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1. Introduction

Denote points in Euclidean space, R”, by x = (x,, . . ., X,) and let E, 3E, denote
the closure and boundary of E C IR", respectively. Put B(x,r) = {y: |y — x| < r}
when r > 0. Define k& dimensional Hausdorff measure, 1 <k < n, in R” as
follows: for fixed 6 > 0 and E C R”, let L(6) = {B(x;,r;)} be such that £ C
UB(x;,r)and 0<r;<é6,i=1,2,... Set

¢5(E) = inf D] a(k)ry,
L)

where (k) denotes the volume of the unit ball in R¥. Then

k 1 k
HYE) = lim gf(E), 1<k<n.

Let D be a bounded domain in R™ with 0e D and H" " 1(dD) < +. We
shall say D is a pseudo sphere if

(a) dD is homeomorphic to the unit sphere, S, in R”
b) g(0) = aja p&dH"~ 1 whenever g is harmonic in D and continuous on D.

In (b), a denotes a constant. The construction of pseudo spheres in R?,
which are not circles, was first done by Keldysh and Lavrentiev to show the
existence of domains not of Smirnov type (see [11, Ch. 3]). Also a completely
different proof of existence has been given by Duren, Shapiro, and Shields in
[3] (see also [2, Ch. 10]). Both proofs are heavily reliant on conformal mapp-
ing and R? facts, such as: the logarithm of the gradient of a harmonic function
is subharmonic.
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In [12, p. 347], Shapiro asked whether there exists a pseudo sphere in R”
which is not a sphere. In this paper we answer Shapiro’s question in the
affirmative and even prove a little more:

Theorem 1. There exists a pseudo sphere D in R", n > 3, which is not a
sphere. In fact D can be chosen so that there is a homeomorphism f from R"
to R™ with f(S) = dD and

c(B®) " x — ¥V | F0) - FO)] < c(B)|x - y|?,

whenever 3€(0,1) and |x — y| < 1/2.

In Theorem 1, as in the sequel, c¢(3) denotes a positive constant depending
only on 3 and n. Also, ¢ will denote a positive constant depending only on n,
not necessarily the same at each occurrence. Our method of proof is inspired
by the proof of Keldysh and Lavrentiev in [9]. Here though conformal mapping
techniques are not available. We outline our proof with ¢ = 1 in (). Let Q be
a bounded domain with 0 € Q and let G be Green’s function for Q with pole
at 0. That is,

1
n(n — 2)a(n)

is harmonic in @ and G has boundary value 0 in the sense of Perron- Wlener-
Brelot. It is known that if dQ is sufficiently smooth, then

I |2 n XER",

Gx) —

G G )

\Y = — e —
G <ax1 ax,

extends continuously to @ — {0}. Under this assumption suppose that VG| > 1
on d9. In Section 2, given ¢, 0 < e < ¢y, we add smooth bumps to dQ by «pushing
out» 90 along certain small surface elements in {x €9Q: |[VG(x)| > 1 + €} of
approximate side length r, 0 < r < r,. Let @, G’ be the smooth domain, and
Green’s function with pole at 0, obtained from this process. Then @ C @' and
we shall choose the bumps so that for e <7< 1,

(1.1) H" 109 > H"'(09Q) + 9()H" "' {x: [VG(x)| > 1 + 1},

where 7 is a positive function on (0, ). It turns out that » can be chosen
independent of Q, Q. We note from the Hopf boundary maximum principle
(see [6, Lemma 3.4]) and |VG| > 1 on 949, that |[VG’| > 1 on 32N 3Q'. Also
from Schauder type estimates, it will follow that |[VG’| > 1 on the bumps.
Hence,

(1.2) [VG'(x)| = 1, xedQ'.
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Next we modify the identity mapping slightly in a neighborhood of each bump,
to get A4, a homeomorphism from R” into R”, with A(3Q) = dQ’. In Section 3
using a lemma of Wolff ([14, Lemma 2.7]) we will show the bumps can be
chosen so that

(1.3) jm, |VG’| log |VG’|dH" ! < Ln |VG|log [VG|dH" 1.

The proof of (1.3) is somewhat involved, but luckily much of the hardwork
has been done for us by Wolff.

In Section 4 we use (1.1)-(1.3) and induction to construct D. More specifically
put Dy = B(0, p) and let

GO(x) ('x'z—n - p2—n), XEB(O’ P),

1
- n(n — 2)a(n)

be Green’s function for B(0, p), where p is chosen so that if x € dB(0, p), then

— 1 1-n _

(1.4) IVG(x)| = n_a(_ﬁ)_p = 2.

We put @ = D, and modify 2 as above to obtain Q@' = D;, G’ = G, with ¢
replaced by ¢; and & by h;. Suppose D, has been constructed for 0 < k < m.
Again we put Q= D,, and modify Q@ as above to obtain Q' =D, ,,,
G' = G, , with e replaced by ¢,,, ; = 2~ ™ * V¢, and h by A,,, ;. By induc-
tion we get (Dy)g, (7)T, (Gi)o » satisfying (1.1), (1.2), with Q’, Q, replaced by
Dy .1, Dy, respectively. Let hy(x) = px, and let fy =h 0 hy_,0---0hy,
where © denotes composition. Then it will follow from our construction for
k=1,2,..., that

(1.5) c(8) ™ Hx = Y2 < £ = £ D) < cB)|x - ¥/,

when x,y € R" and |x — y| < 1/4. Moreover, each f; is a homeomorphism
from R” to R" with f,(S) = dDy. Set D = Uy D;, and note from (1.5) that
there exists a subsequence ( f"k) of (f;) which converges to a homeomorphism
f of R”, satisfying the conclusions of Theorem 1. Thus (a) in the definition
of a pseudo sphere is valid. To prove (b) we first note from Green’s Theorem
and (1.2) that

(1.6) 1= j |VG,| dH" "' > H"~1(3Dy),
aD,
for k=0,1,... Second, observe for each é > 0 that

lim H" '{x€dDy: |VG(x)| > 1+ 8} =0,
a.7) o
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since otherwise we could use (1.1) and iteration to get a contradiction to (1.6)
for large k. Next from (1.2), (1.3), and iteration we deduce that for o > 1,
k=0,1,...

(1.8) loga | VG dH " < [ VG| log [VGi| dH" ™' < ¢ < +e0.
k

{IVG| > o}
Also in Section 4 we show that as k — oo,
(1.9 H""|aD -—>H"“|aD,

weakly as measures on R”. Let g > 0 be a harmonic function in D which is
continuous on D. Then from (1.2), (1.9), and Green’s Theorem we get

_ n-1 n—1 n-1
(1.10)  g(0) = jBanng,,k] dH" ' > JaD,.k gdH" 1 - J L, 8H"
as k — oo. To obtain the reverse inequality for fixed 6 < 10~ and « > 10, put

E, = (x€dD, :1< VG, ()| <1 + 8}
Fp={xedD,:1+6< VG, ()| <«
Ly = {x€dD, :|VG, (x)| > a},

for k=0,1,2,... Then

g0 =, glVG,|aH" ' = -t | | =L+,
k k

D, "

Clearly,
n-1
L] < (1 +6) JaD"kgdH :
Also from (1.7) we find that
Ll < a|g|oH" '{x€dD, :1+6<|VG,|} >0,

as k— . Here, |g|. denotes the maximum of g in D. Using (1.8) we get

|131<1|gnwj VG, |dH" "' <~ |g]..
{IVG,, | >a}

k

lo

Letting k — o we obtain from the above estimates and (1.9) that

n-1
20 <+ | gar e el

Finally letting 6 > 0, o — oo, we have

gO < [ gdH"".
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In view of (1.10) we conclude that

(1.11) 2(0) = jangH"-l

when g > 0 is continuous on D and harmonic in D. From (1.11) with g =1
we note that, H"~!(dD) = 1. If g, is continuous on D, harmonic in D, and
g, — m>0in D, then from (1.11) and the above note we deduce

g0 =@ -m©O+m=[ (g-mdH"'+m=| gdH""".

Thus, D is a pseudo sphere. The initial bumps on D; will be chosen to have
low peaks relative to those added to form Dy, k > 2, in order to guarantee
that D is not a ball.

We remark that D will be regular for the Dirichlet problem, so each con-
tinuous function on dD will have a harmonic extension to D which is con-
tinuous on D. From (1.11) it follows that harmonic measure and H" ™!
measure on dD are equal (see [7, Ch. 8] for the Dirichlet problem). Moreover,
since H"1(dD) = 1, it follows (see [4, Section 5.8]) that D is of finite
perimeter. Thus several other measures are equal to H” ™! measure on 8D (see
[5, Thm. 4.5.19, (16)] and [5, Thm. 3.2.26]). Also D will be a nontangentially
accessible (NTA) domain in the sense of Kenig and Jerison [8]. Using the
corkscrew condition for NTA domains ((i) in Section 3) it is easily deduced
that every point in D lies in the measure theoretic boundary of D (see [4,
Section 5.8]). Hence D satisfies the hypotheses of Theorem 1 in [10], from
which we conclude

sup {|VG*(x)|: xe D — B(0, p/2)} = +0,

where G* is Green’s function for D with pole at 0. Next we remark that this
paper leaves open the very interesting question as to whether fin Theorem 1
can also be chosen for some K > 1 to be a K quasiconformal mapping from
R™ to R”, n>3. In R? it follows from a criteria of Ahlfors (see [1, Ch. 4])
and the Keldysh-Lavrentiev construction that the answer to the above ques-
tion is yes, and in fact K can be chosen arbitrary near 1.

Finally the authors would like to thank J. Heinonen, J. Vaisala, and D.
Sullivan for some helpful conversations.
2. Preliminary reductions

If xe R", we let x’ = (xy,...,X,_) and shall write, x = (x', x,,). We assume
throughout this section that © is a bounded domain of class C* with 0 € Q.
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More specifically, for each y € 9Q there exists s > 0 such that B(y, s)NaQ is
a part of the graph of a four-times continuously differentiable function,
defined on a hyperplane in R”, and B(y,s)NQ lies above the graph. From
compactness and a standard convering argument it follows for each r > 0 that
there exists, y!,y2,...,yVN €dQ, such that

N
00 c U B(y',100 and B(,10r)NBGY,10r) = @&,  i#j.
i=1

Moreover, if 0 < r < ry, ry sufficiently small, and y = (', y,) € {»'}Y, then
from the implicit function theorem we see there exists § = (-, y), four-times
continuously differentiable on R”~1(8 € C*(R" 1)), with 6(0) = 0, V'6(0) = 0,
such that after a possible rotation of axes:

QN B(y,1000r?) < {(x' + ¥',0(x") + y,): x' e R" "1},
QN B(y,1000r?) € (X' + ¥', X,): X, — ¥, > 0(x"), x' € R" 1}

Here V' denotes the R”~! gradient. Put

M, = max { max D [6;0(X',y)|}
ye{y'}l‘q x€dQNB(y,1000r1/2)
where the sum is taken over all multi-indexes a = (a;,...,a,_;) with
la| = ;.';11 ;, and 0 < |a| < 4. Also, d;, denotes the corresponding partial

derivative with respect to (x’)*, x’ € R" 1. Given ¢, 0 < € < g, < 103, choose
ro > 0 so small that for 0 <r < r,

2.1 Mr'2 < 107314 < 107 %4,

Again this choice is possible by compactness of 9. In this section and the next
section we allow r, to vary. At the end of this section we will fix g, at a
number, satisfying several conditions, which depends only on 7. r, will depend
on ¢, M, n, and M,, defined below.

As in Section 1 let G be Green’s function for Q with pole at 0 and assume
[VG| =1 on 49Q. Let

M, = max { max ZlaaG(x)l}’

ey LreQ@NB(y, 1000r1/2)

where now « = (o, @, . . ., @,), 0 < || < 4, and 9, denotes the correspond-
ing partial derivative with respect to x*, x € Q. From Schauder’s Theorem (see
[6, Ch. 6]), it is clear that M, < +c. We choose r, still smaller, if necessary,
so that in addition to the above conditions, we have

2.2 M,r2 < 1073174 < 107 %4,
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Let / be the largest nonnegative integer such that 2 ~'g, > € and put oy = 2~ *g,,
for k=0,1,... Set

E,={xed:1+ 0, <|VGX)| <1+ 04_,}, 1<k<<i+ 1,
Ey= {x€dQ: |[VGx)| > 1 + g,}.

Let ¥, 0< ¢ < 1, be a fixed C* function on R"~! with max,_,y =1 and
support in the unit ball of R" !, to be specified in Section 3. We form a
domain Q' of class C* by adding smooth bumps to 3Q. More specifically, let
L be the set of all y e {y'}¥ for which

i+1

B(y,100nN U E, # &.
k=0

For fixed y = (¥',»,) €L, let j be the smallest nonnegative integer with
2.3) B(y,100NNE; # .
Put

Ex) = 0(x") — ajz.r)\j' 11,[/()\J.x’/r) + Y, X' eR"TL

where (N)g is an increasing sequence of positive numbers with \; > 1/0;,
Jj=0,1,..., which will be defined explicitly in Section 3. Also ()\j);’ will
depend only on ¢,. Define Q' by

(G @ - U Bz, 10r) = Q' - U B(z, 10r),
zeLl zel
(i) 8Q'NB(y,10r) = {(x' + ¥, &(x")): x" € R*~ 1} N B(y, 10r),
(iii) Q' NB, 107) = {(x' + ¥, x,): x, > £(x')} N B(y, 10r).

Thus for each y € L and smallest j, 0 <j </ + 1, satisfying (2.3), we add a
bump to @ under y, as defined above, to get Q'. Clearly Q' is of class C*.
Moreover, if r, is small enough, we claim as in (1.2) that

(2.4) IVG'(0)| =1, xed®.

Indeed, if x € 9Q’' N oY, then it follows from the Hopf boundary maximum
principle that (2.4) is true. To prove (2.4) for x €99’ — 8Q, we let, B(t) =
{x'e R"™!:|x'| < t}. We shall need the following lemma of Schauder type.
In Lemma 1, ¢, v, are C* functions on B(2), k > 3. Moreover, ¢ < 1/4, and
| *| « denotes the C* norm on B(2). Also, ¢’ = c¢'(s, k), is an increasing func-
tion on (0, ) which depends only on k.
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Lemma 1. Let
H={(x',x,): |x'| <1 and ¢(x") < x,<1}.

Let u be harmonic in H, with |u| < M3 < +, and suppose that u = 7y con-
tinuously on {(x', ¢(x"))} NOH. Then for k > 3

2 Nogu) < (el + M),  xeBO,1/2)NH.

0<|a|sk

Lemma 1 is given in [6, Corollary 6.7] for C** domains with a constant
depending on H. However, the proof is essentially unchanged if C*¢ is
replaced by C¥, and c’(+) can be used for the resulting constant (see the
remark following Lemma 6.5 in [6]). To prove (2.4) on a bump, we first let

Z(y, 1) = (", xp): [xy — yul < 8, X" = y'| < 2}
and note that since ¢ has support in B(1),
2.5) 02" — 3 N B(y, 10r) € Z(y, r\; Y,

whenever y € L and j is the smallest integer satisfying (2.3). Second, observe
from the Hopf boundary maximum principle and (2.5) that to prove (2.4) on
a bump it suffices to show

(2.6) IVG*(0)| =1,  xeZ(y,r\ HNad*,

where Q* is obtained from by adding just one bump at y as above, and G* is the
Green’s function for @* with pole at 0. To prove (2.6) let

F=2Z(y,r\; HhnQ*
and
M, = max |VG*(x)|.
xeF
Then from the mean value theorem of calculus and the fact that G = 0 on 0%,
we deduce
2.7 0<G*-G< cM,,af)\j“ Iy

on dQ. Since G* — G is harmonic in @, we see from the maximum principle
for harmonic functions that (2.7) also holds in Q. From (2.1), (2.2), (2.7), and
the fact that

aG(») >

v = seos
G(») (0 3,

we get for x in QN B(y,20r\ ),
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(2.8) |G*() — [VGW)|Cx, — ya)l
< CM4012‘)‘_,'_ 1’. + |G(x) - |VG(y)|(xn - yn)l

Xn

Y

S CM4U;XJ-_ lr +
ot

Y+ 0 =)

(', t,) — g—tG"—(y',y,.) dt,
+ VG| |60(x" — ¥
S eMyaiN'r + eMy(\ P + cM M (N )
< cMyo;+ N 'r.
Put, 8 = 10r/\,,

o(x") = B~ HEPBX") = yn)s x' € B(2),
ux) = B 'G*(Bx + y) — |VG()|x,, xeH,

where H is defined relative to ¢ as in Lemma 1. Using (2.1) it is easily checked
that || < co?| Y|4 + ce®. Since u = —|VG(y)|¢ on 3H N B(1), we find from
this inequality, (2.8), and Lemma 1 with k = 4 that

[Vu@)| < c'(|¢])M,07 + caF| VG| + c?|VG()| + ce?)
x € B(0, 1/2) N H, where
c(lold <c'(¥lsa +1) = 6.
From this inequality and the fact that e < 20'j, IVG(y)| = 1, we deduce
2.9) IVG*@)| ~ [VGO)|| < coM, 07 + €,07|IVG()],
for xe Z(y,\] )N Q*. Let g, 0 < 5, < 107, be so small that
(2.10) Co+ ;<107 3051,
Choosing x so that
IVG*(x)| = M,,

we conclude from the triangle inequality and (2.9) that

My(1 = coo) < (1 + ¢,07)|VG(»)|.
Hence,

2.11) M, < (1 + 2¢003)(1 + ¢,6)|VG()|.
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Now from (2.2), (2.3), we see that |[VG(»)| > 1 + 0;/2. Using this fact, (2.10),
and (2.11), in (2.9), we deduce

IVG*()| = (1 — 2(co + ¢)od)|VG()| = 1 + %aj.

Hence (2.6) is valid. From our earlier remarks it now follows that (2.4) is
valid.

If
= LE"_ . |V'(x")|* dx’,

and

2.12) 0o < € < auln — 1)(;31"295 |v'¢|>2 < o5 11076,

then from (2.1), it follows that

@.13) H* YZ(y,r\ H)NaQ") = V1 + |V dx’

~[ﬁ(r)\j— 1

4o —1.n12 ’ 8 n-1)
> jg(,,\j_ ,)‘/1 + 0 |VYONr T X)) dx' = ealn — 1)(r/N)

= (Jao VI SV )P~ = et = e/~
> <1 + i—a;cz - es>a(n — /AP

1

>5 oicaa(n — DN DD + H' " YZ(y, N )N oY),

Given t>e¢, let k be the least nonnegative integer such that ¢ > o,
0 < k<I+1.LetJ = J(k), be the set of all i such that (2.3) holds with y = y*
and j < k. From (2.1) it is clear that

(2.14) H" '{x€d: |VGx)| =1+ ¢t} < H""1<UB(yi, 100r)na9>
ieJ

<2 aln — 1)(1007)" 1.

ieJ
Using (2.13), (2.14), and (2.5) we deduce

C3 a‘l‘c

(2.15) H"'(69') > H"~'(39) + )\n_lH"*l{xe{*)Q: IVG(x)| > 1 + ¢},
k
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where c¢; > 0 depends only on n. Let

)\n—‘;’ Uogt
(+]
() =
C30'4
et w<I<oey, k=12,
k

Clearly 5 does not depend on Q or Q’. Rewriting (2.15) in terms of  we obtain
(1.1).

Next we define the homeomorphism 4 mentioned in Section 1. If ye L and
J is the smallest positive integer for which (2.3) holds, define 4 on Z(y, r) by
h(x) = (x’, h*(x)), where

(r+y,— &' =N, — 1=y
r—=0(x'-y")

+r+y, xe€Z(y,nnNQ
h*(x', x,) =
Ex' =y)+r—y)x, +r—y)
r+o0(x' -y

~-r+y,, xe€Z(y,nNR"-9Q)

Define A(x) = x in the complement of the union of all Z(y, r) for which (2.3)
holds. We note that A restricted to Z(y, r) = Z is simply a projection by lines
parallel to the x,, axis of ZN(R" — ), ZNQ, respectively onto Z N (R” — Q),
ZNQ', which keeps dZ(y, r) fixed. Thus, % is a homeomorphism from R” to
R™ with A(Q) = Q'. Moreover, using (2.1) it is easily checked that

(2.16) (1 — cyop)|x — 2| < |h(x) — h@)| < (A + ¢403)|x — 2],

when x, ze R" and

2.17) |x — z| = cu02r < |A(x) — h(2)| < |x — 2| + ¢402r,

when |x — z| > r. Also for use in proving (1.9) we shall show for x, z € 3Q, that
(2.18) |hx) — h@)| = (1 — csr'/?)|x - z].

Indeed, suppose x,z€dQ, 5r< |x —z| < 100r'2, xe B(w,100r), and ze
B(y, 100r), where w, y € { y“]’lV . Let 0 be defined relative to y as previously and
recall that B(y, 100072/%) N 89 can be expressed in terms of 8. Let »(p) denote
the outer unit normal to p in dQ and let « denote inner product. Then

_ 1
[p) + v = (L + [V = y)) ™72 > 1 = M| — ]2,

Thus if 6 denotes the angle between »(y) and »(w), then

5 <4M;|w' — y'| < 164M,|x — Z].
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Next suppose h(x) = (v', v,) and v’ # x'. Then we can draw the right triangle
with vertices x, h(x), and P = (v',x,). Let /,,/,, and /5 be the sides of this
triangle connecting x to A(x), h(x) to P, and P to x, respectively. Then from
the definition of 4 we see that »(w) is parallel to /;, and so /,, /, form an angle
é at h(x). Also, |x — h(x)| < r, so from trigonometry and the above inequality,

|v) —x'| < rsiné < 164M,r|x — z|.
From this inequality and (2.1) we deduce

|h(z) — h(x)| > |v" = 2|
2 |xl _ zll _ |v/ __xt!
> (1 - cMir)|x -z

172

> (1 —csr'’?)|x — z|.

Hence (2.18) is valid when 5r < |x — z| < 10072, If |x — z| < 5r, then (2.18)
remains true as follows easily from the fact that the bumps are greater than
6r apart. If 1007/ < |x — z| then it follows from (2.17) that (2.18) is true.

Finally in this section we fix g, to be the largest number for which (2.10),
(2.12), hold and

1
(2.19) C05 < 3

Note from (2.12) that 0 < g, < 1073,

3. Wolff’s lemma

To prove (1.3) in Section 1 we shall need some definitions. Let Q, be a bounded
domain. If diam Q; = 1, then Q, is an NTA domain with constant A4 if it has
the following properties:

(i) (Corkscrew condition.) For each x€dQ;, 0 <r <A™, there are points
P,(x) ey, O,(x) e R" — Q, with |P,(x) — x| < Ar, |Q,(x) — x| < Ar, and
dist (P,(x), 8Q,) = A~ r, dist (Q,(x), 0Q,) > A~ r,

(ii) (Harnack chain condition.) For each x, y € Q, there is a path v from x to
y with length (v) < A|x — y| and dist (v(£), 3Q;) = A~ ' min {|v(?) — x],
@ - 13-

In general ©, is an NTA domain with constant A, if a scaling of it with diameter

1 has constant 4. Q, is said to be Lipschitz on scale ¢ with constant A, provid-
ed for each z € 99, , there is a coordinate system such that dQ, N B(z, ?) is the



ON PSEUDOSPHERES 37

graph of a Lipschitz function defined on R"~! with Lipschitz norm less than
or equal to A. Moreover, Q; N B(x, t) lies above the graph of this function.

Now suppose for some w € dQ; and ¢ > 0 that after a possible rotation of
coordinates,

3.1) I NBw,t) = {x:x,=w,} NB(w, t)
QNBw, 1) = {x:x,>w,} NB(w, 1)

Let p < 0 be a C™ function with support in B(1), suppose \ > 2max ,_, | p|
+ 1, and define Q, D ©, as follows:

(a) Q1 - B(W’ t) = QZ - B(W’ t),
(B) 02, NBw, 1) = [(x' + W, w, + tX"'p(t~ \x")): x' e R"“ 1y N Bw, 1),
© QNBW, 1) = {(x'+ W, X)X, > w, + N 'p(t~"\x")} NB(w, 1).

Let p be the continuous harmonic extension of p to (R")* = {(x’, x,): x,, > 0}
and put

a

_ ap 3 ,12 ap
A(p) = fkn—l<<5§;> 3|v'p| ox

n

>(x’, 0)dx’

where V'p, as in Section 2, is the R” ™! gradient. Next if d = diam Q, , we assume
3.2) B(0,d/A) € Q, < B(0, Ad).

Denote Green’s functions for £y, Q,, with pole at 0, by G;, G,, respectively,
and let w; be harmonic measure on @, with respect to 0. If 9Q, is sufficiently
smooth we observe that

w (E) = an |VG,|dH" !, E Borel.
1

Then Wolff proved [14, Lemma 2.7].

Lemma 2. LetQ, be NTA and Lipschitz on scale t with constant A. Suppose
Q, satisfies (3.1), (3.2), and Q, is obtained by adding a bump to Q, as in (a)-(c).
If A(p) <0, then there exists \* = \*(A,p), c¢ = cs(A,p), such that for
A=\,

[, 19Gal 102 VGo|ar" 1 < || 196108 VG| "t = L2y BOm .
2 1

Actually Wolff proves this Lemma only in R?, but the proof for R", n > 3,
is essentially unchanged. To show the existence of p < 0 for which A(p) <0,
Wolff first shows that A(g) < 0 for n = 3 when g(x’) = —|x' + ;] !, x' € R?,
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ey =(0,0,1). In view of this function, the natural function to consider for
nz3is

qx) = —|x"+el)*"", e,=(,...,0,1), x'eR*I
for which §(x) = —|x + e,/*>~", xe (R")*. Then
A@) = (n - D)(n - 2a(n— 1) j "+ )71 = 37" 2dr
0

_(n=1)(n- 2)*a(n — DI'(n — 1/2)I'(n/2 — 1/2) <o
4T'(3n/2) ’

where I" denotes the Euler gamma function and the integral was evaluated
using the substitution r = tan 4, as well as, the beta function. Let $,0 < ® < 1,
be a C* function on R"~! with support in B(2), |V'®| < 1000, and & = 1 on
B(1). Now if

dn(x) = ®(m~ 'x)qx"), x'eR"",

then it follows easily from properties of conjugate harmonic functions (see
[13, Ch. 6]) that

A(@m) > A(g) as m— oo,

Taking a suitable dilation of g, for large m, we get p < 0 in C°(R" ') with
suppp S B(1), and A(p) < 0.

We now define ¢ and (\;)g introduced in Section 2. Let ¥, 0 < ¢ < 1, be a
fixed C*(R"~ ') function with support in B(1), max ,_, ¢ = 1, and A(y) > 0.
Recall that o, = 2"‘00, k=0,1,..., and define \; as follows: let A = 200 in
Lemma 2 and p = —o}y. Let N}, = max {0, ', b, ', \!}, k=0,1,..., where
by = ¢6(200, —a2y), Nf = N*(200, —a2y). Put\,, = max,_, ., M, m=0,1,...
and note that (\); depends only on 7 since o, and ¢ are fixed.

Let Q,Q,¢,r,L, and (Ek)f)+ 1 be as in Section 2 and suppose also that Q is
NTA with constant 100. Moreover, we assume B(0, p) € 2 < B(0, 2), where p
is as in (1.4). From our choice of r we see that Q is Lipschitz on scale r/? with
constant 2. In order to apply Lemma 2, we need to add flat bumps under each
yelL. For fixed y € L let j be the smallest nonnegative integer for which (2.3)
holds, i.e.

B(y, lOOr)ﬂEj .

Suppose that L = {z,,25,...,Z,} andput L, = {2y,...,2¢}, 1 <k < m.For
fixed y e L we assume that B(y, 1000r?)NQ, B(y, 1000r?)NaQ, can be
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expressed as in Section 2 relative to 6. Let

’

) = —100M1r2<I><-)—cr—,> + <l - <I><£r—>>0(x’) +Y, X' eRMTY
() = Ex) — or TN /), x'eR™1,

where & was defined earlier in Section 3 and M, is as in (2.1). Define €,
1 < k< m, as follows:

1)) 0, - U Bz, 10 =0 - | B(z, 10r),

zeLk z€L,
1 30U NB(y,10r) = {(x' + ¥, Ex"): x € R* 1} NB(y, 10r),
i QN By, 10r) = ((x" + ¥, %,): X, > E(x)} N B(p, 107),

for each ye L. 0, 2 Q,,, 1 < k < m, is defined similarly by

1)) Q- U Bz, 10 =9, - U B(z,10r),

zeL,c Z€EL,
419) a0, NB(y,10r) = {(x' + ¥, E(x")): x’ e R"~ '} N B(y, 10r),
(11 Qe NB(y,10r) = ((x" + ¥, %,): X, > E(x)} N B(y, 107),

for each y € L. From (2.1) and the definition of Q' we see that 2,29,8,2
', Using the fact that Q is NTA with constant 100 and local smoothness of
Q, O, it is easily checked that §,, 0., 1 <k < m, are NTA and Lipschitz
on scale r with constant 200. Let O, = @, O, = Q,,. We first apply Lemma 2
witht = r, Q; = Oy, Q, = {,, after a possible rotation. We next apply Lemma 2
withQ, =80,and Q, = Q,, .. ., etc. Let G, Gy, @, &, be the Green’s functions
and harmonic measures relative to 0 for &, (, . Applying the above argument
m times we obtain an inequality for G,, = G, and G,,. Using the definition
of (\yo » we conclude

(3.3) j |VG,,| log |VG,,| dH™ 1
a0,

m-—1
< Lﬁ VG| log [V dH" ™" = O, )™ 7P 3 &k (Bl 11, 21).

m

Next we define a function 7 on [0, 1] by 7(s) = min {A\;:0, <5}, 0<s< 1.
Choosing r still smaller, if necessary, we assume, as we may, that for 0 < r < ry,

(-4 r/1 < (7@,

Note that 7(e) = N,



40 JouN L. LEwIis AND ANDREW VOGEL

To prove (1.3) we must show that G,,, G,,, in (3.3) can be replaced by G,
G’, with an error term at most,

m-1
cr(©™ "™ 3} & (Blzy, 20)).
k=0

To do so we introduce @}, 0 < k < m, defined by, Qg = @', and for 1 < k < m,

@) Q,— U Bz, 10 =02 - | B(z, 10r),

zeLk Z€L,
ar) 00, NB(y, 10r) = {(x' + ¥, E(x"): x' e R*~ 1} N B(y, 107),
(I1r) Q. NB(y,10r) = ((x’ + ¥, x,): %, > E(x")} N B(y, 10r),

for each y € L, . Denote the corresponding Green’s functions and harmonic
measures relative to 0, by G, wk, 0 < kK < m. We shall also need the follow-
ing facts about the NTA domain @, with constant A satisfying (3.2). If
z€0dQ,, then

(3.5) c(A) 'w;(B(z,)) "2 max G,
B(z,H)NQ,

< (A" 2G, (P
< c(A)w,(B(z, 1)),

for 0 <t < A~!, where P, = P,(z). Moreover,
(3.6) w(B(z, 2¢)) < c(A)w,(B(z, 1)).

(3.6) is called the doubling inequality for harmonic measure. If z €99, and
u, v are two positive harmonic functions in Q, which vanish continuously on
0Q, — B(z,t), and P, = P,(z), then for xe Q, — B(z, 2t)

3.7 c(A) ™ u(P)/v(P) < u()/v(x) < c(Du(Py)/v(P,).

Moreover, (3.7) is valid when u and v vanish on d2; N B(z, 2¢), and x € B(z, f)
NQ,. (3.7) is called the rate inequality. Finally there exists p = p(A4) > 0 so
that for z and P, as above, and xe B(z, t)NQ,,

(3.8) G,(®) < c(|x — z|/t)*G,(P).

For the proof of (3.5)-(3.8) see [8, Sections 4 and 5].
From (3.5), (3.6), (3.8) with t = A~!, and the fact that w,(B(z, A~ 1) >
c(A4)~ !, when z€9Q,, we see there exists »(A4), 0 < » < 1, with

(3.9) c(A) " < 0 (B(z, 1) S c(A)** "%, 0<t<A™L
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We claim that

m—1 m-—1

(3-10) 2, 0By +1,60) < C]Z:O wg (B +1,60),

whenever * and + are elements of {*, ~,’}. Indeed from our construction
and the maximum principle for harmonic functions we have,

0o (B 415 6r) — B(2g 415 2)) < @j(B(Zg 41, 6r) — Bz 41, 2r))

<
< @y (B(Zg 41, 6r) — B(Zg 4 1, 27)),

when 0<j<m, 0<k<m—1,and * € {", ~,’}. Summing and using the
doubling inequality it follows that

m—1 m-1 m-—1
C—l kZO ‘:’O(B(zk+ 1 6")) S kZO w:(B(der 1» 6r)) < ckZO ‘:’m(B(zk+ 1> 6r))

On the other hand, from the maximum principle we deduce

m—1 m-—1
kzr\ &"m(B(zk+ 1 6)‘)) S kZO aO(B(zk-t- 1» 6’))

Hence our claim is true. We shall show for 0 < k < m — 1 that

(3.11)& |VG|log |[VG| dH" 1
any
<[, 19Ck 089Gk | dH 4 e 2o By 60,
k+1

(3.12) LQ |VGy . 1| log |VGy | dH™ !

k+ 3

< j VG| log |VG, | dH" ™ + cr'/?6,(B(zg 4 1, 67)).
a9,

Summing (3.11) and using (3.10), it then follows that

(3.13)J |VG'|log |VG'| dH™ !
aq’

m-1
< J VG| log VG| dH" "1 + er'? 3] & (B 1, 67)),
an k=0

where we have used the fact that Q) = Q,, @, = Q,,.
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Summing (3.12) and using (3.10), we find

(3.149) jﬁ |VG,,| log |VG,,| dH™ !
a m

m-—1
< j [VG|log |[VG|dH" ' + cr'? 3 & (B(zk 11, 61),
a0
k=0

since Q, = Q. Putting (3.13), (3.14), into (3.3) and using (3.6) we get (1.3)
provided ry is small enough, thanks to (3.4). Thus (1.3) is true once we prove
(3.11)-(3.12).

We prove only (3.11), (3.12), for k = 0, since the proof of all the other in-
equalities is the same. To prove (3.12) for k = 0 we first observe from (3.5)
that

(3.15) max G, < cr?”"%,(B(zy, 67)).
B(z1,6r)ﬁf21

Using (3.15), (2.1), and applying Lemma 1 with k = 4 after scaling B(x;, 6r)
N{,, we find for x, y in the closure of B(z;,3r)NQ;,

(3.16) IVG1(0) = VG, ()| < c|x = y|r™ ", (B(zy, 6r)),
while from (3.15), a barrier argument, (3.5)-(3.6) and (ii), we have
3.17) ¢ 7%, (B(zy, 61)) < |VG,(0)| < er "G, (B(zy, 61)).
Clearly (3.17) and (3.9) imply

(3.18) |log |VG,(¥)|| < —clogr,

when x is in the closure of B(z;, 3r) N, . Using (3.16)-(3.18), (3.6), (2.1), and
parametrizing 8Q and d%, in terms of § and £, for y = z;, we obtain with

2=, £= "+ ¥, Ex), x= (" + ¥, 0(") + v,
(3.19)

VG, |log |VG,|dH" " - VG, |log |[VG,|dH™ 1
1
8%, NB(z,,3n

Janns(zl, 39

< [, IV 08 VGl NT+ [F0GAT T+ VB | ax
Gn

+ L(3)Ilvéll(x)— |VG,|(®)||log |VC, ()| V1 + [VE)|? dx’
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+ L@ | |VG1|(®llog |61 ()| ~ log |VG, (] |V1 + [VEG)[* a

cM3r*logr — cMrlogr + log (1 + M;r))d,(B(z;, 6r))

(_
cr'?24,(B(z,, 67)).

<
<

Next from (3.17), (2.1) and the fact that each point of B(z;, 6r)NaQ, lies
within 200 M, r? of a point of B(z;, 6r)NdQ, we get

(3.20) (G, — G)(x) < cM,r* ™", (B(zy, 6r))

for x € 0Q. From the maximum principle for harmonic functions and the fact
that Q@ < Q,, we conclude this inequality holds in Q. Let ¢(x’) = 0(6rx’)/6r,
and define H relative to ¢ as in Lemma 1. Put

u(x) = %(G}(er +z)—-G6rx +2z))), xeH,
610) = 5 E67) - 7,
H, = {x:|x'| <8,¢;(x) < x, <2},
u,(x) = —617@1(6rx +z1), xeH,.

We note from (2.1) that
(3.21) max { |4, [¢1]4} < cMir.

Using (3.20), (3.21), we first apply Lemma 1 with u, H, replaced by u,, H,.
As in (3.16) we get

(3.22) > |8au;(0)| S cr'""@,(B(zy,6r)),  xeH.

0<|a|<4

Wenote that u; = 0on dH; N {(x',¢,(x")} and u = u; = yondH N {(x’, p(x))}.
Using these notes and (3.21)-(3.22) we deduce

3 3
(3.23) 20 0 v( e = 20 [0 (x', () — uy(x', &1 ()]

lal=0 lal=0
< eMr* "%, (B(zy, 61)).

Applying Lemma 1 to # and H, with k£ = 3 we find from (3.20)-(3.23)

3
>0 10,u()| < cMyr? "6, (B(zy, 6r)),
la| =0
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for x € B(0, 1/2) N H. Hence if x € B(z;, 3r)N{Q, then
(3.24) |VG, — VG|(x) < cM,r*~ "%, (B(z,, 61)) < ¢|VG,(X)| M,

where the last inequality is just (3.17). From (3.24) and (2.1) we obtain

(3.25) j |VG|log|VG|dH"‘1—J IVG,| log |VG,| dH™
dQNB(z, 30 dQNB(z,, 31
sj 9G] - |V64]| llog [vG| dEr*~* +j 96|
90NB(z,,3n 20NB(,, 37
vG| >‘ 3
X log<———=—— dH"
VG|

< —cM;rlogr & (B(zy, 61)) + &1(B(z;, 6r)) log (1 + cM,r)
< er'’?6,(B(z,, 67)).

Let P = P,,(z;) and let G(+, Y) denote Green’s function with pole at Y e Q.
Following Wolff (see [14, (2.7)]) we first note fom (3.20) and the rate inequality
(3.7) with u = G, — G, v = G(+, P), t = 2r, that

G(x, P)" (G, - G)(x) < cM,r&,(B(z,, 67)), xeQ - B(z,, 3r).

Second, given w in dQ — B(z;, 3r), we apply the rate inequality with u = G(, P),
v=G(s, P,(W), t =2|w—z{| in Q@ — B(z;, 1), provided 0 € Q — B(z,, 2t). We
get for x =0,

t"“2G(P,(w), P) < ¢G(0, P)/G(0, P,(w)).

If 0 € B(z;, 2t), then it follows easily from Harnack’s inequality and ¢ > p/2
(since B(0, p) < Q) that

G(P,(w), P) < ct*~"G(0, P).

From the above inequalities, (3.8) and Harnack’s inequality, we find for
P, = P,(w),

G(P,, P) < ct*~™(r/t)".

Third, we use the rate inequality in B(w, 107 3/)NQ with u = G(+, P), v =
G, (¢, 0); the above inequalities, (3.5) and (3.6), to obtain

r~ 1@, (B(zy, 6r)) " 'M[ (G, - G)(®)G,(x,0) "' < ¢G(x, P)G,(x,0)~*
< c(r/ty @Bz, 1))~ 1,
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for x € B(w, 10~ 3) N Q. Letting x — w and using (2.1) we conclude from this
inequality that

(3.26) (IVG,|1|VG, — VG|)(W) < cr®**#6, (B(zy, 6r)(%, (B(zs, 1)) " '|zy — w| ™.
Now

(3.27) ' [ VG| log |VG, | dH™ !

n-1_
an_B(zpsr)|VG|log|VG|dH j

a9, - B(z;,3n

< [0 ste, 391761 = VGl llog |¥G] | aF" !

+ jan_ml,s’) VG| |log (IVG|/|VG, )| dH" 1

=Il+]2'

If F, = B(zy,3%*'r) — B(zy,3%r), k= 1,2, ... then from (3.26) we have

L< 2, IVG| - |VG,| |log |VG|| aH" !
K=1JF,nag

< -—cr3/4+“logr6)1(B(z1,6r))< >, k3"“‘>r""
k=1

< or'%6,(B(zy, 67)).
A similar estimate holds for 7,. Using these estimates in (3.27) we get

(3.28) } [ VG| log |VG,|dH™ !

n—-1_
aﬂ_B(zpy)lVGlloglVGldH [

3%, - B(z;,3n)
< cr'?6,(B(zy, 61)).

Next, since
@1 (B(zy, 6r)) < @o(B(zy, 61)),

we can replace &, by @, in (3.28), (3.25), and (3.19). Doing this and combining
(3.28), (3.25), (3.19), we conclude that (3.12) is true for £ = 0.

To prove (3.11) for k = 0, let j be the smallest positive integer such that
EjﬂB(zl, 10r) = . Putr' = 10r/)\j and let z € B(zy, 6r) N dQ] . Then it is easily
checked that (3.16)-(3.18) hold with G,, &, 7, z;, replaced by G}, w}, 7,2,
respectively, when x, y € B(z, 3r'). Now from (3.4) we have

r r r r
3.29 A
(3.29) TR W T
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where
1 33
<

I R s
Y=Y e — ) S22

Let z* be the point in dQ’ obtained by projecting z in the rotated x,, direction
onto dQ'. Then from the new version of (3.16)-(3.18), and the fact that

|z — z*| < 200M,r* < 1,
thanks to (2.1), (3.29) we find

|(IVG1|log |VGi|)(z) — (VG| log |[VGi|)(z*)|
< [IVGi|(@) = [VGil(z*)| logr' + |VG1(2)| log (IVG|()/|VG|(z*))]
< —cM,r*log (r)(|VG1@)|/r).

Using this inequality, (3.29), and parametrizing dQ’, dQ}, we get as in (3.19)
(3.30)

’ ' n—-1 __ ' ’ n-1
\VGY| log VG| dH jmm(zps’) |VGY|log |VG}| dH

’ .[Bﬂ’ﬁB(zl,Sr)
< cr'?w! (B(z,, 67)).

Next suppose z € 92’ and observe as in (3.20) that

(3.31) (G} — G")(2) < M r*(r')' ~"w! (B(zy, 6r') < cMyr*(r')' ~"w) (B(zy, 67)).

It follows from the maximum principle for harmonic functions that (3.31)
holds in Q'. If z = (Z + »’, £&Z)) € 3Q’, put

1
6r'

¢'(x") = — (§(6r'x’ + 2) — &(2)),

H = {x:|x'|<1,¢'(x)< x,< 1},
u'(x) = %(G’l(&’x + z) — G(6r'x + 2)), xeH',
1 -
P1(x") = F(E(&,xl +2) — &),
H| = {x:|x'| <8,¢1(x) < x,< 2},

1 _
u’1=€r—,G’l(6r'x+z), xeH].
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We note that

lo'la + |P1la<c,
lo' — ¢1ls < cMyr.

Using these inequalities in place of (3.21) and Lemma 1 we get

2 10,u1 ()| < c(r)! T (B(z, 6r') < (') w0} (B(2y, 6r))

0<|c|<4
in H'. Also, as in (3.23), we see for ¥’ = v’ on dH'N {(x’, '(x"))}, that

3

7 107 |(x) < M r(r')' ~"w (B(z;, 67)).
|l =0

From this inequality, (3.31) and Lemma 1 it follows as in (3.24) that

(3.32) |VG} - VG'|() < eM;r*(r') " "} (B(zy, 6r))

<
< M, (r*/r)wi (B(zy, 6M)(wi (B(zy1, 6r)) VG ()],

x€B(z,3r'YNQ’. We cover 8Q' N B(z,, 3r) by at most c(r/r')" ~ ! balls, B(z, 3r"),
z€dQ' N B(z,, 3r). Using (3.32) in each ball and arguing as in (3.25) we have

(3.33)

|VG’|log |VG'| dH" ! —j VG| log |VG,| dH™ !

I J.aﬂ’ﬂB(z’ljr) aQ'NB(z, 3r)

< —cMr(r/r')*log r w}(B(z,, 6r))
< or'?w)(B(zy, 6r)),

thanks to (3.29) and (2.1).

At this point we can use (3.31) in place of (3.20) and repeat the argument
following (3.25) in the proof of (3.12) (for k = 0), since only NTA estimates
were used. From (3.28) with G, G,, &,, replaced by G’, G}, wj and (3.30),
(3.33), with w) replaced by wg, we conclude that (3.11) holds when k£ = 0.
From our earlier remarks we now deduce that (1.3) is true.

4. Proof of Theorem 1

Recall that ¢, 0< ¢ <1, is a fixed C® function with support in B(1),
max,_, ¢ = 1, and A(Y) > 0. Also g, 0 < g5 < 1073, was chosen to be the
largest number for which (2.10), (2.12), and (2.19) are true. Finally, given e,
0 < e < gy, we note that ry = ry(e, My, M,), was chosen so small that the in-
equalities in Sections 2 and 3 are true for 0 < r < r,.



48 JouN L. LEwis AND ANDREW VOGEL

We elaborate on the induction argument for the construction of D which
was outlined in Section 1. Let D, = B(0, p), where p satisfies (1.4). Put ¢, = g,

and ¢ =2"%,, k=0,1,2,... Choose a covering, L, = {B(Zp:lo)},
1 < i< kg of dD, such that ty; < 1/2,i=1,2,...,k,, and
ko 1
a(n—1) 3, 15 <H""'(@0Dy) - 5
i=1

By compactness of D, we may assume k, < . Let 2r; > 0 denote the dist-
ance from 8D, to R" — U*B(zy;, t,). We set @ = Dy, € = ¢;, and apply the
results in Section 2 with r = r;, where r; is the smaller of 10'9p,r’1, and
ro = ro(e;, My, M,). Here M,, M, , are defined relative to D,, G,. Let D, = Q'
be the domain cobtained by adding smooth bumps to D, and h; = & the
homeomorphism from R” to R", which satisfies (2.16)-(2.18) with r = r;.
Moreover, h;(dD,) = dD;. By induction, suppose for some m > 1 we have
defined sequences: (Dy)y', (L), i)Y )]s (T - Let Ly, 1 = { Bz tmi)}'fM,
be a covering of dD,, such that ¢,,; <2~ ™*Y 1<i<k,, and

km
4.1 an— 1) t" VS H" Y @D,) — 2~ ™*h
1 .

Let 2r, . ; > 0 be the distance from 8D, to R” — U*7 B(z,,;, t,5,). Let @ = D,,,
€=¢€y, and r=r,,,,, where r,,,, is the smaller of 10~ *"r,,p, r\ .., and
ro(€m + 1, My, M,). Here M,, M,, are defined relative to D,, G,,. Adding
smooth bumps to Q as in Section 2 we obtain D,,, , =Q'2 D,, and 4,,,; a
homeomorhism from R” to R" which satisfies (2.16)-(2.18) with r=r,,, ;.
Moreover, A, ,(D,,) = dD,,, ;. By induction we get, (Dy)y, (Hy)y, (ri)7
(r)7> and (h,)7. From our work in Section 2 we see that (1.1), (1.2), are true
with , Q’, G, G', replaced by Dy, Dy, . 1, Gy, Gy 1, respectively, k = 0,1, ...

We claim that D,, k= 1,2,... is NTA with constant 100. Indeed, since
0<vy<1land r, <10 %p, k=1,2,..., it follows from the definition of
Dy, by way of the triangle inequality, that

4.2) B(0,p) € D, € B(0,2p), k=1,2,...

To prove D, satisfies the corkscrew condition (i) in the definition of an NTA
domain, we proceed by induction. If 0 <s<p, and z€dD,, note that
B(z,s)N Dy, B(z,s) N(R" — D,), each contain a ball of radius s/4. From this
note and the fact that dD,; lies within r; distance of dD,, we deduce for
4ri’* < s < p, and z € D, that B(z,s)ND,, B(z,s) N (R" — D,), each contain
a ball of radius,

1

S
a-r) T > Zs(l -2ri") =s,.
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If 0 < s < 4r1’?, then from our choice of r, = r, we have z € B(y, 100r;), for
some y € { y'}Y. Moreover, B(y, 1000r;"*) N D, , B(y, 1000r;"*) N3D,, can be
expressed as in Section 2 relative to £. From (2.12) and (2.1) we observe that
|V&| < 1073, Using these facts and a little geometry it is easily seen that the
above inequality remains valid when 0 < s < 4712, By induction, suppose we
have shown for some m > 1, that if zedD,, and 0 < s < p, then B(z,s)ND,,,
B(z,s)N(R" — D,,), each contain a ball of radius

4.3) -l—s 1-2 > r¥%) =s,.
4 K=1

If 4r}/2 < s<p, and z€dD,,, , then since 3D,, ,  lies within r,, , ; of 3D,,,

we deduce from (4.3) that B(z,s)ND,, ., B(z,s)N(R" - D,,, ), each con-
tain a ball of radius

1 12 1 2l on
—'(S—rm+1)<1* 21Tk >~rm+1>74—S<1—2kZ_]1rk >= ma1-

4 k=1

If 0<s<4rl? , it follows from local smoothness of D,, ., that B(z,s)N
D, .., B(z,s)N(R" - D,,, ), each contain a ball of radius s, , ;. Thus by
induction we have shown for zedD,, k=0,1,..., that B(z,s)ND,

B(z,s)N(R™ — D,), both contain a ball of radius

1 d 1
Sy = — 1-2 172 > s,
X 4s< mZ=J1r”' g5

when 0 < s < p. Scalling D, to have diameter 1, we see that (i) in Section 3
holds with A = 16.

To prove (ii), we proceed similarly. Suppose by induction, we have shown
for some nonnegative integer m that whenever x, z € D,,, we can join x to z
by a curve v with parameter interval, [0, 1], in such a way that v(0) = x,
Y(1) =z, and

(4.4) (o) dist(v(?),3D,) > -116<1 - 25] r}/“) min {|v(?) — x|, [v(?) — 2|},
=1

4.5) () length v < 3(1 + 2, r}/4>|x -z
k=1

In case m = 0, replace the sums in (4.4), (4.5) by 0. From inspection we see
that (4.4), (4.5) hold when m = 0, since D, = B(0, p). Next suppose x,z€D,, , ;
and 4r/2 < |x - z|. Since D,, € D,,, , we note that (4.4) and (4.5) hold

m+1

trivially unless either x ¢ D,,orz ¢ D,,. If x ¢ D,,,thenxe B(y,r,,, ) ND,, .1
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for some y € { yj}’lv, yeaD,,, and x = (x’, x,) in the corresponding rotated
coordinate system. Put x* = (x’, x,, + r,, ;) and observe that x*eD,,. If
x € D,,, we also let x* = x. Applying the same argument to z we get x*,z* e D,,.
Let v* be the curve joining x* to z* which satisfies (4.4), (4.5). If x # x*, we
modify v* as follows. Let ,, 0 < #, < 1, be the largest ¢ with v*(¢) € B(y, r2/% ).
If v*(t)) = w= (W', w,), we join x, w, to X=(x",y, +r’t), w=Ww"»,
+ r3/4 ), respectively by line segments, /;,/,. We then join ¥ to w by a line
segment /. Let /; + /, + I; denote the resulting curve from x to w with parameter
interval [0, #,). If z ¢ D,,, we see there exists € { ' }le and largest #;, 0 < 7, <
t; <1, such that ze B(y,r,,. ), and
(Y*@):0<t< 4, }NBG, r¥4 ) = @.

m+1

As above, we get line segments [}, [, [, with [; + I, + [; joining v*(¢,) to z.
Moreover, I; + I, + I has parameter interval [¢,, 1]. Let ¥ = ¥* on [#,, ;] and
if x ¢D,,, then y=1,+ L, + l; on [0, ;). Otherwise, ¥ =v* on [0, f]. If
z ¢D,,,theny =1 + L, + L on [t;, 1], while if ze D,,, then 4 = v* on [t,, 1].
From (4.5) we deduce

4.6) length 4 < length v* + 10734,

m
< 3<1 + > r}/4>|x* —z*| + 10r¥4
k=1
m
<3<1 + > r}/“>|x—z| +12r4,
k=1

m+1
< 3<1 + > r,‘/“)lx— z|.
k=1

Moreover, from local smoothness of dD,, , ; it is easily checked for ¢ € [0, 7]
U[#, 1], that

m+1
dist (10, 0D ) > - (1 ) r}/‘*) min (15 — ¥, 15  21).

If te[t,, t;], then by construction

min {|() = x|, [9() = 2|} 2 /%1 = Tmas

/4
>

NI'——‘

Using this inequality, (4.4), and the fact that v* = 4 on [, ¢;] we get for
telt, 4],
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(4.7) dist (§(0), 0Dy, 1) > 16< 2 5 1"‘>mmm(t)— x*], 150 = 2%}

1 m
>1—6< gj ”“)mm{lv(t)—xl 9@ —z|} - "l’gl

1

m+1
> L (1—2 5 "‘*)mm (156) - 1, 150 — 21}.

If |x — z| < 4rk2 | then from local smoothness of dD,, , ; , we see there exists

4 for which (4.6) and (4.7) hold. Thus by induction, we obtain (4.4), (4.5),
form=0,1,2,... Since X7r;* <1/10, we conclude that D,,, m = 0,1, ...,
is NTA with constant 100. From this fact, (4.2), and our work in Section 3
we now find that (1.3) holds with @ =D, @' =D, .., k=0,1,...

Next let hy(x) = px, and f =h 0o hy_,©---0h,. Then f; is a homeo-
morphism from R” to R” with f;(S) = dD,. From (2.16), (2.19), and itera-
tion, we find
(4.8) 27 %p|x — 2] < p(1 — cs09)*|x — 2]

< /i) = £ (@)

< (1 + ¢09)|x — 2|

<p2flx -z,
forx,ze IR" If ri< |x — z| for some j > 1, then from (4.8) and the fact that
re 1 <107 rkp, we deduce for /> j,

re1 <27 'plx — 2| < [ /i0) - £i@)].

From this inequality, (2.17), (2.19) and iteration we find for k > j,

k k
[@-5@ =5 % m<lA® L@ <@L+ 5 3 .

2m 2m1+1

Using the above inequality, (4.8) with j = k, and the fact that
m§}+lrm < plO_jrj < pl077)x — 2|,

we get

4.9) 27U Dplx — 2| < | /@) - fi@)] < p27 " Hx — 2].

Given B €(0, 1), we have

27 <e(B)lx - 2P,
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whenr; < |x —z[ <r;_;,/=2,3,... for some c(f), independent of ;. Here
we have used, r,, < clO””’z, m=1,2,..., which follows easily from our
choice of (r,,)7. Using the above inequality in (4.9), we obtain

c(® " x =z < | i) — fi(2)] < c(B)|x — z|”,

for |x — z| < 1/4. Hence (1.5) is true. As in Section 1 we put D = UgD; and
choose a subsequence ( f,,k) of (f;) such that ( f,,k) converges uniformly to fon
compact subsets of R”. We claim that D is not a sphere. Indeed, since max,_, ¥
= 1, and (2.1), (3.4) hold for r,, €, D, , we see that if p; = p + (2\;) " '02r;, then
D;N(R" — B(0, p,)) # &. Also, by construction, there exists x, € 3D, with
|%o| = p. Using the definition of (r,,)7 and the triangle inequality we see that
f(x,) €3D and | f(xp)| < p, . Therefore, D is not a sphere.

It remains only to prove (1.9) in order to obtain Theorem 1 from the
remarks in Section 1. To this end let

P =fof (¥ = lim by 0 v by, (),
when x € aDj and j = 1,2,... Iterating (2.18) we deduce that if

©
172
m=j+1

then
elx -y <|p;0) - p;(»|, xyedD,.
If q; denotes the inverse of p; it follows that
(4.10) lg;09 — g < e MJx -y,

when x, y € dD. Next we use Kirsbraun’s Theorem ([5, 2.10.43]) to extend q;
to R” (also denoted g; in such a way that (4.10) holds whenever x, y € R".
From (4.10) it is easily seen by comparing coverings of each set that

4.11) H" Yq.(F))<e! " "H""Y(F), FcR
J J

j=1,2,... Let g0 be a continuous function on R”, and put »(E) =
H"~!(g; '(E)N3D). Then from (4.11) with F = g; '(E)NaD, we have

H""YEN3D) < el ~"u(E).

J

Also from the usual change of variables formula [S, Thm. 2.4.18] and the
above inequality we get
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n-1 n-1 _ n—1
4.12) e’ angdH sngdu_JaDgoqjdH .

Letting j— o, je(ny)7], we obtain from the definition of ()] that e~ 1,
while

jaDg °q;dH"" - LngH”‘l,

since qn, (%) — X, uniformly on compact subsets of R". Hence from (4.12) we
have

k— o

(4.13) limsupj gdH"‘lsj gdH" !,
oD, aD

On the other hand from our choice of (r,)7 we see that L,,,, m =1,2,...,is

n—1

a covering for D. Thus if ¢35~ " is as in Section 1, then
$2-1(D) < H""'@D,) - 2"
Letting m — o, we find

(4.14) H"~ (D) < liminf H"~'(3D,),).

m—x

From (4.13), (4.14), it follows that if 0 < g <1 on D, then

H"~'(3D) < liminf H"~'(3D,, )

k-

sliminfj gdH"'l-i-limsupj‘ (1-gdH"!
oD, oD,

k—wo ko )

glimsup‘[ gdH"“+§ (1-gdH"!
aD,, 4D

k—e

gJ gdH"-u-f (1 -g)dH" !
aD aD

= H"~(8D).

Thus equality holds everywhere and so

k— o

(4.15) limj gdH”‘l=J gdH" !
aD,, aD

when 0 < g < 1. In general we can write, g = ag;, + b, where 0 < g, < 1l on D,
for properly chosen a, b € R. Applying (4.15) to g;, 1 we find that (4.15) holds
when g is continuous on R”. Hence, (1.9) is true.

The proof of Theorem 1 is now complete.
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