REVISTA MATEMATICA IBEROAMERICANA
Vor. 7, N.° 1, 1991

Local Properties of
Stationary Solutions of
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Singular Schrodinger
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Abstract

We study the local behaviour of solutions of the following type of equation
—Au — V(x)u + g(u) = 0 when V is singular at some points and g is a non-
decreasing function. Emphasis is put ofi'the case when V(x) = c|x| "% and g
has a power-like growth.

Introduction

In this article we study the local behaviour of a solution u of the following
time-independent, N-dimensional, nonlinear Schrédinger equation

©.1) —Au—-Vx)u+gu)=0

near an isolated singularity of the potential V, g being some asymptotically
nondecreasing real valued function. In many physical examples ¥ is a Coulomb-
ian potential:
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k
0.2) Vo) = Bzl —al ™t

in the case of a nucleus in the Thomas-Fermi-Dirac-von Weizsdcker theory
[31, [4]. However it is mathematically more exciting when ¥ can be compared
with |x — a| =% near the isolated singularity a. In that case the interference be-
tween the Laplacian, the potential and the nonlinearity is very strong. The
model equation is the following

0.3) —Au—|—;|7u+u|u|q’1 ~0

where g > 1 and c is some real number. If we look for a specific solution of
(0.3) under the form

0.4) u,(r) = ar®,
then
2
B= -1
and

a? l=c+ 2 2—q—N-
g—1\g-1

Henceforth the solution u; exists if and only if

©.5) cr 2 <2—q— >>o.
g—1\g-1

It is worth noticing that if (0.5) does not hold then

_9\2
0.6) c< <N—2—2> )

and this condition plays a fundamental role in the description of the fun-
damental solutions of the equation

©.7) Ap+ 56 =0.

x|
If (0.6) is satisfied let 8 be V(N — 2)2 — 4c and y; the two fundamental solu-
tions of (0.7), that is
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f'x|—ov-z+/s)/z if c<<N2—2>2’

08) ) =+ X
x| ~N=P2Ln(1/|x]) if c=<N—2_2-> ;

[y -ov-2-0r2 if c<<N2_2>2,

(0.9) pa(x) = N 2\2
lel“’v‘z”z if c= <—2—> -

It is important to notice that p, is the regular solution of (0.7) in the sense that
c|+| ~2uy(+) is locally integrable in RN and

c
(0.10) App + —7pp =0
|x|
holds in D’(R") (if ¢ < 0, u is continuous), as the same holds for y, if and only
if ¢ > 0; in any case p, = 0(u,) near 0. Our first removability result deals with
the meaning of the equation in the sense of distributions.

Theorem 1.1. Let Q be an open subset of RN containing 0, Q* = Q\ (0}, g
a continuous real valued function satisfying

liminf g(r)/r? >0

©.11) e
limsupg(r)/(-r9) <0

and Ve C°(Q*) is such that

(0.12) - < [x]?V(x) < c

near 0 for some constants q > 1 and c. If we assume either ¢ > N/(N — 2),
or1<g<N/(N-2)and

0.13) cr—2 (-2 _N)<o,
g-1\g-1

any u € C(Q*) satisfying

(0.14) —Au—-Vu+gw)=0

in D'(Q*) can be extended as a solution of the same equation in D'(Q).
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We must remark that if (0.5) is satisfied with g > N/(N — 2) there exist
singular solutions of the model problem (0.3) with a rather weak singularity;
this must be compared with

(0.15) Au+u?=0

for which the same holds when g > N/(N — 2). Our second removability
result is to compare a solution of (0.14) in Q* with the regular solution of
(0.10).

Theorem 1.2. Let Q and V be as in Theorem 1.1 and let g be a continuous
real valued function satisfying (0.11) for some q > 1. Assume also that

(0.16) 0=2g(0)=g"'0)
and
2 2q

hold. Then if u is any C'(Q*) function satisfying (0.14) in D'(Q*), u/p, remains
locally bounded in Q.

It is important to notice that, as (0.17) holds, (0.6) also holds which allows
us to have a comparison principle.

Our second section is devoted to the extension of Vazquez-Veron’s isotropy
theorems [23], [24] to the potential case. Let us introduce some notations: let
SN-1 be the unit sphere in RY, (r, 0) € R{ x SV~ the spherical coordinates
in RM\ {0} and p(r) the spherical average of a function p(r, ¢), that is

1
(0.18) p(r) = stzv_lp(’, 0)do.

Theorem 2.1. Assume Q is an open subset of R" containing 0, Q* = Q\ {0},
g is a continuous nondecreasing real valued function and u € C(Q*) is a solu-
tion of (0.14) in D'(Q*) where V e C%Q*) is a radial function such that

N-2
2

2
(019) —00 < IX|2V(X) < c S ( > ’ for every er*_
If u satisfies
(0.20) lim inf 7~ 2+ YN"-de)2)

r—0

u(rs ') - ﬁ(r) "LZ(SN-I) = 01

then u(x)/p,(x) admits a limit in RU { —, ©} as x tends to 0.
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A similar isotropy result holds for a solution u of (0.14) in an exterior
domain of RY. An interesting class of solutions of (0.14) in Q* are those which
present a singular linear behaviour near 0. As the equation in the sense of
distributions in Q is not very singnificative except when ¢ = 0 where the Dirac
mass plays a fundamental role [6], [10], the good criterion for the behaviour
of linear singularities will be the existence of a finite, not always 0, limit of
u(x)/p;(x) as x tends to 0, as in [29].

Theorem 3.1. Assume g is a continuous nondecreasing real valued function
and

N _ 2
0.21) c< ( 2—) .
2
Then the equation
0.22) —Au— #u + g =0

admits solutions u in
B0\ {0} = {xeR":0< |x] < 1}
such that

0.23) lirr; u(X)/p () = 7,

where v is any arbitrary real number if and only if
©-24) [T + 1g(=nD20 /1 dt < oo,
where

o= —(N-2+(N=27-4c)/2.

When ¢ = 0, condition (0.24) is the one introduced by Brézis and Bénilan
[6] for solving equations of type :

(0.25) —Au+gu)=m

where m is a bounded measure. When

(5

the situation is quite more complicated (see Vazquez [22] for the case N = 2).
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We define

by=inf {b>0: [ g~ N=2/N+DLn(1/t)/b)dt < w],
(0.26)

by=inf (b > 0: [ gt~ =D Lny/bydr > ~w},

and we prove

Theorem 3.2. Assume g is a continuous nondecreasing real valued function.
Then the equation

N-2)?
(0.27) —Au — (2—lx|——> u+ g(u) =0

admits solutions u in B,(0)\ {0} such that

(0.28) lim |x| ™~ 22u(x)/Ln (1/]x]) = 7,
x—0

where 7 is a real number, if and only if
(0.29) —(N+2)/(2b; ) <7 < (N + 2)/(2b,").

The Dirichlet problems corresponding to Theorems 3.1, 3.2 are also solved.

In the last section we study the limit properties of the solutions u of (0.3)
(as |x| tends to 0 or « as well). If we perform the classical transformation

(0.30) u(r, o) = r-¥9-Yy(t, o), t=Lnr
and denote by Agy_, the Laplace-Beltrami operator on SN=1 then

+1
(0.31) Uy + <N—2%>01+ASN_1U+)\U—v|v|"‘1=0

holds in (—0,0) or (0, «) with

2 2
(0.32) A=c+ <—q— - N>,
g-1\qg-1
moreover u is bounded. When g # (V + 2)/(IN — 2) the study of this equation
is an extension of previous results of Veron [26] [27], Chen-Matano-Veron
[13] and Bidaut-Veron-Veron [7]. A typical result is the following

Theorem 4.1. Assume qe (1, ©)\ {((N + 2)/(N — 2)} and u is a solution of
(0.3) in B;(0)\ {0}. Then r¥ @~ Vu(r, +) converges in the C* (SN ~')-topology
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to some compact connected subset &' of the set £ of the C*(S™ ™~ Y)-functions
w satisfying

(0.33) —Agn 10+ w|w]? T =k
on SN~ Moreover there exists precisely one w € ¢ such that

(0.34) lim 729~ Dy(r, o) = w(e),

r=0

at least in the following cases:

(i) u is nonnegative,
() ANSN-1,
(iii) g is an odd integer,
(iv) & is an hyperbolic limit manifold in the sense of Simon [21],
(V) N=2and c< 1.

When g = (N + 2)/(N — 2) the study is more complicated, in particular
because of the conformal invariance of (0.3) and the existence of solitary
waves satisfying (0.3) (see [7]). Convergence results hold at least for non-
negative solutions [17]. When \ < 0 there always holds

(0.35) lim [x|*@~Dy(x) = 0
x—0
for any solution u of (0.3) in B;(0)\ {0} and the exact behaviour is given by

u, from Theorem 1.2 except in the particular case A =0, g > (N + 2)/(N — 2)
and we prove

Theorem 4.2. Assume0 < ¢ < (N —2)/2)>, A\ =0and g > (N + 2)/(N — 2).
If u is any solution of (0.3) in B,(0)\ {0}, then the following limit exists

(0.36) lim u(x)/(puy () Ln (1/|x])*2"%) = [
x—0
with
a=(2-N+VWN-27-4c)/2=-2/(g- 1)
and
(0.37) le {0, £(N(g — 1) — 2(q + 1))/(g — D)@~ P},

When X\ > 0 it may happen that (0.35) holds. In that case the behaviour of
u near 0 is most often described by the solutions of
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c
(0.38) —A¢ — -I—)—CTZ— $=0,
satisfying (0.35) except when —2/(q — 1) is a solution of the algebraic equa-
tion

0.39) X’ +(N-2)X+c—k(k+N-2)=0

for some integer k. Only when N =2 and ¢ <0 this spectral case is
understood. In some cases, when the rate of blow-up of u near 0 is of order
x|~ ~2/2 4 may behave as a finite superposition of travelling waves near

0 (up to the damping factor |x|®~272),

We also study the asymptotics of the solution of (0.3) in an exterior domain
and end this section with some orbit connecting questions where the structure
of the set of the stationnary solutions of (0.33) plays a fundamental role.

Our paper is organized as follows

(1) Removable singularities.

(2) The isotropy theorems.

(3) Solutions with linear singularities.
(4) The power case.

1. Removable Singularities

In this section we assume that @ D B,(0), 2* = Q\ {0} and we first prove the
following a priori estimate of Osserman’s type [19], [10], [31].

(Q*) satisfies AueL? (9*) and

Lemma 1.1. Assume uelLj Toc

loc
c
(1.1) —Au—Wu+auq<b

a.e. on {xeQ:u(x) =0}, for some constants a >0, b and c > 0 and q > 1.
Then

(1.2) ux) < Alx|~>@-Y+ B (forall xeB,,(0)\{0}),
where

17/@-1) 1/
(13) A= O'(N, q)< ! : C> ! H B = o'(N, q)<§> q,

with a(N, q) > 0.
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Proor. Let x, be such that 0 < |xo| < 1/2. Set
.1
G= {xeﬂ: |x = xo| < 3 |x0|}
and G* = {xe G:u(x) > 0}. The function u is essentially bounded in G and

a 4c a
1.4 —Au + —u? < = max b+———r——r‘7}
( ) 2 g r>0 { |x0|2 2

a.e. in G*. If we compute 8 we find

4(q—l)c< 8¢ >1/<‘1-“

Pfo|2 aQ|xo|2

(1.5) B=b+
As in [10], [31] we consider a function v under the following form
1 -2/@@-1)
(1.6) v(x) = p<Z I%ol> — |x — x0|2> + 7.
If
B 2N 4@+1) _[2p\V@™ D _[28\"?

n—max{q_l,(q__l)z}, p—<a ’ T= a )

v satisfies
a

a.7n —Av+—2~vq>B

in G. Using Kato’s inequality as in [10], [11], we deduce v > u in G, which
implies v(xy) = u(x,) and gives (1.3).

Lemma 1.2. Assume 1 < q < N/(N — 2),
2 2
(1.8) c+——<——‘L— )go

and ue L (Q*) satisfies Aue L? (Q*) and (1.1) a.e. on {x€Q:u(x) =0} for

loc loc

some constants a >0 and b > 0. Then p,u* € L1 _(Q).

loc

Proor. From Kato’s inequality we have

(1.9) —Aut -—#u* +aut)<b
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in D'(Q2*), and from (1.2) and (1.8) we deduce that ¢ < 0 and
(1.10) u” < Kopy

near 0, for some K, > 0. Let ¢ be an element of Cg(Q), ¢ >0, 1, be a C*-
function in @ such that 0 <9, <1 and

0 if 0<|x|<1/n

(1.11) nn(x)={1 2/

with |V,| < Kn, |A,| < Kn?.
Then we claim that

I(u*)qu2¢dx< .

As a test function we take ¢n,u, and get

c

(1.12) J u* < —A(@n,12) — —|7(¢nnuz)> +a j (U™ )Y pn,p, < K(9).

|x
But

A(Pnnpz) = 0y App + pp A(Dn,) + 2 Vi, V(dny,)

and (1.12) becomes
(1.13) J Ut (—pp A(dn,) — 2Vp V(gm,) + a j ") Pnup, < K(9).

LetI', = {xeQ:1/n < |x| <2/n} and let x. be the characteristic function of
I',. There exist K;, K, such that K; > 0 and

(1-14) |A(¢7’n)| S Kl + KZnZXr”s |V(¢77n)| S Kl + KZnXF"'

Plugging into (1.12) implies

(1.15) a j‘ " Y onap, < K(9) + Ky j#mz(lﬁ + KZnZXFn)
+ 2K, j | Vi | (K + Kznxr")-

As pipy = x>~V and py|Vpy| = K'|x|' ", the right-hand side of (1.15) is
bounded independently of n. Letting n tend to infinity implies the claim.

Lemma 1.3. Under the hypotheses of Theorem 1.1, g(u) and Vu are locally
integrable in Q.
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ProoF. We shall treat separately the cases 1 < g < N/(N-—2) and g >
N/(N — 2) but from (0.11) and Lemma 1.1 in any case |x|>'@~ Yu(x) is locally
bounded in Q.

Case 1. 1< q<N/(N-2). From Kato’s inequality we have

(1.16) —Aut — Vu* +signt(w)eg(u) <0

in D'(2%). Let ¢e be p, /(€ + uy) (e > 0). As a test function we take ¢, ¢ where
¢ and 7, are as in Lemma 1.2 with ¢ =1 in B, ,(0). We get

(1.17) j T(—A@N8) — Von.8o + jsign+(u)g(u)¢nns“e<0

As
A@N,$e) = o0, Al + S A(Dn,) + 2 VE V(dn,)
and
€
Vie=———Vp,,
J (e + FE)Z #2
€ 2e
Afe=—" S Apy———
R
As
c
Apy = ——— iy,
"2 |x|2 K2
we get
CE[I,Z 2

—A(Pn, ) — Von, e = —<— E Vi >¢nn

(e + m)*  (e+

¢~nne+#

- g-e A(¢77n)

- ﬁ Vi, V().

Henceforth (1.17) implies

(1.18) j . o0, (—Vu™ + sign™ (u)g(u))
253

S j IXI%T O + J“ feA(¢nn)+2eJ( Vqu(dmn)
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We also have

(1.19) A, < Kixp, + nKoxy

(1.20) |V(én,)] < lel‘z + nszF",

and

(1.21) Hu";‘EA(dm,,) sKlj ut +n2sz ut¢.
I‘l2 Fn

As

. . 1/q 1 @-1)q
u < ut)? —_— ’
J‘I‘" ?e X J‘I‘n ( ) He ‘L“n (E + [Lz)q/(q -1)

(@-1)/
(j 23 > q< c(N) n-(@+N@-1/q
- =
r, (e +p)” @D €

and

where

_2-N+VJ(N-2)-4c
B 2

Q;

is such that p,(x) = |x|*2; as (1.8) holds o; < —2/(g — 1) and aso; + =2 — N
we deduce that

(1.22) —(oy + N)(@—1)/g+2<0.

From Lemma 1.2 p,(u*)? is locally integrable in Q; henceforth

(1.23) lim n? J ut¢.=0.
Fn

n—o

In the same way

u* |Vl eu’
el ———=Vu, V(¢ <26Kj ut ——— +2Kn ——=1|V
j (e + ﬂz)z w2 V(é1,) < 1 r, P r (c + #2)2 Vs

and

+
€U Eaz
— V| < u+§‘7<naJ‘ u*te,
jr,, (6+uz)2| #ZI\L,, Ixe+p) T 2, Cf
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which yields

u+
(1.24) limnjv —Vu, = 0.
e Jr, €+ p) 2

For the last right-hand side term of (1.18) we have

2 +
(1.25) j‘mdﬂ],‘\ —Cn j;nu §'E.

Using (1.23), (1.24) and the facts that Vis negative and sign * (#)g(1) is bounded
below by some constant imply

(1.26) jdz(— Vu* + sign* (u)g(u)) <K
for some K > 0. In the same say

(1.27) j o(—Vu~ + sign~(u)g(u)) < K.

Henceforth Vu and g(u) are locally integrable in Q.

Case2. g> N/(N — 2). From Lemma 1.1 and (0.12) #V is locally integrable
in Q. Taking 5,¢ as a test function in (1.16) implies

(1.28) j u® (—A(gn,) — Vény,) + j sign™ (u)g(u)én, < 0.

Using (1.19) yields

ju* Aldn,) | < K, j ut + anzj u* <K, j ut + K,K'n?> " Nt¥@-b g,
r, T, T,
Letting n tend to infinity implies
j sign* (u)g(u)¢p < .
In the same way
fsign‘ (wgu)d <
which ends the proof

ProOF OF THEOREM 1.1. Case 1. 1< q < N/(N-2).
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As a test function we take 7, {.¢ where 3, and . are as in Lemma 1.3 and
¢ € C3(R). We have

(1.29) ju(_A(nn‘bg-e)) - ! Vun,¢e + fg(u)ﬂnﬂ'e =0

and
A(’?nd’g‘e) = 10,0 Afe + an-eAd’ + ¢§’5A77,, + 2‘)’]"V¢V§'€ + 2¢V77nV§e + 2§EV¢V"7n-

As in Lemma 1.3, Case 1 it is easy to let n tend to infinity and obtain, for
e > 0 fixed,

(1'30) J'u(_qufe - S'EA¢> + 2V¢V§e) + J‘(g(u) - Vu)d’g-e = 0.

But
Ve Vi < |V |ul |x|f:‘i";2)z < 2T;l V| |ul,
b 851 < el 6] 12 22y + 203l o] (3 2
< Il oy Jel 1 5ok gy [

If ¢ = 0 the two terms |u V¢ V¢| and |u¢ A¢| vanish; if ¢ < 0 we know from
Lemma 1.3 that u/|x|? is locally integrable in Q. Henceforth, from Lebesgue’s
theorem, we get

(131) limju(_qufe—?5A¢+2V¢V§.e)= J‘(_uAd’)
e—0

and

(1.32) j(—u Ad) — j Vue + Jg(u)qs =0.

Case 2. q> N/(N - 2).
As a test function we just take ¢n, and we have from Lemma 1.3 and
Holder’s inequality

(1.33)  lim J —uA(on,) — Vuon, + gu)dn, = J ~ulA¢ — Vuo + g(u)o,

n—o

which ends the proof.
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Lemma 1.4. Assume Q is as above and V is continuous in Q* and satisfies

2
(1.34) —oo<|x[2V(x)<c<<N2_2>

near 0. If we C%(Q*) is a nonnegative function satisfying
(1.35) Aw+ Vw>=0

in D'(Q*) and w = o(n,) near 0, then u/p, remains locally bounded in Q.

PrOOF. Let M be the supremum of w on {x: |x| =1} and, for e >0, ®. =
My, + ep;. We write (1.35) in spherical coordinates and get

N-1 c 1
(1.36) W,r+TW,+r—2W+-r—2—AsN_1W>O

where Agn_, is the Laplace-Beltrami operator on SN=1(we have used (1.35)).
We shall distinguish two cases:

2
Casel. c< < ) - We write

(1.37) v(s, 0) = w(r,o)/m(r), s=rf, B=VWN-2Y-4c
and get
2 1
(1.38) s vss+FAsN_lv>O.
We write ¢.(s, 0) = ®c(r, 0)/p,(r), t =Ln(1/s) and (¢, 0) = (v — 9)(s, 0).
The following relation holds in D'(R# x S¥~1)
1

B8

By convolution on ¢ we may assume that ¢ € C*(R{, C°(S™ 1)) and if we
approximate ¥ by the solution x, (y > 0) of

(1.39) Y + ¥ + o7 Agn- ¥ 2 0.

(1.40) —NAgn-1Xy + X, = ¥,

which converges to ¥ in L2(S™ ™) as 7 tends to 0, we deduce that

d? d
(1-41) Et-z— "\l’+(t, ')”LZ(sN— 1) + E ||¢+(t, ’)"Lz =0,
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which implies that the function 5= [(v — ¢¢)* (s, )| 2sn-1 is convex on
(0, 1). As it vanishes at 0 and 1, it is always 0. Letting ¢ tend to 0 implies the
claim.

N-2)\?
Case2. c= <~—2—> - We just write

(1.42) v(t,0) = w(r,o)/r- N2 t=Ln(1/r)
and v satisfies
(1.43) Vg + Agn_ 1020

in D'(Ry x S¥~1). By the same approximation we see that the convexity and
the fact that v = o(¢) at infinity imply the estimate w < Kp, .

ProoOF OF THEOREM 1.2. Case 1. We assume that

2 2q
(144) C+q_1<-6—_—1~— ><0

In that case 2/(g — 1) < (N — 2 + 8)/2 and u = o(u,) near 0. As we have
(1.45) Aut + Fcc_lfw > sign* (W)g@w) > 0
in D'(Q*), we deduce u* < kp,. We do the same with u ™.

Case 2. We assume that ¢ < 0.
In that case u™ satisfies

(1.46) Au* >sign* (wegw) > aw*)? - b.

From Brézis-Veron’s result [11] #* is locally bounded in Q; henceforth
u* < kpy. The same with u ™.

Case 3. We assume

_ 2
(1.47) 0<cg <£2—3> ,

2 2q B
(1.48) c+m<——- >—0.
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For n e N* let ¢, be the solution of

Ad, + TchZ"’" ~ap?=0  in By(0)\By,(0)
¢, =max {u*(x): |x| =1} on 4B;(0)

¢, = max {u” (x): [x| = 1/n} on 0By,,(0)

(1.49)

(¢, exists by minimization techniques and it is positive and unique) where a is
defined as in (1.46) or Lemma 1.1. Let o be b/(c + 2N). Then ¢, = ¢, + a|x|?
satisfies

(1.50) Ag, + I—.:|Z_¢H —ay?<b.
We then deduce, as in Lemma 1.4, that u* <, in B;(0)\B,,,(0). As ¢,
remains locally bounded in B, (0)\ B,,,(0), independently of n (Lemma 1.1),
we deduce that (up to a subsequence) it converges in the CIIOC(B1 0\ {0})-
topology to a function ¢ which is radial and satisfies

Ab+—7é-ap?=0 in B(0)\(0},
(1.51) |x|

¢ =max {u*(x):|x] =1} on 4B,(0),
and
(1.52) u() < $(x) + olx|*

in B,(0)\ {0}. Moreover, in the range (1.48), we have
(1.53) B(x) < cpy(x) = clx|* = c|x| ¥V,

If we set ¢(x) = ¢(r) and

(1.54) n(t) = r¥9=Y¢(r), t=Ln(/r)
then we get
+1
(1.55) Nee — <N— 24 )m —an?=0
qg-—1
in (0, + ).

(i) If g = (N + 2)/(N — 2) the first order coefficient is 0 and

1 a
. W , — 2 _ q+1
(1.56) 1) = 5=
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is constant. As 7 is nonnegative and bounded, the only admissible cons-
tant is 0 and 7(¢) tends to O as # tends to infinity.
(i) If g # (N + 2)/(N — 2) then

d _ g+1)\,
(1.57) i W, n,) = (N 2 e 1>17,-
From La Salle invariance principle lim 5(¢) = 0.
t—=
Henceforth
(1.58) limu™* ()/p;(x) = 0.
x—0

As the same holds for #u~ we deduce the claim from Lemma 1.4.

Remark 1.1. Using Theorems 2.1 and 3.1 it is possible to extend Theorem 1.2
to the case where g satisfies

sw)Lnr

lim inf 7 >0
s r
(1.59)
L
lim supM <0
s

and (0.17) (see [24] for the zero potential case and [16]).

2. The isotropy Theorems

In this section Q is an open subset of R™ containing B, (0), 2* = Q\ {0}, g is
a continuous nondecreasing real valued function and Ve C(Q*) is a radial
potential such that

N-2

2
2.1 -0 < |x]PV(x) < c < <—2—> » for all xeQ*,

We are interested in solutions u € C1(Q*) of

2.2) —Au — Vu + g(u) =0.

Lemma 2.1. Assume u € CY(Q*) satisfies (2.2) in D'(Q*) and

2.3) lim inf F®&—2+ N ~4e

r—0

)/z" u(r, «) — i(r) ||L2(SN_X) =0.
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Then there exists a constant K > 0 such that
.49 [u(r, +) = 5| pogsn—ry < Kr@ N+ INF =202

foro<r<i.

N-2

2
Proor. Casel. c< ( > - In radial coordinates we have

N-1 1
2.5) u, + fu, + V(ryu + 72—ASN_1u = g(u).
We write u as in (1.37), that is
(2.6) o(r,0) = u(r,0)/; (), s=rf, B=VIN-2P-4c,

and get

B

with a; = 2 — N — B)/2.
Let p(s) be the spherical average of a function p(s, 0); then

1 1 1
(2.7) Szvss + —TASN—IU + F(SZ/BI/'(S;W;ﬁ‘) - C)l) = FS(Z—cx1)/Bg(sml/4sv)

_ 1 _ 1 . _
S0 + 57 (V6V) = 0 = 5@~ 5™ R,

As

I (—Av(v — D))do = (N — 1)j (v — D)*do,
SN-1 SN-1

LN_, (™) — (™ PW))(v -~ ) do > 0,

and (2.1) we get

(2.8) szf (vss — Dy )(v — D) do — N-1 j (v —0)*ds > 0.
SN-1 SN-1

'32
Setting

172
X = (LN-1 (v — D)X(s) da> )
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we obtain

N-1
(2.9) SZXSS - ?XZ 0

VNI Zae .
N7 -4¢)/28) for some sequence {s,} converging

in D'(0, 1). As X(s,) = o(s®~
to 0 we deduce that
(2.10) X(s) < Ks®~ VNT -4y

which is (2.4).

N-2)?
Case2. c= (——2——> - We write u as in (1.42):
2.11) w(t,0) = r"~?u(r,6),  t=Ln(1/r);
then
(2.12) Wi + Dgno W+ (V) — Ow = e@~N/2g(((N=21/2)
where

V(t) - e(Z -N)IV(e(N-— 2)t/2)'

If we set
172
X() = < j (w— W)z(t)da> ,
SN-1
then
(2.13) X,~-(N-1DX2=20

in D'(R}), and X(¢,) = o(e¥~ ‘) for some sequence {7, } tending to . The
maximum principle implies that

(2.14) X(f) < Ke VN1t

which is (2.4).

In order to have a L™ estimate we need the following result the proof of
which is essentially contained in [24].

Lemma 2.2. Assume v, a and b are positive numbers such that a < b and
&, v € LA(SN ). Then there exists a unique function ® € C([a, b]; L*(SV ™)
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NC>((a, b) x SN~ 1) such that

1
.15 s2®, + 7ASN_1¢I> =0 in (a,b) x SN71,

®(a, ) =¢(s);  Bb,)=Y(+) in SV

Moreover there exists a constant C; > 0 such that

1 N-1)/2
(2.16) ” ‘1’(5, ‘)"Lw(szv_l) < C1{<1 + W) ||q>"L2(SN-l)

1 (N-1)/2
* <‘ * 'Lm) wan(sN_l)}.

This result is, up to change of variable and unknown, essentially an estimate
concerning harmonic functions in an annulus.

Lemma 2.3. Assume the hypotheses of Lemma 2.1 hold with ¢ < (N — 2)*/4.
Then the function v introduced in (2.6) satisfies

(2.17) [vs, +) = D) | pogsm-1) < asB+ VN —ac)/28

Jfor some ¢ > 0 and any s (0, 1/2].

Proor. Let y be the solution of

1
§%ys = —5 5@ Bg(s*1’Byy in (a, b),
(2.18) * B

y@=p, yb)=rm,

with0 < a < b < 1, p and 7 real numbers. Let wbe v — y, ¢ be (v(a, *) — p) ",
Y be (v(b, *) — 7)* and ® be the solution of (2.15). Then & > 0. If we define
h as

1 - o a
h= Ez—s‘2 VB(g(s*1"P) - g(s*"%y))/w,
then 2 > 0 and

1
(2.19) 2wy + EZ—AS,,,_IW = hw.

Henceforth & is a super-solution for (2.19) and ® > w. Using (2.16) with
o = v(a), 7= v(b) we get
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1

WN-1)/2 _
Y] /a)> [(v(@, ) — D@)* | gsn—1,

(2-20) v(s,0) — ¥(5) < 01{<1

W-1)72 _

for any 0 SV~ ! and any a < s < b.

s b
If we take Vi 2 and use estimate (2.4) in the s variable, we get

s
@.21) v(s, 0) — (s) < CpsB+ N7 =40)/28,
In the same way we have

.22) Y(5) — v(s, 0) < CpsB* VN*—4e)/28,

which implies the claim.

Lemma 2.4. Assume the hypotheses of Lemma 2.1. hold and ¢ = (N — 2)?/4.
Then the function w introduced in (2.12) satisfies

(2.23) [ Wz, *) = WO | pogn-1y < G~ V1

for some ¢ > 0 and any t > 0.
Proor. It is essentially the same at the one of Lemma 2.3 except that Lemma

2.2 is replaced by the following estimate: for @ > 0 and ¢ € L(SV~!) the uni-
que bounded solution & of

d +A N, =0 in (a, +)x SN,
(2.24) o T TSN (N_l )
®(a, *) = ¢(+) on SN
satisfies
(N-1)/2
(2'25) " Q(t! .)"Lm(sN— 1 S 6<1 + t— a> "¢"L2(SN— 1) -

This is essentially Poisson’s formula.

N-2\?
2

ProoF oF THEOREM 2.1. Casel. c< (

The proof follows the ideas of [24] and we have to distinguish according v is
bounded or not near 0



LocAL PROPERTIES OF STATIONARY SOLUTIONS OF SOME SCHRODINGER EQUATIONS 87

Case 1.1. ¥ is bounded near 0. There exist a sequence {s,} tending to 0 and
some z such that ¥(s,) converges to z as n— . Assuming z > 0, we write
2(r) = g(r) — g(0) and call 9 the solution of

1 1
§2 0+ —5 (PV(sVP) — )b = —5 5@V B5(s*Eh) on (5, 5,),
(2.26) B? 32 0

() = 0(s,)) = 2/2,

where n, is such that v(s,, 0) > z/2 for all n > n,, and 0 € SV~ 1. It is clear that
# > 0. If A is the solution of

1 1
S2Ag + — (S¥PV(VP) = A + —5 5@ 0F|g(0)| = 0 on (s, 5, ),
(2.27) 8* B> O o

AGs,) = Als,,) =0,

then A >0 and A(s) < Ks for some constant independent of n. If we set
7 — A, then v* is a sub-solution for (2.7) which implies

v* =
(2.28) v(s,0) = v*(s) = — Ks (for every (s,0)€ [s,,,s,,o] x SN,
and v, (s, o) = v(s, o) + Ks is nonnegative in (0, s,,o] x S¥=1_ As the spherical
average Uy of v, satisfies

(2.29) s*(Uy)s, + ~61—2(s2’5 V(s?) — oo,

> 7 sO7 eV g(=K) + 23 VPV - o,
there exist two constants M and N > 0 such that the function E(s) = U, (s) +

Ms@~ 0’8 | N(sLns — s) is convex. As E(s,) tends to z we deduce lim E(s)
= z, which yields =0

(2.30) lim 9(s) = z = lim v(s, *),

s—0 s=0

uniformly on SV-1,
If z < 0 we proceed similarly. If z = 0, then it is clear by using the technique
above that

(2.31) lim 5(5) = 0 = lim [2(5, )] jugsn-s-
5= 5

Case 1.2. v is unbounded near 0. Then there exists a sequence {s,} tending
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to 0 such that lim #(s,) = « (—co in the same way). We conclude by the same

5s=0

convexity argument as in Case 1.1 that

(2.32) lim v(s, 0) =

s—=0

uniformly on SV~ 1.

N-2)\?
Case2. c= (———2—> - We essentially follow the ideas of Case 1 but use

the ¢ variable (¢ > 0) and Lemma 2.4. If w is bounded in R* then

(2.33) lim u(x)/u,(x) = 0.

x| ~0
If w is not bounded we deduce from convexity arguments that

(2.34) either lim w(t,+) = +, or lim w(, s) = —oo,

t—co {—
uniformly on SV~ !. Assuming the first case we also have from convexity the
fact that #(¢)/t admits a limit in R* U { + 0 }. This limit is the same as the one
of u(x)/u,(x) as x tends to zero and this ends the proof.

Remark 2.1. It is interesting to notice that (2.3) is automatically satisfied as
soon as g has a fast enough growth, that is

liminf g(r)/r? = o,

r—o

(2.35)
limsup g(r)/(—r)? = —oo,
for some g > 1 such that
g+1/g+1 _
(2.36) C+q—l<q—1 N)-O.

In that case we have

2  N-2++JN*-4c

qg-—1 2
and
u(x) = o(jx| ~¥@~D)

from (2.35) and Lemma 1.1. In the zero potential case the limit exponent g
is (N+ 1)/(N - 1).
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As we have proved Theorem 2.1 we can prove a similar result for the solu-
tion of (2.2) in an exterior domain G

Theorem 2.2. Assume G D {xe R": |x| > 1} and u € C'(G) satisfies (2.2) in
G where V is a radial potential defined in G and satisfying
) N-2)\?
2.37) —oo < |x|*V(x) < c < — )’ for every xeQG.
If g(0) = 0 and u satisfies
(.38)  liminfrV-2- V-4

r-o

)2 u u(r9 ') - ﬁ(r) "LZ(SN— 1) = Oa

then u(x)/p,(x) admits a limit in RU {co, —0} as |x| tends to infinity.
Moreover, if lim u(x)/u,(x) = 0, there exists Y € R such that
Jx| >0

(2.39) im u(x)/p,(x) = 7.

x| =0

The zero potential case of this result can be found in [31]. We can apply
this type of methods to symmetry problems as in [28].

Corollary 2.1. Assume V is a radial potential defined in RN\ {0} and satisfy-
ing

NZ
(2.40) —00<|x|2V(x)<c<—4—, for every xe RN\ {0},

and g is a nondecreasing real valued function. If ue C'(RM\ {0}) satisfies

@.41) lim inf r& =2+ YN =42y ) — @) pagsn-ry = O,
r—0
2.42) lim inf r®=2= YN =42y 0y — @) pagen 1y = 03

then u is a radial function.

It is important to notice that the hypothesis on ¥V is weaker as the proof
essentially deals with the study of the following differential inequality

N-1

-1
(2.42) X, + -

N
X, + <V— > >X20.

Other symmetry results for Schrodinger operator with singular radial
potentials can be found in [28], [5].
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3. Solution with Linear Singularities

We assume that 2 and Q* are as in Section 1 and g is a continuous nondecreas-
ing real valued function.

PRrOOF OF THEOREM 3.1. We recall that we assume ¢ < (N — 2)?/4.
Step 1. Suppose (0.24) is satisfied, that is
(3.1 j (&(®) + |g(—)hr* ~ /™1 gt < oo,

1

then we claim that for any ¥ € R there exists u € C'(Q*) satisfying

(3.2 —Au — —I;clz—u +g(u)=0
in Q* and
(3.3 Pfé u(x)/p () = .

We take ¥ > 0 and for € > 0 let y. be the solution of

3.4) S (Pss = 7317(5 + )@ (s + "%y in (0,1),
ye(o) =7, ye(l) = 0.

In order to avoid technical difficulties we suppose g(0) = 0. Henceforth y. is
positive, convex, nondecreasing and

(3.5) Ye(®) <7+ s(1—v), forall 0<s<1.
From (3.4) we get

1
(3.6 (as(s) = (¥)s(1) — Elz_ j (r+ 7P 2g((r + 9Py dr

for 0 < s < 1, and (y¢); (1) is bounded from (3.4)-(3.5). From (3.6) we deduce

s, 1
B.7) |yelsy) - yels| < als, — 1) + 7317 j j (r+ 9%~ %g(@ + 9" Py dr

for some constant ¢ >0 and 0 < s; <5, < 1. But
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s 1
(3.8) j J (r+ @B =2g((7 + e)*By) drds
Sl s

s, +e P2
< j J‘ t@= /B =2g(y /By dt ds

Sl s

(we assume e < 1). Set

X s

2 p2
d)(X) - J' J t(2 —-ay)/B- Zg(,ytal/ﬁ) dt dS,
then

2 p2
(3.9) lim ¢(x)=j j @ e/B=25(yt*/B) dt ds
0

x—=0 s

=1/ j 2 d-e)/eg(f) dt < oo
y2e0/8

from hypothesis (/ = I(«;, 8) > 0). Henceforth ¢ is extendable to [0, 2] as a
uniformly continuous function ¢ and (3.7) reads as

1

52 (J’(Sz +€) — 5(51 + €)

(3-10) [ye(s) = ye(s)| < als, — 1] +

which implies the equicontinuity of {ye}o<.<; in C([0, 1]) and the existence
of a y e C([0, 1]) satisfying

1
$%gs = —5 s Pg(s*’By) in (0, 1],
@3.11) B*

yO0) =v, y1)=0.

The function u,(x) = |x|*1y(|x|®) is a solution of (3.2) satisfying (3.3).

Step 2. We assume that there exists v > 0 such that (3.3) holds for some
u e CH{Q*) and that

(3.11) j A -e)/g(f) dt = oo,
1
As lim @#(r)/p, = v and
r—=0
. N-1_ ¢ _ — .
(3.12) i, + i, + — i =gu@) in (0,1]

~
~
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we deduce, from the monotonicity of g, that

N-1_ c _ o
r ur+7u>g(7r 1/2)

(3.13)

N
3

Defining y(s) by @(r)/r* with s = r?, then

G.14) $Pgs > %S‘z““’/ Pe(vs*178/2).

Integrating (3.14) twice yields

1 1
(3B.15)  Ys) =) + Y, (I)s - 1) - EITJ j 0@~ B=2g(yg*'Py dg dt.

As
1 pl
lim J J 0@ 0/B=2o(ye*"P) do dt =
si0 Js Jt
we derive
(3.16) lim ¢¥(s) = lim #(r)/r*: = o,

5s—0 r-0

a contradiction.

Remark 3.1. With the above techniques it is easy to show that if Q is bounded
with a regular boundary 9%, for any ¢ € C(dQ) and any ¥ € R there exists a uni-
que u, € C(@\ {0}) N C'(Q*) satisfying

—Au, - —|;|—qu +gu)=0 in Q%
(3.17)

uy=¢ on 99, lim u, (x)/p (%) = 7.
x—=0

PROOF OF THEOREM 3.2. Here we assume that ¢ = (N — 2)?/4. We recall the
definition of b b,

1
b= inf {b > 0: J gt~ N-D/WN+D1n(1/t)/b)dt < oo} ,

g
0

g

1
b, = inf {b > 0: j gt~ N-YW+D1n¢t/bydt > —oo} .
0
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Step 1. Existence result. 1t is clear that if [—(N + 2)/2b;, (N + 2)/2b; ] =
{0} there exists u satisfying the equation (0.27) with a zero limit in (0.28); so

we shall assume b,'< o, and consider any v € (0, (N + 2)/2b,].

Case 1. v < (N + 2)/2b,. For € > 0 let y. be the solution of

= -3 — N+ 2 ys N— 2
(3.19) 0=+ exP( 2(s+¢€) >g<s + e>exp<2(s + e)> on [0, 1,
ye(0)=7v,  y(1)=0.

We assume again that g(0) = 0; y. is decreasing, positive and convex; therefore

(3.20) |ye(s;) — ye(sy)|

s,+€e (2

5 j - 3e- N+ 2)/2tg(.ye- N - 2)/2tt- 1) dtds,

s

<a|s1—s2|+j

S1+E

for 0 <s;<s, <1 (e<]1). Let ¢ be defined by

2
(3'21) ¢(x) — J .ft—3e—(N+2)/21g(Ye—(N—Z)/Ztt—l) dtds,
X 5
then
e—(N+2)/4
(3.22) limo¢(x) = IJ\ g(2Y/(N + 2))t - N-2/N+D 1 n(1/t))dt < .
x—=0 0

As in the proof of Theorem 3.1, {y.} is equicontinuous in [0, 1] and there
exists y € C([0, 1]) such that

623 {yss = s 2exp(—(N + 2)/25)g(ye" V=225~ 1) on (0,1),
) y0)=7v, y1)=0.

If we set
uy(¥) = |x| "N =22Ln(1/|x])y(~1/Ln |x]),
then
N-2\? .
—Auy — <—2|E_> U, +gu,) =0 in B,-1(0)\ {0},
(-24) u, () =0 on 8B,-.(0),

lim Uy )/ (%) = 7.
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Case 2. v = (N + 2)/2b,". Let y, be the solution of

(Vw)ss = 572 exp (= (N + 2)/29)g(y,e” N ~2/2s71) on (0,1),

(3.25) 1
¥a(0) = (N + 2)/(2b,") - o’ yn(1)=0.

The function y, is again decreasing, positive and convex and the sequence
{y,]} is increasing and bounded. From Dini’s Theorem it is uniformly con-
vergent on (0, 1] and its limit y is continuous on [0, 1] and satisfies (3.23) with
v = (N+2)/2b;.

Step 2. Assume there exists ¥ and a solution # of (0.27) such that

lim u(x) =
o @) T

and we assume for example that
(3.26) Y > (N + 2)/2b,.

(we proceed similarly if ¥ < —(N + 2)/2b, ). We define
1
(3.27) u(r, o) = 4 €XP (N - 2)/2t)v(t, o), t=—1/Lnr,

and v satisfies

Vgs + Agn_10 =52 exp (—(N + 2)/2s)g(ve™ N =5~ 1) in 0%,

lim v(s, ¢) = uniformly on SV~1!.
s=0

(3.28)

We consider ¢, € (0, Y — (N + 2)/2b," ) and set \ = v — ¢, > (N + 2)/2b,. For
s small enough we have v(s, ) > \ (for every o € S¥ ~!) and it is the same with
the spherical average (s). Therefore

(3.29) U, =5 2exp (—(N + 2)/25)g(As ™ Lexp (N — 2)/25)).
Integrating (3.29) twice as in step 1 and using the definition of b, implies

lim &(s) = +o,
s—0

a contradiction.

Remark 3.2. The Dirichlet problem is also solvable in the case ¢ = (N — 2)*/4.
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Remark 3.3. If g(r) behaves like 7 (g > 1) at infinity (and —|r|? at — ),
(3.1) means that

or 1< <M
g-1 I~N_2+8

(3.30) 0< —ay <

and

2 2
c+ 4 _ < 0.
g—-1\g—-1

N-2)\? N
In the critical case ¢ = { ———— ] » the role of the Sobolev exponent *
. 2 N -
enlightened:

2 is
2
(3.31)

pr g [ @ 1 AZWNED/N-2),
& g‘{o if 1<g<N+2)/(N-2).

Remark 3.4. Let u,, be the solution on (3.17), for any vif c < (N — 2)?/4 or
if ¢ = (N —2)?/4 or if ¢ = (N — 2)*/4 and b;'= 0. Then the mapping v - u,
is increasing. If we assume that

® ds
3.32
32 L Vsg(s) =

for some A > 0, u, is bounded above in 2\ {0} by a continuous function in
Q\ {0}. Then u,, = lim__, _ u, exists. In the case g(r) = |r|? " 'r we shall prove
in Section 4 that

s

2 2 1@~
(3.34) lim |x]* @~ Dy (x) = <c + <—q - >>
x=0 g-—1\g-1

Moreover u,, is the unique solution of (3.17) with v = o (see [31] for example).

4. The Power Case

In this Section we study the solutions of (0.3), that is
¢ -1
4.1) —Au—Wu+ |[ul?"'u=0

in B,(0)\ {0} or in ( B,(0) or in RV\ {0}. As some of the results are direct
extensions of [13] and [7], we shall abreviate their proof.
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Proor oF THEOREM 4.1. It is clear from the classical energy method that in the
case ¢ # (N + 2)/(N — 2), r¥@=Dy(r, +) converges in the C3(SV~!)-topology
to a compact connected subset of the set £ of solutions of the following equa-
tion on SV 1:

B et

(see [2], [7], [13], [26], [27]). Set

then

@ ifu>0, eNCH(SV1) is reduced to 0 and N9~ D (A > 0),
() if O< NS N -1, £is reduced to 0, \'“~D and —\V@~D,
(iii) if g is an odd integer r~ r? is a real analytic function and we can
apply Bidaut-Veron-Veron and Simon’s theorem [7], [8], [21].
(v) if ¢ is an hyperbolic limit manifold, that is for any w € ¢’ and any ¢
€ C*(SV 1) satisfying

- 2 2q
4. - 1y — — - =0
4.3) AY + glo|' Y <C+q—l<q—1 >>¢
there exists a one-parameter family {w;}o<s<; Of elements of &' such that
4.4) lims™ (o5 — w) = ¢
s=0

in C%(SV ). We can use Simon’s result [21, Theorem 6.6]. Henceforth we are
left with (v): N=2, c< 1.

Lemma 4.1, Assume A is an open subset strictly included into
B (0\{0} = {(r,0)eR:0<r<1,0<60<r}
and assume ¢ < 1. Then

A (A4) = inf {%j <]v¢|2 - Lﬁ) dx: ¢ € W},’z(A)K > 0.
A

|x|*

Proor. Let A = {(t,60):(e',0) e A} and (¢, 0) = ¢(r, 0) with r = e'. Then

J <¢f+ —12- ¢3 — %¢2>rdrd0 = J W2+ ¥3 — cy®) dt db.
A r r A
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As AC (Lna,Lnb) x (0, 7) for some 0 <a< b< 1 and as the first eigen-

1 1
A3 1,2 : 2 _* -
value of —Ain Wy “((Lna,Lnb) X (0, w))is < = + @Tnb /a)2> we deduce

by the monotonicity property that

2

™
> —_— -
MNA) =1 -c+ Tavar> 0,

which is the claim.
We define v by (0.30); as N = 2, it satisfies

2 2
ilvt+v”+<c+<q_l>>v—}v|"“v=0

in (—, 0) x S'. As in [13] we are left with the situation where the o-limit set
of the negative trajectory of v(¢, ») defined by

(4.6) I~ =N Uk 9s»

t<0 7=t

4.5 V=

is included into one of the non trivial-S!-action connected component of the
set of solutions of

2
4.7 wgp + <C+ (q_z_ 1) >w— w?"'w=0 on S,
that is
4.8) I' C{w(s +a):aes'},

where w is a solution of (4.7) with anti-period w/k (k € N*). The following
result is then an extension of [13 Lemma 1.6].

Lemma 4.2. Let w be an element of I' ™. If wy(6,) > O (resp. < 0) at some
0, €S, then there exists t* < 0 such that

4.9 ve(8,00) 20  (resp. <0)

Sor any t < t*.

Proor. For proving it we may assume 6, = 0 and define

(4.10) u(r, 0) = u(r, 0) — u(r, —0);
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then # satisfies

4.11) —Ad — ﬁﬁ+d(x)ﬁ= 0

in B} (0)\ {0} where d(x) > 0. Let us set

(4.12) 0% = {xe B} \(0}:4(x) > 0}; 6~ = {xeB \{0}:i(x) <0}.
If C is a connected component of §* or §~, we claim that

(4.13) 0edC or CNaB,(0) = .

Assume the contrary; if C is such a component, there exists a, b such that
0<a<b<l1and

4.14) Cc{(r0:a<r<b, 0<0<7}=T,,.

Extending & by 0 in I';,\ C then the new function #° belongs to Wg (T, ,)
and

@15 [l (waep - @+ deoar) =o.
Tt | x|

Then # = 0 in C from Lemma 4.1, contradiction. The remaining of the proof
of Lemma 4.2 goes as in [10 Lemma 1.6 (i)].

Remark 4.1. Using Lemma 4.2 and comparison principles implies that if
wg(0) > 0 for 0 € [6,, 6,1 C S, then there exists #* < 0 such that

0

(4.16) 0y(2,6) > 0, j " 0o(t,0)d8 > 0
[’}

[}

for any ¢ < t*, 6 €[6,, 0,]. However it is interesting to notice that the other
assertions of [13, Lemma 1.6] do not hold for 0 < x <1 as they involve
Neuman boundary data.

The remaining of the proof of Theorem 4.1 goes exactly as in [13, Theorem
1.1].

Remark 4.2. The potential c|x| 2 of Theorem 4.1 can be replaced by a more
general potential ¥ such that Ve C** <(B,(0)\ {0}) and r>V(r, +) converges to
c as r tends to 0 in the C!*(S™~1)-topology. In the case (iv) we have also to
assume: either ¢ < 1 or |x|*V(x) < 1 in some punctured neighborhood of 0.
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2 2q
M=ot (q—l - )
is nonpositive, the set £ of the solutions of (4.2) is reduced to {0} and from

Theorem 1.2 u is described by u,. However, if g > (N + 2)/(N — 2) and if
A =0 we have

It is clear that if

4.17) oy <ay,=-2/(q-1).

The superposition of the linear and the nonlinear effect gives rise to the
phenomena described in Theorem 4.2.

PRrOOF OF THEOREM 4.2. Step 1. A priori estimate. We claim that for any
e € (0, 1) there exists K. > 0 such that

4.18)  ju()| LW, (x> Ln(1/|x) "4 + KL (1/|x))y ™

where

_ 1 g+1\\"4" P
wm (G-

We use the function v(t, ¢) defined in (0.30) and v satisfies

qg+1
qg-1

(4.20) v, + <N—2 >v,+AsN_lv— oo]2 =0

in (-,0)x S¥"!and lim v(t, 6) = 0 uniformly on S¥~1,

t— —o©

Let Y(t) = LIV, @)(—1)"Y4=D + M(—t)~°, M, p > 0, then

@20 po+ (N-225 1)y, - ye

_ q _n-2-1/(g-1)
= LN, @) gy (<0 727V

+po + DM(~1)~*~2 + LYN, g)(—t)~¥@~D
+ Mp(N— 215'—1)(—:)-9-1
qg-—1
— LT YN, g)(—1)" @D — gMLI= (N, g)t=° !

+o@™ "),



100 BoucHAIB GUERCH AND LAURENT VERON

1
If we choose 7-1 <p< qzl then -2 — 7—1 < —p-—1and
(4.22) M,,(N _2 Z * i > < QML (N, ).

Henceforth, there exists 7' < 0 such that
1
(4.23) Vi + <N— 2%)% -¥7<0

in (-0, T) x ¥~ 1. Choosing M large enough we conclude that v < y. Argu-
ing similarly for the negative part of v yields (4.18), (4.19).

Step 2. End of the proof. Let us define
4.24) ¢, 0) = (=149~ Dy(t, o).
¢ is bounded in (—o0, —1] x SV~ where it satisfies

q

T Pa-1n°t

1
(4-25) g—tt+ <N—23—t1>§-t+AsN—1§‘- t g‘t

2
g@-1
1
+ 7(Is°|""s“ — LN, g)¢) = 0.

From Agmon-Douglis-Niremberg [15] and Schauder theory all the derivatives
(0%/3t*) Vg¢ up to the order 3 are uniformly bounded in (-, —1] X SN-1,
Henceforth the «-limit set I' ™ of the trajectory of {(¢, ¢), ¢ < —1, is a non-
empty compact subset of C*(SV~!). Multiplying (4.25) by ¢, and integrating
over (—oo, —1] x SV~ yields

-1
(4.26) j j ¢2dodt < »,
—o JSN-1
after some easy integrations by parts. This immediately implies

-1
j J‘ ftztdadt< 0o,
—w JSN-1

The uniform continuity of ¢, and {,, yields

(427) ‘ hm " g-t(t’ ')" L2(SN-1) = ‘ hm “ g-tt(t’ ')"LZ(sN— 1) = 0'
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If we multiply (4.25) by ¢ € C°(S™¥~!) and take some element /eI"~ we get
(4.28) j [A¢pdo = 0.
SN-1

Henforth I' ™ is reduced to a constant / which satisfies
(4.29) le[-L(N, q), L(N, 9],

from (4.18). If we integrate (4.25) on (¢, —1) x SV~ ! we get
-1

(4.30) j j ~l~(L"_1(N, q) — 9" Y dodt = 2(t)
t SN-1 T

where ®(¢) admits a limit as ¢ tends to —co. Henceforth it is the same with
the left-hand side of (4.30) and / must satisfy

(4.31) LI YN, - 19" HI=0
which ends the proof.

Remark 4.3. A similar argument can be found in [2] for the study of the
isolated singularities of the solutions of

(4.32) —Au=u"N"D (>0
or in [27] for the study of the long range behaviour of the solutions of
(4.33) ~Au+ |ufN "Dy =0

in an exterior domain.
When

lim |x|>@~Dyx) =0

x—0
we are usually in the situation where the behaviour of u near 0 is essentially
of linear type. If we look for solutions of

(4.34) A§+ﬁ§'=0

in B,;(0)\ {0} under the form

(4.35) $(r,0) = y(r)¢(o),
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we find out that ¢ must be an eigenfunction of —Ag,_, with corresponding
eigenvalue A\, = k(k + N — 2) and y must satisfy

(4.36) Iy, +r(N=1y,+ (@ -NJy=0
(k € N); the corresponding characteristic equation is
4.37) X2+ (N=2)X+c—N\=0,

with discriminant &, = (N — 2 + 2k)*> — 4c. If &, > 0 (4.36) admits two fun-
damental solutions with constant sign

. le—(N—2+5k)/2 if 6,>0,
(4.38) py(x) = | ~N-22Ln1/|x]) if 6 =0,
) le-(N‘Z"Bk)/z if 6,>0,
4.39) By (X) = {lxl —WN-272 if 8, =0,

with B, = V&, . If 6, < 0 the space of solutions of (4.36) is generated by

(6.40) v ) = [x|@~ M2 cos (v =8, Ln/r ),
) {v’z‘(x) = |x|®~™"25in (v =8, Ln~/7 ).

Surprisingly the case g > (N + 2)/(IN — 2) is simpler than the case 1 < g <
(N+2)/(N-2).

Theorem 4.3. Assume q > (N + 2)/(N — 2) and that —2/(q — 1) is not a
solution of (4.37) for some k € N. If u is a solution of (4.1) in B;(0)\ {0} such
that

(4.41) lim |2/~ Du(x) = 0;
x->0

then we have the following alternative.

(i) either there exists | € N satisfying 6, > 0 and y e Ker (Agn_, + N1), ¥ # 0,
such that

(4.42) lim r® =282y (r, o) = y(+)

r—0
in the CSN~Y)-topology,

@ii) or u=0.

ProoF. As —2/(q — 1) is not a root of (4.37) we can apply [13, Lemma 2.1].
Henceforth there exists € < 0 such that
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(4.43) [u(x)| < M|x|~¥@-D+e

near 0. Let k, be the smallest integer such that 6k0 > 0; then, as in [13], we
derive the estimate

(4.44) )| < Mx| ~V-2-86)72

near 0 and this estimate yields easily that there exists y; € Ker (Agn_, + )\kol )
such that

(4.45) lim r® =278 2y(r, 0) = Y.

x=0
If Y = 0, then, as in [13], we obtain
(4.46) lu()| < Mix| =N =27 P+ 072,
etc., and we carry on as above. If we assume that

(4.47) lim |x|NV~27802(x) = 0

x—=0
for any k € N, we conclude that # = 0 from Aronszajn’s unique continuation
theorem [1].

If 1<g<(N+2)/(N-2) we have (N - 2)/2<2/(g — 1) and the prop-
erties of u will depend on the sign of (N — 2)® — 4c.

Theorem 4.4. Assume 1 <q< (N + 2)/(N — 2), that —2/(q — 1) is not a
root of (4.37) for some k € N and (N — 2)? > 4c. If u is a solution of (4.1) in
B;(0)\ {0} satisfying (4.41); then let k, be the largest integer such that

(4.48) (N =2+ B)/2<2/(g-1);
(i) either there exist an integer k € [0, k,] and a nonzero e Ker (Agn_; + NeI)
such that
(4.49) lim u(r, )/uir) = ¥(+)

in the C*(SN~Y)-topology,

(ii) or there exist an integer k > 0 and a nonzero € Ker (Agy_, + N 1) such
that (4.49) holds with ¥ instead of p,

(iii) or u=0.

The proof is the same as the one of Theorem 4.3.
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Theorem 4.5. Assume 1 <q< (N + 2)/(N - 2), that —2/(q — 1) is not a
root of (4.37) for some k € N and (N — 2)* < 4c. If u is a solution of (4.1) in
B;(0)\ {0} satisfying (4.41), let ky =1 be the smallest integer such that
&, =0.

o

Casel. 2/(g—1)=>2(N-2+ Bko)/z. Let ky = k, be the largest integer such
that

(4.50) (N-2+ 6,(1)/2 <2/(g-1).

Then

(i) either there exist an integer k € [ky, k1] and a nonzero y e Ker (Agn_, + N 1)
such that (4.49) holds.

(ii) or there exists k, couples of functions (¢, y;) both belonging to
Ker (Agn_, + NI) for ke NN [0, ky — 1], one of the above functions at
least being nonzero, such that

4.51) lim {r&=22y(r, +)
r—0

- I:Zj: (cos (\/ —&; Ln~/r )¢k + sin(\/ —&; Ln~/r )wk)} =0

in the C*(SN~Y)-topology,

(iii) or there exist an integer k > k, and a nonzero Y € Ker (Agn_, + N I) such
that (4.49) holds with p% instead of ¥,

@iv) or u=0.

Case II. (N-2-— Bko)/2 >2/(q — 1). Only the parts (ii), (iii) and (iv) of
Case I hold.

Proor. As in the proof of Theorem 4.2 the (i) of Case I is clear as —2/(g — 1)
is not a root of (4.37). Henceforth we may assume that

(4.52) |u)| < M|x|®-™7?
and define
(4.53) w(t,0) = r"~22y(r,0), t=Lnr.

Therefore w satisfies

(-2

1 >W + e(q_l)(N_z)t/ZWIW}q_l =0

4.54) w,+ Ay W+ (c
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in (—o0, 0] x S~ ! where it stays bounded. Let w* be the projection of w onto
Ker (Agn_, + N\I) for 0 < k < ko — 1. Then w satisfies

5 2
4.55) wft + <c — £2472k)>wk + e4- 1)(N—2)t/2fk -0

where f; is bounded, and it is easy to check that

(4.56) lim (W (t) — cos (N =8¢ 1/2)¢y — sin (v =8, /2)ux) = 0

for some ¢, Y, in Ker (Agn_; + N J). As the o-limit set of the trajectory of
(w(t, *)); <o is included into the direct sum of the Ker(Ag,_, + N ) for
k=0,...,ky,— 1, we get (ii). The remaining of the proof is as in Theorem 4.2.

Remark 4.4. If N= 2 and ¢ <0, Theorem 4.4 holds for any g > 1.

Similar types of results (with some times many cases to examine) hold for
the exterior problem. We just give the basic ones corresponding to Theorem
4.1-4.2.

Theorem 4.6. Assume g e (1, )\ {(N+ 2)/(N — 2)} and u is a solution of
4.1) in GD {x:|x| > 1). Then r*“=DYu(r, ) converges in the C3(SV~')-
topology to some compact connected subset of the set £ of the C3 (S~ 1)-
JSunctions satisfying (4.2). Moreover there exists precisely one w € ¢ such that
(4.57) Lm r¥@=Du'r, o) = w(s),

r—0

at least if one of the conditions (i)-(v) of Theorem 4.1 is fulfilled.

Theorem 4.7. Assume 1<qg<(N+2)/(N-2), 0<c<(N-2)/2)? and
N\ = 0. If uis any solution of (4.1) in G D {x: |x| = 1}, then the following limit
exists

(4.58) lim u(x)/(u; C(Ln |x))*7?) =T

|x] 2o
with

_2-N++J(N-2’-4c 2

2 g-1

o531

and

(4.59) Te (0, £(2(g + 1) - N(g - 1))/(g - D)~ P).
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From Theorems 4.1 and 4.6 we know that a global solution of (4.1) in
RN\ {0} satisfies

(4.60) lim 79" Dy, e t_, lim r¥ 9~ Dy(r, o) e £,

r—0 r—co

where £_ and £, are two compact connected subsets of . If we define

1 N
4.61 E(n) = —|vn|* + 7+l g2
(4.61) () LN_1<2 n|” + q+1 Il 5 )do,
then EIIL =FE_, E|£+ =FE, and
(4.62) <N 2-‘“—1)[ j vdosr=E, —E_,
SN—-1

where we have used the notations of (0.30). This relation tells us what are the
set of elements of & for which a connecting orbit may exist. The way to con-
structing connecting orbits is to go through a semiflow as in [13] and to con-
structing such a semiflow we need an existence and uniqueness result for some
initial boundary value problem.

Theorem 4.8. Assume 1 < q. Then for any ¢ € C(0B,(0)) there exists a uni-
que ue C(( B,(0))N C*(( B,(0)) satisfying

(4.63) —Au - ﬁTu +ulul?"t=0
in ((B,(0)) and u = ¢ on 3B,(0) if one of the two following conditions is
Sulfilled

(D) N> 0, u and ¢ are nonnegative, and either 1 < g < (N + 2)/(N - 2), or
g > (N+2)/(N~-2)and c> (N - 2)*/4,
(ID) either c<0,0r 0<c<(N—2)*/4and 1 <qg<(N+2)/(N-2).

Proor. Case I-Step 1. Uniqueness. If A >0 and u > 0, we know, from
Theorem 4.1 if ¢ # (N + 2)/(N — 2) or from [17] when g = (N + 2)/(N — 2),
that

(4.64) lim 729~ Yy(r, o) = L € {0,\/@~ D},

r—oo

If ¢ #0, u > 0in B,(0) from the strong maximum principle. If L = 0 we get

(4.65) <N 297 i >v + O\ = e()D =
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where €(?) is a positive function tending to 0 at infinity. Let § be the discrimi-
nant of the equation with constant coefficients associated to (4.65)

2
Zti) — A\ = (N - 2) — 4.

(4.66) 5= <N -2

If1<g<(N+2)/(N-2),0is a source and 7 cannot tend to 0 except if it
is identically 0; if ¢ > (N + 2)/(N — 2), then & < 0 and any solution of (4.65)
tending to 0 at infinity must oscillate around 0, a contradiction. Henceforth
L = \"@=D_If we linearize (0.31) at \’@~ D we obtain the following equation

q+1
qg-—1

(4.67) &, + <.N ~2 >¢t + Agn_16 — (g — DA = 0.

As this equation satisfies the maximum principle we deduce that for any ¢ > 0
there exists C. > 0 such that

(4.68) [t &) = N4V pagsn1y S Cee™ T,

where

1 g+1 g+1)°
(4.69) 1_5{<N—2q_1>+\/<N—2q_1> +4)\(q—1)z,

which implies

(4.70) lu(r, ) = NV/@=Dp=2@=D _ cy yy S Cr™¥@7D77e,

Assume now u and # are two solutions of (4.63) with same initial data ¢ > 0,
u and 7 > 0. Then for any R > 1 we have

@.71) —j <A—ﬁ - vAf?>(u2 -2+ j (u|? = |2]7~ Y@? - v*) =0,
BL©) u BL©)

u

and

Au Al . u a,
B (0) u u dBR) \ U U
2
Br (0

+
Uy iy 2 _ p2 N-2-4/(g-1)—
(472) —_——— (u - )=O(R( @-1 T+E))
9BR(0) i

u_ 2
Vu - —Vi >'
u

.U
Vi — —Vu
u

But from (4.70) we have

u
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and

4 1 g+1 g+1\*
N-2—-—_—7=_{N=-2 - -~ ~
=1 2{ o \/<N 2 1> + 4Ng 1)}

which is negative. For e small enough we deduce

2
4.73) J‘ < >
Bg(©0)

" j (=1 = |31~ Yw? - v*) = 0,
BR(0)

2

]
+ | Vi — —Vu
u

u..
Vu - —-Vi
u

which implies the uniqueness.

Step 2. Existence. We consider the following iterative scheme

C . =
—Au,,+u3=]-);l7—u,,_1 in (B,(0) (n>=1),

4.74)
u,=¢ on 0B;(0)

uo = 0.
{u,} is increasing. For A > \"/@~" the function ¥, (r) = Ar~ %@~V satisfies

4.75) —AY, +YL ﬁ‘p,\ .

If we choose A 2 [¢] g5, oy We deduce ¥, > u; and finally 0 < u; <%, <

-+ <u, <y, .Clearly u, converges to a solution u of (4.63) with initial value ¢.

Case II. Step 1. Uniqueness. Let u and # be two solutions, w = u — i,
u(s, 0) = w(r,0)/p (1), s= r® (we assume ¢ < (N —2)?/4, the case c=
(N — 2)?/4 is treated by the same technique, see Lemma 1.4); then

(4.76) S2IWGS, ) agsn-1)s = 0

in D'(0, +). As |W(s, *)| 2sn-1) = 0(5) at infinity, w=0.

Step 2. Existence. We approximate u by the solution of the following
problem in B,(0)\ B,(0)

—Au, — ~xc—lzu,, + |, =0 in B,(0)\By(0), n>2,

I
u,=¢ on 4B,(0),
u,=0 on 0B8,(0).

4.77)
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u,, is unique (see Step 1), uniformly bounded, therefore it is convergent to the
desired u.

Remark 4.5. Using a phase plane analysis for the radial solutions of (0.31)
we can see that Theorem 4.8 is optimal. It is also of some interest to notice
that if A\ < 0 there exists no positive solution of (4.63) in (| B, (0): if u were such
a solution, then lim,_, r*’@~Pu(r, +) = 0 from Theorem 4.1 if g < (N + 2)/
(N - 2) and [17] if g = (N + 2)/(N — 2) and then

L, a+1) 7 2 = _ 1 20, -
(4.78) <N 2 Py 1>J\0 jSN_lvtdodt— E(¢) + 2 jSN_lvt(O, )do

where we use the notations of (0.30) and (4.61), and u(x) = ¢ on 3B;(0). If
g=(N+2)/(N—-2) we deduce E(¢p)=0= ¢ =0. But we can replace
¢ = v(0, ¢) by v(7T, ») for any T > 0.

Remark 4.6. Thanks to Theorem 4.8 we can define a semiflow ® on X =
C*(SM¥~ 1 in Case I or on C(S¥~1) in Case II by the formula

4.79) 2,(0)() =ut,*) (20)

if u satisfies (4.63) in (B,(0) and u = ¢ on 8B, (0). Clearly & satisfies

@ ®0=1,

(i) ®,,, =%, 09,
(iii) (¢, ¢) — @,(¢) is continuous in (¢, ¢).
The proof of those assertions is the same as the one of [13, Proposition 3.2].
Moreover & is strongly order preserving in the sense that being given ¢; and
¢, on X, ¢; = ¢,, &; # ¢,, then for any ¢ > 0 there exists 6 > 0 such that for
any n;, 1, € X, satisfying

"¢1 - M "CO(SN— 1y < 5:
” ®y — 1M, ”CO(SN—I) <90
we have
P =>® ,
(4.80) t(nl) 1(772)

@,(n,) # ®,(n,).

Finally, if B is a bounded subset of X and ¢ > 0, ®,(B) is relatively compact
in X. Those results are what we need to apply Matano’s Theorem concerning
heteroclinic orbits of ¢ connecting two equilibria w, and w, such that [w,, w,]
contains no other equilibria than w, and w, [18].



110 BoucHAIB GUERCH AND LAURENT VERON

Remark 4.7. In order to apply Matano’s method we need to know what is
the structure of the set £ of the solutions of

4.81) —Agn-10 + ]! =

on SV~!, The complete structure is far out of reach, but using the geometric
technique we have introduced in [30] one can describe some of the solutions
of (4.81) associted to a tesselation of S~ !. We first recall that if G is a
subgroup of O(N) generated by reflections through hyperplanes containing 0
and if G is finite, then G contains a finite number of reflections through
hyperplanes (Hy), ., containing 0 and those hyperplanes divide RY into a
finite number of angular polyhedra (P)),_,, each of them being limited by at
most N faces [12], [9]. Moreover those polyedra are all equal and G acts tran-
sitively on them. The intersections of those angular polyedra with S~¥~1! are
spherical simplexes (S;),.; on which G also acts transitively. Henceforth we
can consider only model simplex S as a fundamental domain for G. The com-
plete description of those finite groups generated by reflections can be found
in.[9] but on R? there exists only five types of subgroups: type I is generated
by :eflections through two hyperplanes with angle n/n; type II is generated
by tie reflections through two hyperplanes with angle «/n and a reflection
through an hyperplane orthogonal to them; type III, IV and V are associated
to Plato’s polyedra [14] and have respectively 24, 48 and 120 elements. In
order to construct a solution of (4.81) with a high degree of complexity we
consider a finite subgroup of reflections G with fundamental simplicial domain
S on S¥~! and we call \(S) the first eigenvalue of —Agn-, in W(l)’Z(S). It is
clear that \(S) is an eigenvalue of Agy_, on SN=1 If N > N(S) we call wg the
unique positive solution of the following equation on S

(4.82) —Agn-10g + 0 = g,

wg vanishing on S (wg is a minimizer). We then extend wg by reflection to
whole SV~ according the formula

(4.83) wgs. = det (glwg 0 g

if S; = g;(S) for some g; € G. As the vertices have codimension 2 in "~ ! and
w is bounded, wg belongs to £ [20]. For A > 0 let £* be the subset of £ of solu-
tions of (4.81) containing the three constants and the solutions which are of
type w; for some finite subgroup of reflections G (as wg is constructed,
wg © 7, for any 7€ O(N), is of the same type). If w; and w,. are two non-
constant elements of £* associated to G and G’ with fundamental simplicial
domains S and S’ and if S is a disjoint union of a finite number k of g}(S’),
1<j<k, g;€G' we shall say that the frequency of wg. is a multiple of the
Jrequency of wg. As Dg|s is energy minimizing we clearly have
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1 1 A
'4 _v 2 - q+1__ 2
(48)L<2| wgl +q+1|wG| 2w0>

1 1 A
—|v ’2 ’q+1___ 2’
< [, (31wt + oy logtr™ - 3o

which clearly implies
(4.85) E(wg) < E(wg) < 0.

Using also the techniques of Theorem 4.8, for example the increasing iterative
scheme

(4.86) {—Aszv-lwn+wﬁ=>\wn-1 in S

w, =0 on 4§
with wy = wg,,s, (S’ C S), we deduce
(4.87) wg > wg in 8.

{
The following result the proof of which is an extension of Theorem 4.8 will
be useful in the sequel for constructing a semiflow.

Theorem 4.9. Assume Q is an open subset of S¥ ™', K, is the piece of cone
defined by

(4.88) K,={10:7>1,0€Q]},

NQ) is the first eigenvalue of —Agy_, in Wy*(Q) and 3K, is the lateral
boundary of K ; let q be bigger than 1. Then for any ¢ € Cy(Q) there exists
a unique u € C(K,) N C*(K,) satisfying

(4.89) —Au—Fccl—2u+u|u|‘1‘1 =0
inK,, u=0on 5Kﬂ , U= ¢ on Q if one of the following two conditions is
Sulfilled

(D) N>\, (), u and ¢ are nonnegative, and either 1 < q < (N + 2)/(N — 2)
or g> N+ 2)/(N-2) and c >\ (Q) + (N — 2)*/4,
(1) either c <\ (Q), or M @) < c <KM@+ N —2)*/4and 1 < g< (N +2)/
(N - 2).

With this result we can define a semiflow € on X = CJ (Q) in Case I or
on C,(Q) in Case II and, if 8Q is Lipschitz, € is a strongly order preserving
semiflow on X mapping bounded subsets of X into relatively compact subsets
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of X for t > 0. We are now able to study the solutions u of (4.63) in RV\ {0}
such that

Limr? @~ Dy(r, o) = wy,  limr¥@" Ou(r, o) = w, or
@) 17" m

lm @ Vu(r, o) = @y, lim r 9 Du(r, 0) = o,

r—o0 r—e

and by extension of the notations of Remark 4.7 we shall say that the two con-
stants £\"“~ 1 are of type wg; with G = {I,} and S=SV"1, \(S) = 0.

Theorem 4.10. Assume g > 1, w, and w, € £*. Then there exists a solution
u of (4.63) in RN\ {0} satisfying (4.90) if

(A) w; =0, w, = wg for some G and one of the following two conditions
is fulfilled

() 1<g<WN+2)/(N-2),
(i) ¢ >N +2)/(N - 2) and ¢ >NS) + (N = 2)*/4;

(B) wy =N@"D ) =, for some non trivial G and either ¢ <0, or
0<c<(N-2%/4and 1 <qg<(N+2)/(N-2);

(C) w1 = wg, W, = wg, the frequency of wg. is a multiple of the frequency
of wg and either ¢ < N(S) or M(S) < ¢ <N(S) + (V — 2 /4and1< g <
(N +2)/(N - 2).

The proof of the Theorem is essentially a consequence of the construction
of Remark 4.7 and of Theorem 4.8 for B and C and Theorem 4.9 applied in
K for A; in that last case the positive solution constructed in the cone with
basis 0 and vertex 0 is extended by reflection to be a solution of (4.63) in
RM\ {0}. It must also be noticed that the case 4, B and C imply A > \(S),
A > N(S) and A > \(S’) > N(S) respectively.

Remark 4.8. The complete set of the critical values of £ is not known, in
particular is it true that all the connected components of ¢ have different
energy value (the energy is constant on each connected component from
Sard’s theorem)? Such an exclusion principle is valid on £*.
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