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1. Introduction

Spherical mean value operators on a compact Riemannian manifold M have
been extensively studied by Sunada in a series of papers [14], [15] and [16].
He has studied the eigenvalue problem L, f = of associated with the spherical
mean value operator L,. The question about the eigenvalues o =1 and
o« = —1 arerelated to the ergodicity and mixing properties of the geodesic ran-
dom walk of step size r on the manifold M. In a recent article [7] Pati-Shah-
shahani-Sitaram have investigated the eigenvalue problem in the case when M
is a compact symmetric space. In this case they are able to identify the eigen-
values completely in terms of the elementary spherical functions associated to
M. They provide alternate proofs of some results of Sunada regarding the
eigenvalues 1 and —1. Let us briefly recall their result.

Let M = G/K be a compact symmetric space. Then the spherical mean value
operator L, can be identified with a convolution operator L, f = f * », where »,
is a certain probability measure which can be viewed as a K-biinvariant measure
on G. Let G, denote the collection of all pairwise inequivalent, irreducible,
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unitary representations of class 1 of G. For each 7 € G, there is an elementary
spherical function ¢, associated with it. The main result of [7] can now be
stated as follows.

Theorem 0. All the eigenvalues of the operator L, are of the form

Val) = [ 60 d,

where 1€ G, .

The aim of this paper is to study spherical mean value operators on the
reduced Heisenberg group -H"/T". Here H" is the Heisenberg group and I' is
the subgroup {(0, 27k): k € Z} of H". The Heisenberg group H" is a nilpotent
Lie group whose underlying manifold is C" x R. The coordinates on H" are
(z, t) where z = x + iy with x, ye R" and ¢t € R. The group law is defined by

(z, H(w,s) = <z +w,t+s+ %Isz)-

The Haar measure in H” is the Lebesgue measure dzdt. The group H"/T is
a nilpotent Lie group with compact centre. A function on H" is said to be
radial or rotation invariant if it is invariant under rotations in the variable z.

By a spherical mean value operator we mean an operator of the form
T,f=f* p where p is a rotation invariant compactly supported probability
measure on H"/T'. We are able to identify all the eigenvalues of the operator
T,. For each k =0,1,2,... and \ # 0 there are certain radial functions e},
on the Heisenberg group A" which can be thought of as the elementary
spherical functions for the Heisenberg group. As in the case of the compact
symmetric space, the eigenvalues are then given by the averages of e’,; with
respect to p.

Theorem 1. Assume that p has no mass at the centre of H"/T'. Then all the
eigenvalues of the operator T, are given by

() = [, eiz e,
where j is an integer. Further, any function of the form f * e, J satisfies
T,(f* eg9) = e (S * € ).

“We can make more precise statements regarding the eigenvalues if we take
u = u,  where p, , is the normalized Lebesgue (surface) measure on the sphere
S, :=1{(z1):|z] =r} in H"/T'. Let M, , stand for T, when p =y, ,. The
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elementary spherical functions e{c(z, s) are radial functions of z and slightly
abusing the notation we write e’ (r, s) in place of e’ (z,s) when |z| =r.

Theorem 2.
(i) All the eigenvalues of the operator M, , are given by o;(j) = e{‘(r, 1).
(i) @ = 1 and a = —1 are not eigenvalues of the operator M, , for any r > 0.

By writing down the Fourier series of f* pu, , we can see that it involves
operators of the form g X u, where g X p, is the twisted convolution of g with
the surface measure on the sphere |z| = r in C". The spectral properties of the
operator T,g = (27)"g X u, are worth studying and we have the following
theorem.

Theorem 3.

(i) All the eigenvalues of the operator T, are given by

k!'(n—1)!

oy = md’k(r)

where ¢, are the Laguerre functions of type (n — 1).

(ii) For each k the eigenspace corresponding to the eigenvalue o, is infinite
dimensional; hence the operator T, is not compact.

(ili) « = 1 and a = —1 are not eigenvalues of T, and a = 0 is an eigenvalue
if and only if ¢,(r) = 0 for some k.

The operators 7T, also arise naturally in connection with certain restriction
operators R, for the symplectic Fourier transform on R?". In Section 5 we will
show that we can write

f@ = @4m) ">, ("R S@r*" " dr

where R, are the restriction operators. These restriction operators R, are
related to 7, by R,f= 7)) "T(F,f) where F,f is the symplectic Fourier
transform of f. Using the above relation and the spectral properties of 7, we
are able to prove the following theorem regarding the mapping properties of
the restriction operators R,.

Theorem 4. Assume that n > 3. Then the following are true.
0 RS <Gl S, for 1<p<2,

2n
n+1

@) RSl <Clflp Sfor <p<2,
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2n n—1

@) [Rflg<ClSlps for 1Sp<_—5 a=_—7p"

To prove this theorem we need to use some mapping properties of the pro-
jection operators associated with special Hermite expansions. We will also
show that the operators R, are regularising in the sense that they take L%(C")
into W*(C") where “W*(C") are the twisted Sobolev spaces to be defined in the
sequel. The plan of the paper is as follows. In the next section we will define
the functidns ez and show that they have all the properties satisfied by the
elementary spherical functions. In Section 3 we will prove Theorem 1. The
spectral properties of 7, will be taken up in Section 4 and finally the restriction
operators will be studied in Section 5.

Finally, the author wishes to thank the hospitality of Indian Statistical
Institute, Bangalore where the ideas of this paper took shape. He also wishes
to thank A. Sitaram from whom he learnt the theory of elementary spherical
functions and G. B. Folland for some useful discussions. The comments and
suggestions of the referee are also gratefully acknowledged.

2. Elementary Spherical Functions on the Heisenberg Group

Let us briefly recall the definition and properties of elementary spherical func-
tions. Let G be a semisimple, noncompact, connected Lie group with finite
centre and K a maximal compact subgroup. Let C.(K\G/K) denote the
space of continuous functions with compact support on G which satisfy
Sf(kigk,) = f(g) for all k;, k, in K. Such functions are called spherical or
K-biinvariant. Then C,(K\G/K) forms a commutative Banach algebra under
convolution. An elementary spherical function ¢ is then defined to be a
K-biinvariant continuous function with ¢(e) = 1 such that f— f * ¢(e) defines
an algebra homomorphism of C.(K\G/K).

The elementary spherical functions are characterised by the following prop-
erties (see [3]).

(i) They are eigenfunctions of the convolution operator:
f* 6 =619,
where
$(f) = [ Sl D) dx.

(ii) They are eigenfunctions for a large class of left invariant differential
operators on G.
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(iii) They satisfy
[, $0cky) dk = B()B().

Let us now consider the case of the Heisenberg group H”. The role of the
K-biinvariant functions will be played by the radial functions on H". If
L:ad (H™) stand for the subspace of L!(H™) containing all the radial functions
then it is well known that L] ; is a commutative Banach algebra under con-
volution (see Hulanicki-Ricci [5]). This will play the role of C.(K\G/K). On
the Heisenberg group we have the following (2n + 1) left invariant vector

fields Xj, Y}, T:

9 1,9 _ 0 L9, 2
iTex, 2%ar T ey, T 2 a1

The sublaplacian on the Heisenberg group is defined by
L=-2&+7).
i=1

Let ¢, be the Laguerre functions of type (n — 1) defined by the generating
function identity

co

2.1) 3 rfee@) = — r)—ne—(1/4)(1+r)/(1—r)|z|2.

|1/2

For any nonzero real number \ we set d>2(z) = ¢ (J\|'"*z) and define ez by

k! (n — 1)
k +n—1)!

2.2) erz, 1) = e™M¢) ().

It follows from the properties of the Laguerre functions (see Szego [17]) that
ez(O, 0) = 1. We claim that these functions satisfy the following properties.

Theorem 2.1.

(i) For any polynomial p with constant coefficients one has

(2.3) p(L) ek = PNk + n))e}.
(ii) For any radial function f on H" one has
(2.4) f* ey =Q2m)"Re(~\.f)e;
where R, (\, f) is defined by the formula
_. Kl(n-1)
2.5) R.(\S)=(2m G+n=Dl L"f(z, N} (2) dz,



140 S. THANGAVELU

f(z,\) being the inverse Fourier transform

o0

fz N = j e™f(z, t) dt.

-

(iii) For any (w,s) in H" with |w| = r one has the identity

L 1 er(z, 1) - (—rw', —s))do (W) = e} (z, 1) e; MW, 5)
w|=1

where do is the normalized surface measure on |w'| = 1.

Thus we see that the functions ei have all the properties satisfied by the
elementary spherical functions on a semisimple Lie group. So, they can be
rightly called the elementary spherical functions for the Heisenberg group.
The above properties of the function ez are fairly wellknown in the literature
though not stated in the above form (see e.g. Stempak [12] and Strichartz
[13]). Nevertheless, we will give a proof of the above theorem here.

To prove the theorem we need to recall several facts about the twisted con-
volution and the Weyl transform (see Folland [2], Mauceri [6] and Peetre [8]).
The twisted convolution of two functions fand g defined on C” is defined to be

2.7 fxg@= Lnf(z — w)g(w) e’ gw.

The Weyl transform of a function fis the bounded operator W{(f) acting on
L*(R") given by

2-8) W(f)e(8) = J‘O’f W (2)¢(§) dz

where ¢ € L%(R") and W(z) is the operator valued function
2.9 W(2)p(8) = e+ Dg(& + y).

The relation between the Weyl transform and the twisted convolution is given
by W(f % g) = W(/)W(g).

The Hermite functions &, (x) play an important role in the harmonic analysis
on the Heisenberg group (see Folland [2]). These are eigenfunctions of the Her-
mite operator H = (—A + |x|?), H®, = (2|a| + n)®,. Let P, be the orthogonal
projection of L?(R") onto the k™ eigenspace spanned by {®,: |a| = k}. We
also need certain properties of the special Hermite functions. Let us define

2.10) B5(0) = 2m) "2 Lﬂ ei"f‘ba(f + %><1>6<£ - %> ds.
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Then it is well known that they form a complete orthonormal system for
L*(C™) (see Strichartz [13]). Let n(c, B) denote the operator defined by

W(a’ B)d’ = (¢a éa)q’ﬁ .

Then one has the following proposition (see Folland [2] and Peetre [8]).

Proposition 2.1,

@) W(@uﬁ) = )" *w(e, B) and consequently @5X®,;=0if B#v and
Bop X Dgs = (27)?® 5.

(ii) W(¢y) = @x)" P, and consequently ¢ X ¢, = (2 )" Dk Where 6, s the
Kronecker 6.

By abusing the notation slightly let us write ¢,(r) in place of ¢,(z) when
|z| = r. Then the functions

Zl—nk! 172
Y () = <(T—+_-n——l)'> (1)

form a complete orthonormal system in L*(R  , 72"~ ! dr). If fis a radial func-
tion on C" then we can expand f interms of ¥, () obtaining

@.11) J@= 2 R(f )k
where
K-
Re(f)=(2m) GCrn=nl j;:"f (2)¢x(2) dz.

This proves that when f is a radial function one has f X ¢, = Q@)"R,(f)dy .

Now we are ready to prove Theorem 2.1. The assertion (i) is already proved
in Strichartz [13] and so we will not prove it here. For (ii) an easy calculation
reveals that

k! (n -1

A -
I*eda D = G a T

e"’“‘f F@ = w, =Nph(w) e VDI gy
cn

It is therefore enough to show that the above integral is equal to 2 )" R (—\, f)
¢>2(z). By rescaling we can assume that A\ = —1. But then we need to show that

L"f(z — w, Do, (W) e”*™¥ dw = 271)"Ri (1, /)¢, (2)

which follows from the above remark as f is radial.
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The proof of the assertion (iii) is similar. We have

L l ek(z—w,t—s——;—lmzﬁ’)do(w’)
w|=1

Klin—1! sy A —i(V2) Imzw
= - - -l -e — do (W').
k+n=D! |w’|=1¢k(z w)e T da (W)
Again we can assume that A = —1. The function

Fk(z, W) — L ¢k(z _ W) ei/ZIszda,(wl)

w|=1

is a radial function of w and hence in view of (2.11)

Fk(z, w) = _Z;ORJ'(Fk)d’j(w)-
j=

But
R/(Fy) = (21)‘"%:%% Lan(z, w)g; (w) dw
_ (zw)-"v’:if”n—:%)!?¢k X 6,(2).
This proves that
Feles W) = e i 8@, ).

We have proved that
1
J‘ e, <z ~wt—s=Im zw> do (w') = ek(z, 1) e; "(w, s).
lw'l=1
Hence the theorem.

We would like to end this section with the following remark. Recently
Benson-Jenkins-Ratcliff [1] has studied «spherical functions» on the
Heisenberg group. Let K be a compact group of automorphisms of H” such
that the convolution algebra L} of K-invariant functions is commutative. A
bounded, continuous K-invariant function ¢ such that f— j fo is an algebra
homomorphism on L} is called a K-spherical function. In [1] the authors have
studied the K-spherical functions for various different K. When K = U(n), the
K-spherical functions include our ei. (We are indebted to G. B. Folland and
the referee for bringing the above work to our attention.)
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3. Spherical Mean Value Operator on the Heisenberg Group

Let H" be the n dimensional Heisenberg group defined in the previous section.
Let I" be the discrete subgroup {(0,0,2wk): k€Z}. Then the quotient group
H™"/T is called the reduced Heisenberg group. For g € SO(2n, R) we define a
rotation

gH"/T>H"T by gzt)=(gz1).

By a radial measure we mean a measure p such that for every g e SO(2n, R)
and every Borel set S C H"/T" one has u(S) = u(g~'S). Let u be such a rota-
tion invariant probability measure with compact support. Then the operator
T,f=(f*p) is called a spherical mean value operator. In the following
theorem we identify all eigenvalues of 7, as averages of the elementary
spherical functions e/ as claimed in the introduction.

Theorem 3.1. Assume that p. has no mass at the centre of H"/T'. Then all
the eigenvalues of the operator T, are given by oy(j) where

el (z, ) dp.

)=

Any function of the form f * e, J is an eigenfunction corresponding to o, (j).

To prove this theorem we need to recall several results about the Fourier
transform on the Heisenberg group (a good reference is Geller [4]). For each
real \ # 0 we have an irreducible representation ,(z, ¢) acting on L*(R"). It
is defined by

G.1) @, )B(E) = e™ ePEEVZENg(g 4 y).

The Fourier transform of a function f on H" is the operator vaiued function
FO\) defined by

Jo = [ @m0 dzdt.
When f is a radial function f(\) is given by the formula
(3.2) foy =@ kZO R\ S)Pr(N).
Here R; (A, f) are as defined in (2.5) and P, ()\) are the projections of LX(R™

onto the space spanned by {|\|"*®,(|\|"?x): |a| = k}. In the case of H"/T,
), is a representation only if A is an integer say \ = j.
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Let X, be the function defined by

(3.3) X@ 1) =Qm" 3 e VeI 1) j|"

j=-=
Then it is easy to see that x, € LA(H") and %, (j) = e~7*/2P, (j). We can now
calculate the convolution p * X, .

Lemma 3.1. Let u be a rotation invariant probability measure and let X, be
as above. Then (pn * X)) (J) = o (/)X (J)-

Proor.  Since u * X, is a radial function we can calculate the Fourier transform
using formula (3.2). A calculation shows that

fe"j’u * X, (z, ) dt = 2m) "] j|"e /> o ®h(z — W) e DI gyl

where pu/(w) is the j-th Fourier coefficient of y in the ¢ variable. It follows that

Rk x) = @my L= DL - L o w) W)

k+n-1)
and R;(J, u * X;) = 0 for i # k. This shows that
. -_— '2 j -
(l" % Xk)/\(j) =e/ /z(j‘H"/I‘ei(z’ t) dﬂ)Pk(j)
This completes the proof of Lemma 3.1.

We can now prove the first part of Theorem 3.1. We claim that there exists
k and j # 0 such that (f * x,)"(j) # 0. Assuming the claim for a moment we
will prove the theorem. Let f * p = of for a non zero fin L?(H"/T"). Then in
view of the lemma o, (/)(f * X,)"(J) = (f * p * X)"(J) = a(f * X,)"(J). This
proves that o = a, (j) as (f * x)"(J) # 0.

We will now prove the claim. If (f * Xk)A(j) = 0 for all k¥ and j # 0 then
calculating the Fourier coefficients of f* X, one can see that all the Fourier
coefficients of f except the zero-th one are zero and consequently

27

1
[z, t) = Af(2) = 27 o fz, t)dt.

Asf#0,Af # O'andf* p = of becomes Af * py = aAf where now the con-
volution is on R*” and p, is the compactly supported measure

duo(@) = [ du (2, 1).

But then Af has to be zero which is a contradiction.
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To prove the second part of the theorem we need to recall Choquet’s
theorem. Let K” stand for the set of all rotation invariant probability
measures on H"/T". Let ext (K™) stand for the set of all extreme points of
K". Then one has ext(K") = EUA, where E = {y,,} and A, = {§,:1€ R}.
Here p,,, r>0 is the normalized Lebesgue measure on the sphere
S, .= {(z,1):|z| =r} in H"/T and §, are the Dirac measures. Given p€K",
according to Choquet’s theorem there is a measure M such that

3.4 w(B) = jEUA o(B) dM(o).

If u has no mass at the centre of H"/T" then M(4,) = 0 (see Stempak [11]) and
we have

3.5) w(B) = JEU(B)dM(a).

Let us consider f * e;/ * u. In view of (3.5) we have
(3.6) frelxp= | (f*e % 0)dM(o).
When o = p, , we can easily calculate e, J % ¢. In fact,

k! (n—1)!

~J % =
€ br, (2, S) k+n—-1)!

RS j ei(j/Z)Iszd){c(z — wydy,.

Recall that p, are the normalized surface measures on the sphere |z| = r. Since
the functions |j|"2y,(]j|*/?r) where ¥, (r) are defined in the previous section
form an orthonormal basis for LR ., 7>"~'dr), we can expand the radial
function

G(®) = [, eV (2 — W) dp,

in terms of them. In view of the relations ¢; X & = (27r)”6jk¢k one calculates
that e,/ % p = e} (w, 1) e, ’(z,s) where |w| = r. This means that

fre * Py = el W, 1)(f* e ’) = u,,,(ej,;)f* e’
where
P CAES je{c(z, s)du, = et (w,0),  |w|=r.
Putting this back in (3.6) we get
Fregtxp= ([, o) dM@)(f * eh) = wel) S+ .

This completes the proof of Theorem 3.1.
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When p = p,_, it is immediate that oy (j) = e’,;(r, t). This proves part (i) of
Theorem 2. To prove that « = +1 are not eigenvalues of the operator
T, =M, , we will prove in the next section (see Proposition 4.2) that for all
r > 0 one has

k!'(n-1)!

m!—|¢k(r)| <L

This will then complete the proof of Theorem 2.

4. Spetral Properties of the Operator 7,f = 27)"f X pu,

“As we have seen in the introduction the study of the spherical mean value
operator on the quotient group H"/T' involves operators of the form
S f X n,. These operators are interesting in their own right and we will show
in the next section that they are connected to the restriction operators for the
symplectic Fourier transform. We study the spectral properties of the
operators T, f = (27)"f X pu, where g, is the normalized surface measure on the
sphere |z| = r. For the operators 7, we have the following alternate descrip-
tion.

Theorem 4.1.

S kl(n-1!

4.1) T.f@) = 2,

K=0 m¢k(r)fx % (2).

This Theorem is an immediate consequence of the following Proposition in
view of the relation W(f X g) = W(f)W(g).
Proposition 4.1.

k! (n— 1)!

4.2) W(w,) = k;ﬂ m%(’ﬂ’k-

Proor. Let p,(z) be the Poisson Kernel defined by

» (7;) _ 1_‘<2n + 1>7r_(2"+1)/26(62 4 |g[2)-@n+ 22
€ 2 .

If F is a continuous function vanishing at infinity then we kno v that

J F(z) dy, = lim j Pe * p(2F(2) dz.
Cn e—0 JCn
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Given functions ¢ and y in L*(R") let us define F(2) by F(z) = (W(2)é, V).
Since

(W@, ¥) = €27 [ ™ + »¥(®) ds

it is clear that F(z) is a continuous function vanishing at infinity. Hence we
have

(W(p)¢, ¥) = L" (W(2), ¥) d,

= lim J P * p(F(2)dz
e—0 JCn

= 1111(1) W(p. * n)o, ¥).

Replacing ¢ by P,¢ we get

(W(r)Pr o, ¥) = 1in(1) (W(pe * p)Pr o, ¥).
Since p, * p, is a radial function, its Weyl transform is given by
W(p. * u,) = )" kZO R (P, * p,)Py

and consequently

(W(p)Pr o, ¥) = li_{I; Qm)"Ri(pe * p)(Pr, ¥).

Let us now calculate R, (p, * u,). We have

[P * m@bL@ dz = [_ P * 61) i, 2).

As p, * ¢4 (2) = ¢ (z) uniformly as e = 0 one gets that

) —p Kl(mn=1)!
11_{1(1) Ri(pe * pr) = 2m) G+n=Dl j@ ¢« (2) dp,(2).
This proves that
k!'(n-1)!
(W(p)Prd, ¥) = m¢k(r)(Pk¢v ¥).

Hence the proposition.
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In view of Theorem 4.1 it is easy to see that 7, is a bounded self adjoint
operator. In fact, the functions ¢, satisfy the estimate

kl'(n—1)!

| ()| <m

(see Proposition 4.2) and f X ¢, are orthogonal projections associated to the
special Hermite expansions (see [18]) and hence 7, is a bounded self adjoint
operator on L*(C"). It is also clear that all the eigenvalues of T, are given by

k!'(n—1)!
%= Gk rn- 1)l bx(r)
and any function of the form f X ¢, is an eigenfunction corresponding to the
eigenvalue oy .

In view of the relations W(®,s) = (27)"*x(c, B) and W(¢,) = (27)"Py one
checks that ®,5 X ¢, = (2m)"®,z provided |a| = k. This means that the func-
tions CTJaB are eigenfunctions of 7, with eigenvalue o). As &5 are lineary
independent this shows that the eigenspace corresponding to each ¢ is infinite
dimensional. Thus parts (i) and (ii) of Theorem 3 are proved. Pau (iii) follows
from the next proposition. The result of the proposition is not new but the
novelty lies in the proof.

Proposition 4.2. For any k and r > 0,

k+n-1)!

“4.3) AGIRS Klm=1)!

= ¢x(0).

Proor. The proof is based on the following fact. If the Fourier transform
of a function fis positive then | f(x)| < f(0) for x # 0. We will show that the
Fourier transform of the function L}~ (1/2 |x|)e~"* ** on R" is positive.
This means that

Lz—1<% |xl2> e—1/4|x|2

To do this we calculate the kernel K(x, y) of the projection P, in different ways.
From the very definition one has the formula

K(x,y) = | lzzlkfbu(x)%(y)-

oy < EF =D
= [¢x(n)] < K= D)

On the other hand, as W(¢y) = Q7)"Py, K(x, ) is also given by

K(x,y) = prnd’k(s’y — x)eM2E ) ge
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where we have written
o€ m) = m(%(lslz + |n|2)>-
Therefore, setting x = y we get
@m) 3 (@) = j”w " Ly” ‘(% |£|2> el gg,

This proves that the Fourier transform of the Laguerre function is non-
negative.

We will conclude this section with a result analogous to a theorem of
Ragozin on the convolution of rotation invariant measures on R”. In [9]
Ragozin proved that it x is the surface measure on the unit sphere in R”, n > 2
then p * p is absolutely continuous with respect to the Lebesgue measure.
Here we will prove a similar result for the twisted convolution. Moreover, we
will identify the density explicitly.

Proposition 4.3. Assume that n 2 2. Then p, X p, is absolutely continuous
with respect to the Lebesgue measure. The density is given by

_ con e [ kY(n—=1)!
4.4) J(z) = (2m) 2 <_—_——(k+ PR

k=0

2
) (@ (M) (2)

where the series converges uniformly on every compact subset of the form
O<a<|z|<b.

Proor. In view of Theorem 4.1 one has

o kl(n—1)!

S X (z) = (ZT)ﬁnkgom‘ﬁk(’)fx b (2).
This in turn gives us
> [ kl(n— 1) \?
Pxax @ =0 5 (Y 0prx

This shows that u, X p, is given by J(z)dz. If a < |z| < b then one has the
asymptotic estimate (see Szego [17]),

@.5) Li're /2

k+n-—1)!
=K—(n—1)/2( Z' ) Jn-l(zr\/?) + O(k@~D/2-3/4)
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where K = k + n/2 and the bound holds uniformly in a <r<b. Asn>2,
this shows that the series defining J(z) converges uniformly on compact sets
of the form 0 < a < |z| < b.

S. A Restriction Theorem for the Symplectic Fourier
Transform on R?"

The operator T,f = (2«)"f * u, is related to a restriction operator R, for the
symplectic Fourier transform as we are going to see now. Before that let us
briefly recall the usual restriction operators for the Fourier transform on [R”".
If we define

(5.1) Q.f®=@m) " e frw)do(w),
then the Fourier inversion formula can be written as

(52 f® = [0, fer""dr.

The operators f going to Q,f are called the restriction operators for the
Fourier transform. It is well known that

2(n + D

(5.3) 19:S 1o <Clflps  1<P<—

2n

It is also known that such an estimate is not possible when p > P As a

consequence of (5.3) one can prove the Stein-Tomas [19] restriction theorem

2(n+1)

172
£ 2
so ([ _1rora) <cis, 1<p<rE

which justifies the name restriction operators.
Let us now consider the symplectic Fourier transform on R*”. Identifying
R?" with C" the symplectic Fourier transform is defined as

Ff@) = [, Swe I dw
and the inversion formula is given by
f@) = (4m) 2" jcn F_ f(w) e~ /2mz% gy,
We can rewrite the inversion formula as

f@) = (4z)~2" L:" F.f(z — w)e’* ™7 gy,
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Let w,, be the surface area of |z| = 1. We can now write
f@ = (4m) "2y, [P Ndr [ Fof@ = w)eH T dy,
where p, is the normalized surface measure on |w| = r. If we define R, f by
5.5) Rf@=[ _ Ff@=we ™ dy =5 fxp,
then we have obtained the inversion in the form
(5.6) f@ = @4m) e, ["R f@r*" " dr.

This is the analogue of (5.2) and that is the reason why we call them restriction
operators. Unlike the operators Q, f, these R, f are no longer eigenfunctions
of the Laplacian.

The relation between 7, and R, is now clear: R, f= 2m) ™ "T,(F,f). In view
of this we have the alternate formula

o kl{n—1)!

er= (27r)—n Z

k=0m¢k(")(gsfx k). 5.7

Using the bounds for the functions ¢, one immediately gets
IR fl2< C|Fsfl.< C| S
If we interpolate with the trivial estimate

”ernco = "EstX ﬂr“w < C"gsf"w < C”f"l

we obtain the following boundedness result.

Proposition 5.1. For 1 < p <2, one has
(5-8) IRl < CLSfl,-

Using the asymptotic properties of the Laguerre functions ¢,(r) we can
prove the following regularity theorem. To state the result we introduce the
twisted Sobolev spaces W*(C"). On C" consider the 2n vector fields

1 _ a1
. Sz, Z=2 -z
iT oz, T4 iz, 49

and the operator
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The Hermite operator H and L are related by W(Lf) = W(f)H. Using this
formula we can define L® by W(L’f) = W(f)H®. We then define the twisted
Sobolev spaces by

(5.9) WHC") = { fe LA(C"): L’ fe LX(C")}.
With this definition we can now prove the following theorem.

Theorem 5.1. If s<(2n — 1)/4 then R, maps L*(C") continuously into
WHC").

Proor. Since L(¢y) = (2k + n)°¢, we have

2 k!'(m-1!

LR = LG p) = @0 ™" 3 0~y

bx(N2k + n)*(Ff X ¢4)
(where we have used the relation L°(f X g) = (f X L°g)). In view of the

k!'(n-1)

k+n-1)!
as s < (2n — 1)/4 uniformly in k. This proves that L°(R, f) belongs to W*(C")
and |R,/ | . < CI /1,

We will now proceed to prove parts (ii) and (iii) of Theorem 4 of the
introduction. We have already shown that |R,f|, < C|f|, for 1 <p<2.
The assertion (i) that |R,f|, < C|f|, for 2n/(n + 1) < p < 2 will follow
once we show that the following is true.

estimate (4.5) it is clear that 2k + n)* - ¢ (r) is bounded as long

Proposition 5.2. Assume that n > 3. Then

||fX I’Lr“2n/(n+1) < CUf||z,,/(,._1)- (5-10)

To see that the assertion (ii) follows from (5.10) we observe that

||er”2n/(n+1) = |Ff % l"r||2n/(n+1)
< C" EFSf"ln/(n—l) S C||f"2n/(n+l)'

An interpolation with |R,f|, < C| f|, proves the assertion.

To prove Proposition 5.2 we need the following estimate for the projections

S X d.
Proposition 5.3.

(511) “fxd’k“zn/(n—l)sCl\f“Zﬂ/(n+l)'
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As the projections f going to f X ¢, are self adjoint we also have

| fx ¢k”2,,/(,,+ y S CUfHZn/(n— n*
Using this one immediately gets

o kl(n—1)!

P ] [0 1S X bkl ynsms 1y

"fX I‘Lr"2n/(n+ 1) S

< C( Z (2k + n)-(n/2)+(l/4)> ”f”2n/(n— B

As n 2 3 the series converges and this proves Proposition 5.2. So it remains
to prove Proposition 5.3.

We have proved this proposition in [18]. We will briefly indicate the proof
for the sake of completeness. The definition of the Laguerre polynomials Ly
can be extended even for complex values of o, Reax > —1/2. We then con-
sider the functions

Ye(2) =

P+ Da+1) o1 5\ 12
Th+oa+l) Lk(zm ¢

and define a family of operators G f = f X y;*. One verifies that this is an
admissible analytic family of operators. By Stein’s interpolation theorem [10]
the estimate (5.11) will follow from the two estimates

|G fle < CU + [TDV2| f1 -
|GL*7fl, < €A + 7)™ f1,-

These estimates can be proved using certain bounds for the Laguerre function
V. We refer to [18] for details.

We will now complete the proof of Theorem 4 by proving the assertion (iii)
namely,

2n n-—1
IR.fl,<Clfl, for 1<p<——"— where g=——'p.

n+1 n+1
When p = 2n/(n + 1), ¢ = p and we already have the inequality R, f .,/ 4 1
S C|fl3n/m+1y- Interpolating with the estimate |R,f | < C[f|, we com-
plete the proof.

We conclude the paper with the following remarks. The estimate
IR.fl,<C|f|, was established in the interval 1< p<2n/(n+1). By
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increasing g we can extend the interval of validity. For example, by inter-
polating with the estimate |R,f|,,/2n+ 1 < Cl.f|4n/@n+1) WE can prove
2n—1

R fl. < , = '
IR fla<Clflp q=5 —7P

2n
n+1

. 4n .. . .
intherangel1 < p < il Similarly by decreasing the interval 1 < p <

. . Cq n-—1
we can obtain estimates valid with g = vp’ where v < P Another remark

we would like to make is regarding the assumption n > 3. It would be in-
teresting to see if the Theorem 4 remains true for » = 1 and » = 2 also.
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