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Abstract

The principal aim of this note is to prove a covering Lemma in R%. As an
application of this covering lemma, we can prove the BMO estimates for eigen-
functions on two-dimensional Riemannian manifolds (M2, g). We will get the
upper bound estimate for lllog |#llgao, where u is the solution to Au + \u = 0,
for A > 1and A is the Laplacian on (M?, g). A covering lemma in homogeneous
spaces is also obtained in this note.

1. Introduction

Let M be a smooth, compact and connected Riemannian manifold without
boundary. Let A denote the Laplacian on M. Assume that u is the solution to
Au + \u = 0, A > 1, i.e.,, u is an eigenfunction with eigenvalue \.

Many authors have studied the estimates of the BMO norm and the Nodal
sets of eigenfunctions, see [DF1], [DF2], [C], [B], and [CM]. In [C], Cheng
proved that u vanishes at most to order cX in the two-dimensional case. In [B],
Briining showed the lower bound for the volume of the nodal set for C* metrics
on Riemannian surfaces. Donnelly and Fefferman, see [DF1] and [DF2],
obtained the growth property, estimates of the BMO norm and bounds for the
volume of the Nodal set of eigenfunctions for all n = 2. Recently, Chanillo
and Muckenhoupt, see [CM], improved the results of [DF2] for n = 3.
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The purpose of this note is to get a better BMO estimate of eigenfunctions
in the two-dimensional case. The main result is the following

Theorem 1. (BMO estimate for log | u | ) For u, \ as above, and for e > 0
llog lulllsmo =< oN'*/**¢

where ¢ = c(a, M) is independent of \.

The proof of Theorem 1 is based on the following covering lemma which
is of independent interest.

Lemma 1. (Covering Lemma) Let 6 > 0 be small enough, then given any finite

collection of balls {B,},.;, one can select a subcollection By, ..., By such that
N
(i) UB.c X a+9B
o i=1
and
Y 1
(if) Y x8,(x) = 677 log 5
i=1

where c is an constant independent of 6 and the given collection of balls.

The motivation of this note is from [CM]. In [CM], a covering lemma plays
an important role. Lemma 1 is an improvement of the covering lemma for the
two-dimensional case in [CM] so that we can get a better estimate of the BMO
norm for eigenfunctions by using Lemma 1 and adapting the proof given in
[CM] for n = 3. We would like to point out that it is quite possible to prove
a covering lemma in case n = 3 which is better than that in [CM] by modifying
the proof of Lemma 1.

This note is organized as follows: Section 2 explains why we should use
a new selection of balls in order to get a better covering lemma than that in[CM];
Section 3 is devoted to the proof of a covering lemma in homogeneous spaces
which is of independent interest; Section 4 and 5 deal with the proof of Lem-
ma 1; Section 6 is devoted to the proof of Theorem 1.

One world about notations: Throughout this note, C and ¢ will always
denote generic positive constants independent of the given balls {B,},; and
6 > 0; o (B) will denote the radius of the ball B; B(x, r) will denote the ball
centered at x and of radius r.

Acknowledgement. This note represents a part of my Ph. D. Thesis at
Rutgers University under the guidance of Prof. S. Chanillo. I am very grateful
to my advisor for his constant encouragement and for sharing his ideas and
time with me.
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2. A Covering Lemma due to Chanillo-Muckenhoupt

In this section, we first recall a covering lemma in [CM].

Lemma 2.1 (Chanillo-Muckenhoupt) Fix 0 < 6 < 1/2. Given any finite col-

lection of balls {B,}.c1 in R", one can select a subcollection B, ..., By such
that
N
® UB.c Ua + 95
o i=1
N
(if) Y xs(x) < 47577,
i=1

for all x € R".

In the proof of Lemma 2.1, one first selects a ball B; with the largest radius
in {B,),e1- Having selected By, ..., B,_,, one selects Bx so that

k—1

(2.2) Be ¢ JU + 9B

i=1

and By has the largest possible radius in the collection (B, (Bi}fZ7.

Here we want to point out that (ii) of Lemma 2.1 is the best possible result
which can be obtained by the above selection of balls. We show this by giving
the following:

ExXAMPLE: Consider a family of unit balls centered inside a cube
O=1[x,»0=<x=<1/2, 0<y=<1/2) CR?
and the centers of these balls have coordinates
{(2ks, 416)}, 0 < k < [1/467%],0 < [ < [1/867 1],

where [ - ] denotes the largest integer part. We also denote the unit ball with
center (2ké, 4/6) by B, ;. We now select the balls in the following order:

BO,O’ Bl,o’ e B|1/45"j,0’ BO,l’ Bl,l’ srey B|1/4a“],1, oo BO.[]/S:S"i! Bl,|1/sa"§a sy

B|1/4.5' N,[1/8871)»
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Then an easy calculation shows (2.2) holds. This selection exactly follows the
method used in the proof of Lemma 2.1. But

N
Y xa(x,y) =67% for 0=sx=1/2, 0=<y=<1/2
i=1

Therefore the above example tells us that we need to use a new selection of
balls in order to get a better result than that in Lemma 2.1.

3. A Covering Lemma in Homogeneous Spaces

In this section, we are going to prove a covering lemma in homogeneous metric
spaces with a doubling Borel measure. This section is independent of the others.
We will apply the technique of partitioning the radii of balls to reduce the
proof of the main lemma to a certain basic case. The proof as given below
is an adaptation to homogeneous spaces of the proof on R” due to S. Chanillo.

We say a pair (X, @) is a homogeneous metric space in the sense of Coif-
man and Weiss, if the following hold:

() e:X X X — R satisfies the following conditions:
e(x,y) =0 ifand only if x =y
e, ») = e0, x)
et y) = Kfelx, 2) + ez, )
where K is a constant independent of x, y, z and
(if) there is a Borel measure u such that
@3.1) 0 < pu(B(x, N) < Au(B(x, 1/2)) < + oo,

where A is a constant independent of the ball B(x, 7) centered at x and with
radius r.

An easy consequence of (3.1) is
(3.2) w(B(x, ) = A= W (B(x, r')

foranyx € Xand 0 < r’ < r.
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According to [CoW], both Vitali type and Whitney type covering lemmas
are true. It is well-known that Besicovitch covering lemma may not be true
in homogeneous spaces as pointed out in [SW]. Sometimes a Vitali covering
lemma is not good enough for applications as in [CM], but the following cover-
ing lemma could be a replacement of both Vitali and Besicovitch covering
lemmas.

Lemma 3.3. Let 6 > 0 be small enough and {B_}.c; be a finite collection of
balls in X. If there exists a doubling Borel measure p. on X satisfying (3.1),
then one can select a subcollection B;, ..., By such that

N
(3.4) UB.c U &+ 9B
[ i=1
al 1
)] Y xa () = C67 % log =
i=1

where C depends only on K and A, and d = log, A.

PROOF. Select a ball B with the largest radius in {B,}. Having selected
balls Bi, ..., B,_;, select B¢ such that

k—1

(3.6) B ¢ |J K + 0B

i=1

and By has the largest radius out of the collection

The subcollection By, ..., Bar chosen by the above selection obviously satisfies

M
UB.c UK + 9B

i=1

Now we prove (3.5) in the lemma. We first fix any point xo € X. With no loss
of generality, we may assume Xo € () %~ B:. We also assume B; = B;(z;, r;).
By the selection of (B} ,, we know r, < r,_, < ... < r;. We note that
there exists ¢ = o(xo) such that
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/ o
(3.7 Yoxs(x) =Y, Y xpx)
i=1

k=12kn=<ri<2"*'n

We now have the following claims.
Claim (1): 62° < 2K*

If not, then ér, = 62°r1 > 2K°r.
We note that for y € B, = B(zi, 1),

A

Ko, x0) + ¢ (x0, 21)]

< KKle(, z1) + oz, x0)] + ¢ (x0, 21)}
< K[2Kr + ri] = 2K*r + Kr,

< éry + Kny

= (K + 6)n

Q(y’ Z])

Thus B; C (K + 6)B: which is a contradiction to (3.6). Thus claim (1) holds,
1
i.e., 0 < Clog 5 where C only depends on K.

Claim (2): For the subcollection {B,-JI;‘Z; of (Bi)l_, with 2*r, < eB) <2'n,
we have

2kr6 . .
e(z» z,) > N for j#h, 1 =<j,h=< Ng

For simplicity, we drop the subscripts and denote B, and B;, by B: and By
respectively. We also assume j > A. If the claim were not true, we would have

for y € B = B(zj, rj)

e, zn) = Kle(y, z)) + ¢, zn)]
<K [r' + Eié—]
= J K

= Krj + 2kr16 =< Krj + 6I‘j
= (K + 5)I‘j
< (K + 8)ra.

This implies (K + 8)Br D B; which is again a contradiction to (3.6).

2%r6 \ )™ L
Claim (3): The balls {B (zj, —2]?12—)} are mutually disjoint.
j=1
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We set R, = 2¥r6/2K?. If the claim were not true, there would exist
Y € B(zj, R1) () (zn, R:) for some j # h. Thus

2*r6 2"r,5] 2K 6

> = K s + y Sh = —5 T =
0 (zj, zn)] ez, ») + e, zn) [ K2 2K %

which is a contradiction to the claim (2).
Claim (4): The balls {Bj};{:l are all contained in B(Xo, Rz), where R, = K22,
For y € B(z;, rj), we have

e, %) = K[, ) + 0(z), x0)| -

IA

2Kr; < 2K - 2Ky
— K2k+2rl-
Thus the claim holds.

Claim (5): B(xo, R2) C B(zj, R3) for each 1 = j < Ni, where R; =
KQK + 1)2*'n.

In fact, for y € B(xo, R2), we have
e, z) = Klo(, x0) + o(x0, Z))]
< K[R: + rj] = K[2"**nk + 2*'r]
= KQK + 1)2*'n = R; .
This proves claim (5).

Now by claims (3) and (4), we have
Nk
(3.8) Y. (B, R) = u(B(xo, R2)),
j=1
and by claim (5) and (3.2), we have
(.9  u(B(xo, R2) =< p(B(z, R3)) = AB®R (B, Ry)).

Therefore, from (3.8) and (3.9), it is easy to see

. .
Nk < Alog;(Rg/R2)+1 - A]ogzl4K(2K+1)/o|.
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By using 4 = 2¢ and an easy calculation, we get
Ni < [BK3QK + 1)]967¢

Now,

!
Y- x5, (%0)

i=1 k+1,

2k n< ]

e
]
=]

E x5,(¥0)
rj<2

IA

Y Ne = ) BKPQK + D)9
k=0 k=1

1
Cllog —)é&° ¢
(4)

where C only depends on K and A. This shows (3.5) and thus completes the
proof of lemma (3.3).

A

4. A Basic Covering Lemma

The purpose of this section is to prove a covering lemma for balls which centered
in any given cube in R? with sidelenght V5. Moreover, these balls have radii
whose values are close to one another.

Lemma 4.1. Let 6 > 0 be given small enough. Given any cube Q in R* with
sidelength V& and given any finite collection of balls (B}, Withr < g(B,) <

< r + 6, forsomel < r < 2 and centered in this cube Q, one can select a
subcollection of balls B, ..., By such that

N
@) UB.c Ua + B,
a i=1

(i) N < 6~ V4,
where c is an absolute constant independent of 6 and the given balls.
In order to prove Lemma 4.1, we need the following propositions.

Proposition 4.1. The sum of all exterior angles of any convex polygon is 2.

This a well-known formula in plane geometry. One may also deduce this
fact from the Gauss-Bonnet formula in differential geometry.
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Proposition 4.2. The perimeter of any convex plane polygon contained
inside a cube Q with sidelength \§ is less than 2w ~/26.

The proof of the above Proposition 4.2 uses the Cauchy-Crofton formula
in R?. It states that for a given regular plance curve C with length /, the measure
of the set of straight lines (counted with multiplicities) which meet C is equal
to 2/. A proof of this assertion may be found on page 41 in [Do]. A higher
dimentional version of Cauchy-Crofton formula is proved in |F].

PROOF OF PROPOSITION 4.2. Let dP be the boundary of the convex polygon
P inside Q, and let S be the set of straight lines which meet P. Then if we denote
by @ the distance from the origin to the lines and by 6 the angle between the
positive x-axis and the line, and assume without loss of generality,

Q=1{xy:0=<x=V50=<y=<,
we have

27 V28
drdf < S S 2dodd = 4m~26.

0 0

2 length (0P) = S

S
Thus, length (3P) < 27+/26.

Remark: After this note was prepared, Prof. B. Muckenhoupt pointed out
that the proof of Proposition 4.2 can be simplified by projecting 4P to Q.

Proposition 4.3. Given any 6 > 0 small enough and oriented rectangle R in
R? with sidelength V5 and 6. Let (B,).¢; be a finite collection of balls centered
in R and with radiir < g(B,) < r + 6 for some 1 < r < 2. Then we only
need to select at most two balls B, and B, such that

2
UB.cUU + co)B:
a i=1

PROOF. If there are no more than two balls in the given collection, then there
is nothing to prove. If there are more than two centers in R, then we select
two balls B; and B, with centers O; = (x,,, ¥,,) and O, = (x,,, ¥,,) respec-
tively such that one of the centers is on the extreme left, the other is on the
extreme right (as shown in Figure 1). We claim

2
UB. = Uu + 9B
a i=1
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We will assume with no loss of generality that both B; and B, have the smallest
possible radius in our collection, that is ». We may also assume with no loss
of generality that y,, = »,,, then the ball B{ with radius r and center (x,,, y,,)
is contained in (1 + 26)B; and thus if we prove our claim with B; replaced
by B, our proposition will be proved.

Ya p
(0,8)
o, o |
0 (\/g,o) 7 T

Figure 1

Let P denote the intersection point of (1 + ¢6)B; and (1 + ¢8)B>. We now
show that dist (P, dR) > r + 26. This will prove our claim. Using the fact
that y, = Y,,, we see that

dist(P, dR) = dist(P, 00;) — ¢

v

[ + cd)*r* — (V6/2)*])* — 6.
By choosing ¢ = 4, we get

A+ cd)?rF —6/4]"* —6>r + 26

[ )

since r = 1. This proves our claim and the proposition.

We are also going to need the following:

Proposition 4.4. Let 010,03 be a triangle with sidelength less than cVs. Sup-
pose (Bi},_, are three balls centered at (Oi},_, and withr < o(Bi) < r + &
Jor some 1 < r < 2. Then any ball B withr < g(B) < r + 6 and centered
at some O inside the triangle 010,05 can be covered by U,l (1 + cd)Bi for
some absolute constant c.



COVERING LEMMAS AND BMO ESTIMATES FOR EIGENFUNCTIONS ON RIEMANNIAN SURFACES 231

PROOF.

P2

Figure 2

As shown in Fig. 2, we extend segments O;0,, 0,03, O30 to lines. Then
these three lines subdivide R? into seven pieces {P;}]_,. Obviously, B [ Py,
B () P, and B () P; can be covered by (1 + ¢8)Bi, (1 + ¢8)B, and
(1 + ¢6)Bs respectively. Now let O;; denote the point O; O, nearest to O and
let B’ be the ball centered at O;, of radius r + 6. Then B’ (| Ps D B ) Ps
by the above choice of Oj;. But by Proposition 4.3, (1 + ¢6)B; U
(1 + ¢6)B, D B’. Thus

3
B () Psc U + cd)B.
i=1
A similar argument shows that
3
B () PiC ﬂ (1 + c8)B; for j = 4,6.
i=1
This completes the proof of the proposition.
Proposition 4.5. Let (B ).c1 be a finite collection of balls with r < o(B,)

< r + b for some 1 < r < 2. If there exists a subcollection (Bi}i_, of (B,}
and another further subcollection (B} _, of (Bi} such that

UB.c U + cd)B;
a i=1
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B.c |+ B,

k=1

for each i. Then
UB.c U+ c9B,
o k=1

for some ¢’ > c independent of 6 and the given balls.

PRrROOF. It suffices to prove

(1 +c)Bic |JU + 9B,

k=1

foreach 1 = i <= m. Now fix i, let B/ = (1 + ¢b)B;, O; be the center of B;,
dB; be the boundary of B;. Then it is enough to show

B/NBic JU + c'd)B,.

i=1

Let P C dB;, we denote by Q the intersection point between B/ and the half
line starting with the point O; and passing through P. Then the length of the
segment PQ is

(1 + ¢b) o (Bi) — o(Bi) = cdép(Bi) = 3cé.

Assume P € (1 4+ ¢6)B,,. In fact, dist (P, O,,) < (1 + ¢d) ¢ (B;,), and then for
any z € PQ, we have

dist (z, 0,) < dist(z, P) + dist(P, O,)

IA

3¢6 + (1 + cd)o(By)

A

(I + ¢’d)e(By)-

The last inequality follows from g (B;,) = 1. Thus the claim follows. We move
P along dB; and note that the union of all such segments PQ cover B/ \ B;,
this shows that

B/NB.c |+ c'9B,.

k=1
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For the remainder of this section, all balls that we will consider have radii
osuchthat rp < o < ro + 6 forafixedro, 1 < rp = 2.

We now begin the proof of Lemma 4.1.

Let S be the collection of centers of the balls {B_},¢- Let V be the convex
hull of S. Then the boundary of V must be a convex plane polygon and the
vertices of V consist of centers, say, Oy, O, ..., Oy, enumerated in a clockwise
order.

Let us consider any three vertices of V, say, O;, 0j, Ok, (1 = i < j < k
< M). We introduce the following:

Definition. [f O;0x < 6%, we say the triple 0;0;O is of type 1. Otherwise,
the triple O;O0;Ox is of type 11. We further split the type II triples into two
cases: If OjAijx = 6, we say the triple O;0;Ox is of type 11, otherwise, of type
II, (see Figure 3 below).

0;
'
|
or '
)
0 0; -4
Aijk . : O Aijn
Figure 3

Now we select the vertices {O, }. The balls {B,}] with centers at {O, ] will be the
subcollection that shall be used to prove our lemma.

We first make the following observation:

Proposition 4.6. If for some k = 3, every triple O10;0 is of type 11, for
2 < i < k — 1, then all balls centered inside the polygon with vertices
(03¥_, can be covered by (1 + c8)B;, U (1 + cb6)B,, forsomel < iy < i < k.

PROOF. The polygon W whose vertices are [O,-}f-;, is contained inside a rec-
tangle R with sidelengths V26 and 6 and O, 0 is a part of one side with
length v/26 of the rectangle R. Then by applying Proposition 4.3, we see
that U,'k_._lBi C Uf,,= 1(1 + ¢d)B;,. Now any ball B centered in WV has its center
in a triangle formed by some three vertices of W. By Proposition 4.4,
B C U,-k=1(1 + ¢d) B;, thus by Proposition 4.6, we have B C Uf,,=1(l +c’6)B,, .
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We now give the selection procedure. We start with the triple O10,0s3.

Case 1: If the triple O10,0; is of type I or II;, then we select vertices O,
O; and O; and pass to the next triple, O4O0s0Os.

Case 2: If the triple O10,0s is of type I, then either
(i) Every triple O:0,0pis of type IL for2 <= i = M — 1.

Then by Proposition 4.6, We can select B; and B;, as our subcollection and
the proof of Lemma 4.1 is complete in this case. Or

(ii) There exists some k, 3 < k < M — 1 such that every triple O; O; Ok is
of type Il for 2 < i < k — 1, but there is some triple 0,0, O, (2 < io < k)
which is not of type II2, i.e., of type I or II;.

Then by Proposition 4.6 again, there are two vertices O; and O,, for
1 = i1, i < k such that all balls centered inside the polygon with vertices
{O:)%_, can be covered by (1 + c6)B; U (1 + ¢b)B,,. Thus, we select Oy, O;, O,
O and Oy, in this case (We note that some overlap may occur among the
above five vertices since O, , O;, may be Oy, Ox). We then pass to the next
triple Oy, ,0;,,0;,;. We continue this selection as before with O, play-
ing the role of O;. Because there are only finite vertices, this process stops
when O, appears again in a new triple. We thus arrive a subcollection of ver-
tices 0;,, Oy, ..., O;, and a new polygon Z whose vertices are formed by O; ,

0,, ..., O

We now claim that

iL‘

(i) Zis a convex polygon.

(i) Any ball B, in the original collection (B}, is contained in
Us_ (1 + cd)B,.

By noticing that Z is the intersection of the convex polygon V and the half
spaces formed by the lines O, O,,.,, 1 < kK = L — 1, and the intersection of
convex regions is convex, this show that Z is convex.

To prove (ii), we note that each center O, of the balls B, is in V since
V is the convex hull of S. Furthermore, recalling that {O;} denotes the
vertices of V, we see that the center O, must be in one of the triangles
0:0,,0,,,;,(2 = m <= M — 1). Thus by Propositions 4.4, B, is contained
in Uf‘il(l + c¢6)B;. But as abserved above by the selection procedure,
Bi C Ug_,B,. Thus B, C U;_,(1 + cd)B,, for all « € I, by Proposi-
tion 4.5.

In order to complete the proof of Lemma 4.1, we need the following
proposition.

Proposition 4.7. Suppose {(O, , O;, .1, 0,-”2)]’,\’,,=1 be the family of type 1
triples selected from Oy, O,, ..., Oy above, then N < ¢6~ V4.
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PROOF. Since O, O, ., = 6* by definition of type I triple. It follows by

m

considering the perimeter of the triangle O, O;, .0, .,, that

Im

O

Im

3/4
Oi,s1 + 04,110,542 = 0,0, ., = 6.

Summing over m, we get

w1 T 0,0, .2)

N
N&*¥* < Y7 (0,0
m=1

< perimeter of the polygon Z.

Since Z is convex and contained in the cube Q, the perimeter of Z is no more
than cV8 by Proposition 4.2. Thus N6** < ¢V6 and consequently N < ¢6~ /4.

Proposition 4.8. Suppose ((O;,, O, .1, O,,"”)},’:,' _1 be the family of type 11,
triples selected from Oy, O,, ..., Oy above, then N < ¢§~ .

PROFF. Given a type II; triple (O, , O, ., O,,.,), one has 0,0, ,, < 8"*
and O, ,;Am = 6 by the definition of type II; triple (see Figure 4).

With no loss of generality, we consider those triples such that 6, < /4

2
since the number of m such that 6,, > w/4 is no more than % = 8 by
™

Proposition 4.1. We will show that the exterior angle 6,, is always bounded
below by 6'#/2 for those 0 < w/4.

Figure 4
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In fact, we note that for 6,, < w/4, we have tan 6,, < 26,,, thus for
0mn < w/4, we get

1 1 Oi,,,+lAm
Om = o = —- tan am = — ———
O, Am
0, 1Am 5
212 ——-21255;
Oi,,,Oi,,,+2 6
— Wl_ 61/4.

Applying Proposition 4.1 again, }:x _1 0m < 27, where the sum is being taken
over the exterior angles which arise in type II; triples. But 6, = 1/28#, thus
N < c6~ V4,
Q.E.D.
Finally, we note that the selected vertices O, , -.., O,, are from type I, type
II; or type 11, triples. In the convex polygon Z, we consider all maximal chains,
where a maximal chain is a union of successive sides of the polygon Z which
come from type I or type II; triples. Then by the selection procedure, between
any two maximal chains, there are no more than five vertices which are prob-
ably from type II (see case 2 (ii) at the beginning of the selection procedure
in this section). Thus the number of these type II, vertices are less than ¢6~1/*
also. Therefore, the number of all vertices O, ..., O, is less than c6~ /4, and
this shows (ii) of Lemma 4.1.

We end this section with the following example which shows (ii) in Lemma
4.1 is the best possible result in each cube with sidelength V6.

EXAMPLE. Assume that the centers of the unit balls {B,} are on the circle
centered at the origin O and of radius V8. Furthermore, let the arclength bet-
ween any two centers be c¢6*’4. We claim that we exactly need N = ¢6~ '/* unit
balls B, ..., By such that

N
UB.c Uu + 9B
a i=1

We consider two balls B; and B, centered at O; and O, respectively (as shown
on Figure 5).

Let OA 1L 0,0,, OF L AO,, AE = h, AO, = AO;, = [, and let
< AOF = 0, thus 2 EO,A = 0. Moreover,
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. . AE
sin 0 = sin(z EO,A) = —— = h/I,
AO,
also
. . AF 12
sin # = sin(2 AOF) = —— = ——..
AO Vo

72 .
Thus —— = A/l i.e.,
Ve

> = 2Véh.

Figure 5

But by Proposition 4.3, (1 + 8)B; U (1 + 6)B: can cover all unit balls {B,}
centered between O; and O, if and only if # < 8, i.e., | < ¢6**. We also
note that the arclength of 0,0, < ¢8** if and only if / < ¢6*“. Hence,
we exactly need N = ¢ V6/86** = ¢6~ /% balls.

5. Proof of the Main Covering Lemma

We now prove the main covering lemma (Lemma 1) stated in the introduction.
We will need the following lemmas and propositions.
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Lemma 5.1. Let 6 be small enough. Given any cube Q in R* with sidelength
2KV and let (B} ,; be any finite collection of balls with r < o(B,) < r +

2k for some 2¥ < r < 2%+ and centered in Q, where k is an integer. Then
one can select a subcollection of balls B, ..., By such that

N
UB.c U + coB;,
« i=1

N < c6~ V4.

The proof of Lemma 5.1 is straightforward if we use Lemma 4.1 and the scal-
ing property.

Lemma 5.2. Let 6 be small enough. Given any cube Q in R? with sidelength

2¥V6 and let (B,} <1 be any finite collection of balls with 2¥ < o(B,) < 2K+
Then one can select a subcollection B, ..., By such that

N
UB.c U@ + co)Bi,
a i=1

N < c6~¥4,
PROOF. With no loss of generaliy, we may assume the largest ball B in our
collection is of radius 2¥ *!. Any other ball B, with g(B,) < 2¢*! — 2¢/25

is contained in B. Thus the balls B, with g(B,) < 2¥*! — 2¥+/25 may be
ignored. Now we partition the radii into the following intervals:

2K+1 _2k\26 + 2K61 < o(B) = 2K+ — 2KN26 + 2%8(1 + 1)

for0 <1/ < o.

Thus ¢ = v/2/8. Applying Lemma 5.1 to these balls {B!] whose radii are in
the interval corresponding to /, 0 < [/ < o0, we can select {B,-’}fvz’l such that

N
UBic Ua + co)Bl,
a i=1

N < 05_1/4.



COVERING LEMMAS AND BMO ESTIMATES FOR EIGENFUNCTIONS ON RIEMANNIAN SURFACES 239

Thus

UB.cUB.UBclUa +c)B/ B
a a,l il
and the number of balls {Bf};, is less than

4
ENI < a_ca-—l/‘l < 06_1/26_1/4 — C8_3/4.
I=1

Therefore the subcollection {B{] will be the one in our lemma.

Now we can show the following:

Lemma 5.3. Let 6 be small enough and {B,},.; be a finite collection of balls
with 2¥ < o(B,) < 2**', where k are integers. Then one can select balls
By, ..., By such that

N
UB.c Ud + co)B;
o i=1

and

N
Y xg () = c6”7

i=1

for all x € R%.
PROOF. We subdivide R? into a dyadic grid of cubes {Qj, whose side-
lengths are all 2*V3. Let {B;] be the subcollection of {B,} with centers inside

Q,. For each {B)} and Q;, we apply Lemma 5.2 to select {B{-}f’_.’, such that

N;
Us. c Ua + B,
a i=1

Nj < ¢6=%4

where ¢ is independent of 6, k, j.
Then

Nj . .
Us.cUBcUUa+ Bl =J0 + 3B,
o a,j Joi=1

ij
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which shows (5.4). Now let xo € R? be a fixed point and let B(xo, 2“*")
denote the ball centered at xo and of radius 2 * . Since o (B}) = 2*", x4 (x0)
vanishes for those balls {B/} centered outside B (xo, 2%+ 1) Now the cardinality
of (] such that Q; () B(xo, 2*') # (¥ is no more than c6~'. Thus

N;
Y x5 () = X Y X (x0)
iJj Jj oi=1

< 206—3/4 < C6—16~3/4 — c6—7/4’

J
this shows (5.5). Since xp is arbitrary, the proof is complete.

We now prove the main covering lemma.

We first select a ball B; with the largest radius. Having selected B, ...,
B,_, select By such that

k—1

(5.6) Be¢t A+ 9B

i=1

and Bx has the largest possible radius out of the balls in the collection
B aer \ (B)¥Z!. Thus clearly, we have

N
Us.c Ua + 9B.
a i=1

Now let B/ = (1 + 8)B: and [B/,] be the subcollection of (B}, such that
2¥ < o(B},) = 2**. Then by using Lemma 5.3, we can select a subcollec-
tion (B} of (B/,} such that

Ny

UBic U + cd)Bj,,

i Jj=1

Nk

Y X, 0 = 8774,

j=1

for all x € R, where c is independent of 6, k and k¥ = 0, + 1 % 2, ... Thus,
we have
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N
UB.cUu + 9

i=1

Il
=

B/ = U UBi’,k
ko

1]

N
~C

Nk
U@ +cd)Bi,
j=1

k.Jj

c lJa + 2¢9)B,,
jk
for ¢ > 2 and é small enough. Thus, the subcollection (B, ,} satisfies (i) of

Lemma 1.
Fix xo € R%. There exists ko = k(xo) and 6o = o(xo) such that

ko+ oo Nk
Yoxs,00) = X Y X, (%)
.k k=ko j=1
ko + 0o Nk
= E E XBi;'k(Xn))
k=ko j=1
ko+ do
= ¥ 67 = cad .
k=ko

We claim 2 < 86~ . For otherwise there would exist a ball B, 4, + 4, fOr some
J with xo € B; ., such that

0By ko) = 1/20(B] 41,) = 17220077 = 2571201,
The first inequality above is due to the fact that
(B kov o)) = 1+ 0)eBr+a) < 20(Bi p+4) for 6 < 1.
Let xo € B, ,, for some & be the ball with
e(Bix) =< e(Bi,) < 2.

Then (1 + 08)Bj 4+4 2 Bik Which is a contradiction to (5.6). Thus
2 < 86!, and the claim follows. That is, go < ¢ log 6~ !. Therefore,

EXB,.',((XO) =< 0006_7/4 <c 10g(6"1)5'7/4‘
J.k

Since xp is arbitrary, we are done.
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6. Proof of Theorem 1

This section is devoted to the proof of the main theorem in this note (Theorem
1). We begin with recalling the following theorem in [DF2].

Theorem 6.1 (Donnelly-Fefferman). Let M, u, \ be as in the introduction. Let
B(x, 8) denote the ball centered at x of radius 6. Then

6.2) ]u\zscg lul|?

g B(x,5(1+2""%) B(x,5)

172 172
N
(6.3) H qulz] <c— |u|?
B(x,5) o B(x,5)

Now we start the proof of Theorem 1 by showing the following lemmas.

Lemma 6.4. Letf u, A\ asabove, 1 < g < «, then u satisfies the Reverse-Holder
inequality

1 ql/q< 1 2[/2
€ [WL'“'] -C”[WL'“']

where c depends on q.

PrROOF. By the Poincaré inequality, for any ball B, we have
1 1/g 1 1/p
(6.6) [——-g Iu—uglq] <c|B|'Y? [—S |Vu|"] ,
|B| Jg |B| Jp

1
where ug = —I?I—S uandl1 < p<2,1/g =1/p—1/2,and c = c(p, q).
B

Applying Hélder inequality and (6.3) to the right side of (6.6), we obtain

1 1/q 1 172
rar e = o g ]
|B| Ju |B| ),

By Minkowski’s inequality, Lemma 6.4 follows for 2 < g < oo, for the case
1 < g = 2, we can apply Holder inequality again.
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Our theorem will follow from the following

Lemma 6.7. Suppose w >0, g > 2, ¢e>0 and 1 +¢e=gq’ where
1/q’ = 1 — 1/q, also assume that

S W =< ¢ S w
B(x,5(1+X"'%) B(x,8)

and

1 Va 1
(6.8) (—— § w"> < N — S w,
|B| J, B| J,

then

lllog wllemo =<

where ¢ = c(co, C1).

Theorem 1 will follow if we choose w = |u |2

In order to prove Lemma 6.7, we need the following

Lemma 6.9. Let w, q, 0 < e < 1 satisfy the hypothesis of Lemma 6.7, let
B be a fixed ball, E C B, then there exist c2, c3 such that if

|E| =2 (1 — e 138 (10g )~ 1)* S w
B

then
S w = (s~ B(log N)~ " s W
E

E

where ¢; = c(c1), ¢3= c(co).

PROOF. We proceed as the proof given in |CM]. The method is to use induc-
tion on k. We first verify the lemma for £ = 1. To do so, we claim that if
e >0, |[E| = (1 —2ox"*9|B| for some appropriate ¢ = ¢(c1), then

SWZI/ZSW.
E B

To show this, we first note that |BNE| =< e\ "*9|B| . If we choose

+
€ > 1, thus by (6.8),
g

1
g > 2 such that

’
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IA

1/q
(S W) |BNE|V
B

1+e

—+1
e -
cie/in 9 w
B

S w
B

If we choose ¢ such that ¢;¢'/? < 1/2, then S w=1/2 g w, this implies
B\E B

X w
BNE

IA

IA

g w> — S w. Here we want to point out the choice of ¢ is dependent on
E B '

e since ¢; = ci1(q) and q is dependent on e.
Thus if c; < ¢, and |E| = (1 — A% <(log \)"!)| B|, then

S w=1/2 S w=cs(\"%log M) S w,
E B

B

and we are done for the case £k = 1. Now we assume the statement is true for
k — 1. Obviously we can assume |E| < (1 — e\ "*9)|B|, otherwise,
there is nothing to prove. Thus for each density point x of E, we can select
a ball B, C B such that x € By, and

Applying Lemma 1 to the balls B, with the choice 6 = A~ !/, and with no loss
of generality, assume {B,} are finite, and define

N
E| = [U(l + )C“Z)B,-] N B.

i=1
Then E; C B, and as the proof given in [CM], we can show
[E| = (1 — N log N | E|

S w = csh"¥(log \) ! s w
E

E;

for some ¢z = c(c1), ¢3 = ¢(co).
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Now we prove Lemma 6.7. The proof will be almost the same as that given
in [CM]. In order to get the precise estimate, we like to show the details. It will

1 .
be enough to assume —— S w = 1. It is also sufficient to show
B

| B

B
[xeB:w ') > 4] = *’“:%TL“_?
tc)\ P (log \) T

It is equivalent to show
|xeB:wx < | = g g v |B|.
Let us denote by E = {x € B : w(x) < t]. Select ko such that
|E| = [1 — N <(log )" '[*| BJ.
Thus

| B|
ko ~ cO\®%< log \) log <——
| E|

1
Then by Lemma 6.9, and the normalization ——- S w = 1, we have
B

| B

|B| = S w < (c35 '\78 log Nk S w
B E

A

(ci 'N® log Mt | E|.

Thus

<t ekn log(c; '\ log \)

I B | (A" Jog M) Tog(¢7 "N M log A
< (._ )
| E|

I B l L,,)\ISJ‘R-( (log )\)z
<t|—-—=
|E
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Hence

~15. 8—¢

|E| < £ (I<>g)\)’:|B| ,

where ¢’ is dependent on the constant ¢ in (6.4). Since ¢ is arbitrary, we can
even have

|E| =™ |B].

Remark. Since for any 0 < € < 1, we can choose gsothat1 + ¢ = ¢’, and
note that for such ¢, Lemma 6.7 holds. Unfortunately, the constant ¢ on the
right side of (6.5) depends on g (and then depends on €), and is unbounded
when g — . Thus we have proved the Theorem 1 for any ¢ > 0. However
we can not obtain the theorem 1 for replacing \'***“by \'*’® since when ¢ — 0,
¢, is not bounded.
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Added in Proof: After this paper had been accepted for publication, the author has also shown
a higher dimensional covering lemma in R"” (n = 3) by which one can refine the BMO norm estimate
of |CM| by reducing the power of A to n — 1/8 |L;.



