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1. Introduction

Consider the oscillatory singular integral operator 7T':
M Tf() = p.v. [, e ™K (x = y) f(7) dy,

where (Bx, y) is a real bilinear form, and K is a Calderén-Zygmund kernel,
i.e. Kis C! away from the origin, has mean-value zero on each sphere centered
at the origin and satisfies

[K®)| < Clx| ™" and  [VK()| < Clx| ™"

It is proved by D. H. Phong and E. M. Stein in [PS], that 7" is a bounded
operator on L” spaces, with bound independent of B. They also introduced
some variants of the H' and BMO spaces (denoted by H}E and BMO,, to
avoid the confusion with the standard H' and BMO). Analogous to the fact
that the classical singular integral operators are bounded from H' to L!,
Phong and Stein showed that T extends as a bounded operator from H}E to
L'. This fact was then used to prove the L” boundedness by interpolating
between L2 and L™, (see [PS]).

The object of our study is a more general class of oscillatory singular
integral operators. An operator in this class is obtained when the bilinear form
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in (1) is replaced by some real-valued polynomial in x and y. These operators
have arisen in the study of Hilbert transform along curves, singular integrals
supported on lower-dimensional varieties and singular Radon transforms, etc.
F. Ricci and E. M. Stein have proved in [RS] that an operator of this kind is
bounded on Z” spaces, with bound depending only on the total degree, not
on the coefficients of the polynomial. The fact that these operators are of
weak-type (1,1) was subsequently proved by S. Chanillo and M. Christ ([CC]).

It is our goal in this paper to establish a Hardy space theory for the class
of oscillatory singular integral operators with polynomial phase functions.
Given such an operator

@ Tf() = p.v. [, ¢TI K(x = ) () dy,

where P(x, y) is a real-valued polynomial, we will define the space H115 as some
variant of the standard H' space, and this space H}, is closely associated with
the given polynomial P(x, y). First let us give the definition of the ‘‘atoms’’:

Definition. Lef Q be a cube with center Xq, anatomisa function a(x) which
is supported in Q, so that

1

|0l

la(x)] <

and
J 0 e'PéeVa(y)dy = 0.

The space H}, consists of the subspace of L' of functions f which can be
written as f = 2 \;a;, where a; are atoms, and \; € C, with 2 [\| < . Conse-
quently, we define BMO,, as the dual space of H}s. Our main result is

Theorem 1. Suppose H}E and T are defined as above. Then T is a bounded
operator from HIE to L'. The bound of this operator can be taken to depend
only on the total degree of P, (not on the coefficients of P).

We notice that in the paper of Phong and Stein, the fact that the phase
function is a real bilinear form makes it possible to apply the Plancherel’s
theorem to the Fourier transform (or partial Fourier transform) associated
with B. When (Bx, y) is replaced by the polynomial P(x, y), we no longer have
this advantage. So we have to take a different approach, using some L?
estimates of certain oscillatory integrals. This will become clear in our proof.

For p <1, the Calderén-Zygmund singular integral operators are still
bounded from H? to L?. However, this is no longer the case for the oscillatory
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singular integral operators. At the end of this article, we will present a simple
example which shows that this fails even in the bilinear phase function case.

The main result presented in this paper was included in the author’s thesis.
The autor would like to thank his advisor, Professor E. M. Stein, for his
encouragement and many helpful suggestions. The author would like to thank
the referee for his comments.

2. Proof of Theorem 1

ProoF. Let us assume that ¢ is a function supported in the cube Q,, which
is centered at the origin, and has sidelength 1, and a satisfies

a <1, [ aG)dy=o0.
(]

First we shall prove that if P(x, ) is a polynomial in x, y, and P(0,y) =0,
then

3 [p-v. [ 7K~ a0 dy

<G

where C depends only on the total degree of P, and is otherwise independent
of the coefficients of P.

To prove (3), we shall use induction on the degree / of y in P(x, y).

If / = 0, then eP*? is only a function of x, therefore can be taken out of
the integral sign, and (3) follows from the classical result of the standard H'!
theory. (See, for example [CW].)

Next we assume / > 0, and (3) is true for / — 1. By the Ricci-Stein theorem
on the L” boundedness of T, we have

Ji e T@OIdr< O(],_, IT@CF" dx)"
<C( [ lal?ax)* <.
Write

P(x,y) = a,5x°Y* + O, ),
lal = 1,]8] =t
where Q(x, ) is a polynomial with degree in y less than or equal to / — 1, and
still satisfies Q(0, y) = 0. For any r > 0, we have
iP(x,y) __ ,iQ(x,) —
focpo, | T@@Iax< [, e MK (x — y)a(y) dy| dx

+
2<x|=r

LR" e'CNK(x — y)a(y) dy| dx.

(If r < 2, all the above integrals are 0.)



58 YiBiao Pan

By our inductive hypothesis, the second term is bounded. Also |x — y| >
|x|/2, if |x| > 2, |y| < 1. So we have

‘[ |T(@)(x)|dx < C + CJ dxj
2<|x|=r Ix|=r R"

exp <| >, aaﬁx“y3> - 1’

al=1
Bl=1

Now, there exists (o, B) such that |a,| > 1, |B| =/, and

gl /1% = max gl .
|al =1
Bl=1
= =1/l
Put r = |a, g | ol we have

j |T(a)(x)| dx < C,
2<|x|=sr

where C depends only on the total degree of P(x,y). Now we turn to the
estimate of the remaining part

j | T(a)(x)| dx.
x| >2,|x]>r
We shall need the following lemmas:

Lemma 1. Suppose

ox)= 2 ax’

lv| <k

is a real-valued polynomial in R" of degree k, and € Cy. Then for any v,
|v| = k, a, # 0, we have

@

< Cla| ™V 0¥l = + V9] 10)

j e*®y(x) dx
]‘Rn

To see this, simply let £ be an unit vector, such that

!(S : Vx)k¢(x)l 2 c|a,,|.
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This is possible because

909 _
ax”

vla,.

(See [ST], page 317.) Without loss of generality, we may assume

£=(1,0,...,0).
Hence
3 o(»)
k = l vl‘
ay;

Now apply the one-dimensional Van der Corput’s lemma to obtain (4). See
also [ST].

Lemma 2. Let

Px)= D, a,x*
lal<d

denote a polynomial in R" of degree d. Suppose ¢ < 1/d, then

J |PO)| ~“dx <A laﬂ|>“.
lxl =<1 la] =d
The bound A, depends on e (and the dimension n), but not on the coefficients

{a.}.

This is a result of Ricci and Stein. See [RS], page 182.
Now we continue our proof of Theorem 1. Let

R, = {xeR":2/ < |x] <2/},
for j = 0, and let ¢ € C5(R") satisfy
p(x)=1 for |x|<1, e(x)=0 for |x|>=2.

Define T; by

(T,/)X) = Xg, () j e o) f(y) dy,

rR’l

and consider the operator TJ.T;.":

LT3N = L~ L, 2@ dz,
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where
L;(x,2) = Xg (0%Xe @) Ln ' CED=FED p(y)|* dy.
Write
P(x,y) — P(z,y) = P Zlaaﬂyﬁ(x - 2% + (Q(x, ) — Oz, »)),
I8l =1

where the degree of y in Q(x, y) — Q(z, ) is less than or equal to / — 1.
Applying Lemma 1, with » = 8,, we obtain

-1/1
Z aaﬁo(x a)

|l 21

|L;(x,2)| < Xg, (X)X (2)-

On the other hand, it is obvious that |L (x,2)| < C, solet N> 0 be a large
number (to be chosen later), we have

Z aaB (X )

la| =1

~1/NI

IL_,'(X: Z)' XRj(Z).

By rescaling we would obtain the same norm if we were to replace L; x,2
by Lj(x,z) = 2. (2’x, 277), so we have

2 (@45 21 Nx% = 3] a,5 27112

el =1 || =1

IL(x, 2)| < C2V _VNIXR )Xg, (2)-

Choosing N sufficiently large and applying Lemma 2, we get

2l Gup 2j|“|z°‘

|| =1

su L'(x,2)|dx < C2"su ( Ayp 2712
szR"|’( )| dx < P ;l 81271 +

> —1/NI

i —1/Nlsy —jle /NI
< C2V]ag,q,| N2 I,
Similar estimate hold: for sup j |L'(x, z)| dz, therefore we obtain
x R™

IT,T31 < C2%lag,q, N2 0N,
SO

1Tl 2 r2 < Cznj/ZIa | ~1/2Nly —j|ag|/2N1

Now we have

f IT(a)(x)ldxsj de |K(x — y) = K()| |a(y)| dy
x| >2,|x|>r x| >2,|x]|>r R”

+ J |K(x)| dx ‘ j P Vq(y) dyl =1 +1,.
x| >2,|x|>r R”
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The estimate for I; is easy

a
Ilsf dxj DN 4,
W>2,x>r  JRr o |X]

dx
C —<C.
j}x1>2 |x|™+ !

As for I, , using our estimate on T;and assuming 2/° < r < 2% %1, for some
Jo,> we have

1
L <C —
2= Lx»z, el >r X"

<cy j LT @) dx

2is|xl<2i+1 |x|"

dx

j e’P*Nq(y) dy
rR"

1 1/2
<c —,,dx> @
Z< ju ) 15Ol

<Cc> 2—nj/22nj/2|aa060‘ = 172Nl ~jleol/2N1 C,
ETA

because 270 > (1 /2)|aa;’30| ~Vleol and (3) is proved.
To prove the theorem, we only need to prove that |7T(a)|,, < C, for all
atoms @, and C is a constant which depends only on the total degree of P(x, y).
Let a be an atom associated to the cube Q, and the center and sidelength

of Q are Xo and 6 respectively. We observe that

8" (T(@)(x + xp) £'p.v. j PGt Xe W IIK (x — y)8"a(dy + xp) dy.

[R'l
Write
P(6x + Xg» oy + xQ) = R(x,y) + P(x,, 6y + xQ),

where R(x, y) is a polynomial which satisfies R(0, y) = 0, and the total degree
of R is not greater than that of P. Let

b(y) = eP¢o ¥ +*gna(5y + aQ),
by the definition of the atom, we have

supp () C Q, and [6()[ <1,
also

j b(y)dy = J e’F¢eMq(y)dy = 0.
Q Q
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Now invoking (3), we have

<C

| T@] . = ” p.v. Ln e REIK(x — y)b(y) dy

L1

This completes the proof of Theorem 5.

3. An Extension
In [RS], Ricci and Stein pointed out that the L” boundedness still holds, if the
Calderén-Zygmund kernel in the operator is replaced by some more general

distribution. For H fE, the same thing is true, i.e.

Theorem 2. If K(x,y) is a distribution and C' away from the diagonal
{x =y}, and satisfies:

() |KC, )| <Clx—y|™" and |VK(x,y)| < Clx—y| "L
(ii) The operator

[ j K(x,»)f(»)dy

extends as a bounded operator on L*(R").
Then the operator

®) Tf(0) = p.v. Ln ePEIK (x, ) f(3) dy

is bounded from Hj, to L.

The proof of Theorem 2 is essentially the same as Theorem 1.

4. The Dual Space BMO,

We define the sharp function f} to be

1
([0 = SUD 151 L | f0) — fo ()] dx,

where

; 1
7 = ereen( L

0 R dy)
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and as the dual space of H;:, BMOy, is given by

BMO, = {feL, :f7 €L}

loc

and
”f"BMOE = "fzé "Lw'

The dual statement of Theorem 2 is

Theorem 3. The operator T* (T given by (5)) extends as a bounded operator
Jrom L” to BMOyg.

5. A Counterexample

In this section, we shall give a simple example to show that the H* theory on
the oscillatory singular integral operators cannot be extended to the H” case,
if p<1.

Let T be defined as

1
(Ta)(x) = p.v. Ll e” Y=y a(y)dy.

Take 6 > 0, 6 is very small, and a is a function supported on Iy = [-§, 6],
given by

286)"VP if ye[s/2,4],
ay)=<{ -8~ if ye[-§, —8/2],
0 otherwise.

It is easy to see that a satisfies

la| < |I,| V7, L a(y)dy = 0.
&

Therefore, we have

5 1 8 1
Im (Ta)e) = 28)~7( | s i :
m (Ta)(x) = (26) (L/z sin (xy) =7 dy + .[6/2 sin (xy) X+ dJ’>

Let xe(n/46, w/35), then x—y>0, x+y>0 for ye[6/2,6]. Also
w/8 < xy < m/3.
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Hence

! d+fS ! a’)
2x—yy 5/2x+}’y

B L ox
= cy(28) ™7 log <1 DT 52/2)>

é
Im (Ta)(x) > c,(26)~ VP(j
6/

> cpd! " 1Px 1,

for some constant cy > 0. Then, we have

/36

i (51 - l/p)px—p dx - C52(P" 1)_
E

[P, |Ta(x)[1’dx>cg’j

This is unbounded as 6 > 0 and p < 1.
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