holds everywhere and so

(4.15)
$$\lim_{k \to \infty} \int_{\partial D_n} g \, dH^{n-1} = \int_{\partial D} g \, dH^{n-1}$$

when $0 \le g \le 1$. In general we can write, $g = ag_1 + b$, where $0 \le g_1 \le 1$ on D, for properly chosen $a, b \in \mathbb{R}$. Applying (4.15) to g_1 , 1 we find that (4.15) holds when g is continuous on \mathbb{R}^n . Hence, (1.9) is true.

The proof of Theorem 1 is now complete.

References

- [1] Ahlfors Quasiconformal Mappings, Van Nostrand, 1966.
- [2] Duren, P. Theory of H^p spaces, Academis Press, 1970.
- [3] Duren, P., Shapiro, H. and Shields, A. Singular measures and domains not of Smirnov type, *Duke Math. J.* 33(1966), 247-254.
- [4] Evans, L. C. and Gariepy, R. Lecture notes on measure theory and fine properties of functions, EPSCoR preprint series, University of Kentucky.
- [5] Federer, H. Geometric measure theory, Springer-Verlag, 1969.
- [6] Gilbarg, D. and Trudinger, N. Elliptic partial differential equations of second order, Springer-Verlag, 1977.
- [7] Helms, L. Introduction to potential theory, Wiley-Interscience, 1969.
- [8] Jerison, D. and Kenig, C. Boundary behavior of harmonic functions in non-tangentially accessible domains, Adv. in Math. 46(1982), 80-147.
- [9] Keldysh, M. and Lavrentiev, M. Sur la représentation conforme des domain limités par des courbes rectifiables, *Ann. Sci. Êcole Norm. Sup.* 54(1937), 1-38.
- [10] Lewis, J. and Vogel, A. On some almost everywhere symmetry theorems, to appear.
- [11] Privalov, I. Boundary properties of analytic functions, Deutscher Verlag, Berlin, 1956.
- [12] Shapiro, H. Remarks concerning domains of Smirnov type, *Michigan Math. J.* 13(1966), 341-348.
- [13] Stein, E. and Weiss, G. Introduction to Fourier analysis on Euclidean spaces, Princeton University Press, 1971.
- [14] Wolff, T. Counterexamples with harmonic gradients in \mathbb{R}^3 , to appear.

Recibido: 12 de octubre de 1990.

John L. Lewis
Department of Mathematics
University of Kentucky
Lexington, KY 40506
U.S.A.

Andrew Vogel*
Department of Mathematics
University of Synacuse
New York, NY 13244
U.S.A.

^{*} Supported by NSF and the Commonwealth of Kentucky through the Kentucky EPSCoR program.