Mean value and Harnack inequalities for a certain class of degenerate parabolic equations

José C. Fernandes¹

Introduction

In this paper we study the behavior of solutions of degenerate parabolic equations of the form

(1.1)
$$v(x)u_t(x, t) = \sum_{i,j=1}^n D_{x_i}(a_{ij}(x, t)D_{x_i}u(x, t)),$$

where the coefficients are measurable functions, and the coefficient matrix $A = (a_{ij})$ is symmetric and satisfies

$$(1.2) w_1(x) \sum_{j=1}^n \lambda_j^2(x) \xi_j^2 \le \sum_{i,j=1}^n a_{ij}(x, t) \xi_i \xi_j \le w_2(x) \sum_{j=1}^n \lambda_j^2(x) \xi_j^2$$

for $\xi = (\xi_1, ..., \xi_n) \in \mathbb{R}^n$ and $(x, t) \in \Omega \times (a, b)$, Ω a bounded open set in \mathbb{R}^n .

We are going to assume some conditions on the weights (non-negative functions that are locally integrable) v, w_1 , w_2 and on the functions λ_j , j = 1, ..., n, in order to be able to derive mean value and Harnack inequalities for solutions of (1.1). The assumptions on λ_j , which we list below, are the ones stated in |FL2|.

¹ This work was supported by FAPESP —Fundação de Amparo à Pesquisa do Estado de São Paulo— Brazil.

 $(1.3) \quad \lambda_1 \equiv 1, \ \lambda_j(x) = \lambda_j(x_1, \dots, x_{j-1}), \ j = 2, \dots, \ n, \ x \in \mathbf{R}^n.$

- (1.4) Let $\Pi = \{x \in \mathbb{R}^n : \Pi x_k = 0\}$. Then $\lambda_j \in C(\mathbb{R}^n) \cap C^1(\mathbb{R}^n \setminus \Pi)$ and $0 < \lambda_j(x) \le \Lambda, x \in \mathbb{R}^n \setminus \Pi, j = 1, ..., n$.
- (1.5) $\lambda_j(x_1, ..., x_i, ..., x_{j-1}) = \lambda_j(x_1, ..., -x_i, ..., x_{j-1}), \text{ for } j = 2, ..., n$ and i = 1, ..., j - 1.
- (1.6) There is a family of n(n-1)/2 non-negative numbers $\varrho_{j,i}$ such that $0 \le x_i(D_{x_i}\lambda_j)(x) \le \varrho_{j,i}\lambda_j(x)$, for $2 \le j \le n$, $1 \le i \le j-1$ and all $x \in \mathbb{R}^n \setminus \Pi$.

Denote $\Gamma = \Omega \times (a, b)$ and define $H = H(\Gamma)$ to be the closure of Lip(Γ) under the norm

(1.7)
$$\|u\|^2 = \int \int_{\Gamma} u^2(x, t) (v(x) + w_2(x)) dx dt$$

 $+ \int \int_{\Gamma} |\nabla_{\lambda} u(x, t)|^2 w_2(x) dx dt + \int \int_{\Gamma} u_t^2(x, t) v(x) dx dt,$

where $\nabla_{\lambda}u = (\lambda_1 D_{x_1}u, ..., \lambda_n D_{x_n}u)$. Thus, $H(\Gamma)$ is the collection of all (n+2)-triples (u, β, B) such that there exists $u_k \in \operatorname{Lip}(\Gamma)$ with $u_k \to u$, $\nabla_{\lambda}u_k \to \beta$, $(u_k)_t \to B$, the convergence being in the appropriate L^2 space. We need to verify that β is uniquely determined and for this it is enough to show that for every $F \in C_0^{\infty}(\Gamma)$,

$$\int_{\Gamma} u \nabla_{\lambda} F = - \int_{\Gamma} \beta F.$$

In order to prove this, note that since $u \in H$, there exists $\{u_k\} \subset \text{Lip}(\Gamma)$ such that $u_k \to u$ in H. Then, by (1.3),

$$\int_{\Gamma} u_k \lambda_i \frac{\partial F}{\partial x_i} = - \int_{\Gamma} \frac{\partial}{\partial x_i} (u_k \lambda_i) F = - \int_{\Gamma} \lambda_i \frac{\partial u_k}{\partial x_i} F.$$

Therefore,

$$\int_{\Gamma} u_k \nabla_{\lambda} F = -\int_{\Gamma} (\nabla_{\lambda} u_k) F.$$

By Schwarz's inequality and assuming that $w_2^{-1} \in L^1_{loc}$,

$$\left| \int_{\Gamma} u_{k} \nabla_{\lambda} F - \int_{\Gamma} u \nabla_{\lambda} F \right| \leq \int_{\Gamma} |u_{k} - u| w_{2}^{1/2} |\nabla_{\lambda} F| w_{2}^{-1/2}$$

$$\leq ||u_{k} - u||_{L_{w_{2}}^{2}} \left(\int_{\Gamma} |\nabla_{\lambda} F|^{2} w_{2}^{-1} \right)^{1/2}$$

$$\leq c ||u_{k} - u||_{L^{2}}.$$

Hence,

$$\int_{\Gamma} u_k \nabla_{\lambda} F \to \int_{\Gamma} u \nabla_{\lambda} F$$

and similarly we can show

$$\int_{\Gamma} (\nabla_{\lambda} u_k) F \to \int_{\Omega} \beta F.$$

In the same way we prove B is uniquely determined, if $v^{-1} \in L^1_{loc}$. We also define $H_0(\Gamma)$ to be the closure of $Lip_0(\Gamma)$, Lipschitz functions with compact support in Γ , under the norm defined in (1.7). It is easy to see that the bilinear form b on Lip(Γ) \cap $H(\Gamma)$ defined by

$$b(u, \phi) = \int \int_{\Gamma} \{u_t \phi v + \langle A \nabla u, \nabla \phi \rangle\} dx dt$$

can be continued to all of $H(\Gamma)$ (here and in the rest of the paper the vector ∇u

is understood to be the vector
$$\left(\frac{1}{\lambda_1}\beta_1, ..., \frac{1}{\lambda_n}\beta_n\right)$$
 where $\nabla_{\lambda}u = (\beta_1, ..., \beta_n)$.

We say $u \in H(\Gamma)$ is a solution of (1.1) if $b(u, \phi) = 0$ for any $\phi \in H_0$; $u \in H(\Gamma)$ is a subsolution if $b(u, \phi) \leq 0$ for any $\phi \in H_0(\Gamma)$, ϕ positive in the *H*-sense, *i.e.*, ϕ can be approximated in $H(\Gamma)$ by positive functions with compact support in Γ ; $u \in H(\Gamma)$ is a supersolution if $b(u, \phi) \leq 0$ for any $\phi \in H_0$, ϕ positive in the *H*-sense.

We also define $\tilde{H} = \tilde{H}(\Omega)$ to be the closure of $\operatorname{Lip}(\Omega)$ under the norm

$$|||u|||^2 = \int_{\Gamma} u^2(x)(v(x) + w_2(x))dx + \int_{\Gamma} |\nabla_{\lambda} u(x)|^2 w_2(x)dx,$$

and $\tilde{H}_0(\Omega)$ to be the closure of Lip₀(Ω) under the norm defined above.

Next we will define a natural distance (associated with the functions λ_i , j = 1, ..., n) and state some of its properties. This metric was first introduced

A vector $v \in \mathbb{R}^n$ is called a λ -subunit vector at a point x if $\langle v, \xi \rangle^2 \leq \sum \lambda_i^2(x) \xi_i^2$, for every $\xi \in \mathbb{R}^n$. An absolutely continuous curve $\gamma:[0, T] \to \mathbb{R}^n$ is called a λ -subunit curve if $\dot{\gamma}(t)$ is a λ -subunit vector at $\gamma(t)$ for a.e. $t \in [0, T]$.

For any $x, y \in \mathbb{R}^n$ we define $d: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^+$ by

 $d(x, y) = \inf\{T \in \mathbb{R}^+ : \text{ there exists a } \lambda\text{-subunit curve } \gamma \colon [0, T] \to \mathbb{R}^n \text{ with } \gamma(0) = x, \gamma(T) = y\}.$

One can check that this is a well-defined metric. There is a quasi-metric δ (a function $\delta: \mathbf{R}^n \times \mathbf{R}^n \to \mathbf{R}^+$ is called a quasi-metric if there exists $M \ge 1$ such that $\delta(x, y) \le M[\delta(x, z) + \delta(z, y)]$ for all $x, y, z \in \mathbf{R}^n$) equivalent to d, and sometimes easier to work with than d (see [FL2]). If $x \in \mathbf{R}^n$ and $t \in \mathbf{R}$ put $H_0(x, t) = x$ and $H_{k+1}(x, t) = H_k(x, t) + t\lambda_{k+1}(H_k(x, t))e_{k+1}$ for k = 0, ..., n - 1, where $\{e_k\}$ is the standard basis in \mathbf{R}^n . Define $\varphi_j(x^*, .) = (F_j(x^*, .))^{-1}$, the inverse function of $F_j(x^*, .)$, where $F_j(x, s) = s\lambda_j(H_{j-1}(x, s))$, for j = 1, ..., n and $x^* = (|x_1|, ..., |x_n|)$.

We define $\delta \colon \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^+$ as

$$\delta(x, y) = \operatorname{Max}_{i=1,\dots,n} \varphi_j(x^*, |x_j - y_j|).$$

Note that

(1.8) $\delta(x, y) < s$ is equivalent to $|x_j - y_j| < F_j(x^*, s), 1 \le j \le n$.

In (1.9), (1.10), (1.11) below we state some basic facts concerning δ and d (see also [FL2].

(1.9) There exists $a \ge 1$ such that for any $x, y \in \mathbb{R}^n$,

$$a^{-1} \leq \frac{d(x, y)}{\delta(x, y)} \leq a.$$

Consequently, δ is a quasi-metric with $\delta(x, y) \leq a^2 [\delta(x, y) + \delta(z, y)]$ and $\delta(x, y) \leq a^2 \delta(y, x)$.

(1.10) For any $x \in \mathbb{R}^n$, s > 0 and $\theta \in [0, 1]$

$$\theta^{G_j} \leq \frac{F_j(x^*, \, \theta s)}{F_i(x^*, \, s)} \leq \theta$$

where $G_1 = 1$ and $G_j = 1 + \sum_{l=1}^{j-1} G_l \varrho_{j,l}$, for j = 2, ..., n.

(1.11) We denote $S(x, r) = \{y \in \mathbb{R}^n : d(x, y) < r\}$ and $Q(x, r) = \{y \in \mathbb{R}^n : \delta(x, y) < r\}$ and we will call S(x, r) a d-ball and Q(x, r) a δ -ball. Note that there is a constant A > 1 such that $|S(x, 2r)| \le A |S(x, r)|$ and $|Q(x, 2r)| \le A |Q(x, r)|$, where $|\cdot|$ denotes Lebesgue measure. Also, by (1.8), $|Q(x, r)| = \prod_{j=1}^n F_j(x^*, r)$. If Q = Q(x, r), we write r = r(Q).

In general we say that a non-negative and locally integrable function w(x)is a doubling weight $(w \in D)$ if there exists a constant A > 1 such that w(2Q) $\leq Aw(Q)$ for any δ -ball Q, where 2Q = Q(x, 2r), if Q = Q(x, r) and

$$w(Q) = \int_{Q} w(x) dx.$$

(1.12) If $w \in D$ then there exists $\alpha > 0$ such that, for all r > 0, $\theta \in [0, 1]$, and $x \in R^n$, $w(Q(x, \theta r)) \ge \theta^{\alpha} w(Q(x, r))$.

Given $1 , we say <math>w \in A_p$ if there is a constant c > 0 such that for all δ -balls Q in \mathbb{R}^n .

$$(1.13) \qquad \left(-\frac{1}{|Q|} \int_{Q} w(x) dx\right) \left(-\frac{1}{|Q|} \int_{Q} w(x)^{-1/p-1} dx\right)^{p-1} \leq c.$$

Note that if we have the A_p condition with respect to δ , we have the same condition holding for the metric d, i.e. (1.13) holds with Q replaced by S (using doubling and the equivalence between d and δ). If v is a weight, $w \in A_p(v)$ means an analogous inequality holds with dx and |Q| replaced by v(x) dx and $\nu(Q)$, respectively. We use the notation $A_{\infty}(\nu) = \bigcup_{p>1} A_p(\nu)$. The theory of weights in homogeneous spaces was studied by A. P. Calderón in |C| and frequently we refer to this paper.

If $x, y \in \mathbf{R}^n$, we shall denote by $H(t, x, y) = (H_1(t, x, y), ..., H_n(t, x, y))$ the solution at time t of the Cauchy problem $H_i(., x, y) = y_i \lambda_i(H(., x, y)),$ $H_j(0, x, y) = x_j, j = 1, ..., n.$

Given $\alpha = (\alpha_1, ..., \alpha_n)$, $\epsilon = (\epsilon_1, ..., \epsilon_n)$ with $0 < \epsilon_j < \alpha_j$, j = 1, ..., n, we denote $\Delta_{\epsilon}^{\alpha} = \{y \in \mathbf{R}^n : \epsilon_j \le y_j \le \alpha_j, j = 1, ..., n\}$. If $\sigma \in \{-1, 1\}^n$, we put $T_{\sigma}y = (\sigma_1 y_1, ..., \sigma_n y_n), Q^{\sigma}(x, r) = \{y \in Q(x, r): \sigma_j(y_j - x_j) \ge 0, j = 1,$..., n} and $\Delta_{\epsilon}^{\alpha}(\sigma) = T_{\sigma}(\Delta_{\epsilon}^{\alpha})$.

Now we can state two results proved in [FS].

Let $\gamma \in [0, 1]$ and $\sigma \in \{-1, 1\}^n$ be fixed. Then there exists $\epsilon, \alpha \in \mathbb{R}^n$ as above such that, for all r > 0 and $x \in \mathbf{R}^n$,

$$(1.14) \qquad |H(r, x, \Delta_{\epsilon}^{\alpha}(\sigma)) \cap Q^{\sigma}(x, r)| \geq (1 - \gamma) |Q^{\sigma}(x, r)|,$$

where $H(r, x, \Delta_{\epsilon}^{\alpha}(\sigma)) = \{H(x, r, y) : y \in \Delta_{\epsilon}^{\alpha}(\sigma)\}.$

Also, there are positive constants c_1 , c_2 depending only on ϵ , α and $\varrho_{i,i}$ such that

$$(1.15) c_1 | S(x, r) | \leq \prod_{j=0}^{r} \lambda_j(H(t, x, y)) dt \leq c_2 | S(x, r) |$$

for each $x \in \mathbb{R}^n$, r > 0 and $y \in \Delta_{\epsilon}^{\alpha}(\sigma)$.

If $q \ge 2$, we say that Sobolev inequality holds for w_1, w_2 for any $u \in \tilde{H}_0(Q)$, Q a δ -ball in \mathbb{R}^n ,

$$(1.16) \qquad \left(\frac{1}{w_2(Q)}\int_{Q}|u|^q w_2 dx\right)^{1/q} \leq cr(Q)\left(\frac{1}{w_1(Q)}\int_{Q}|\nabla_{\lambda}u|^2 w_1 dx\right)^{1/2}.$$

Given $q \ge 2$, we say the Poincaré inequality holds for w_1 , w_2 and μ if there are constant c > 0 and a > 0 (see (1.9)) such that for any δ ball Q and every $u \in \tilde{H}(a^2Q)$ we have

$$(1.17) \quad \left(\frac{1}{w_{2}(Q)} \int_{Q} |u - av_{\mu,Q}u|^{q} w_{2} dx\right)^{1/q} \leq \\ \leq cr(Q) \left(\frac{1}{w_{1}(Q)} \int_{Q^{2}Q} |\nabla_{\lambda}u|^{2} w_{1} dx\right)^{1/2},$$

where
$$av_{\mu,Q}u = \frac{1}{\mu(Q)} \int_Q ud\mu$$
 and $a^2Q = Q(x, a^2r)$ if $Q = Q(x, r)$.

The reason that we have a^2Q on the right side of (1.17) is that we do not have a Kohn type argument (see also [J]) for the quasi-metric δ . In the *d*-metric, we can state (1.17) with equal balls on both sides. For the metric δ , however, we have convenient cut-off functions (see [FL1]) that are important in order to get Caccioppoli estimates for solutions of (1.1) (see C.1), (C.2) and (C.3)). This explains the reason that we work with δ instead of d.

We can now state our main results.

Theorem A (Harnack's inequality).

Suppose that:

- (i) $v, w_1, w_2 \in A_2$,
- (ii) the Poincaré inequality holds for w_1 , w_2 and w_1 , v with $\mu = 1$ and some q > 2,
- (iii) $w_2v^{-1} \in A_\infty(v)$.

If u is a non-negative solution of (1.1) in the cylinder $R = Q(x_0, \alpha) \times (t_0 - \beta, t_0 + \beta)$, then

 $\operatorname{ess sup}_{R^{-}} u \leq c_1 \exp\{c_2[\alpha^{-2}\beta\Lambda(Q(x_0,\alpha)) + \alpha^2\beta^{-1}(\lambda(Q(x_0,\alpha)))^{-1}]\} \operatorname{ess inf}_{R^{-}} u$

where $R^- = Q(x_0, \alpha/2) \times (t_0 - 3\beta/4, t_0 - \beta/4), R^+ = Q(x_0, \alpha/2) \times (t_0 + \beta/4, t_0 - \beta/4)$ $t_0 + \beta$), $\Lambda(Q) = w_2(Q)/v(Q)$, $\lambda(Q) = w_1(Q)/v(Q)$, for a δ -ball Q. Here the constants c_1 , c_2 depend only on the constants which arise in (i), (ii), (iii).

$$\int \int_{R} f(x, t) m(x, t) dx dt = \int \int_{R} f(x, t) m(x, t) dx dt / \int \int_{R} m(x, t) dx dt.$$

Theorem B (Mean value inequality). Assume that hypotheses (i), (ii), (iii) of Theorem A hold. Let $0 , <math>\alpha, \beta > 0$, $\alpha/2 < \alpha' < \alpha$, $\beta/2 < \beta' < \beta$ and let $Q = Q(x_0, \alpha)$, $Q' = Q(x_0, \alpha')$ and $R = Q \times (t_0 - \beta, t_0 + \beta)$, $R'_{+} = Q' \times (t_0 - \beta', t_0 + \beta)$. If u is a solution of (1.1) in R, then u is bounded in R'+ and

ess
$$\sup_{\mathbf{R}_{+}^{\prime}} |u|^{p}$$

$$\leq D(\alpha^{2}\beta^{-1}\lambda(Q)^{-1}+1)^{1/(h-1)}(\alpha^{-2}\beta\Lambda(Q)+1)^{h/(h-1)}\int\int_{\mathbb{R}}|u|^{p}(\alpha^{-2}\beta w_{2}+\nu)dxdt,$$

where $D \le C^{1/(h-1)}$ if $p \ge 2$, and $D \le c^{\log(3/p)} C^c$ if $0 , and <math>C = c - \frac{\alpha^{2+b} \beta}{(\alpha - \alpha')^{2+b} (\beta - \beta')}$. Here h > 1, c > 0 and b > 0 are constants which are independent of $u, p, \alpha, \alpha', \beta, \beta'$.

The organization of the paper is as follows. In Section 2 we prove the following Sobolev interpolation inequality:

Theorem D: Let w_1 , w_2 be doubling weights, $v \in A_2$ and suppose (1.17) holds with w_1 , w_2 , $\mu = 1$ and some q > 2. If $w_2 v^{-1} \in A_{\infty}(v)$ then there exists h > 11 and constants c > 0, b > 0 such that for every ϵ satisfying $0 < \epsilon \le 1$,

$$\frac{1}{w_2(Q)} \int_{Q} |u|^{2h} w_2 dx$$

$$\leq c\epsilon^{-b} \left(\frac{1}{\nu(Q)} \int_{(1+\epsilon)Q} u^2 \nu dx \right)^{h-1}$$

$$\times \left(\frac{r(Q)^2}{w_1(Q)} \int_{(1+\epsilon)Q} |\nabla_{\lambda} u|^2 w_1 dx + \frac{1}{\nu(Q)} \int_{(1+\epsilon)Q} u^2 \nu dx \right)$$

for all $u \in \tilde{H}((1 + \epsilon)Q)$.

In section 3 we prove Theorem B. First we show, for $p \ge 2$, the following mean value inequality for subsolutions of (1.1):

(*) ess
$$\sup_{R_+^{\prime}} u_+^p \le (p^2 C)^{\frac{h}{h-1}} (1 + \alpha^2 \beta^{-1} \lambda(Q)^{-1})^{1/(h-1)} (1 + \alpha^{-2} \beta \Lambda(Q))^{h/(h-1)} \int \int_R u_+^p (\alpha^{-2} \beta w_2 + \nu) dx dt,$$

where C is as in Theorem B and $u_+ = \max\{u, 0\}$. This inequality is less precise than the one we will eventually obtain because of the presence of the factor p^2 on the right. In order to prove the above inequality we apply Theorem D to the function $H_M(u(., r))$ where

$$H_M(s) = \begin{cases} s^{p/2} & \text{if } s \in [0, M] \\ M^{p/2} + \frac{p}{2} & M^{(p-2)/2}(s - M) & \text{if } s \ge M \\ 0 & \text{if } s < 0, \end{cases}$$

and therefore $H_M(u(., \tau))$ is an element of $\tilde{H}(Q(x_0, \alpha))$ for a.e. $\tau \in (t_0 - \beta', t_0 + \beta)$. The first idea would be to apply Theorem D to the function $u_+^{p/2}(., \tau)$ but at this point we do not know if $u_+^{p/2}(., \tau)$ belongs to $\tilde{H}(Q(x_0, \alpha))$. Hence we have to work with $H_M(u)$, and in order to proceed with the proof of (*) we show the following Caccioppolli inequality for $H_M(u)$.

(C.1) Let $2 \le p < \infty$ and u be a subsolution of (1.1) in R. Let $w_2 \in A_2$ and α , α' , β , β' satisfy $\alpha/2 < \alpha' < \alpha$, $\beta/2 < \beta' < \beta$. Then

$$\operatorname{ess sup}_{\tau \in (t_0 - \beta', t_0 + \beta)} \int_{Q} H_M(u(x, r))^2 v(x) dx$$

$$+ \int \int_{R'} |\nabla_{\lambda} (H_M(u))|^2 w_1(x) dx dt$$

$$\leq c \int \int_{R} u^2 H_M'(u)^2 \left(\frac{w_2}{(\alpha - \alpha')^2} + \frac{v}{\beta - \beta'} \right) dx dt$$

with c independent of all parameters.

The next step is to apply (*) for p=2 to deduce that u_+ is locally bounded. This fact allow us to apply Theorem D to the function $u_+^{p/2}(., \tau)$ for a.e. $\tau \in (t_0 - \beta', t_0 + \beta)$. The Caccioppoli inequality we can deduce from (C.1)

for the function $u_+^{p/2}$ is not precise enough since it will have a factor p^2 in the right hand side (note that $uH'_M(u) \le pu_+^{p/2}/2$) and this is the term we want to eliminate from (*). But with a different test function from the one used in the proof of (C.1), namely, $\phi(x, t) = \eta^2 g(u) \chi(t, \tau_1, \tau_2)$ where

$$g(s) = \begin{cases} s^{p-1} & \text{if } s \in [0, M], \\ M^{p-2}s & \text{if } s \ge M, \\ 0 & \text{if } s < 0, \end{cases}$$

and η is a convenient C^{∞} function with compact support, we can deduce the following Caccioppoli inequality for subsolutions of (1.1):

(C.2) Let $2 \le p < \infty$ and u be a subsolution of (1.1) in R. Let $w_2 \in A_2$ and α , α' , β , β' satisfy $\alpha/2 < \alpha' < \alpha$, $\beta/2 < \beta' < \beta$. Then

ess
$$\sup_{\tau \in (l_0 - \beta', l_0 + \beta)} \int_Q u_+(x, \tau)^p v(x) dx + \int \int_{R'_+} |\nabla_{\lambda} u_+^{p/2}|^2 w_1(x) dx dt$$

$$\leq c \int \int_{R} u_{+}^{p} \left(\frac{w_{2}}{(\alpha - \alpha')^{2}} + \frac{v}{\beta - \beta'} \right) dxdt,$$

with c independent of all parameters.

Now following the steps of the proof of (*) using (C.2) instead of (C.1) we can prove that for $p \ge 2$

(**) ess
$$\sup_{R'} u_+^p \le$$

$$C^{\frac{h}{h-1}}(\alpha^2\beta^{-1}\lambda(Q)^{-1}+1)^{1/(h-1)}(\alpha^{-2}\beta\Lambda(Q)+1)^{h/(h-1)}\int\int_R u_+^p(\alpha^{-2}\beta w_2+\nu)dxdt,$$

and Theorem B will follow from (**) and an iteration argument like the one given in Lemma 3.4 of [GW2]. Finally we conclude Section 3 by making some comments about the proof of mean value inequalities for u^p , when p < 0, where u is a positive solution of (1.1). These inequalities will be necessary in the proof of Theorem A and in order to show them we need the following generalization of (C.2):

(C.3) Let $-\infty , <math>p \neq 0$, 1, u satisfy $0 < m < u(x, t) < M < \infty$ in R, $w_2 \in A_2$. Then if p > 1 and u is a subsolution in R, or if p < 0 and u is a supersolution in R,

$$\operatorname{ess sup}_{\tau \in (t_0 - \beta', t_0 + \beta)} \int_{Q'} u(x, \tau)^p v(x) dx + \frac{p - 1}{p} \int \int_{R'_+} |\nabla_{\lambda} u^{p/2}|^2 w_1(x) dx dt$$

$$\leq c \int \int_{R} u^p \left(\frac{p}{p - 1} \cdot \frac{w_2(x)}{(\alpha - \alpha')^2} + \frac{v(x)}{\beta - \beta'} \right) dx dt.$$

Moreover, if 0 and u is a supersolution in R, then

$$\operatorname{ess sup}_{\tau \in (t_0 - \beta, t_0 + \beta')} \int_{Q'} u(x, \tau)^p v(x) dx + \left| \frac{p - 1}{p} \right| \int_{R'} |\nabla_{\lambda} u^{p/2}|^2 w_1 dx dt$$

$$\leq c \int_{R} u^p \left(\left| \frac{p}{p - 1} \right| \frac{w_2}{(\alpha - \alpha')^2} + \frac{v}{\beta - \beta'} \right) dx dt.$$

In this paper we do not present the proofs of (C.2) and (C.3) since their proofs are similar to the ones given in Section 2 of [GW2].

In Section 4, we prove

Theorem E: Let v and w_1 be weights such that there exists s > 1 with

$$(1.18) \quad \left(\frac{r(I)}{r(B)}\right)^{2} \left(\frac{1}{|I|} \int_{I} \left(\frac{v}{v(B)}\right)^{s} dx\right)^{1/s} \left(\frac{1}{|I|} \int_{I} \left(\frac{w_{1}}{w_{1}(B)}\right)^{-s} dx\right)^{1/s} \leq c$$

for all δ -balls I, B with $I \subset 2a^2B$ (a as in (1.9)), where c is a constant independent of the balls. Let $Q = Q(\xi, r)$ and φ be a C^1 function such that $\varphi \equiv 1$ in $Q(\xi, kr)$, $1/2 \le k < 1$, $0 \le \varphi \le 1$, supp $\varphi \subset Q$ and

$$\varphi(x)\varphi(H(t_0, x, y)) \leq \varphi(H(t, x, y))$$

for all x, y, t, t_0 with $0 \le t \le t_0$. Then, if $u \in \text{Lip}(Q)$,

$$\int_{Q} |u(x) - A_{Q}|^{2} \varphi(x) \nu(x) dx \le c \frac{\nu(Q)}{w_{1}(Q)} r(Q)^{2} \int_{Q} |\nabla_{\lambda} u(x)|^{2} \varphi(x) w_{1}(x) dx,$$

where
$$A_Q = \frac{1}{\varphi(Q)} \int_Q u(x) \varphi(x) dx$$
.

Finally, in Section 5, we prove Theorem A. This theorem follows as an application of Bombieri's lemma ([GW2]). In order to verify the hypotheses of Bombieri's lemma we need Theorem B and Theorem F, which we state next. We write

$$(\nu \otimes 1) (A) = \int \int_A \nu(x) dx dt,$$

where v = v(x), $x \in \mathbb{R}^n$, and $A \subset \mathbb{R}^{n+1} = \{(x, t) : x \in \mathbb{R}^n, t \in R\}$.

Theorem F: Suppose v is a doubling weight, $w_2 \in A_2$, (1.18) holds and $w_2v^{-1} \in A_{\infty}(v)$. Let Q_R be a δ -ball of radius R, $t_0 \in (a, b)$ and $\tilde{w}_2 = w_2/w_2(Q_R)$ and $\tilde{v} = v/v(Q_R)$. If u is a solution of (1.1) in $Q_{3R/2} \times (a, b)$ which is bounded below by a positive constant, then there are constants c_1 , M_2 , x and V such that if for s > 0 we define

$$E^{+} = \{(x, t) \in Q_{R} \times (t_{0}, b) : \log u < -s - M_{2}(b - t_{0}) - V\}$$

$$E^{-} = \{(x, t) \in Q_{R} \times (a, t_{0}) : \log u > s - M_{2}(a - t_{0}) - V\},$$

then

$$((\tilde{v} + \tilde{w}_2) \otimes 1) (E^+) \leq c_1 \left(\frac{1}{s} \frac{v(Q_R)}{w_1(Q_R)} \frac{R^2}{b - t_0}\right)^s (b - t_0)$$

and

$$((\tilde{v} + \tilde{w}_2) \otimes 1) (E^-) \leq c_1 \left(\frac{1}{s} - \frac{V(Q_R)}{w_1(Q_R)} - \frac{R^2}{t_0 - a}\right)^{\kappa} (t_0 - a).$$

Here c_1 and x depend only on the constants in the conditions on v and w_2 , $M_2 \approx \frac{w_2(Q_R)}{R^2 v(Q_R)}$, and V is a constant which depends on u.

In order to prove this theorem, if we follow the steps of Lemma 4.9 of [GW2], we just have to verify that a certain test function (see [FL1]) satisfies the conditions of Theorem E. This will be done in Lemma 5.4.

Interpolation Inequality

In this section we prove Theorem D. We start with

Theorem 2.1. Let w_1 , w_2 , and μ be doubling weights and suppose (1.17) holds for w_1 , w_2 with any μ , and for some q > 2. If $Q = Q(\xi, r)$ and $w_2v^{-1} \in A_{\infty}(v)$ then there exist h > 1 and a constant c > 0, independent of Q and u, such that

$$\frac{1}{w_{2}(Q)} \int_{Q} |u|^{2h} w_{2} dx$$

$$\leq c \left(\frac{1}{\nu(Q)} \int_{Q} u^{2} \nu dx \right)^{h-1} \left(\frac{r^{2}}{w_{1}(Q)} \int_{O(\xi, q^{2}r)} |\nabla_{\lambda} u|^{2} w_{1} dx + (a \nu_{\mu, Q} |u|)^{2} \right)$$

for all $u \in \tilde{H}(a^2Q)$, and a as in (1.9). Also if (1.17) is replaced by (1.16), then

$$\frac{1}{w_{2}(Q)} \int_{Q} |u|^{2h} w_{2} dx \leq c \left(\frac{1}{v(Q)} \int_{Q} u^{2} v dx\right)^{h-1} \left(\frac{r^{2}}{w_{1}(Q)} \int_{Q} |\nabla_{\lambda} u|^{2} w_{1} dx\right)$$

for all $u \in \tilde{H}_{\circ}(Q)$.

PROOF: The proof follows as in [GW1], Theorem 3; the only differences are that we obtain $Q(\xi, a^2r)$ in the second integral on the right when we apply Poincaré's inequality and in the end we use the results of Calderón for weights in homogeneous spaces (see [C]).

Corollary 2.2. Let w_1 , w_2 be doubling weights and suppose (1.17) holds with w_1 , w_2 , $\mu = 1$ and some q > 2. If $w_2v^{-1} \in A_{\infty}(v)$, then there exists h > 1 and a constant c > 0 such that

$$\frac{1}{w_{2}(Q)} \int_{Q} |u|^{2h} w_{2} dx$$

$$\leq c \left(\frac{1}{\nu(Q)} \int_{Q} u^{2} \nu dx \right)^{h-1} \left(\frac{r^{2}}{w_{1}(Q)} \int_{a^{2}Q} |\nabla_{\lambda} u|^{2} w_{1} dx + \frac{1}{\nu(Q)} \int_{Q} u^{2} \nu dx \right)$$

for all $u \in \tilde{H}(a^2Q)$, $Q = Q(\xi, r)$.

PROOF: The conclusion of Theorem 2.1 holds for $\mu = 1$. But, by Schwarz's inequality,

$$av_{Q} | u | = \frac{1}{|Q|} \int_{Q} |u| dx$$

$$= \frac{1}{|Q|} \int_{Q} uv^{1/2} v^{-1/2} dx \le \frac{1}{|Q|} \left(\int_{Q} u^{2} v dx \right)^{1/2} \left(\int_{Q} \frac{1}{v} dx \right)^{1/2}$$

$$\le \left(\frac{1}{v(Q)} \int_{Q} u^{2} v dx \right)^{1/2},$$

where in the last inequality we used the fact that $v \in A_2$.

In the next section we prove mean value inequalities. In order to be able to iterate a certain inequality as was done in [GW2] we need a refinement of the above corollary. This refinement is Theorem D and to prove it we need the following lemmas.

Lemma 2.3. Given $Q = Q(\xi, s)$ and 0 < r < s, there exists $x_1, ..., x_{m(r,s)}$ in Q, and $k \ge 1$ independent of ξ , r, s, such that

(i)
$$Q(x_j, r/k) \cap Q(x_h, r/k) = \emptyset, h \neq j$$

(ii)
$$Q(\xi, s) \subset \bigcup_{i=1}^{m(r,s)} Q(x_i, r).$$

Moreover, $m(r, s) \le c \left(\frac{s}{r}\right)^{\nu'}$ for some constant ν' depending only on the dimension.

PROOF: If we apply Theorem 1.2, page 69, of [CoW] to the open covering of Q given by $(S(x, r/4a)_{x \in Q})$, there exist $x_1, \ldots, x_{m(r,s)}$ in Q such that: $S(x_h, r/4a) \cap S(x_j, r/4a) = \emptyset$ if $j \neq h$ and $Q(\xi, s) \subset \bigcup_{j=1}^{m(r,r)} S(x_j, r/a)$. By (1.9), $S(x_j, r/4a) \supset Q(x_j, r/4a^2)$ and $S(x_j, r/a) \subset Q(x_j, r)$. Therefore, if we choose $k = 4a^2$, (i) and (ii) follow. It remains to find an upper bound for m(r, s). First, we note that $Q(x_j, r/k) \subset Q(\xi, a^2(k+1)s/k)$. But

$$\frac{r}{k} = \frac{2a^4(k+1)s}{k} \frac{r}{2a^4(k+1)s},$$

and so by (1.10), there exists $\nu' > 0$, such that

$$\left| Q\left(x_j, \frac{r}{k}\right) \right| \geq \left(\frac{r}{2a^4(k+1)s}\right)^{\nu'} \left| Q\left(x_j, \frac{2a^4(k+1)s}{k}\right) \right|,$$

and since the $Q(x_j, r/k)$ are disjoint,

$$\left| Q\left(\xi, \frac{a^2(k+1)s}{k}\right) \right| \geq \sum_{j} \left| Q\left(x_j, \frac{r}{k}\right) \right|$$

$$\geq c \left(\frac{r}{s}\right)^{\nu} \sum_{j} \left| Q\left(x_j, \frac{2a^4(k+1)s}{k}\right) \right|.$$

But,

$$Q\left(x_j, \frac{2a^4(k+1)s}{k}\right) \supset Q\left(\xi, \frac{a^2(k+1)s}{k}\right)$$

and so

$$\left| Q\left(\xi, \frac{a^2(k+1)s}{k}\right) \right| \geq c\left(\frac{r}{s}\right)^{\nu} m(r, s) \left| Q\left(\xi, \frac{a^2(k+1)s}{k}\right) \right|.$$

Therefore, $m(r, s) \le c (s/r)^{\nu}$.

Lemma 2.4. If $\delta(y, z) < s$ then $F_i(z^*, s) \le (2a^2)^{G_i} F_i(y^*, s)$, G_i as in (1.10).

PROOF: Since $Q(z, s) \subset Q(y, 2a^2s)$, $F_j(z^*, s) \leq F_j(y^*, 2a^2s)$. By (1.10), it follows that

$$F_j(z^*, s) \leq F_j(y^*, 2a^2s) \leq (2a^2)^{G_j}F_j(y^*, s).$$

Lemma 2.5. If $0 < \epsilon < 1$ and $\eta \in Q = Q(\xi, s)$, then $Q(\eta, \epsilon s/(2a^2)^{\zeta}) \subset Q(\xi, (1 + \epsilon)s)$, where $\zeta = \max_{j=1,...,n} G_j$.

PROOF: If $y \in Q(\eta, \epsilon s/(2a^2)^{\xi})$ then by (1.8), $|y_j - \eta_j| \le F_j(\eta^*, \epsilon s/(2a^2)^{\xi})$ and by (1.10) and Lemma 2.4

$$F_j\left(\eta^*, \frac{\epsilon s}{(2a^2)^{\zeta}}\right) \leq \frac{\epsilon}{(2a^2)^{\zeta}} F_j(\eta^*, s) \leq \epsilon F_j(\xi^*, s).$$

Therefore

$$|y_{j} - \xi_{j}| \le |y_{j} - \eta_{j}| + |\eta_{j} - \xi_{j}| \le \epsilon F_{j}(\xi^{*}, s) + F_{j}(\xi^{*}, s)$$

= $(1 + \epsilon)F_{j}(\xi^{*}, s)$
 $\le F_{j}(\xi^{*}, (1 + \epsilon)s),$

where in the last inequality we used (1.10).

Proof of Theorem D.

Let $Q = Q(\xi, s)$. By Lemma 2.5, $\delta(Q, \partial(1 + \epsilon)Q) \ge \epsilon s/(2a^2)^{\xi}$. Apply Lemma 2.3 to $r = \frac{\epsilon s}{(2a^2)^{\xi}a^2}$ to find $x_1, ..., x_{m(r,s)} \in Q$ such that: $Q(x_j, r/k) \cap Q(x_h, r/k) = \emptyset$ if $j \ne h$, $Q(\xi, s) \subset \bigcup_{j=1}^{m(r,s)} Q(x_j, r)$ and $m(r, s) \le c(s/r)^{\nu}$.

Note that, by (2.5),
$$Q(x_j, a^2r) = Q\left(x_j, \frac{\epsilon s}{(2a^2)^{\frac{c}{s}}}\right) \subset Q(\xi, (1+\epsilon)s) = (1+\epsilon)Q.$$

Then using Corollary 2.2, doubling for w_2 , doubling for v and w_1 and the fact that $Q(x_j, 2a^2s) \supset Q(\xi, s)$ and $Q(\xi, 2a^2s) \supset Q(x_j, s)$,

$$\int_{Q} |u|^{2h} w_{2} dx \leq \sum_{j=1}^{m(r,s)} \int_{Q(x_{j},r)} |u|^{2h} w_{2} dx$$

$$\leq c \sum_{j=1}^{m(r,s)} w_{2}(Q(x_{j},r)) \left(\frac{1}{\nu(Q(x_{j},r))} \int_{Q(x_{j},r)} u^{2} \nu dx \right)^{h-1}$$

$$\cdot \left\{ \frac{r^{2}}{w_{1}(Q(x_{j},r))} \int_{Q(x_{j},a^{2}r)} |\nabla_{\lambda} u|^{2} w_{1} dx + \frac{1}{\nu(Q(x_{j},r))} \int_{Q(x_{j},r)} u^{2} \nu dx \right\}$$

$$\leq c \left(\frac{s}{r} \right)^{\nu'} w_{2}(Q(\xi,s)) \left[\left(\frac{r}{2a^{2}s} \right)^{-\alpha} \frac{1}{\nu(Q(\xi,s))} \int_{(1+\epsilon)Q} u^{2} \nu dx \right]^{h-1}$$

$$\cdot \left\{ \frac{s^{2}}{w_{1}(Q(\xi,s))} \left(\frac{r}{2a^{2}s} \right)^{-\alpha} \int_{(1+\epsilon)Q} |\nabla_{\lambda} u|^{2} w_{1} dx \right.$$

$$+ \left(\frac{r}{2a^{2}s} \right)^{-\alpha} \frac{1}{\nu(Q(\xi,s))} \int_{(1+\epsilon)Q} u^{2} \nu dx \right\}.$$

The theorem follows if we choose $b = v + 2\alpha$, since $s/r = c\epsilon^{-1}$.

Mean value inequalities. 3.

In this section we prove Theorem B and some other mean value inequalities. Since the proofs are similar to the ones given by [GW2], we just point out the differences. Basically, we have to be a little more careful in the iteration argument since there is a factor ϵ in Theorem D.

We asume throughout this section that:

(3.1)
$$\begin{cases} (a) & w_1, w_2, v \in A_2 \\ (b) & \text{Poincaré's inequality, (1.17), holds for both of the pairs } w_1, \\ w_2 & \text{and } w_1, v \text{ with some } q > 2 \text{ and } \mu = 1 \\ (c) & w_2 v^{-1} \in A_{\infty}(v). \end{cases}$$

Denote $R_{r,s} = Q(x_0, r) \times (t_0 - s, t_0 + s)$ and let $R = R_{r,s}$, $R' = R_{\varrho,\sigma}$ with $r/2 < \varrho < r$ and $s/2 < \sigma < s$ and define

(3.2)
$$C = c \frac{r^{2+b}s}{(r-\varrho)^{2+b}(s-\sigma)}$$

where b is given by Theorem D and c is a constant that may vary, but which only depends on the weights and on h, where h > 1 is the index for which Theorem D holds for both w_2 and v on the left hand side.

We also write $\lambda(Q) = w_1(Q)/\nu(Q)$ and $\Lambda(Q) = w_2(Q)/\nu(Q)$. We start this section with the proof of (C.1). This estimate will be important in deducing a mean value inequality for subsolutions of (1.1).

PROOF OF (C.1): If $u \in H$ define

$$\varphi(x, t) = \eta^{2}(x, t) \left[\int_{0}^{u(x,t)} H_{M}(s)^{2} ds + u(x, t) H_{M}(u(x, t))^{2} \right] \chi(t, \tau_{1}, \tau_{2}),$$

where $\eta \in C_0^{\infty}(R)$ will be specified later, $t_0 - s < \tau_1 < \tau_2 < t_0 + s$ and $\chi(t, \tau_1, \tau_2)$ denotes the characteristic function of (τ_1, τ_2) . The fact that the function φ is in H_0 follows as a consequence of the following result: if f is a piecewise smooth function on the real line with $f' \in L^{\infty}(-\infty, \infty)$ and if $u \in H$, then $f \circ u \in H$. Here we use the convention that f'(u) = 0 if $u \in L$ where L denotes the set of corner points of f (the proof follows the steps of Theorem 7.8 of [GT] and it also shows that $\nabla_{\lambda}(f \circ u) = f'(u) \nabla_{\lambda} u$ and $(f(u))_t = f'(u)u_t$). The proof of the above fact also verifies that in our case $\varphi \geq 0$ in the H_0 -sense since $H_M(s) = 0$ for s < 0.

Since u is a subsolution, we have

$$(3.3) \qquad \int \int_{R} (\langle A \nabla u, \nabla \varphi \rangle + u_{t} \varphi v) dx dt \leq 0.$$

Note that by another limiting argument

$$u_{t}\left[\eta^{2}\int_{0}^{u}H'_{M}(s)^{2}ds\right]=\left[u\eta^{2}\int_{0}^{u}H'_{M}(s)^{2}ds\right]_{t}-u(\eta^{2})_{t}\int_{0}^{u}H'_{M}(s)^{2}ds-\eta^{2}H'_{M}(u)^{2}u_{t}u,$$

and then by definition of φ , for $\tau_1 < t < \tau_2$,

$$u_t\varphi = \left[u\eta^2\int_0^u H_M'(s)^2ds\right]_t - (\eta^2)_t u\int_0^u H_M'(s)^2ds$$

and

$$\nabla \varphi = 2\eta \nabla \eta \left[\int_0^u H_M'(s)^2 ds + u H_M'(u)^2 \right] + \eta^2 [H_M'(u)^2 \nabla u + f_M'(u) \nabla u],$$

where $f_M(s) = sH'_M(s)^2$ (note that $\nabla (f_M(u)) = f'_M(u) \nabla u$, since f_M is piecewise smooth with $f'_M \in L^{\infty}$). If we substitute the two last equations in (3.3) we get, with $Q = Q(x_0, r)$,

$$\int_{Q} \int_{\tau_{1}}^{\tau_{2}} \left[u\eta^{2} \int_{0}^{u} H'_{M}(s)^{2} ds \right] v dx dt + \int_{Q} \int_{\tau_{1}}^{\tau_{2}} \eta^{2} H'_{M}(u)^{2} \langle A \nabla u, \nabla u \rangle dx dt$$

$$\leq \int_{Q} \int_{\tau_{1}}^{\tau_{2}} \left[(\eta^{2})_{t} u \int_{0}^{u} H'_{M}(s)^{2} ds \right] v dx dt$$

$$- 2 \int_{Q} \int_{\tau_{1}}^{\tau_{2}} \eta \langle A \nabla u, \nabla \eta \rangle \left[\int_{0}^{u} H'_{M}(s)^{2} ds + u H'_{M}(u)^{2} \right] dx dt$$

$$- \int_{Q} \int_{\tau_{1}}^{\tau_{2}} \eta^{2} \langle A \nabla u, \nabla u \rangle f'_{M}(u) dx dt.$$

We can drop the last term on the right since the integrand is non-negative. The second term on the right is majorized in absolute value by

$$4 \int_{Q} \int_{\tau_{1}}^{\tau_{2}} |\langle A \nabla u, \nabla \eta \rangle| \eta H'_{M}(u)^{2} u dx dt$$

$$= 4 \int_{Q} \int_{\tau_{1}}^{\tau_{2}} |\langle A H'_{M}(u) \eta \nabla u, u H'_{M}(u) \nabla \eta \rangle| dx dt$$

$$\leq 2\epsilon \int_{Q} \int_{\tau_{1}}^{\tau_{2}} \langle A \nabla (H_{M}(u)), \nabla (H_{M}(u)) \rangle, \eta^{2} dx dt$$

$$+ \frac{2}{\epsilon} \int_{Q} \int_{\tau_{1}}^{\tau_{2}} \langle A \nabla \eta, \nabla \eta \rangle u^{2} H'_{M}(u)^{2} dx dt$$

where we used the fact that $|\langle Ax, y \rangle| \le \langle Ax, x \rangle^{1/2} \langle Ay, y \rangle^{1/2} \le \frac{\epsilon}{2} \langle Ax, x \rangle + \frac{1}{2\epsilon} \langle Ay, y \rangle$. If we pick $\epsilon = \frac{1}{4}$ we get

$$(3.4) \int_{Q} \int_{\tau_{1}}^{\tau_{2}} \left[u \eta^{2} \int_{0}^{u} H_{M}'(s)^{2} ds \right]_{t} v dx dt$$

$$+ \frac{1}{2} \int_{Q} \int_{\tau_{1}}^{\tau_{2}} \eta^{2} \langle A \nabla (H_{M}(u)), \nabla (H_{M}(u)) \rangle dx dt$$

$$\leq 8 \int_{Q} \int_{\tau_{1}}^{\tau_{2}} \langle A \nabla \eta, \nabla \eta \rangle u^{2} H_{M}'(u)^{2} dx dt + \int_{Q} \int_{\tau_{1}}^{\tau_{2}} \left[(\eta^{2})_{t} u \int_{0}^{u} H_{M}'(s)^{2} ds \right] v dx dt.$$

Choosen η to be zero in a neighborhood of $\{\partial Q \times (t_0 - s, t_0 + s)\} \cup \{Q \times (t = t_0 - s)\}$, $\eta \equiv 1$ in R'_+ , $0 \le \eta \le 1$, $|\nabla_{\lambda} \eta| \le c/(r - \varrho)$, $|\eta_t| \le c/(s - \sigma)$ (see page 537 of [FL1]). If we pick τ_1 so close to $t_0 - s$ that $\eta(x, \tau_1) = 0$ for all $x \in Q$, drop the second term on the left of (3.4) (which is non-negative) and use Lemma 5 of [AS] it follows that

(3.5)
$$\operatorname{ess sup}_{\tau_{2} \in (t_{0} - \sigma, t_{0} + s)} \int_{Q'} u(x, \tau_{2}) \int_{0}^{u(x, \tau_{2})} H'_{M}(s)^{2} ds \, \nu dx$$

$$\leq c \int \int_{R} u^{2} H'_{M}(u)^{2} \left[\frac{w_{2}}{(r - \varrho)^{2}} + \frac{\nu}{s - \sigma} \right] dx dt.$$

If we fix $\tau_2 \in (t_0 - \sigma, t_0 + s)$ and τ_1 as before and if we drop the first term on the left of (3.4) (which we can see is non-negative after performing the integration) we obtain

$$(3.6) \int_{Q} \int_{\tau_{1}}^{\tau_{2}} \eta^{2} \langle A \nabla (H_{M}(u)), \nabla (H_{M}(u)) \rangle dxdt$$

$$\leq c \int \int_{R} u^{2} H_{M}'(u)^{2} \left[\frac{w_{2}}{(r-\varrho)^{2}} + \frac{v}{s-\sigma} \right] dxdt.$$

Letting $\tau_2 \rightarrow t_0 + s$ and using (1.2) we get

$$(3.7) \int \int_{R_{\perp}} |\nabla_{\lambda}(H_{M}(u))|^{2} w_{1} dx dt \leq c \int \int_{R} u^{2} H_{M}(u)^{2} \left[\frac{w_{2}}{(r-\varrho)^{2}} + \frac{v}{s-\sigma} \right] dx dt.$$

Finally note that

$$H_M(u)^2 = \int_0^u (H_M(s)^2)' ds = \int_0^u 2H_M(s)H_M'(s)ds$$

$$\leq 2\int_0^u sH_M'(s)^2 ds \leq 2u\int_0^u H_M'(s)^2 ds,$$

since $H_M(s) \le sH'_M(s)$. Combining this with (3.5) and (3.7), (C.1) follows with α , β , α' , β' taken there to be r, s, ϱ , σ .

Lemma 3.8. Let $p \ge 2$, R, R' be as defined above and assume (3.1) holds. If u is a subsolution of (1.1) in R, then u_+ is bounded in R'_+ $Q(x_0, \varrho) \times (t_0 - \sigma, t_0 + s)$ and

ess sup_{R'} u_+^p

$$\leq (p^{2}C)^{\frac{h}{h-1}} \left(1 + \frac{r^{2}}{s} \frac{1}{\lambda(Q)}\right)^{\frac{1}{h-1}} \left(1 + \frac{s}{r^{2}} \Lambda(Q)\right)^{\frac{h}{h-1}} \int \int_{R} u_{+}^{p} \left(\frac{s}{r^{2}} w_{2} + v\right) dx dt,$$

with C as in (3.2).

PROOF: $H_M(u)$ is a function in H since $u \in H$ and H_M is a C^1 function with bounded derivative. Then by Fubini's theorem we have that $H_M(u(., \tau)) \in \tilde{H}$ for a.e. $\tau \in (t_0 - \sigma, t_0 + s)$. If we apply Theorem D to the function F(x) = $H_M(u(x, \tau)), Q = Q_{\varrho}$ and $\epsilon > 0$ such that $(1 + \epsilon)\varrho < r$ and combine this with (C.1) we obtain

$$\frac{1}{w_{2}(Q_{\varrho})} \int_{Q_{\varrho}} H_{M}(u(x, \tau)^{2h} w_{2}(x) dx$$

$$\leq c\epsilon^{-b} \left\{ \frac{1}{\nu(Q_{\varrho})} \int_{R} u^{2} H_{M}'(u)^{2} \left(\frac{w_{2}}{(r - (1 + \epsilon)\varrho)^{2}} + \frac{\nu}{s - \sigma} \right) dx dt \right\}^{h-1}$$

$$\cdot \left\{ \frac{\varrho^{2}}{w_{1}(Q_{\varrho})} \int_{Q_{(1+\epsilon)\varrho}} |\nabla_{\lambda} (H_{M}(u(x, \tau)))|^{2} w_{1}(x) dx$$

$$+ \frac{1}{\nu(Q_{\varrho})} \int_{R} u^{2} H_{M}'(u)^{2} \left(\frac{w_{2}}{(r - (1 + \epsilon)\varrho)^{2}} + \frac{\nu}{s - \sigma} \right) dx dt \right\}$$

for a.e. $\tau \in (t_0 - \sigma, t_0 + s)$.

Integrate with respect to τ over ($t_0 - \sigma$, $t_0 + s$) and apply (C.1) to get

$$\frac{1}{w_2(Q_\varrho)} \int \int_{R^\perp} H_M(u(x, t))^{2h} w_2(x) dx dt$$

$$\leq c \frac{\epsilon^{-b}}{\nu(Q_{\varrho})^{h-1}} \left(\frac{\varrho^2}{w_1(Q_{\varrho})} + \frac{s+\sigma}{\nu(Q_{\varrho})} \right) \left(\iint_R u^2 H_M'(u)^2 \frac{w_2}{(r-(1+\epsilon)\varrho)^2} + \frac{\nu}{s-\sigma} \right) dx dt \right)^h$$

Since $(r/2) < \varrho < r$ and $(s/2) < \sigma < s$, by the doubling property of the weights and the definitions of λ and Λ , it follows that

$$\frac{1}{\mathbf{w}_2(Q_r)} \int \int_{R'} H_M(u(x, t))^{2h} w_2(x) dx dt$$

$$\leq c \frac{\epsilon^{-b}}{v(Q_r)^h} \left(\frac{r^2}{\lambda(Q_r)} + s \right) \left(\iint_R u^2 H_M'(u)^2 \left(\frac{w_2}{(r - (1 + \epsilon)\varrho)^2} + \frac{v}{s - \sigma} \right) dx dt \right)^h.$$

A similar inequality holds with w_2 replaced by v on the left, and if we add the two inequalities, we obtain

$$(3.9) \qquad \int \int_{R_+} H_M(u)^{2h} \left(\frac{w_2}{w_2(Q_r)} + \frac{\nu}{\nu(Q_r)} \right) dxdt$$

$$\leq c \frac{\epsilon^{-b}}{\nu(Q_r)^h} \left(\frac{r^2}{\lambda(Q_r)} + s \right) \left(\int \int_{\mathbb{R}^n} u^2 H_M'(u)^2 \left(\frac{w_2}{(r - (1 + \epsilon)\rho)^2} + \frac{\nu}{s - \sigma} \right) dxdt \right)^h$$

for any ϵ such that $(1 + \epsilon)\varrho < r$. Now note that

$$\frac{w_{2}}{(r-(1+\epsilon)\varrho)^{2}} + \frac{v}{s-\sigma} \leq \frac{r^{2}}{(r-(1+\epsilon)\varrho)^{2}(s-\sigma)} \left\{ \frac{s}{r^{2}} w_{2} + v \right\},$$

$$\int \int_{R'_{+}} \left\{ \frac{w_{2}}{w_{2}(Q_{r})} + \frac{v}{v(Q_{r})} \right\} dxdt \approx s,$$

$$\int \int_{R} \left\{ \frac{s}{r^{2}} w_{2} + v \right\} dxdt \approx s \left\{ \frac{s}{r^{2}} w_{2}(Q_{r}) + v(Q_{r}) \right\} \approx sv(Q_{r}) \left\{ \frac{s}{r^{2}} \Lambda(Q_{r}) + 1 \right\},$$

$$\frac{sr^{-2} w_{2}(x) + v(x)}{sr^{-2} w_{2}(Q_{r}) + v(Q_{r})} \leq \frac{w_{2}(x)}{w_{2}(Q_{r})} + \frac{v(x)}{v(Q_{r})}.$$

Thus, by raising both sides of (3.9) to the power 1/h, normalizing and using the fact that $e^{-b/h} \le e^{-b}$, we obtain

$$(3.10) \left(\iint_{R_{+}} H_{M}(h)^{2h} \left(\frac{s}{r^{2}} w_{2} + \nu \right) dx dt \right)^{1/h}$$

$$\leq c \epsilon^{-b} \frac{r^{2} s}{(r - (1 + \epsilon) \varrho)^{2} (s - \sigma)} \left(1 + \frac{s}{r^{2}} \Lambda(Q_{r}) \right) \left(1 + \frac{r^{2}}{s} \frac{1}{\lambda(Q_{r})} \right)^{1/h}$$

$$\cdot \iint_{R} u^{2} H_{M}'(u)^{2} \left(\frac{s}{r^{2}} w_{2} + \nu \right) dx dt$$

for any ϵ such that $(1 + \epsilon)\varrho < r$. Since $u_+^{p/2} \chi_{[0 < u < M]} \le H_M(u)$ and $uH_M'(u) \le pu_+^{p/2}/2$, if we let $M \to \infty$ it follows by Fatou's lemma that

$$(3.11) \quad \left(\int \int_{R_{+}} u_{+}^{ph} \left(\frac{s}{r^{2}} w_{2} + \nu \right) dx dt \right)^{1/h}$$

$$\leq c p^{2} \epsilon^{-b} \frac{r^{2} s}{(r - (1 + \epsilon) \varrho)^{2} (s - \sigma)} \left(1 + \frac{s}{r^{2}} \Lambda(Q_{r}) \right) \left(1 + \frac{r^{2}}{s} \frac{1}{\lambda(Q_{r})} \right)^{1/h}$$

$$\cdot \int \int_{R} u_{+}^{p} \left(\frac{s}{r^{2}} w_{2} + \nu \right) dx dt.$$

Now, we have to iterate (3.11). Fix r, s, ϱ , σ with $r/2 < \varrho < r$ and $s/2 < \sigma < s$. For k = 1, 2, ... define sequences $\{s_k\}_{k \in \mathbb{N}}$ and $\{r_k\}_{k \in \mathbb{N}}$ and $\{\epsilon_k\}_{k \in \mathbb{N}}$ by $s_1 = s$, $s_k - s_{k+1} = \frac{s - \sigma}{2^k}$ for $k \ge 1$, $r_1 = r$, $r_k - r_{k+1} = (r - \varrho)/2^k$ for $k \ge 1$, and $\epsilon_k = \frac{r-\varrho}{2^k r_k} = \frac{r_k - r_{k+1}}{r_k}$ for $k \ge 1$. Also, define $R_k = Q_k \times (t_0 - s_k, t_0 + s)$ for $k \ge 1$, where $Q_k = Q(x, r_k)$. Note that $R_1 = R$ and $\bigcap_{k=1}^{\infty} R_k = R'_+$. Since

$$\frac{1}{2} sr^{-2} \le s_k r_k^{-2} \le 4sr^{-2},$$

if we apply (3.11) with p replaced by ph^{k-1} , $p \ge 2$, and $r = r_k$, $\varrho = r_{k+1}$ and $\epsilon = \epsilon_{k+1}$ (note that $(1 + \epsilon_{k+1})r_{k+1} < r_k$), we obtain

$$\left(\int \int_{R_{k+1}} u_{+}^{ph^{k}} \left(\frac{s}{r^{2}} w_{2} + \nu \right) dx dt \right)^{1/h^{k}} \\
\leq \left\{ c(ph^{k-1})^{2} \epsilon_{k+1}^{-b} \frac{r_{k}^{2} s_{k}}{(r_{k} - (1 + \epsilon_{k+1}) r_{k+1})^{2} (s_{k} - s_{k+1})} \left(1 + \frac{s}{r^{2}} \Lambda (Q_{r}) \right) \right. \\
\left. \cdot \left(1 + \frac{r^{2}}{s} \frac{1}{\lambda (Q_{r})} \right)^{1/h} \right\}^{1/(h^{k-1})} \cdot \left\{ \int \int_{R_{k}} u_{+}^{ph^{k-1}} \left(\frac{s}{r^{2}} w_{2} + \nu \right) dx dt \right\}^{1/(h^{k-1})}.$$

But note that

$$\epsilon_{k+1}^{-b} \frac{r_k^2 s_k}{\left[r_k - (1 + \epsilon_{k+1}) r_{k+1}\right]^2 (s_k - s_{k+1})}$$

$$= 2^{(k+1)b} \frac{r_{k+1}^b}{(r-\varrho)^b} \frac{r_k^2 s_k}{\left(\frac{r-\varrho}{2^k} - \frac{r-\varrho}{2^{k+1}}\right)^2 \left(\frac{s-\sigma}{2^k}\right)}$$

$$\leq c2^{(3+b)k} \frac{r^{2+b} s}{(r-\varrho)^{2+b} (s-\sigma)}$$

$$\leq C2^{(3+b)k},$$

where C is given by (3.2). Thus,

$$(3.12) \left(\iint_{R_{k+1}} u_+^{ph^k} \left(\frac{s}{r^2} w_2 + \nu \right) dx dt \right)^{1/h^k}$$

$$\leq \left\{ C(ph^{k-1})^2 2^{(3+b)k} \left(1 + \frac{s}{r^2} \Lambda(Q_r) \right) \left(1 + \frac{r^2}{s} \frac{1}{\lambda(Q_r)} \right)^{1/h} \right\}^{1/h^{k-1}} \cdot \left\{ \iint_{R_k} u_+^{ph^{k-1}} \left(\frac{s}{r^2} w_2 + \nu \right) dx dt \right\}^{1/h^{k-1}}.$$

If we iterate (3.12), we obtain

ess $\sup_{R'} u^p_+$

$$\leq \prod_{k=1}^{\infty} \left\{ C(ph^{k-1})^2 2^{(3+b)k} \left(1 + \frac{s}{r^2} \Lambda(Q_r) \right) \right.$$

$$\left. \cdot \left(1 + \frac{r^2}{s} \frac{1}{\lambda(Q_r)} \right)^{1/h} \right\}^{1/h^{k-1}} \int \int_{\mathbb{R}} u_+^p \left(\frac{s}{r^2} w_2 + \nu \right) dx dt.$$

Since
$$\sum_{k=1}^{\infty} \frac{1}{h^{k-1}} = \frac{h}{h-1}$$
 and $\sum_{k=1}^{\infty} \frac{k}{h^{k-1}} = \left(\frac{h}{h-1}\right)^2$, it follows that

ess $\sup_{R'} u_+^p$

$$\leq (p^{2}C)^{\frac{h}{h-1}}\left(1+\frac{s}{r^{2}}\Lambda(Q_{r})\right)^{\frac{h}{h-1}}\left(1+\frac{r^{2}}{s}\frac{1}{\lambda(Q_{r})}\right)^{\frac{1}{h-1}}\int\int_{R}u_{+}^{p}\left(\frac{s}{r^{2}}w_{2}+\nu\right)dxdt,$$

and this proves the lemma. Note that if we apply the above result for p = 2, it follows that u_+ is bounded on R'_+ .

PROOF OF THEOREM B: By Lemma 3.8 we know that u_+ is bounded in $Q_{(1+\epsilon)\varrho} \times (t_0 - \sigma, t_0 + s)$ for all ϵ such that $(1 + \epsilon)\varrho < r$. If we define $F(x) = u_+^{p/2}(x, \tau)$ then $F \in \tilde{H}(Q_{(1+\epsilon)\rho})$ for a.e. $\tau \in (t_0 - \sigma, t_0 + s)$ and if we follow the proof of Lemma 3.8 using (C.2) instead of (C.1), we get (see the comments in the introduction)

ess $\sup_{R'_+} u^p_+$

$$\leq C^{\frac{h}{h-1}} \left(1 + \frac{r^2}{s} \frac{1}{\lambda(Q)} \right)^{\frac{1}{h-1}} \left(1 + \frac{s}{r^2} \Lambda(Q) \right)^{\frac{h}{h-1}} \int \int_{R} u_+^p \left(\frac{s}{r^2} w_2 + \nu \right) dx dt$$

for $p \ge 2$. For $0 , define <math>I_p$ and I_{∞} as in Lemma 3.4 of [GW2]. The only difference in our case is that

$$I_{\infty}(\alpha', \beta')^2 \leq c \left[\frac{1}{(\alpha - \alpha')^{2+b}(\beta - \beta')}\right]^{\frac{h}{h-1}} I_2(\alpha, \beta)^2$$

if $1/2 < \alpha' < \alpha < 1$ and $1/2 < \beta' < \beta < 1$. Thus, arguing as in Lemma 3.4 of [GW2] we prove that if u is a solution of (1.1) and p > 0 then

(3.13) ess $\sup_{R'_{+}} u^{p}_{+} \le$

$$D\left(1+\frac{r^2}{s}\frac{1}{\lambda(Q)}\right)^{\frac{1}{h-1}}\left(1+\frac{s}{r^2}\Lambda(Q)\right)^{\frac{h}{h-1}}\int\int_R u_+^p\left(\frac{s}{r^2}w_2+\nu\right)dxdt,$$

where D is as in Theorem B.

If we apply (3.13) to both u and -u, we obtain Theorem B of the introduction, with α , β , α' , β' taken there to be r, s, ϱ , σ .

In order to prove Harnack's inequality we need a mean value inequality for u^p when $-\infty and <math>u$ is a non-negative solution.

We begin by noting that if we use (C.3) instead of (C.1) we can prove the following analogue of (3.11):

Lemma 3.14. Suppose (3.1) holds, $0 < m < u(x, t) \le M < \infty$ in $R = R_{r,s}$, $r/2 < \varrho < r$, $s/2 < \sigma < s$ and $\epsilon > 0$, $(1 + \epsilon)\varrho < r$. Then, if p > 1 and u is a subsolution in R, or if p < 0 and u is a supersolution in R,

$$\left(\int \int_{R_{+}^{r}} u^{ph} \left(\frac{w_{2}}{w_{2}(Q_{r})} + \frac{v}{v(Q_{r})} \right) dx dt \right)^{1/h}$$

$$\leq c\epsilon^{-b} \frac{r^{2}s}{(r - (1 + \epsilon)\varrho)^{2}(s - \sigma)} \left(1 + \frac{p}{p - 1} \frac{s}{r^{2}} \Lambda(Q_{r}) \right) \left(1 + \frac{p}{p - 1} \frac{r^{2}}{s} \frac{1}{\lambda(Q_{r})} \right)^{1/h}$$

$$\cdot \int \int_{R} u^{p} \left(\frac{p}{p - 1} \frac{s}{r^{2}} w_{2} + v \right) dx dt.$$

Moreover, if 0 and u is a supersolution in R, then

$$\left(\int \int_{R'} u^{ph} \left(\frac{w_1}{w_2(Q_r)} + \frac{v}{v(Q_r)} \right) dx dt \right)^{1/h} \\
\leq c \epsilon^{-b} \frac{r^2 s}{(r - (1 + \epsilon)\varrho)^2 (s - \sigma)} \left(1 + \frac{p}{|p - 1|} - \frac{s}{r^2} \Lambda(Q_r) \right) \left(1 + \frac{p}{|p - 1|} - \frac{r^2}{s} \frac{1}{\lambda(Q_r)} \right)^{1/h} \\
\cdot \int \int_{R} u^p \left(\frac{p}{|p - 1|} - \frac{s}{r^2} w_2 + v \right) dx dt.$$

Both inequalities are still true if we replace the integral averages on the right by the larger integral average

$$\int\int_{R} u^{p} \left(\frac{w_{2}}{w_{2}(Q_{r})} + \frac{v}{v(Q_{r})} \right) dxdt.$$

Theorem 3.15. Assume (3.1) holds, $r, s > 0, r/2 < \varrho < r, s/2 < \sigma < s$. If u is a non negative solution of (1.1) in R, then for p > 0

ess $\sup_{R'} u^p$

$$\leq C^{c} \left(1 + p \frac{s}{r^{2}} \Lambda(Q_{r})\right)^{\frac{h}{h-1}} \left(1 + p \frac{r^{2}}{s} \frac{1}{\lambda(Q_{r})}\right)^{\frac{1}{h-1}} \int \int_{R} u^{p}_{+} \left(\frac{w_{2}}{w_{2}(Q_{r})} + \frac{v}{\nu(Q_{r})}\right) dx dt,$$

and for p < 0

$$\operatorname{ess sup}_{R'_{+}} u^{p} \leq C^{\frac{h}{h-1}} \left(1 + |p| \frac{s}{r^{2}} \Lambda(Q_{r}) \right)^{\frac{h}{h-1}} \cdot \left(1 + |p| \frac{r^{2}}{s} \frac{1}{\lambda(Q_{r})} \right)^{\frac{h}{h-1}} \int_{R} u^{p} \left(\frac{w_{2}}{w_{2}(Q_{r})} + \frac{v}{\nu(Q_{r})} \right) dxdt,$$

where C is given by (3.2).

PROOF: In Lemma 3.17 of [GW2] we replace (3.20) by the result given here in Lemma 3.14 and then argue as in Lemma 3.17 of [GW2].

Proof of Theorem E

We start with the following lemma.

Lemma 4.1. Suppose $Q = Q(\xi, r)$ and φ is a C^1 function such that $\varphi = 1$ in $kQ = Q(\xi, kr)$, 0 < k < 1, $0 \le \varphi \le 1$, supp $\varphi \subset Q$ and

$$(4.2) \varphi(x)\varphi(H(t_0, x, y)) \leq \varphi(H(t, x, y))$$

for all x, y, t, t_0 with $0 \le t \le t_0$. If u is a Lipschitz function,

 $E = \{x \in Q(\xi, kr) : u(x) = 0\}$ and $|E| \ge \beta |Q|$ for some $0 < \beta < 1$, then if $x \in Q$,

$$(4.3) |u(x)| \sqrt{\varphi(x)} \leq c \int_{Q} |\nabla_{\lambda} u(z)| \sqrt{\varphi(z)} \frac{\delta(x, z)}{|Q(x, \delta(x, z))|} dz,$$

where c is independent of Q, u, x.

PROOF: (The general outline of this proof follows the steps of the proof of Lemma 4.3 in [FS].) If $x \in Q = Q(\xi, r)$ then $Q(\xi, r) \subset Q(x, 2a^2r)$ and $Q(x, r) \subset Q(\xi, 2a^2r)$. Therefore, by doubling, |Q(x, r)| = |Q|. Now, we note that there exists $\sigma \in \{-1, 1\}^n$ such that $|E \cap Q^{\sigma}(x, 2a^2r)| \ge c\beta |Q^{\sigma}(x, 2a^2r)|$. In fact, $E = \bigcup_{\sigma} (Q^{\sigma}(x, 2a^2r) \cap E)$ and so there exists σ such that

$$(4.4) |Q^{\sigma}(x, 2a^2r) \cap E| \ge \beta 2^{-n} |Q| \ge c\beta |Q^{\sigma}(x, 2a^2r)|.$$

We also claim that there exist α , $\epsilon \in \mathbf{R}^n$, independent of x and r, $0 < \epsilon_j < \alpha_j$, j = 1, ..., n, such that

$$(4.5) \qquad |E \cap Q^{\sigma}(x, 2a^2r) \cap H(2a^2r, x, \Delta_{\epsilon}^{\alpha}(\sigma))| \geq \frac{c\beta}{2} |Q^{\sigma}(x, 2a^2r)|.$$

To prove this fact, apply (1.14) to $\gamma = \frac{c\beta}{2}$ and find α , $\epsilon \in \mathbb{R}^n$, $0 < \epsilon_j < \alpha_j$, j = 1, ..., n, such that

$$|H(2a^2r, x, \Delta_{\epsilon}^{\alpha}(\sigma)) \cap Q^{\sigma}(x, 2a^2r)| \geq \left(1 - \frac{c\beta}{2}\right) |Q^{\sigma}(x, 2a^2r)|.$$

Then,

$$|Q^{\sigma}(x, 2a^{2}r)| \geq |(Q^{\sigma}(x, 2a^{2}r) \cap E) \cup (Q^{\sigma}(x, 2a^{2}r) \cap H(...))| = |Q^{\sigma}(x, 2a^{2}r) \cap E| + |Q^{\sigma}(x, 2a^{2}r) \cap H(...)| - |E \cap Q^{\sigma}(x, 2a^{2}r) \cap H(...)|$$

$$\geq |Q^{\sigma}(x, 2a^{2}r)| \left(c\beta + 1 - \frac{C\beta}{2}\right) - |E \cap Q^{\sigma}(x, 2a^{2}r) \cap H(...)|$$

and therefore the claim follows.

We can assume $x \notin E$ and define $\Sigma = \{y \in \Delta_{\epsilon}^{\alpha}(\sigma) : H(2a^2r, x, y) \in E\}$. Let K be a smooth function supported in $\Delta_{\epsilon/2}^{2\alpha}(\sigma)$, $0 \le K \le 1$, K = 1 on $\Delta_{\epsilon}^{\alpha}(\sigma)$. Suppose $u \in \text{Lip}(Q)$. If $y \in \Sigma$ then

$$|u(x)| \sqrt{\varphi(x)} = |u(x) - u(H(2a^2r, x, y))| K(y) \sqrt{\varphi(x)},$$

and if we integrate on Σ , we obtain

$$|u(x)| \sqrt{\varphi(x)} |\Sigma| = \int_{\Sigma} |u(x) - u(H(2a^2r, x, y))| K(y) \sqrt{\varphi(x)} dy.$$

Now we note that $\varphi(H(2a^2r, x, y)) = 1$ if $y \in \Sigma$ and using (4.2) we get $\varphi(x) \le \varphi(H(t, x, y))$ for any $0 \le t \le 2a^2r$. Therefore,

$$|u(x)| \sqrt{\varphi(x)} |\Sigma| \leq \int_{\text{Supp}K} \left| \int_{0}^{2a^{2}r} \frac{d}{dt} \left(u(H(t, x, y)) \right) dt \right| \sqrt{\varphi(H(t, x, y))} dy$$

$$\leq \int_{\operatorname{supp} K} \left| \int_{0}^{2a^{2}r} \langle \nabla u(H(t, x, y)), \dot{H}(t, x, y) \rangle dt \right| \sqrt{\varphi(H(t, x, y))} dy$$

$$\leq \int_0^{2a^2r} \int_{\text{supp}K} |\nabla_{\lambda} u(H(t, x, y))| |y| \sqrt{\varphi(H(t, x, y))} dydt.$$

If we make change of variables z = H(t, x, y) in $\Delta_{\epsilon/2}^{2\alpha}(\sigma)$, then

$$\left|\det \frac{\partial z}{\partial y}(t, x, y)\right| = \prod_{j=1}^{n} \int_{0}^{t} \lambda_{j}(H(s, x, y)) ds.$$

For $y \in \Delta_{\epsilon/2}^{2\alpha}(\sigma)$, the last product is equivalent to |Q(x, t)| by (1.15). Hence

$$(4.6) |u(x)| \sqrt{\varphi(x)} \leq \frac{c}{|\Sigma|} \int_0^{2a^2r} \frac{1}{|Q(x, t)|} \int_{H(t, x, \Delta_{\alpha_{\alpha}(\sigma)}^{2\alpha})} |\nabla_{\lambda} u(z)| \sqrt{\varphi(z)} dz dt.$$

Note that there exists c > 0 such that $H(t, x, \Delta_{\epsilon/2}^{2\alpha}(\sigma)) \subset Q(x, ct)$. In fact, if we define $\gamma(s) = H(s/|y|, x, y)$ then

$$\langle \dot{y}(s), \xi \rangle^{2} = \left\{ \sum_{j=1}^{n} \lambda_{j} \left(H\left(\frac{s}{|y|}, x, y\right) \right) y_{j} \xi_{j} \right\}^{2} \frac{1}{|y|^{2}}$$

$$\leq \sum_{j=1}^{n} \lambda_{j}^{2} \left(H\left(\frac{s}{|y|}, x, y\right) \right) \xi_{j}^{2}$$

$$= \sum_{j=1}^{n} \lambda_{j} (\gamma(s)) \xi_{j}^{2}$$

for every $\xi \in \mathbb{R}^n$. So, γ is a λ -subunit curve starting from x and attaining H(t, x, y) at the time s = t | y |. Therefore by (1.9),

$$\delta(x, H(t, x, y)) \leq ad(x, H(t, x, y)) \leq at |y| \leq ct$$

where $c = 2\alpha a$

Thus, from (4.6), we obtain

$$|u(x)| \sqrt{\varphi(x)} \leq \frac{c}{|\Sigma|} \int_0^{2a^2r} \frac{1}{|Q(x, t)|} \int_{Q(x, ct)} |\nabla_{\lambda} u(z)| \sqrt{\varphi(z)} dz dt$$

and, interchanging the order of integration and using the fact that supp $\varphi \subset Q$ (the argument we are going to present next is due to Chanillo, Sawyer and Wheeden), we get

$$(4.7) \quad |u(x)| \sqrt{\varphi(x)} \leq \frac{c}{|\Sigma|} \int_{Q} |\nabla_{\lambda} u(z)| \sqrt{\varphi(z)} \left(\int_{c\delta(x,z)}^{\infty} \frac{dt}{|Q(x,t)|} \right) dz.$$

We claim that $\int_{ch}^{\infty} \frac{dt}{|Q(x,t)|} \le c \frac{ch}{|Q(x,h)|}$. To prove this we note that, by (1.8),

$$\frac{|Q(x, t)|}{t} = \prod_{j=2}^{n} F_{j}(x^{*}, t),$$

and consequently by (1.10), there exists $\epsilon > 0$ such that if $t > \tau$ then

$$\frac{\mid Q(x, t) \mid}{t} \geq c \left(\frac{t}{\tau}\right)^{\epsilon} \frac{\mid Q(x, \tau) \mid}{\tau}.$$

Hence,

$$\int_{ch}^{\infty} \frac{dt}{|Q(x,t)|} = \int_{ch}^{\infty} \frac{t}{|Q(x,t)|} \frac{dt}{t} \le \int_{ch}^{\infty} \frac{h}{|Q(x,h)|} \left(\frac{h}{t}\right)^{\epsilon} \frac{dt}{t} = c \frac{h}{|Q(x,h)|}.$$

Finally, we note that $|\Sigma| \ge c > 0$, with c independent of x, since, by the change of variables $z = H(2a^2r, x, y)$,

$$|\Sigma| = \int_{\Sigma} dy \simeq \int_{H(2a^{2}r, x, \Sigma)} \frac{1}{|Q(x, 2a^{2}r)|} dz$$

$$= \frac{|H(2a^{2}r, x, \Sigma)|}{|Q(x, 2a^{2}r)|} = \frac{|E \cap H(2a^{2}r, x, \Delta_{\epsilon}^{\alpha}(\sigma))|}{|Q(x, 2a^{2}r)|}$$

$$\geq c\beta \frac{|Q^{\sigma}(x, 2a^{2}r)|}{|Q(x, 2a^{2}r)|} \geq c > 0.$$

The lemma follows by combining the last two last estimates with (4.7).

PROOF OF THEOREM E.

Define
$$Tf(x) = \int_{\mathbb{R}^n} f(y)K(x, y)dy$$
, where $K(x, y) = \frac{\delta(x, y)}{|Q(x, \delta(x, y))|}$. Fix S a d -ball. In order to show that for a pair of weights \tilde{v} , \tilde{w} we have $\|Tf\|_{L^2(S,\tilde{v})} \le \|f\|_{L^2(S,\tilde{w})}$ (where $\|f\|_{L^2(S,\tilde{v})} = \left(\int_S f^2 \tilde{v}\right)^{1/2}$) for all $f \ge 0$, supp $f \subset S$, according to $[SW]$, we need to verify that the following conditions hold:

(a) there exists s > 1 such that

$$\varphi(I) \mid I \mid \left(\frac{1}{\mid I \mid} \int_{I} \tilde{v}^{s} dx \right)^{\frac{1}{2s}} \left(\frac{1}{\mid I \mid} - \int_{I} \tilde{w}^{-s} dx \right)^{\frac{1}{2s}} \leq c$$

for all d-balls $I \subset 2S$, where $\varphi(I)$ is defined to be

$$\varphi(I) = \sup \left\{ K(x, y) : x, y \in I, d(x, y) \ge \frac{1}{2} r(I) \right\};$$

(b) there is $\epsilon > 0$ such that

$$\frac{|I|}{|I|} \leq c_{\epsilon} \frac{\varphi(I)}{\varphi(I')} \left(\frac{r(I')}{r(I)}\right)^{\epsilon}$$

for all pairs of d-balls $I' \subset I$.

Note that it is convenient to work with d since the results of |SW| hold for pseudo-metrics (a pseudo-metric d is a quasi-metric satisfying d(x, y) = d(y, x)for all $x, y \in \mathbf{R}^n$).

Define
$$\tilde{v} = \frac{v}{v(S)}$$
 and $\tilde{w} = \frac{w_1}{w_1(S)} r(S)^2$. Note that if $x, y \in I$ and $d(x, y) \ge \frac{1}{2} r(I)$, then by (1.9)

$$K(x, y) = \frac{\delta(x, y)}{\mid Q(x, \delta(x, y)) \mid} \leq \frac{2ar(I)}{\mid Q\left(x, \frac{1}{2a} r(I)\right) \mid} \leq c \frac{r(I)}{\mid Q(x, r(I)) \mid},$$

and since $x \in I$, $|Q(x, r(I))| \approx |I|$. Therefore,

$$\varphi(I) \leq c \frac{r(I)}{|I|}.$$

So, the expression in (a) is bounded by

$$c \frac{r(I)}{|I|} |I| \left(\frac{1}{|I|} \int_{I} \left(\frac{\nu}{\nu(S)}\right)^{s} dx\right)^{\frac{1}{2s}} \left(\frac{1}{|I|} \int_{I} \left(\frac{w_{1}}{w_{1}(S)} r(S)^{2}\right)^{-s} dx\right)^{\frac{1}{2s}}$$

$$\leq c \frac{r(I)}{r(S)} \left(\frac{1}{\mid I \mid} \int_{I} \left(\frac{\nu}{\nu(S)}\right)^{s} dx\right)^{\frac{1}{2s}} \left(\frac{1}{\mid I \mid} \int_{I} \left(\frac{w_{1}}{w_{1}(S)}\right)^{-s} dx\right)^{\frac{1}{2s}},$$

which is equivalent to the expression in condition (1.18) (if we use doubling and (1.9)). This proves (a).

To show (b) we note that if $x, y \in I$ and $d(x, y) \ge \frac{1}{2} r(I)$ then

$$K(x, y) \ge \frac{(2a)^{-1}r(I)}{|Q(x, 2ar(I))|} \ge c \frac{r(I)}{|I|}.$$

Thus $\varphi(I) \simeq \frac{r(I)}{|I|}$. Then, if $I' \subset I$, $\frac{\varphi(I)}{\varphi(I')} \simeq \frac{r(I)}{r(I')} \frac{|I'|}{|I|}$ and we obtain (b) with $\epsilon = 1$.

By doubling and (1.9), it follows that

$$||Tf||_{L^2(Q,\tilde{v})} \le c ||f||_{L^2(Q,\tilde{w})}$$

for all
$$f \ge 0$$
, supp $f \subset Q$, where $\tilde{v} = \frac{v}{v(Q)}$ and $\tilde{w} = \frac{w_1}{w_1(Q)} r(Q)^2$.

Suppose u is a Lipschitz function in Q and $|E| = |\{x \in Q(\xi, kr): u(x) = 0\}| \ge \beta |Q|$, 1/2 < k < 1. If we combine Lemma 4.1 and the fact that $||Tf||_{L^2(Q,\bar{v})} \le c ||f||_{L^2(Q,\bar{w})}$ we obtain

$$(4.8) \qquad \left(\frac{1}{\nu(Q)}\int_{Q}|u(x)|^{2}\varphi(x)\nu(x)dx\right)^{1/2}$$

$$\leq cr(Q)\left(\frac{1}{w_{1}(Q)}\int_{Q}|\nabla_{\lambda}u(z)|^{2}\varphi(z)w_{1}(z)dz\right)^{1/2}$$

Given Q and a general Lipschitz function u, there is a number $\mu = \mu(u, Q)$, the media of u in Q, such that if $Q^+ = \{x \in Q : u(x) \ge \mu\}$ and $Q^- = \{x \in Q : u(x) \le \mu\}$ then $|Q^+| \ge |Q|/2$ and $|Q^-| \ge |Q|/2$. Hence, $u_1 = \max\{u - \mu(u, kQ), 0\}$ and $u_2 = \max\{\mu(u, kQ) - u, 0\}$ satisfy the hypohesis of Lemma (4.1) for some β depending on k and so if we apply (4.8) to u_1 and u_2 and add both inequalities, we get

$$(4.9) \quad \int_{Q} |u(x) - \mu|^{2} \varphi(x) \nu(x) dx \leq cr(Q)^{2} \frac{\nu(Q)}{w_{1}(Q)} \int_{Q} |\nabla_{\lambda} u(z)^{2} \varphi(z) w_{1}(z) dz.$$

Finally, it is easy to see that in (4.9) μ can be replaced by the average A_Q of u defined in Theorem E. In fact,

(4.10)
$$\int_{Q} |u(x) - A_{Q}|^{2} \varphi(x) \nu(x) dx$$

$$\leq 2 \int_{Q} |u(x) - \mu|^{2} \varphi(x) \nu(x) dx$$

$$+ 2 \int_{Q} |\mu - A_{Q}|^{2} \varphi(x) \nu(x) dx,$$

and

$$\int_{Q} |\mu - A_{Q}|^{2} \varphi(x) \nu(x) dx = (\varphi \nu)(Q) |\mu - A_{Q}|^{2}$$

$$= (\varphi \nu)(Q) \left|\mu - \frac{1}{\varphi(Q)} \int_{Q} u(x) \varphi(x) dx\right|^{2}$$

$$\leq (\varphi \nu)(Q) \left(\frac{1}{\varphi(Q)} \int_{Q} |u(x) - \mu| \varphi(x) dx\right)^{2}$$

$$\leq \frac{(\varphi \nu)(Q)}{(\varphi(Q))^{2}} \int_{Q} |u(x) - \mu|^{2} \varphi^{2}(x) \nu(x) dx \int_{Q} \frac{1}{\nu(x)} dx,$$

where in the last inequality we used Schwarz's inequality. Since $\nu \in A_2$ and $0 \le \varphi \le 1$, it follows from (4.9) and (4.10) that

$$\int_{Q} |u(x) - A_{Q}|^{2} \varphi(x) v(x) dx$$

$$\leq cr(Q)^{2} \left[1 + \left(\frac{|Q|}{\varphi(Q)} \right)^{2} \right] \frac{v(Q)}{w_{1}(Q)} \int_{Q} |\nabla_{\lambda} u(z)|^{2} \varphi(z) w_{1}(z) dz.$$

This finishes the proof of Theorem E if we note that $\varphi(Q) \simeq |Q|$ since $1/2 \leq k \leq 1$.

The next corollary is also helpful.

Corollary 4.11. Theorem E is also true with $A_Q = \frac{1}{(\varphi v)(Q)} \int_Q u \varphi v dx$.

Just note that

$$\int_{Q} |\mu - A_{Q}|^{2} \varphi v dx = (\varphi v)(Q) |\mu - A_{Q}|^{2}$$

$$\leq (\varphi v)(Q) \left(\frac{1}{(\varphi v)(Q)} \int_{Q} |\mu - u| \varphi v dx\right)^{2}$$

$$\leq \int_{Q} |\mu - u|^{2} \varphi v dx,$$

where the last inequality follows by Schwarz's inequality.

5. Harnack's inequality

The proof of Theorem A follows as an application of Bombieri's lemma which we state next. For its proof see Section 5 of [GW2].

Lemma 5.1. Let $R(\varrho)$ be a one parameter family of rectangles in \mathbb{R}^{n+1} , $R(\sigma) \subset R(\varrho)$, $1/2 \le \sigma \le \varrho \le 1$ and let ν be a doubling measure in \mathbb{R}^{n+1} . Let A, μ, M, m, θ and κ be positive constants such that $M \ge 1/\mu$ and suppose that f is a positive measurable function defined in a neighborhood of R(1) satisfying

(5.2)
$$\operatorname{ess sup}_{R(\sigma)} f^{p} \leq \frac{A}{(\varrho - \sigma)^{m}} \int \int_{R(\varrho)} f^{p} \nu(x) dx dt$$

for all σ , ϱ , p, $1/2 \le \theta \le \sigma < \varrho < 1$, 0 and

(5.3)
$$\nu(\{(x, t) \in R(1): \log f > s\}) \leq \left(\frac{\mu}{s}\right)^{x} \nu(R(1))$$

for all s > 0. Then there is a constant $\gamma = \gamma(A, m, \kappa) > 0$ such that

$$\log(\operatorname{ess sup}_{R(\theta)} u) \leq \frac{\gamma}{(1-\theta)^{2m}} \mu.$$

Hence, in order to prove Theorem A, we need a mean value inequality (that we proved in Section 3) and a logarithm estimate which is given by Theorem F (some steps of its proof we will present in this section). The next lemma shows that the test function described on page 537 of [FL1] satisfies the conditions of Theorem E. Then, as we said before, the proof of Theorem F follows as Lemma 4.9 of [GW2].

Lemma 5.4. Given $Q = Q(\xi, r)$ and 0 < k < 1, there exists $\varphi \in C^1$ such that $\varphi \equiv 1$ in kQ, $0 \le \varphi \le l$, $\sup \varphi \subset Q$, $|\nabla_{\lambda} \varphi| \le \frac{c}{r(1-k)}$ and $\varphi(x) \cdot \varphi(H(t_0, x, y)) \leq \varphi(H(t, x, y))$ for all x, y, t, t_0 with $0 \leq t \leq t_0$.

PROOF: Consider the function φ given by [FL1], page 537:

$$\varphi(x) = \prod_{j=1}^n \psi\left(\frac{|x_j - \xi_j|}{F_j(\xi^*, r)}\right),\,$$

where $\psi \in C^{\infty}(\mathbb{R})$, $0 \le \psi \le 1$, $\psi(t) = \psi(-t)$, $\psi = 1$ on [-k, k], $\psi = 0$ outside]-1, 1[, $|\psi'(t)| \le 2(1-k)^{-1}$, for all $t \in \mathbb{R}$. Here, we show that φ satisfies the last condition since all the others are proved in [FL1], page 537.

Fix t, $0 < t < t_0$, x and y. Define z = H(t, x, y). Then,

$$z_j = x_j + y_j \int_0^t \lambda_j(H(s, x, y)) ds.$$

Suppose $z_j - \xi_j \ge 0$. If $y_j \ge 0$ then

$$|z_j - \xi_j| \le x_j - \xi_j + y_j \int_0^{t_0} \lambda_j(H(s, x, y)) ds = H_j(t_0, x, y) - \xi_j.$$

On the other hand, if $y_i < 0$,

$$|z_j - \xi_j| \leq |x_j - \xi_j|.$$

Thus, if $z_j - \xi_j \ge 0$ then $|z_j - \xi_j| \le |H_j(t_0, x, y) - \xi_j|$ or $|z_j - \xi_j|$ $\leq |x_j - \xi_j|$. The same holds if $z_j - \xi_j < 0$. Since $\psi(t)$ can be chosen to be non-increasing for positive t, then $\varphi(z) \geq a_1 \dots a_n$, where

$$a_j = \psi\left(\frac{|x_j - \xi_j|}{F_j(\xi^*, r)}\right)$$

or

$$a_j = \psi\left(\frac{|H_j(t_0, x, y) - \xi_j|}{F_j(\xi^*, r)}\right).$$

Since $0 \le \psi \le 1$,

$$a_j \geq \psi\left(\frac{\mid H_j(t_0, x, y) - \xi_j \mid}{F_j(\xi^*, r)}\right) \psi\left(\frac{\mid x_j - \xi_j \mid}{F_j(\xi^*, r)}\right)$$

for $1 \le j \le n$. Therefore,

$$\varphi(z) \geq \varphi(x)\varphi(H(t_0, x, y)).$$

The next three lemmas are needed in order to show that the hypothesis in Theorem A imply those in Theorems D and E.

Lemma 5.5. Assume that Poincaré's inequality holds for w_1 , w_2 with q=2 and $\mu=1$. Then

$$\left(\frac{r(I)}{r(B)}\right)^2 \frac{w_2(I)}{w_2(B)} \le c \frac{w_1(I)}{w_1(B)}$$

for any pair of δ -balls I, B, with $I \subset 2B$.

PROOF: Suppose $I = Q(u_0, r(I))$ and B = Q(x, r(B)) and define

$$F(u) = \sum_{j=1}^{n} \frac{|u_{j} - (u_{0})_{j}|}{F_{j}(u_{0}^{*}, r(I))} r(I) \varphi(u)$$

where φ is the function described in lemma (5.4) associated with I (as opposed to B) and k = 1/2. If $u \in I$, by (1.8)

$$\left|\frac{\partial F}{\partial u_k}(u)\right| \leq \frac{r(I)}{F_k(u_0^*, r(I))} + \frac{\partial \varphi}{\partial u_k}(u) n r(I),$$

for $k \in \{1, ... n\}$, and using the fact that $\lambda_k(u) = \lambda_k(u^*) \le \lambda_k(H(u^*, r(I)))$ if $u \in I$ we get

$$\left|\lambda_k(u) \frac{\partial F}{\partial u_k}(u)\right| \leq \frac{F_k(u^*, r(I))}{F_k(u_0^*, r(I))} + nr(I)\lambda_k(u) \frac{\partial \varphi}{\partial u_k}(u)$$

and by Lemma 2.4 and the fact that $|\nabla_{\lambda}\varphi| \leq c/r(I)$ we have $|\nabla_{\lambda}F(u)| \leq c\chi_I$. We have Poincaré's inequality for F, i.e.,

(5.6)
$$\left(\frac{1}{w_{2}(B)}\int_{n4^{\eta+1}B}|F(u)-av_{n4^{\eta+1}B}F|^{2}w_{2}(u)du\right)^{1/2} \\ \leq cr(B)\left(\frac{1}{w_{1}(B)}\int_{na^{2}4^{\eta+1}B}|\nabla_{\lambda}F(u)|^{2}w_{1}(u)du\right)^{1/2},$$

where $\eta = \max_{j=1,...n} \{G_j\}$. The right side of (5.6) is bounded by $cr(B) \left(\frac{w_1(I)}{w_1(B)}\right)^{1/2}$ by doubling and the fact that $|\nabla_{\lambda} F| \leq c\chi_I$. Now, if $u \notin \frac{1}{A}I$ there exists $k \in \{1, ..., n\}$ such that

$$|u_k-(u_0)_k| \geq F_k\left(u_0^*,\frac{1}{4}r(I)\right)$$

and then if $u \in \frac{1}{2}I \setminus \frac{1}{4}I$ (note that $\varphi(u) = 1$)

(5.7)
$$F(u) \geq \frac{F_k\left(u_0^*, \frac{1}{4}r(I)\right)}{F_k(u_0^*, r(I))} r(I) \geq \left(\frac{1}{4}\right)^{G_k} r(I) \geq \frac{1}{4^{\eta}} r(I).$$

Also, if $u \in I$, $F(u) \leq nr(I)$ and therefore

$$av_{n4^{\eta+1}B}F \leq \frac{|I|}{|n4^{\eta+1}B|}nr(I).$$

But, by (1.10), $F_j(x_B^*, n4^{\eta+1}r(B)) \ge 2n4^{\eta}F_j(x_B^*, 2r(B))$, and by (1.11),

$$|n4^{\eta+1}B| \ge (2n4^{\eta})^n |2B| \ge 2n4^{\eta} |2B|.$$

Hence, since $I \subset 2B$, $av_{n4^{\eta+1}B}F \leq r(I)/2 \cdot 4^{\eta}$ and then if $u \in \frac{1}{2}I \setminus \frac{1}{4}I$ (using also 5.7)),

$$|F(u) - av_{n^{4\eta+1}B}F| \geq cr(I).$$

Therefore, the left hand side of (5.6) is larger than a constant times

$$\left[\frac{(r(I))^2}{w_2(B)}\ w_2\left(\frac{1}{2}\ I\ \smallsetminus\ \frac{1}{4}\ I\right)\right]^{1/2} \geq cr(I)\left(\frac{w_2(I)}{w_2(B)}\right)^{1/2},$$

where in the last inequality we used the fact that $w_2\left(\frac{1}{2}I \times \frac{1}{4}I\right) \simeq w_2(I)$, which is shown in the next lemma.

Lemma 5.8. If w is a doubling weight then $W(Q(u, 2s) \setminus Q(u, s))$ is equivalent to w(Q(u, s)).

PROOF: Choose $\eta \in Q(u, 2s)$ such that $\delta(u, \eta) = \frac{3s}{2}$. By Lemma 2.5,

$$Q\left(\eta, \frac{3\epsilon s}{2(2a^2)^{k}}\right) \subset Q\left(u, (1 + \epsilon) \frac{3s}{2}\right)$$

for any $0 < \epsilon < 1$.

Choose j such that $\delta(u, \eta) = \varphi_j(u^*, |\eta_j - u_j|)$. Then, if $y \in Q\left(\eta, \frac{3\epsilon s}{2(2a^2)^s}\right)$,

$$F_{j}\left(u^{*},\frac{3s}{2}\right) = \left|\eta_{j}-u_{j}\right| \leq \left|\eta_{j}-y_{j}\right| + \left|y_{j}-u_{j}\right|$$

$$\leq F_{j}\left(\eta^{*},\frac{3\epsilon s}{2(2a^{2})^{\varsigma}}\right) + \left|y_{j}-u_{j}\right|,$$

By (1.10) and Lemma 2.4,

$$F_j\left(u^*, \frac{3s}{2}\right) \leq \epsilon F_j\left(u^*, \frac{3s}{2}\right) + |y_j - u_j|.$$

Thus,

$$|y_j - u_j| \ge (1 - \epsilon) F_j\left(u^*, \frac{3s}{2}\right) \ge F_j\left(u^*, (1 - \epsilon), \frac{3s}{2}\right).$$

If we choose $\epsilon = 1/3$ we have proved that

$$Q\left(\eta, \frac{s}{2(2a^2)^s}\right) \subset Q(u, 2s) \setminus Q(u, s).$$

The lemma follows by doubling.

Lemma 5.9. If $w_1 \in A_2$, $v \in A_\infty$ and Poincaré's inequality holds for w_1 , v with q = 2 and $\mu = 1$, then condition (1.21) holds.

PROOF: If $v \in A_{\infty}$ there exists s > 1 such that

$$\left(\frac{1}{\mid I\mid} \int_{I} \left(\frac{\nu}{\nu(B)}\right)^{s} dx\right)^{1/s} \leq \frac{1}{\mid I\mid} \frac{\nu(I)}{\nu(B)}.$$

So, since Poincaré's inequality holds for w_1 , v with q=2, by Lemma 5.5

$$\left(\frac{r(I)}{r(B)}\right)^2 \left(\frac{1}{\mid I\mid} \int_I \left(\frac{\nu}{\nu(B)}\right)^s dx\right)^{1/s} \leq c \frac{1}{\mid I\mid} \frac{w_1(I)}{w_1(B)},$$

and the above condition is equivalent to condition (1.18) since $w_1 \in A_2$.

Now we are ready to prove Theorem A.

PROOF OF THEOREM A

Let u be a non-negative solution of (1.1) in the cylinder $R_{\alpha,\beta} = R_{\alpha,\beta}(x_0, t_0)$ = $Q(x_0, \alpha) \times (t_0 - \beta, t_0 + \beta)$. If we define $T(x, t) = (x, \beta t + t_0)$ and $\overline{u}(x, t) = u(T(x, t))$ then u is a solution in $R_{\alpha,1}(x_0, 0)$ of the equation

$$\nu(x)\overline{u}_t = \operatorname{div}(\overline{A}(x, t) \nabla \overline{u}),$$

where the coefficients matrix $\overline{A} = (\overline{a}_{ij})$ are defined by $\overline{a}_{ij}(x, t) = \beta a_{ij}(x, \beta t + t_0)$ and satisfies the degeneracy condition

$$\overline{w}_1(x) \sum_{j=1}^n \lambda_j^2(x) \xi_j^2 \leq \sum_{j=1}^n \overline{a}_{ij}(x, t) \xi_i \xi_j \leq \overline{w}_2(x) \sum_{j=1}^n \lambda_j^2(x) \xi_j^2,$$

if we put $\overline{w}_i = \beta w_i$, for i = 1, 2.

Suppose $|p| < [\alpha^{-2}\overline{\Lambda}(Q(x_0, \alpha)) + \alpha^2/\overline{\lambda}(Q(x_0, \alpha))]^{-1}$, where $\overline{\Lambda}(Q) =$ $\overline{w}_2(Q)/\nu(Q)$, $\overline{\lambda}(Q) = \overline{w}_1(Q)/\nu(Q)$. Write

$$R^{-}(\varrho) = Q\left(x_{0}, \frac{(\varrho+1)\alpha}{3}\right) \times \left(-\frac{1}{2} - \frac{\varrho}{2}, -\frac{1}{2} + \frac{\varrho}{2}\right)$$
$$R^{+}(\varrho) = Q\left(x_{0}, \frac{(\varrho+1)\alpha}{3}\right) \times \left(\frac{1}{2} - \frac{\varrho}{2}, 1\right)$$

If we take $1/2 < \varrho < r \le 1$ then the mean value inequalities in Theorem 3.15 applied to u give

$$(5.10) \quad \text{ess } \sup_{R^{-}(\varrho)} \overline{u}^{p} \leq c \frac{1}{(r-\varrho)^{m}} \int \int_{R^{-}(r)} \overline{u}^{p} \left(\frac{\overline{w}_{2}}{\overline{w}_{2}(Q_{\alpha})} + \frac{\nu}{\nu(Q_{\alpha})} \right) dxdt,$$

for some m > 0, if p > 0, where $Q_{\alpha} = Q(x_0, \alpha)$, and

$$(5.11) \quad \text{ess } \sup_{R^+(\varrho)} \overline{u}^p \leq c \frac{1}{(r-\varrho)^m} \int \int_{R^+(r)} \overline{u}^p \left(\frac{\overline{w}_2}{\overline{w}_2(Q_\alpha)} + \frac{\nu}{\nu(Q_\alpha)} \right) dx dt,$$

if p < 0. Moreover, by Theorem B, \overline{u} is locally bounded and by adding $\epsilon > 0$, we may assume by letting $\epsilon \to 0$ at the end of the proof that \overline{u} is bounded below in $R_{\alpha,1}(x_0, 0)$ by a positive constant.

Now, by Theorem F, we have

$$(5.12) \qquad \left[\left(\frac{\nu}{\nu(Q_{\alpha})} + \frac{\overline{w}}{\overline{w}_{2}(Q_{\alpha})} \right) \otimes 1 \right] (E^{+})$$

$$\leq \left\{ \frac{1}{s} \frac{\nu(Q_{\alpha})}{\overline{w}_{1}(Q_{\alpha})} \alpha^{2} \right\}^{\kappa}$$

$$\leq c \left\{ \frac{1}{s} \left[\alpha^{-2} \overline{\Lambda}(Q_{\alpha}) + \alpha^{2} \frac{1}{\overline{\lambda}(Q_{\alpha})} \right] \right\}^{\kappa},$$

and the same inequality holds for E^- , where E^+ , E^- are defined in Theorem F with $u = \overline{u}$, $R = 2/3\alpha$, a = -1, b = 1, $t_0 = 0$, $M_2 \simeq \overline{\Lambda}(Q_\alpha)/\alpha^2$.

By (5.10) and (5.12), we can apply Bombieri's lemma to the family of rectangles $R^-(\varrho)$ with $\mu = \alpha^{-2}\overline{\Lambda}(Q_\alpha(x_0)) + \alpha^2/\overline{\lambda}(Q_\alpha(x_0))$, $M = 1/\mu$ and $f = e^{-M_2 + V(0)}\overline{u}$, obtaining

$$\operatorname{ess sup}_{R^{-}(1/2)} f \leq C \exp\{ c[\alpha^{-2} \overline{\Lambda}(Q_{\alpha}) + \alpha^{2} / \overline{\lambda}(Q_{\alpha})] \},$$

and this implies that

$$(5.13) \operatorname{ess sup}_{R^{-}(1/2)} \overline{u} \leq C \exp\{c[\alpha^{-2}\overline{\Lambda}(Q(x_0, \alpha)) + \alpha^{2}/\overline{\lambda}(Q(x_0, \alpha))] - V(0)\}.$$

Also, by (5.11) and (5.12), we can apply Bombieri's lemma to the family of rectangles $R^+(\varrho)$, $f = e^{-M_2 - V(0)} \overline{u}^{-1}$, with μ , M, M_2 and V(0) as before, and we obtain

$$\operatorname{ess sup}_{R^{+}(1/2)} f \leq C \exp\{c[\alpha^{-2}\overline{\Lambda}(Q_{\alpha}) + \alpha^{2}/\overline{\lambda}(Q_{\alpha})]\},$$

which implies that

(5.14)
$$e^{-V(0)} \le C e^{c|\alpha^{-2}\overline{\Lambda}(Q(x_0,\alpha)) + \alpha^2/\overline{\lambda}(Q(x_0,\alpha))|} ess \inf_{R^+(1/2)} \overline{u}.$$

Combining (5.13) and (5.14) it follows that

$$\operatorname{ess sup}_{R^{-}(1/2)}\overline{u} \leq c_{1} e^{c[\alpha^{-2}\overline{\Lambda}(Q(x_{0},\alpha)) + \alpha^{2}/\overline{\lambda}(Q(x_{0},\alpha))]} \operatorname{ess inf}_{R^{+}(1/2)}\overline{u}.$$

Since,
$$T(R^-(1/2)) = R^-$$
, $T(R^+(1/2)) = R^+$ and $\alpha^{-2}\overline{\Lambda}(Q_\alpha) + \alpha^2/\overline{\lambda}(Q_\alpha) = \alpha^{-2}\beta\Lambda(Q_\alpha) + \alpha^2\beta^{-1}/\lambda(Q_\alpha)$, Theorem A follows.

REMARK: Using the equivalence between d and δ we can prove the following analogues of Theorem A and B for the metric d.

Theorem A': Assume (i), (ii), (iii) of Theorem A. If u is a non-negative solution of (1.1) in the cylinder $R = S(x_0, \alpha a^2) \times (t_0 - \beta, t_0 + \beta)$, then

$$\operatorname{ess sup}_{R^{-}} u \leq c_{1} \exp \{c_{2} [\alpha^{-2} \beta \wedge (S(x_{0}, \alpha)) + \alpha^{2} \beta^{-1} \lambda (S(x_{0}, \alpha))^{-1}]\} \operatorname{ess inf}_{R^{+}} u$$

where $R^- = S(x_0, \alpha/2) \times (t_0 - 3\beta/4, t_0 - \beta/4), R^+ = S(x_0, \alpha/2) \times (t_0 + \beta/4, t_0 - \beta/4)$ $t_0 + \beta$), $\Lambda(S) = w_2(S)/\nu(S)$ and $\lambda(S) = w_1(S)/\nu(S)$ for a d-ball S. Here the constants c_1 , c_2 depend only on the constants which arise in (i), (ii), (iii).

Theorem B': Assume hypothesis (i), (ii), (iii) of Theorem A hold. Let $0 , <math>\alpha$, $\beta > 0$, $\alpha/2 < \alpha' < \alpha$, $\beta/2 < \beta' < \beta$ and let $S(x_0, \alpha) = S$, $S(x_0, \alpha') = S'$ and $R(\alpha, \beta) = S \times (t_0 - \beta, t_0 + \beta), R'_+(\alpha, \beta) = S' \times (t_0 - \beta', t_0 + \beta)$ $t_0 + \beta$). If u is a solution of (1.1) in $R(a^2\alpha, \beta)$, then u is bounded in $R'_+(\alpha, \beta)$ and

ess $\sup_{R'_{+}(\alpha,\beta)} |u|^{p} \leq$

$$D(\alpha^{2}\beta^{-1}\lambda(S)^{-1}+1)^{1/(h-1)}(\alpha^{-2}\beta\Lambda(S)+1)^{h/(h-1)}\int\int_{R(a^{2}\alpha,\beta)}|u|^{p}(\alpha^{-2}\beta w_{2}+\nu)dxdt$$

where D is as in Theorem B, and $C = c \frac{\alpha^{2+b}\beta}{(\alpha - \alpha')^{2+b}(\beta - \beta')}$. Here h > 1, constants which are independent of $u, p, \alpha, \alpha', \beta, \beta'$.

Acknowledgments

I wish to thank Prof. Richard Wheeden for having suggested this problem, as well as for his generous advice throughout the work.

References

- [AS] D. G. Aronson and J. Serrin, Local behavior of solutions of quasilinear parabolic equations, *Arch Rat. Mech. Anal.* 25 (1967), 81-122.
- [CW1] S. Chanillo and R. Wheeden, Harnack's inequality and mean value inequalities for solutions of degenerate elliptic equations, Comm. P.D.E. 11 (1986), 1111-1134.
- [CW2] S. Chanillo and R. Wheeden, Weighted Poincaré's and Sobolev inequalities for the Peano maximal function, Amer. J. Math. 107 (1985), 1191-1226.
- [CoW] R. Coifman and G. Weiss, Analyse harmonique non-commutative sur certain espaces homogènes, Springer-Verlag, 1971.
- CS F. Chiarenza and R. Serapioni, A Harnack inequality for degenerate parabolic equations, *Comm. P.D.E.* 9 (1984), 719-749.
- [C] A. P. Calderón, Inequalities for the maximal function relative to a metric, *Studia Math.* 57 (1976), 297-306.
- [CF] R. R. Coifman and C. Fefferman, Weighted norm inequalities for maximal functions and singular integrals, *Studia Math.* **51** (1974), 241-250.
- [FS] B. Franchi and R. Serapioni, Pointwise estimates for a class of strongly degerate elliptic operators: a geometrical approach, *Ann. Scuola Norm. Sup. Pisa* 14 (1987), 527-568.
- [FL1] B. Franchi and E. Lanconelli, Hölder regularity for a class of linear non uniformily elliptic operators with measurable coefficients, Ann. Scuola Norm. Sup. Pisa 10 (1983), 523-541.
- [FL2] B. Franchi and E. Lanconelli, Une metrique associée à une classe d'operateurs elliptiques dégénérés, Rend. Sem. Mat. Univ. Politec. Torino (1983), 105-114.
- [GW1] C. Gutiérrez and R. Wheeden, Sobolev interpolation inequalities with weights, *Trans. Amer. Math. Soc.*, to appear.
- [GW2] C. Gutiérrez and R. Wheeden, Mean value and Harnack inequalities for degenerate parabolic equations, *Colloquium Math*.
- [GT] Gilbarg and N. S. Trudinger, Elliptic Partial Equations of Second Order, second edition, Springer-Verlag, 1977.
- [J] D. Jerison, The Poincaré inequality for vector fields satisfying Hormander's condition, *Duke Math. J.* 53 (1986), 503-523.
- [SW] E. Sawyer and R. Wheeden, Weighted inequalities for fractional integrals in Euclidean and homogeneous spaces, to appear.

Recibido: 20 de julio de 1990.

José C. Fernandes Rutgers University New Brunswick, NJ, 08903 Current Address: Universidade de São Paulo Caixa Postal 20570 São Paulo, SP, 01498 Brasil