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Mean value and Harnack
inequalities for a certain class of
degenerate parabolic equations

José C. Fernandes'

Introduction

In this paper we study the behavior of solutions of degenerate parabolic equa-
tions of the form

(11) V(X)Ll/(x, [) = E Dx,(aij(x’ I)Dx,u(x’ [)),

ij=1

where the coefficients are measurable functions, and the coefficient matrix
A = (ay) is symmetric and satisfies

n

(1.2)  wi L N@E < Y aily, DEE < w0 LN 0E

j=1 i,j=1 Jj=1

for £ = (&1, ..., &) € R" and (x, 1) € Q X (a, b), Q a bounded open set in R".

We are going to assume some conditions on the weights (non-negative func-
tions that are locally integrable) v, w;, w> and on the functions \;, j = 1, ..., n,
in order to be able to derive mean value and Harnack inequalities for solu-
tions of (1.1). The assumptions on \;, which we list below, are the ones stated
in |FL2].

! This work was supported by FAPESP —Fundacdo de Amparo a Pesquisa do Estado de
Sao Paulo— Brauil.
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(1.3) M= 1, M) = Nxay ey X9), J = 2, ..., n, x € R™.

(1.4) LetII = {x € R": IIxxy = 0]. Then \; ¢ C(R") () C'(R"\TI) and
0 <N =AxeR'NILj=1, .., n

(1.5) Ni(xy voes Xiy enny Xjy) = N(X1y ooy —Xiy ooy X;_y), fOr j = 2, .., 1
andi =1, ...,j — 1.

(1.6) There is a family of n(n — 1)/2 non-negative numbers g;; such that
0 = xiDN)(x) = g;N(x), for2 = j=n, 1 =<i=<j—1and
all x € R"\1II.

Denote I' = Q X (a, b) and define H = H(I") to be the closure of Lip(I")
under the norm

1.7 lul* = S S u(x, 1) (0(x) + wa(x))dxdt
r

+ S S | Vau(x, £) | 2w2(x)dxdt + S g u?(x, t)v(x)dxdt,
r r

where V,u = (MD,u, ..., \aD, u). Thus, H(T') is the collection of all (n + 2)-
triples (u, B, B) such that there exists ux € Lip(I') with ux = u, V,ux = 6,
(ux): — B, the convergence being in the appropriate L? space. We need to verify
that 3 is uniquely determined and for this it is enough to show that for every
FeCy@),

S uv,F = —S BF.
r r

In order to prove this, note that since u € H, there exists {ux] C Lip(I") such
that ux — u in H. Then, by (1.3),

oF d ouk
UgNi = — — (uk)\,-)F = — \i F.
r ax,- r axi r 0x;

Therefore,

r r

By Schwarz’s inequality and assuming that wy ' € L!

loc?
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Hence,
S ug Vo F — S uV,F
r r

and similarly we can show

S (Vau)F — 5 BF.
r 2

In the same way we prove B is uniquely determined, if v~ ! € Llloc. We also
define Hy(I") to be the closure of Lipo(I'), Lipschitz functions with compact
support in I', under the norm defined in (1.7). It is easy to see that the bilinear
form b on Lip(I') (| H(T) defined by

b(u, ¢) = S S {urgv + (AVu, Vo)ldxdt
r

can be continued to all of H(I") (here and in the rest of the paper the vector V u

1 1
is understood to be the vector (;\— Bis -ees N /3,,) where V,u = (B1, ..., Ba))-
1 n

We say u € H(I') is a solution of (1.1) if b(u, ¢) = 0 for any ¢ € Hy;
u € H(I") is a subsolution if b(u, ¢) < 0 for any ¢ € Ho(I"), ¢ positive in the
H-sense, i.e., ¢ can be approximated in H(I") by positive functions with com-
pact support in I'; u € H(I") is a supersolution if b(u, ¢) < 0 for any ¢ € Hy,
¢ positive in the F-sense.

We also define H = H(Q) to be the closure of Lip(Q) under the norm

Maell® = S W (X)X + wa(x)dx + S | Viu(x) | >w2(x)dx,
T r

and Ho(Q) to be the closure of Lipo(Q) under the norm defined above.

Next we will define a natural distance (associated with the functions \;,
J =1, ..., n) and state some of its properties. This metric was first introduced
by [FL1].

A vector v € R" s called a A-subunit vector at a point xif (v, £)* < T\ (0) £,
for every £ € R”. An absolutely continuous curve y: [0, 7] — R" is called a
\-subunit curve if v(f) is a A-subunit vector at v(?) for a.e. t € [0, T.

For any x, y € R” we define d: R x R” = R* by
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d(x, y) = inf{T € R*: there exists a A-subunit curve y: |0, T| - R"
with y(0) = x, v(T) = »}.

One can check that this is a well-defined metric. There is a quasi-metric &
(a function 6: R" x R” — R™ is called a quasi-metric if there exists M = 1
such that 6(x, y) < M{é(x, z) + 6(z, )] for all x, y, z € R") equivalent to d,
and sometimes easier to work with than d (see [FL2]). If x € R" and 7 € R put
Ho(x, t) = xand H,, (x, t) = Hi(x, ) + N, (Hik(x, D)e,,, fork =0, ...,
n — 1, where {ex] is the standard basis in R". Define ¢;(x*, .) = (F;(x*, .))" ",
the inverse function of Fj(x*, .), where Fj(x, s) = s\i(H;_,(x, s)), for j = 1,
wonand x* = (x|, .., |xa])-

We define 6: R" X R” - R™ as

8(x, ) = Max;_,__,eix* |xi— yi|).

Note that
(1.8) 6(x, y) < sisequivalent to | x; — y;| < Fj(x*,s),1 < j < n.

In (1.9), (1.10), (1.11) below we state some basic facts concerning 6 and
d (see also [FL2|.

(1.9) There exists @ = 1 such that for any x, y € R",

L 4 )
T80 )
Consequently, 6 is a quasi-metric with 8(x, y) < azlé(x, ¥Y) + 6(z, y)| and
8(x, y) < a*s(y, x).

(1.10) For any x € R", s > 0 and 6 € |0, 1]

Ay*
001 < _F—IQC“,“OS) - <0
Fj(x*, s)

where G, = land G; = 1 + E{:ll Gg;, forj =2, ..., n.

(1.11) We denote S(x, r) = [y € R":d(x, y) < rjand Q(x, r) = {y € R":
6(x, ) < r}and we will call S(x, r) a d-ball and Q(x, r) a 6-ball. Note
that there is a constant A > 1 such that | S(x, 2r)| < A | S(x, r) |
and | Q(x, 2r)| = A|Q(x, r)|, where | - | denotes Lebesgue
measure. Also, by (1.8), | Q(x, )| = II}_ Fi(x*, r). If Q = Q(x, n),
we write 7 = r(Q).
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In general we say that a non-negative and locally integrable function w(x)
is a doubling weight (w € D) if there exists a constant A > 1 such that w(2Q)
< Aw(Q) for any é-ball Q, where 2Q = Q(x, 2r), if Q = Q(x, r) and

w(Q) = g w(x)dx.
Q

(1.12) If w € D then there exists & > 0 such that, for all r > 0, 8 € |0, 1],
and x € R", w(Q(x, 0r)) = 6°“w(Q(x, r)).

Given 1 < p < oo, we say w € A, if there is a constant ¢ > 0 such that
for all 6-balls Q in R".

(1.13) <——»l—- S w(x)a’x) <—1 - g w(x)"””"a’x)p—1 <c
' el ), ol I, o

Note that if we have the A, condition with respect to 6, we have the same con-
dition holding for the metric d, i.e. (1.13) holds with Q replaced by S (using
doubling and the equivalence between d and 6). If v is a weight, w € A, (V)
means an analogous inequality holds with dx and | Q| replaced by v(x)dx and
v(Q), respectively. We use the notation A«(v) = U,., Ap(v). The theory of
weights in homogeneous spaces was studied by A. P. Calderon in |C| and fre-
quently we refer to this paper.

If x, y € R", we shall denote by H(¢t, x, ») = (Hi(t, x, y), ..., Ha(t, X, y))

the solution at time ¢ of the Cauchy problem H;(., x, y) = yiN(H(., X, »)),
H](O, X, }’) = xj,j = 1, A (B

Given a = (a1, ..., an), € = (€1, ..., ) With0 < ¢ < aj,j = 1, ..., n,
wedenote A = yeR": ¢ =y < wj,j=1,..,n.1foe{—1,1}", we put
Tay = (0'1)’1, ceey Unyn), QU(X’ I') = {y € Q(xa r): Uj(yj - Xj) = O’J = 1)
..., n} and A%(o) = T,(A?).

Now we can state two results proved in |FS|.

Let v € ]0, 1] and o € {— 1, 1}" be fixed. Then there exists ¢, « € R" as
above such that, for all » > 0 and x € R",
(1.14) | H(r, x, A7) () Q°, )| =2 (1 —y)[Q°x, N,

where H(r, x, A7(0)) = (H(x, r, y):y € A¥(0)).

Also, there are positive constants ¢;, ¢; depending only on ¢, « and g; ; such
that
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r

(1.15) S, n| = H S N(H(t, x, y))dt < 2| S(x, 1) |

0

for each x € R", r > 0 and y € AY(0).
If g = 2, we say that Sobolev inequality holds for wy, ». - for any
u € Hy(Q), Q a é-ball in R”,

1 1/q 1 ) 1/2
—_ q
(1.16) (Wz(Q) SQ|u| dex) < cr(Q) <W1(Q) SQ'VW‘ wldx> .

Given g = 2, we say the Poincaré inequality holds for w;, w> and p if there
are constant ¢ > 0 and a > 0 (see (1.9)) such that for any é ball Q and every
u € H(a*Q) we have

1 1/q
(1.17) (Wz(Q) SQ | u — av, o | qudX) =<

172
< cr(Q) ( | V| 2wldx> ,

wi(Q) LQ

where av, ou udp and a®’Q = Q(x, a*r) if Q = Q(x, 1.

_ 15
M ),

The reason that we have a*>Q on the right side of (1.17) is that we do not
have a Kohn type argument (see also [J]) for the quasi-metric é. In the d-metric,
we can state (1.17) with equal balls on both sides. For the metric 8, however,
we have convenient cut-off functions (see [FL1]) that are important in order
to get Caccioppoli estimates for solutions of (1.1) (see C.1), (C.2) and (C.3)).
This explains the reason that we work with 6 instead of d.

We can now state our main results.

Theorem A (Harnack’s inequality).

Suppose that:

(@) v, wi, wmp € Ay,

(ii) the Poincaré inequality holds for wi, w> and wy, v with p = 1 and some
q > 2,

(i) war ! € Au().

If u is a non-negative solution of (1.1) in the cylinder R = Q(xy, ) X (to — 8,
to + B), then
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ess SUpg- U < c1 expicz[a™ % BA(Q(x0, @) + 2B~ (M(Q (X0, @) ~' |} ess infg- 1,

where R~ = Q(xo, a/2) X (to— 36/4, to — 3/4), R* = Q(x0, a/2) X (to + 3/4,
to + B), A(Q) = w2(Q)/v(Q), N(Q) = wi(QW(Q), for a 6-ball Q. Here the

constants ¢, ¢, depend only on the constants which arise in (i), (ii), (iii).

- We write

§ 3 flx, Hm(x, HHdxdt = g g S(x, OHm(x, t)dxdt /j S m(x, t)dxdt.
R R

R

Theorem B (Mean value inequality). Assume that hypotheses (i), (i), (iii) of
Theorem A hold. Let0 < p < ©,a,8>0,a/2 <a’ <a,B/2<B" <B
and let Q = Qfxo, @), Q" = Qxo, a’)and R = QX (to — B, to + B),
R = Q' X (to — B', to + B). If u is a solution of (1.1) in R, then u is
bounded in R, and

ess supg, |ul|”

< DE*B"NOQ) " + DV V(a7 2BA(Q) + 1D S j |u|?(aBw, + v)dxdt,

R

where D < CY"" D ifp = 2, and D < c¢®PC° jf 0 < p < 2, and

a2+bB
C=c .Hereh > 1,c > 0and b > 0 are con-

(a —a'Y* " (B—B")

stants which are independent of u, p, a, a’, 8, 8°.

The organization of the paper is as follows. In Section 2 we prove the follow-
ing Sobolev interpolation inequality:

Theorem D: Let w;, w, be doubling weights, v € A> ana suppose (1.17) holds
with wi, wa, p = 1 and some q > 2. If wav ™' € A (v) then there exists h >
1 and constants ¢ > 0, b > 0 such that for every e satisfying 0 < e¢ < 1,

1

w2(Q)

g | u | #wadx
Q

1 h—1
< ce? (——— S uzva'x)
(@) Jiio0

2
x(—r(—Q)— S C | V| Pwidx +
wi(Q) (1+9Q

! S u? udx)

Sfor allu € H(1 + €Q).
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In section 3 we prove Theorem B. First we show, for p = 2, the following
mean value inequality for subsolutions of (1.1):

(*) ess supg, U5 =
h
PO U+ o8N YT + o BAQY S S u (™ *Bwa + v)dd,

R

where Cis as in Theorem B and © + = max {u, 0}. This inequality is less precise
than the one we will eventually obtain because of the presence of the factor
p* on the right. In order to prove the above inequality we apply Theorem D
to the function Ha(u(., r)) where

sP’% if s € |0, M|

Hu(s) = MP? 4+

12’ MP22(s — Myifs = M

0if s < 0,

and therefore Hus(u(., 7)) is an element of H(Q(xo, ) for a.e. 7 € (fo — B,
to + ). The first idea would be to apply Theorem D to the function u’i/z(.,
7) but at this point we do not know if u”, 2(., 7) belongs to H(Q(x0, o). Hence
we have to work with Hys(u), and in order to proceed with the proof of (*)
we show the following Caccioppolli inequality for Has(u).

(C.1) Let2 =< p < oo and u be a subsolution of (1.1) in R. Let w, € A, and
a, a’, B, B’ satisfy /2 < a’ < «, /2 < B’ < (8. Then

€SS SUD,¢(10—6".104 ) S Hu(u(x, n)’v(x)dx
Qo

+ S S | Va(Hu(w) | >wi(x)dxdt
R

<c S u? Hir(u)? ("“WZ" 7t e ) dxdt
X (a—a’) B— B’

with ¢ independent of all parameters.

The next step is to apply (*) for p = 2 to deduce that u ; is locally bounded.
This fact allow us to apply Theorem D to the function u?/%(., 7) for a.e.
7€ (to — B’, to + B). The Caccioppoli inequality we can deduce from (C.1)
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for the function u%’? is not precise enough since it will have a factor p* in
the right hand side (note that uHjs(1) < pu”’?/2) and this is the term we want
to eliminate from (*). But with a different test function from the one used in

the proof of (C.1), namely, ¢(x, £) = n*g)x(t, 71, 72) where
s?~1if se o, M|,
g(s) = MP~%s if s= M,
0 if s <0,

and 7 is a convenient C* function with compact support, we can deduce the
following Caccioppoli inequality for subsolutions of (1.1): :

(C.2) Let2 < p <  and u be a subsolution of (1.1) in R. Let w; € A, and
o, o, B, B’ satisfy /2 < a’ < a, /2 < 8’ < B. Then

us(x, NPv(x)dx + S § | v u?/? | 2w (x)dxdt

€S8 SUDP-¢(ty—p",10+8) §
R’

Q

w2

<c S uf (-'—""T + — _~V___> dxd,
< (a—a’) B — B’

with ¢ independent of all parameters.

Now following the steps of the proof of (*) using (C.2) instead of (C.1) we
can prove that for p = 2

(**) ess supg. uf =<

h
C" @B M) T + D@2 BAQ) + DM S S uh (o™ *Bw + v)dxd,

R

and Theorem B will follow from (**) and an iteration argument like the one
given in Lemma 3.4 of [GW2]. Finally we conclude Section 3 by making some
comments about the proof of mean value inequalities for #?, when p < 0, where
u is a positive solution of (1.1). These inequalities will be necessary in the proof
of Theorem A and in order to show them we need the following generalization
of (C.2):
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(C3) Let—ow<p< +o0,p#0,1,usatisfy0 <m<u(x,f) <M< o
in R, w, € A2. Then if p > 1 and u is a subsolution in R, or if p < 0 and
u is a supersolution in R,

—1
ess supfeuo—af,zomg u(x, Pv(xdx + Lp— S S | V\u?”? | w1 (x)dxdt
R

o
< CS uf < P w2() 5 + ve) ) dxdt.
R p—1 (¢ — ') B — B’

Moreover, if 0 < p < 1 and u is a supersolution in R, then

—1
€SS SUD ¢ (to—g.10 4 6°) S u(x, 1)’ v(x)dx + ’ p_p_’ S S | V\u?"? | 2widxdt
R-

o

scSSu”(’ p ' 2 5 + Y )dxdt.
R p—11 (a—a’) B — B’

In this paper we do not present the proofs of (C.2) and (C.3) since their
proofs are similar to the ones given in Section 2 of [GW2].

In Section 4, we prove

Theorem E: Lef v and wy be weights such that there exists s > 1 with

(1 18) r(I) 2 1 v sdx 1/s 1 " —sdx l/s<c
' rd ) \ [1] J, \v® 1] ), \ wi(B) B

for all -balls I, B with I C 2a*B (a as in (1.9)), where c is a constant independ-
ent of the balls. Let Q = Q(&, r) and ¢ be a C' function such that ¢ = 1 in
O, kn,1/2 <k <1,0< ¢ < 1,supp ¢ C Q and

e e(H(, x, ) = o(H(, x, »))
Sorall x, y, t, to with 0 < t < to. Then, if u € Lip(Q),
v(Q)

Q) r(Q)? SQ [ V\ux) | 2e(x)wi(x)dx,

S [ u(x) — Ag | 2 v(x)dx < ¢
o]

where Ag = u(x)p(x)dx.

R S
e ),
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Finally, in Section 5, we prove Theorem A. This theorem follows as an
application of Bombieri’s lemma (J[GW2)). In order to verify the hypotheses
of Bombieri’s lemma we need Theorem B and Theorem F, which we state next.
We write

v®1@A = S S v(x)dxdt,

A
where v = v(x), x € R, and 4 C R"*! = {(x, /):x € R", t € R).

Theorem F: Suppose v is a doubling weight, w, € Az, (1.18) holds
and wav™' € Aw(v). Let Qr be a 6-ball of radius R, ty € (a, b) and
W2 = wo/wa2(Qr) and v = v/v(QRr). If u is a solution of (1.1) in Qsr/> X (a, b)
which is bounded below by a positive constant, then there are constants ci,
M, x and V such that if for s > 0 we define

E* = {(x, 1) € Or X (to, b):log u < —s5 — Ma(b — to) — V]}

E~ = {(x, 1) € Qr X (a, to):log u > s — Ma(a — 1o) — V},

then

~ - +) < 1 V(QR) R? )
@+ %) ® ) (EY) = <~S~~ o b= to) (b — 1)

and

- . I V@e) R Y
@+ ®DE) =« (»s— o T a) (to — @),

Here ¢, and x depend only on the constants in the conditions on v and w,,
_ w(Qr)
R*v(Qr)

In order to prove this theorem, if we follow the steps of Lemma 4.9 of

[GW2], we just have to verify that a certain test function (see [FL1]) satisfies
the conditions of Theorem E. This will be done in Lemma 5.4.

, and V is a constant which depends on u.

2. Interpolation Inequality

In this section we prove Theorem D. We start with

Theorem 2.1. Let wy, wa, and p be doubling weights and suppose (1.17) holds
for wi, wy with any p, and for some q > 2. If Q = Q(&, r) and wav ™' € Ax(v)
then there exist h > 1 and a constant ¢ > 0, independent of Q and u, such that
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—_— s | u| " wadx
(o}

h—1 2
<c (—1— S uzvdx> <—~ T S | Vu|?widx + (av, o | u| )2)
(@ J, wi(@Q) o -

for all u € H(a*>Q), and a as in (1.9). Also if (1.17) is replaced by (1.16), then

h—I1 2
! S | u|*"wrdx < c<-.1A S uzvdx> ( 4 g |VAu|2w1dx)
w2 Q) [, Q) ), wi(@ |,

Sfor all u € H,(Q).

PROOF: The proof follows as in [GW1], Theorem 3; the only differences are
that we obtain Q(&, a*r) in the second integral on the right when we apply Poin-
caré’s inequality and in the end we use the results of Calderén for weights in
homogeneous spaces (see [C]).

Corollary 2.2. Let wi, w, be doubling weights and suppose (1.17) holds with
wi, w2, p = 1 and some q > 2. If wav™' € Aw(v), then there exists h > 1
and a constant ¢ > 0 such that

.-...._.1..,,.,._ | u | 2h wadx
w2(Q) 0

h—1 2
=< c< 1 S ulva’x> <_ﬂ"w__ S | Vu | >widx + __1_,_ S leudx)
V(Q) 6] w1 (Q) a0 V(Q) 0

for all u € H@*Q), O = Q(, r).

PROOF: The conclusion of Theorem 2.1 holds for u = 1. But, by Schwarz’s
inequality,

avog |u| = —-~-——S | u| dx
Qo

1 172, - 1/2 1 2 v 1 v
= u v dx £ u”vdx —dx
ol ), ol \J, )
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where in the last inequality we used the fact that v € A,.

In the next section we prove mean value inequalities. In order to be able
to iterate a certain inequality as was done in |GW2| we need a refinement of
the above corollary. This refinement is Theorem D and to prove it we need
the following lemmas.

Lemma 2.3. Given Q = Q(§, s) and 0 < r < s, there exists X1, ..., Xy
in Q, and k = 1 independent of &, r, s, such that

@ QW r/k) [\ QCn, 1/K) = D, h # j
(ii) 0 9) C U0, n).

’

14
s

Moreover, m(r, s) < ¢ <—~ ) for some constant v’ depending only on the
’

dimension.

PROOF: If we apply Theorem 1.2, page 69, of [CoW| to the open covering
of Q given by (S(x, r/4a),g, there exist xi1, ..., X, in Q such that:
Sxn, r/4a) (| S(xj, r/4a) = @ if j # h and Q(, 5) C UZ"S(x;, r/a).
By (1.9), S(x;, r/4a) D Q(xj, r/4a*) and S (x;, r/a) C Q(x;j, r). Therefore,
if we choose k = 44, (i) and (ii) follow. It remains to find an upper bound
for m(r, s). First, we note that Q(x;, r/k) C Q(&, a’(k + 1)s/k). But

r_2a(k+1)s r

k k 24 (k + 1)5

and so by (1.10), there exists »’ > 0, such that

olx r - 2d*(k + 1)s
| Pk ‘ =\ 24 (k + 1)s> ' o\ —— k

and since the Q (x;, r/k) are disjoint,

)
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of ") | =2 lefe )|
o) 2 leb )

a*tk + s
(s, Lalha L )
and so

oo #2) | (o] ofe 25 ) |

Therefore, m(r, s) < c(s/r)".

But,

4
o s, 2 D

~——
U
Q

Lemma 2.4. If3(y, 2) < s then Fj(z*, s) < 2a*)%F;(y*, s), G; as in (1.10).
PROOF: Since Q(z, 5) C Q(y, 2a%s), Fi(z*, s) < Fj(y*, 2a*s). By (1.10), it
follows that

Fj(z*, s) < F(0*%, 2a%s) = a*)PF(y*, s).

Lemma 2.5. If0 < e < landn € Q = Q(, ), then Q(y, es/2a*)’) C
Q(, (1 + ¢)s), where { = max;_, ,Gj.

PROOF: If y € Q(7, es/(2a*)°) then by (1.8), | yi — nj| < Fi(n*, es/(2a*)")
and by (1.10) and Lemma 2.4

€S €
F,<n (2a2)§> < Gary % 9) < EE 9.
Therefore
| yi— &l < |yi—mil + |ni— & =< eFi(g*, 5) + Fi(%, s)
= (1 + eFj¢*, s)
= Fi(¢*, (1 + #)s),

where in the last inequality we used (1.10).

Proof of Theorem D.

Let Q = Q(%, s). By Lemma 2.5, 6(Q, d(1 + €)Q) = es/(2a*). Apply
€S
(2a2)§'02 ‘
O, r/k) [\ QGa, r/k) = @ " j # h, Q& s) C UG Q(x;, r) and

m(r, s) < c(s/r)’.

Lemma 2.3 to r = to find xi, ..., Xp 5 € Q such that:
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Note that, by (2.5), Q(x;,a*r) = Q <x, Gy ) COG (1 +9s) = (1 +00.

Then using Corollary 2.2, doubling for w,, doubling for » and w; and the fact
that Q(x;, 2a%s) D Q(%, s) and Q(, 2a%s) D Q(x;, 3),

m(r,s)
S |u|wadx < ), S | u | *wadx
) / 0051

Jj=1

m(r,s) 1 ? .
<c E Wz(Q(xJ’ r)) <v_(é_(x_,,_r)— §Q(x r)u de)

| V| *widx +

{ g ! S uzvdx}
wiQ05: 1) J et V@G5, M) g

s B : ’ -
(T) wa(Q(, S”[( > v(QG 5) Smoou de]

r

—w 2
{ wi(Q(, ) ( 202s) S(HG)Q l V,u l widx

( ) ! S uzva’x} .
2% ) vQE N 4400

The theorem follows if we choose b = v + 2a, since s/r = ce”

1

3. Mean value inequalities.

In this section we prove Theorem B and some other mean value inequalities.
Since the proofs are similar to the ones given by [GW2], we just point out the
differences. Basically, we have to be a little more careful in the iteration argu-
ment since there is a factor ¢ in Theorem D.

We asume throughout this section that:

(@ wi, wa,veA

(b) Poincaré’s inequality, (1.17), holds for both of the pairs wi,
wy and wy, v with some ¢ > 2 and p = 1

() waw™ ! € Au().

Denote R, ; = Q(x0,7) X (fo — s, to + s)andlet R = R, ;, R = R, , with
r/’2 < g < rand s/2 < ¢ < s and define

3.1
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r2+bs

¢ R

where b is given by Theorem D and c is a constant that may vary, but which
only depends on the weights and on 4, where # > 1 is the index for which
Theorem D holds for both w, and v on the left hand side.

We also write N\(Q) = w1(Q)/v(Q) and A(Q) = w2(Q)/v(Q). We start this
section with the proof of (C.1). This estimate will be important in deducing
a mean value inequality for subsolutions of (1.1).

PROOF OF (C.1): If u € H define

u(x, 1)

olx, 1) = 7°(x, ) H His(s)*ds + u(x, ) Hir(u(x, t))ZJ x(t, 11, 72),

0

where 7 € C5°(R) will be specified later, fp — s < 11 < 72 < fp + s and
x(t, 71, 72) denotes the characteristic function of (71, 72). The fact that the
function ¢ is in Hy follows as a consequence of the following result: if f is
a piecewise smooth function on the real line with f’ € L”(— o, o) and if
u € H, then f o u € H. Here we use the convention that f'(u) = 0ifu € L
where L denotes the set of corner points of f (the proof follows the steps
of Theorem 7.8 of |GT]| and it also shows that V,(f o u) = f’(u) V,u and
(f(w): = f’'(u)us). The proof of the above fact also verifies that in our case
¢ = 0 in the Hyp-sense since Huy(s) = 0 for s < 0.
Since u is a subsolution, we have

(3.3) S S ({(AVu, Vo) + urpv)dxdt < 0.
R

Note that by another limiting argument

us [UZS HM(S)st] = [unz S H,\’,;(s)zds] —u(®), S Hi(s)*ds —n* Hig(u)*u.u,

0 0 t 0

and then by definition of ¢, for 7, < t < 12,

— (*)u S Hi(s)*ds
0

U = [unz S Hg(,;(s)zds]

0 t

and
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Vo = 27Vy H His(s)*ds + uH;(,{(u)z] + 7[Hisw)?* Vu + fis(u) Vul,
0

where fu(s) = sHir(s)* (note that V (far(u)) = fir(u) Vu, since fir is piece-
wise smooth with fis € L™). If we substitute the two last equations in (3.3) we
get, with Q = Q(xo, 1),

S S [unlg HM(S)zds] vdxdt + S S n? Hisu)* (A V u, Vu)dxdt
o Q

m 0 t T

< j S [(nz)tus HM(s)stJ vdxdt
Q Ym o

—2 5 S n{AVu, Vn) “ His(s)’ds + uHM(u)Z} dxdt
Q

0

Tl

_ S S (A Vu, Vu)fir(u)dxdt.
Q

T1

We can drop the last term on the right since the integrand is non-negative. The
second term on the right is majorized in absolute value by

4§ S [ (AVu, V)| nHir(u)*udxdt
o

T

45 S | (AH}1(u)n V u, uHis(u) V1) | dxdt
Qo

T

IA

2¢ 5 g (AV (HuW), V (Huw)), n°dxdt
0

T1

2
+ S S (AV7, Vn)u?Hi(u) dxdt
€

]

€
where we used the fact that | (Ax, y) | < (Ax, x)*(Ay, y)V/? < > (Ax, x) +

1 1
— (Ay, y). If we pick e = —- we get
2¢ 4
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(3.4 S § [unz g H;(;(s)zds] vdxdt
Q

0 t

T1

+ S S (A V (Hu(w)), V (Hu(u)))dxdt
Q

T1

2

< 85 S (AVy, Vq)u®Hi(u)dxdt + S S l:(nz),us H;i4(s)2ds:| vdxdt.
QoVn Q Jn 0

Choosen 7 to be zero in a neighborhood of {dQ X (fo — s, to + s)} U {Q X (¢ =

fo—s),n=1inR},0=<n9=<1, |V =c/(r—a) |n]| <c/(s—0)

(see page 537 of [FL1])). If we pick 7; so close to ¢, — s that 5(x, 71) = 0 for

all x € Q, drop the second term on the left of (3.4) (which is non-negative)

and use Lemma 5 of [AS] it follows that

u(x,72)
u(x, ) S Hi(s)*ds vdx

(3.5) ess SUpP,,cy—oiro+s) S
0

0

<c || @Huw?|—2— + | dxar.
R (r—eoP s—o

If we fix 7, € (fo — o, to + ) and 7, as before and if we drop the first term
on the left of (3.4) (which we can see is non-negative after performing the
integration) we obtain

(3.6) S S n*(AV (Hu(u)), V (Hu(u)))dxdt
0

2171 (12 w2 4
<c u”Hir(u) 5 + dxdt.
R (r—o) s—o

Letting 72 — to + s and using (1.2) we get

w2

+
(r—e) s—o

3.7 S S | V) (Hu (W) | *widxdt < ¢ S S
&

4 R

u? Hig(u)? [ ] dxdt.

Finally note that
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u

(Hu(s)*)' ds = S 2Hy(s)His(s)ds
0

u

Hy(u)?* = g

0

u

< ZS sHi(s)*ds < ZuS His(s)*ds,
0 0

since Hy(s) < sHi(s). Combining this with (3.5) and (3.7), (C.1) follows with
a, 8, a’, B’ taken there to be r, s, @, 0.

Lemma 3.8. Let p = 2, R, R’ be as defined above and assume (3.1)
holds. If u is a subsolution of (1.1) in R, then u. is bounded in R, =
Q(x0, @) X (to — 0, to + 5) and

ess supg, %

A 21\ s =1 s
=< (p*o)! <1 + - I@) (1 + o A(Q)) S s u”, (75 wy + 1/) dxdt,
R

with C as in (3.2).

PROOF: H(u) is a function in H since u € H and Hjs is a C* function with
bounded derivative. Then by Fubini’s theorem we have that Ha(u(., 7)) € H
for a.e. 7 € (to — o, to + 5). If we apply Theorem D to the function F(x) =
Hu(u(x, 7)), @ = Q, and € > 0 such that (1 + €¢)¢ < r and combine this
with (C.1) we obtain

1
w2(Q,)

S Hu(u(x, 7)* wa(x)dx
0

e

B W Hig(u)? 2 o Nt
B v(Q,) R r—(1+ ¢80P} s—o

2
' {%QQ) SQ(I‘H)Q l ValHu(u(x, 1)) I Zwl(x)dx

1 2777 (N2 W2 , v
N g Lu Hir(u) ((r-— 1+ 907 + p— a) dxdt}

for a.e. 7€ (fo — 0, to + 5).
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Integrate with respect to 7 over (fo — o, f + s) and apply (C.1) to get

1
w2(Q,)

ce ( ¢ sto ( PHigwp—22 4 Y )dxdt)h
)T \m©@) Twgy)\J ), T r—(+9eP  s—0

Since (r/2) < ¢ < rand (s/2) < ¢ < s, by the doubling property of the weights
and the definitions of X\ and A, it follows that

§ S Hy(u(x, H)* wa(x)dxdt
&

1
w2(Qr)

) (o 2o
Sc—z + s u”His(u) 5 + dxdt| .
v(Q)" \ MOP) R r—(1 +¢€)o) S—o

~

S g Hay(u(x, D)* wa(x)dxdt
R

A similar inequality holds with w, replaced by v on the left, and if we add
the two inequalities, we obtain

3.9) H HM(u)Z"( LT )dxdt
o W) | @)

a7 (i ) (|2 (G sar 555 ) )
Sc——g |l ts u”Hi(u) > + dxdt
(Or)" \NOr) R r—(1+¢o) s—a

for any e such that (1 + €)o < r.
Now note that

2 + 7 < r S st
r—a+ 00f  s—o  —0+dG—0o [ :

S { 2oL Y ]dxdt ~s,
. Lm@) T v
S

s s
S L {? wy + u} dxdt = s {? w2 (Qr) + V(Q,)} = sv(Qr) [7 AQy) + l} y

st iwa(x) + v(x) - wa(x) v(x)

sr2wa(Q0) + v(Q) T w2 (@) v(Q)
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Thus, by raising both sides of (3.9) to the power 1/h, normalizing and using
the fact that ¢ “%* < ¢~?, we obtain

1/h
(3.10) (S S Hag(h)?" (rs—z wa + u) dxdt)
R

ce? r’s 1+ A AR
= 01 90P—o) P s MO

. § S u® Hig(u)* (—SZ wy + V> dxdt
r
R

for any e such that (1 + €)o < r. Since u?* Xjo<u<ry = Hm(u) and uHjis(u)
< pu” 272, if we let M — o it follows by Fatou’s lemma that

1/h
3.11) (S g uPh (iz W + u> dxdt)
R r

< cpPe? rs 1+ A0) LG
R s G S TR s MO

S S ut, <~S—2 w2 + v) dxdt.
r
R

Now, we have to iterate (3.11). Fix r, s, o, 0 with /2 < ¢ < r and
s/2 < 0 < s.Fork =1, 2, ... define sequences {sk}ien and {rxjien and {ex}ien

s—o
bysi =S, Sk — Sk+1 = ok fork=1,rn=rrn—rcsr = (r—o)/2*

r — re — r

for k = 1, and & = y: ¢ _ X krl for k = 1. Also, define
2 Tk 144

Ri = Qx X (to — sk, to + ) for k = 1, where Qx = Q(x, r¢). Note that

Ry = Rand (- Rx = R’ . Since

1 _
> sr? < serg? < 4sr7?,

if we apply (3.11) with p replaced by phk_], p=2andr =rg,0 = ry,; and
€ = €4 (I'lOte that (1 + €k+1)rk+l < rk), we Obtain
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" s 1/h*
Ul | —= w2 + v dxdt
r
Ri+1

< {C(phk_l)zek_fl (rk riS’k <l + %A(QJ)

— (I + & D+ 1)2 Sk — S+ 1)

r2 1 1/h N\ 1/(h* 1Y) /s V)
1+ — . u’ﬁ," — W2 + v dxdt .
s NMQ» R r

But note that

2
—b Tk Sk

€
k+1 2
! [rk—(l + 6k+1)"k+1] (Sk—sk+l)

b 2
_ olk+ b Tk 41 Tk Sk

(r—e)° r—o r—o *(s—a
2k - 2k+l 2k

2+b
r S
< 02(3 +b)k

(r—o)’(s—o)

< C 2(3 + b)k’

where C is given by (3.2). Thus,

1/h*
(3.12) (S S ult* (—SZ wy + v) dxdt)
r
Ri+1

s 2 1 V/h~N1/k!
< {C(ph""l)22(3+b"‘ <1 + 7A(Q,)> <1 + ) }

s MO
e s V7
. u? e wy + v dxdt .
Ri

If we iterate (3.12), we obtain
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ess supg, u4

el

< I1 {C(ph"-‘)zz‘“”’* (1 + %A(Q»)

k=1
2 Vh~ /K
-1+—r— ! uﬁisz+v dxdt.
s NMQ» R r

2

. w 1 h w k h .
Since ¥ _ = and ¥~ =\ =1 it follows that

ess Supg; uf,
1

e s = 2o\t s
< (PO (1 + FA(Q,)) (1 * o )) s X u® <72— W + v) dxdt,
r R

and this proves the lemma. Note that if we apply the above result for p = 2,
it follows that # . is bounded on R’ .

PROOF OF THEOREM B: By Lemma 3.8 we know that u#. is bounded in
Qu+ege X (fo — 0, to + ) for all e such that (1 + €)e < r. If we define
F(x) = u?/*(x, 7) then F € H(Q,,,) for a.e. 7 € (fo — o, fo + s) and if we
follow the proof of Lemma 3.8 using (C.2) instead of (C.1), we get (see the
comments in the introduction)

€ss Ssupg, u~

. rro1 = s e s
< C 1 + —}— —)\—(—Q—)— 1+ 72-A(Q) u’_i (—r—z' w2 + V) dxdt
R

for p = 2. For 0 < p < 2, define I, and I» as in Lemma 3.4 of [GW2]. The
only difference in our case is that

o
A—1

1
J IZ(ay B)Z

(a_a/)2+b(B_B/)

Le(a’, B')* < c[
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ifl/72<a’"<a<land1/2 < B’ < B < 1. Thus, arguing as in Lemma 3.4
of [GW2] we prove that if u is a solution of (1.1) and p > 0 then

(3.13) ess supg, uh <

i

o1\ s = s
S p(2
D (l + . MQ)) <1 + e A(Q)> S gRu+<r2 wy + v) dxdt,

where D is as in Theorem B.

If we apply (3.13) to both u and — u, we obtain Theorem B of the introduc-
tion, with «, 8, a’, B8’ taken there to be r, s, g, 0.

In order to prove Harnack’s inequality we need a mean value inequality
for u” when — © < p < o and u is a non-negative solution.

We begin by noting that if we use (C.3) instead of (C.1) we can prove the
following analogue of (3.11):

Lemma 3.14. Suppose (3.1) holds, 0 < m < u(x,f) = M < oinR = R, ,
r’2< o<r,s/2<o<sande>0,(l + €)o < r. Then, if p > 1 and
u is a subsolution in R, or if p < 0 and u is a supersolution in R,

1/h
<S uPt (ﬂ o+ -) dxdt)
R, w2(Qr) v(Qr)

<ceb- r's {1+-2 -2 A0 AL B
T =0t 90—\ T p—1 2 p—1 s MO

H w (_Pl_izm . ) dxdt
pP— r
R

Morecver, if 0 < p < 1 and u is a supersolution in R, then

1/h
(SS u”"( "1 + —U——) dxdt)
ra wa(Qr) v(Qr)
2 I’Z 1 1/h
L IR PO BN ,)(1+ p_r )
ce <r—a+e>g>2<s—a>< i AN T e

'SS HP(T;{)*TI—%WZ"l'V)dth.
R —_
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Both inequalities are still true if we replace the integral averages on the right
by the larger integral average

|,# (e * )
w [——=— 4+ —— | dxdt.
. \m©@) T Q)

Theorem 3.15. Assume (3.1) holds, r, s > 0, r/2 < o < r1,5/2 < 0 < S.
If u is a non negative solution of (1.1) in R, then forp > 0

ess supg. u”

h 1

<C”(1 +piA(Q ))h—:l<1 + rrf ! ~>7:1H 74 ( w2 +~—V——>dxdt
= Ea 75 o) p \w(Q) w©@))

and forp < 0

h
A Ky
ess supg, u? < C'! (1 + |p]| »~51\(Qr)>
r

-(1 + |p| “52———1—— - u”( v b dxdt,
s MO . \m(0) (0

where C is given by (3.2).

PROOF: In Lemma 3.17 of [GW2] we replace (3.20) by the result given here
in Lemma 3.14 and then argue as in Lemma 3.17 of [GW2|.

4. Proof of Theorem E
We start with the following lemma.

Lemma 4.1. Suppose Q = Q(%, r) and ¢ is a C* function such that ¢ = 1
inkQ = Q,kr),0 < k< 1,0 < ¢ <1, supp ¢ C Q and

4.2) e(X)e(H(lo, x, »)) < o(H(t, x, »))

forall x, y, t, to with 0 < t < ty. If u is a Lipschitz function,



272 Josk C. FERNANDES

E={xeQ( kr):u(x) = Oand |E| = B| Q| for some0 < B < 1, then
ifx €Q,
o(x, 2)

(4.3) lu@) | Vo) =< ¢ S |V u@) | \/@mdz,

Q

where c is independent of Q, u, x.

PROOF: (The general outline of this proof follows the steps of the proof of
Lemma 4.3 in [FS].) If x € Q@ = Q(&, r) then Q(&, r) C Q(x, 2a*r) and Q(x,
r) C Q(&, 2a*r). Therefore, by doubling, | Q(x,r)| = | Q| . Now, we note
that there exists o € (— 1, 1}"such that |E () Q°(x,2a*r)| = cB|Q°(x,2a*r)|.
In fact, E = U,(Q°(x, 2a 2r) (| E) and so there exists ¢ such that

4.4 | Q°(x,2d*n) ) E| 2827"|Q| = ¢8| Q°x, 2a°D ] .

We also claim that there exist a, ¢ € R”, independent of x and 7, 0 < ¢ <
aj, j = 1, ..., n, such that

4.5) |E N Q°(x,2a*n () HQRa’r, x, A0)) | = % | Q°(x, 2a°) | .

c
To prove this fact, apply (1.14)to y = TB and find o, e € R", 0 < ¢ < «j,
J =1, ..., n, such that

| H2a?r, x, A%0)) () Q°(x, 2¢*P)| = (1 —%) | Q°(x, 2a°1) | .

Then,

| Q°(x, 2a%P| = |(Q°(x, 2a*r) () E) U (Q°(x, 2a*r) () H(...))| =
|Q°(, 2D () E| + |Q°(x,24%) () H(.)| — | E ) Q°(x, 24> () H(..)|
= | Q°(x, 2a%r) | (cB + 1_};—) — |E N Q°(x, 2a°n) N H(.)|

and therefore the claim follows.

We can assume x ¢ E and define L = [y € A%0): HQ2a’r, x, y) € EJ.
Let K be a smooth function supported in Af/“z(o), 0<K=1,K=1o0n
A” (o). Suppose u € Lip(Q). If y € X then

lu@) | Vo) = |u(x) — u(HQa?r, x, y)) | K») Vo (x),

and if we integrate on X, we obtain
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wmlﬁﬁﬂzl=gIMﬂ—mmu%meKmvmmv
z

Now we note that o(H(2a’r, x, y)) = 1 if y € T and using (4.2) we get
o(X) < o(H(t, x, y)) for any 0 < t < 24°r. Therefore,

2a’r
lu@) | Ve [Z] = S S — W(H, x, y))dt|No(H(, x, y)dy
suppK

, dt
2a°r . -
= S § (Vu(H(, x, y)), H(t, x, y))dt) Ne(H(t, x, y))dy
suppK| v0
2a*r o
= S S | VauHE, x, ) | |y | Ve H(, x, y))dydt.
suppK

0

If we make change of variables z = H(t, x, y) in Af}’z (0), then

‘det ——(t x, y)l g § N(H(s, x, y))ds.
0

For y € Ae/z(a), the last product is equivalent to | Q(x, ) | by (1.15). Hence

1 g
1Q(x, )l HO 4% (0)

Note that there exists ¢ > 0 such that H(z, x, A; ,2(0)) C Q(x, ct). In fact,
if we define y(s) = H(s/|y|, x, y) then

o= (B o)
Bl )

n

= Y NG(GNE

24°r
“.6) |u@ | Vel < T S | V,u(2) | Ve(z)dzdt.

for every £ € R". So, v is a \-subunit curve starting from x and attaining
H(t, x, y) at the time s = ¢| y|. Therefore by (1.9),

8(x, H(t, x, ¥)) < ad(x, H(t, x, y)) < at|y| =< ct

where ¢ = 2aa
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Thus, from (4.6), we obtain

2a’r
1

o 10 0|

lu@) | Vo) = ; S S | V,u(@) | Ve(z) dzdt
‘ | QO(x,ct)

and, interchanging the order of integration and using the fact that supp ¢ C Q
(the argument we are going to present next is due to Chanillo, Sawyer and
Wheeden), we get

o e dt
@D Juw| Vo < - SQWW(Z)‘ Ve(2) (S Tm) dz.

,E , c6(x,2)
We claim that i at < ch To prove this we note that
e claim tha — =<c . prove this w ,
s 10D | OCx, h) |
by (1.8),
O, 9 n
_L ; _l = Hj=2]:’j(x*, t),

and consequently by (1.10), there exists ¢ > 0 such that if £ > 7 then

ool c(ﬁ>fJ£%§;?Lﬂ

t T T

Hence,

I A N AN
L1000l ) 106l ¢ T ) 10l \t) t T1oe kI

Finally, we note that | £ | = ¢ > 0, with ¢ independent of x, since, by the
change of variables z = H(2d’r, x, ),

1

| =\ dy = T
| | SS g SH(Zazr,x,E) | Q(X, 2a2r)| ‘
| HRd’r, x, £)| _ |E () HQar, x, AX(0)) |
|0, 2¢°D| | Q(x, 2a%7) |
| 0°(x, 2% |
= cf —‘m—— =c>0.

The lemma follows by combining the last two last estimates with (4.7).
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PROOF OF THEOREM E.

—. 6(x’ y) —
" | QCx, 606, 7)) |

Fix S a d-ball. In order to show that for a pair of weights #, w we have

Define Tf(x) = S JO)K(x, y)dy, where K(x, y) =

172
"Tf”LZ(S‘,-;) = ”f”LZ(S,W) (Where “f“I_Z(S,|7) = <S f217> ) for all f = 0,
S

supp f C S, according to [SW], we need to verify that the following conditions
hold:

(a) there exists s > 1 such that

1
1 b,
o | 1] <—— Sﬁ%ix) <— - § W”‘dx> <c
1] ), 1],
for all d-balls I C 2S, where ¢(I) is defined to be
1
o) = sup {K(x, Vix,yel dx y) = > r(l)} ;

(b) there is € > 0 such that

11l _, o) <r(1')>‘

1] = ) \ r

for all pairs of d-balls I’ C I.

Note that it is convenient to work with d since the results of [SW| hold for
pseudo-metrics (a pseudo-metric d is a quasi-metric satisfying d(x, y) = d(y, x)
for all x, y € R").

Wi
——and w = ——-r(S)*>. Note that if x, y € I and
v(S) wi(S)

dix, y) = %r(l), then by (1.9)

Define ¥ =

o(x, ») - 2ar(l) - r(l)

< <c_ "0
bl 6 b 1 b
| Ox, 8(x, »)) | ‘Q< .- r({))l | QCx, r(D)) |

Kx, y) =
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and since x € I, | Q(x, r(I))| = |I|. Therefore,

r(

sa(l)sclll-

So, the expression in (a) is bounded by

1

et 1 (i |, (Tz%fd")z(t;l |, (o >‘s"">z

1 1

S (i | (o)) (a7 ] () )
<c dx _— — dx) ,
r@S) \ [1] J,\»(S) 7] ), \m(S)

which is equivalent to the expression in condition (1.18) (if we use doubling
and (1.9)). This proves (a).

1
To show (b) we note that if x, y € I and d(x, y) = ?r(l) then

Qa~'r() T
| Q(x, 2ar(D))| —  |I]°

r(l) o o) _r(y |I'
Thus (1) |_I—|- Then, if I’ C I, o) = ra) 1]

Kx, y) =

and we obtain

I

(b) with e = 1.
By doubling and (1.9), it follows that
“ Tf”LZ(Q,g) = C||f||Lz(Q,W)
for all f = 0, supp f C Q, where 7 = and w = r(Q)>.
v(Q) I(Q)
Suppose u is a Lipschitz function in Q and |E| = |{x € Q(&, kr):u(x)

=0]|] =8|Q|, 172 < k < 1. If we combine Lemma 4.1 and the fact
that | Tfll ;20,5 = cllflig s We obtain

1/2
(4.8) <(Q)S [ u(x) | <P(X)v(x)dx>

172
< cr(Q) ( S | V\u@) | 2so(z)m(z)a’z)

wi(Q)
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Given Q and a general Lipschitz function u, there is a number p = u(u, Q),
the media of u# in Q, such that if 0" = {x € Q:u(x) = pJand Q™ = [x € Q:
u(x) < pjthen |Q*| = |Q|/2and |Q™| = |Q]|/2. Hence, u; =
max{u — ,u(u kQ), 0} and u, = max{u(u, kQ) — u, 0} satisfy the hypohesis
of Lemma (4.1) for some 3 depending on k and so if we apply (4.8) to u; and
u, and add both inequalities, we get

Q)

4.9) Llu(x)—ul e()v()dx < cr(Q)* —— (O

S | V\u(2)* ¢ (2) w1 (2)dz.

Finally, it is easy to see that in (4.9) u can be replaced by the average Ao
of u defined in Theorem E. In fact,

(4.10) S | u(x) — Ag |2 (¥)v(x)dx
o]
< 25 | u() — u| e v(x)dx
Q

+ 2 S | n — Ag | 2p(x)v(x)dx,
Q

and

S | k—Ag [Pe@r(dx = (ev)(Q) |1 — Ag|?
Q

2

- (¢v)(Q)’u—~(Q~) 5 u(x)«a(x)d»1

1 2
=< (¢v)(Q) (;(—Q)S | u(x)—p | p(x)dx)
o

- Q)
= )%

g |u (x)—ulquz(x)v(x)de L dx,
0 v(x)

where in the last inequality we used Schwarz’s inequality. Since v € A, and
0 < ¢ =< 1, it follows from (4.9) and (4.10) that

S | u(x) — Ao | ?p(x)v(x)dx
Q

2
< cr(Q) [1 + < 12| )] V(@ X | V\u(2) | *e(2) w1 (2)dz.
0

¢(Q) w1(Q)
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This finishes the proof of Theorem E if we note that ¢(Q) = | Q| since
172 <= k < 1.

The next corollary is also helpful.

Corollary 4.11. Theorem E is also true with Ag = upvdx.

1
(e)(Q) S 0
Just note that

S |n— Ag| 2evdx = (e)(Q) | — Ag|?
0

1 2
= (em(Q) <WQ) g |lw— ul de)
(]

A

S I/L—ulzgol/dx,
Q

where the last inequality follows by Schwarz’s inequality.

5. Harnack’s inequality

The proof of Theorem A follows as an application of Bombieri’s lemma which
we state next. For its proof see Section 5 of [GW2].

Lemma 5.1. Let R(o) be a one parameter family of rectangles in R"*,
R(0) C R(p), 1/2 < ¢ < ¢ < 1 and let v be a doubling measure in R"*'.
Let A, p, M, m, 0 and x be positive constants such that M = 1/u and suppose
that f is a positive measurable function defined in a neighborhood of R(1)
satisfying '

A
(5.2 ess Supge) SX = ——
(e — o)

S g SPv(x)dxdt
R(e)

forallo, g, p,1/2 =0 =06 <0< 1,0< p < M and

(5.3) v({(x, ) € R(1):log f > s)) < <i> r(R(1))

s
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for all s > 0. Then there is a constant v = v(A, m, x) > 0 such that

Y

| log(ess su U < ——p.
8( Prey 4) 1 — oy #

Hence, in order to prove Theorem A, we need a mean value inequality (that
we proved in Section 3) and a logarithm estimate which is given by Theorem
F (some steps of its proof we will present in this section). The next lemma shows
that the test function described on page 537 of [FL1] satisfies the conditions
of Theorem E. Then, as we said before, the proof of Theorem F follows as
Lemma 4.9 of [GW2].

Lemma 5.4. Given Q = Q(¢, r) and 0 < k < 1, there exists ¢ € C' such

that ¢ = 1in kQ, 0 < ¢ < I, suppe C Q, |V,p| = ~(1-i—kjand
r —_
o(x) - e(H(to, x, y)) < o(H(, x, ¥)) for all x, y, t, to with0 < t < {.

PROOF: Consider the function ¢ given by [FL1], page 537:

' xj — &

() = ] v ( ,

;[—‘,[ Fj(&*, r)

where y € C*(R), 0 < ¢y < 1, Y(f) = ¥(—1), ¥ = 1l on [—k, k], ¥ = O outside

J—1, 1], [¢'(®] = 2(1 —k)~*, for all # € R. Here, we show that ¢ satisfies

the last condition since all the others are proved in [FL1], page 537.
Fixt,0 < t < t,, x and y. Define z = H(¢, x, y). Then,

t

=X + ¥ S N(H(s, x, y))ds.
0

Suppose z; — & = 0. If y; = 0 then

t

IZj_ ‘Ell = Xj — gl + Yi S )‘j(H(S’ X, y))ds = Hi(tov X, )’) - El
0 .

On the other hand, if y; < 0,
lzi— & = [x%—&].

Thus, if z; — & = O then |z; — &| < | Hj(to, x, ) — &| or |z — &
=< | xj — & | . The same holds if z; — & < 0. Since /() can be chosen to be
non-increasing for positive ¢, then ¢(z) = ai...a,, where

o | % — &
“= ‘b( F@, n )
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or

a.=¢ !flf(to’xsy)_gil
’ Fi(g*, 1) '

Since 0 = ¥ < 1,

' | Hy(to, %, ) — &| % — &
= ¢< Fi&, ) "“UEeE )

for 1 < j < n. Therefore,
e(2) = e()e(H(, x, y)).

The next three lemmas are needed in order to show that the hypothesis in
Theorem A imply those in Theorems D and E.

Lemma 5.5. Assume that Poincaré’s inequality holds for wi, w, withq = 2
and p = 1. Then

W)me_<cmm
r(B) wa(B) - wi(B)

for any pair of 6-balls I, B, with I C 2B.
PROOF: Suppose I = Q(uo, r(I)) and B = Q(x, r(B)) and define

| uj — (uo); |
Fy) = T Wit
(w) ,-2=:1 g, 1) r() o(u)

where ¢ is the function described in lemma (5.4) associated with I (as opposed
toB)and k = 1/2. If u € I, by (1.8)

oF r(D do
3—uk(u) = ———Fk(u(’,“, ) + 51:;(“)”’-([)’

for k € (1, ...n}, and using the fact that \e(1) = Me(u*) < M (H(u*, r(D))) if
u €l we get

Fr(u*, rd))

de
Fetiz, D) + nr(Dhe(u) a—uk(u)

oF
e (1) M(u)’ =
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and by Lemma 2.4 and the fact that | V,¢| < ¢/r(I) we have |V ,F(u)| < cxi.
We have Poincaré’s inequality for F, i.e.,

1 1/2
(5.6) ( 7o) Lw | Fu) — av, ., F| 2wz(u)du>

172
< cr(B) < S | V\F(u) | >w: (u)du) ,
na*4"*'p

wi(B)

where n = max;_; ,[{G;j. The right side of (5.6) is bounded by

wi(l)
wi(B)

1/2
cr(B) ( ) by doubling and the fact that |V,F| < cxs. Now, if

1
u € —4—Ithere exists k € {1, ..., n} such that
1
| ux — (uode | = Fr (uﬁ‘, ‘4—"(1)>

1 1
and then if u € 7] N\ —4—1 (note that ¢(u) = 1)

1
Fy | ud, —4—r(1)> [\G |
—) r() = Fr(l)

5.7 Fu) = Feaat, 1) r() = (4

Also, if u € I, F(u) = nr(I) and therefore

1]

n4"*1p - | n411+lB|

nr(l).

av

But, by (1.10), F;(x}, n4"*'r(B)) = 2n4" F;(x}, 2r(B)), and by (1.11),

|n4""'B| = (2n4")" |2B| = 2n4" |2B]|.
1 1
Hence, since I C 2B, avM,,HBF =< r(I)/2-4" and then if u € ?I AN 71
(using also 5.7)),

| F(u) — av F| = cr()).

nd1+lp

Therefore, the left hand side of (5.6) is larger than a constant times
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@y (1 1 A" wad) |
7N\ —
[Wz(B) ws (2 I 2 I)] = cr(l) (wZ(B)> .

1 1
where in the last inequality we used the fact that w, (E— JARN y I) = wy(D),

which is shown in the next lemma.

Lemma 5.8. Ifwis a doubling weight then W(Q(u, 2s) \ Q(u, s)) is equivalent
to w(Q(u, ).

3s
PROOF: Choose n € Q(u, 2s) such that 6(u, 7) = - By Lemma 2.5,

3es 3s
Q(ﬂ,m) - Q(u, a+ 6)"2—)
forany 0 < € < 1.

3es
Choose j such that 5(u, 1) = @j(u*, | 7,—u;|). Then,if y € Q| 1, —~6—2§ ,
2(2a%)

3s
F,-(u*,—) = |nj—w| = |nj—y;| + [yi—u]|

2

3es
= Fj(ﬂ"‘, mv) + | yi—uil,

By (1.10) and Lemma 2.4,
3s 3s
F_'/' u*,T SEF_'/ u*,'T + ij_uj|'

l'—'>l—F'*£>F'*l—£
yJ u!’—( e)_Iuiz = Ju!( 6)2 .

Thus,

If we choose ¢ = 1/3 we have proved that
s
s ——=) C , 28) \ , 5).
o) (n G a2)§> O, 29\ O, 3)

The lemma follows by doubling.
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Lemma 5.9. If w, € Ay, v € Ax and Poincaré’s inequality holds for w,
v with ¢ = 2 and p = 1, then condition (1.21) holds.

PROOF: If v € A there exists s > 1 such that

<; (_> d) _ 1 v
11l ), \v(B) T B

So, since Poincaré’s inequality holds for w;, v with ¢ = 2, by Lemma 5.5

(r(l) )2 ( l \s\ ( V )S )l/s 1 Wl(l)
dx =c—— ,
@) \11] ), \v® [I] wi(B)

and the above condition is equivalent to condition (1.18) since w; € A,.

Now we are ready to prove Theorem A.

PROOF OF THEOREM A

Let u be a non-negative solution of (1.1) in the cylinder R, 3 = R, g(Xo, Zo)
= Q(xo, &) X (to — B, to + PB). If we define T(x, ¢) = (x, 8t + 1) and
u(x, t) = u(T(x, t)) then u is a solution in R, ;(xo, 0) of the equation

v(X)u; = div(A(x, H) V i),

where the coefficients matrix A = (a;) are defined by a;;(x, 1) = Baii(x, Bt + to)
and satisfies the degeneracy condition

A

W) YNWE

j=1 ji=1

Y atx, DEE < W) NME,

j=1

if we put w; = Bw;, fori = 1, 2.

Suppose | p| < [@”*A(Q(x0, @) + o®/ NQ(x0, @) "', where A(Q) =
W2(Q)/7(Q), MQ) = Wi(Q)/v(Q). Write

Sy (@ + Do 1 e 1 e
R(Q)"Q<x°’ 3 >X<—2_2’ 2+2>

. B (0 + N L—_Q_
R(Q)—Q(xo,—3 >X<2 2,1>
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If we take 1/2 < @ < r < 1 then the mean value inequalities in Theorem
3.15 applied to u give

_ 1 11%) v
. 74 ~ - =D
(5.10) ess supg @4 =c —o SLA(r)u ( (00 + o a)) dxdt,

for some m > 0, if p > 0, where Q, = Q(xo, @), and

— 1 _ WZ v
(5.11) ess supg+, ¥ = ¢ — uf | — + dxdt,
re =" | Sy \P2(Q) T v(Q)

if p < 0. Moreover, by Theorem B, u is locally bounded and by adding
e > 0, we may assume by letting ¢ — 0 at the end of the proof that u is
bounded below in R, ;(x0, 0) by a positive constant.

Now, by Theorem F, we have

(.12) ( oY Vei|eEn
' V(@) Wz(Qa)>
1 v@) L)
= {s Wi(Q.) “}
RN , 1 "
c{s [a AQ) + « X(Qa)]} ,

and the same inequality holds for E~, where E*, E~ are defin_ed in Theorem F
withu = 4, R = 2/3a,a = —1,b = 1, tp = 0, M, = A(Q,)/ o’

By (5.10) and (5.12), we can_gpply Bombieri’s_ lemma to the family of
rectangles R~ (o) with p = a *A(Q, (%)) + o*/N(Q, (%)), M = 1/u and
f = e M*YOy obtaining

1A

ess Supg-(1,5f = C exp{ cla”>A(Q,) + o*/NQ,)},
and this implies that
(5.13) ess supg- 4 < Cexplcla™2A(Q(xo, @) + o®/NMQ (X%, @))] — V(0)}.

Also, by (5.11) and (5.12), we can apply Bombieri’s lemma to the family of
rectangles R* (@), f = e YO~ ! with u, M, M, and V(0) as before, and
we obtain
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€ss SUPg- /2 f < C explcla™*A(Q,) + o*/NQL)]},
which implies that

(5.14) €0 < C AN+ AR g inf. .

Combining (5.13) and (5.14) it follows that

_ -2 N . —
ess SUg- 1/ < 1€l MO+ AQo N ggg inf . 1.

Since, T(R™(1/2)) = R~, T(R*(1/2)) = R* and o~ %A(Q,) + o*/NQ,) =
a”2BA(Q,) + o*8~1/N\(Q,), Theorem A follows.

REMARK: Using the equivalence between d and 6 we can prove the following
analogues of Theorem A and B for the metric d.

Theorem A’: Assume (i), (ii), (iii) of Theorem A. If u is a non-negative solu-
tion of (1.1) in the cylinder R = S(xo, aa®) X (to — B, to + B), then

ess supg- # < crexp{cz[a 2B A (S(xo, @) + o®*B7 'N(S(x0, ) "]} ess infz- u

where R~ = S(xo, a/2) X (to — 36/4, to — B/4), R* = S(x0, a/2) X (to + /4,
to + B), A(S) = wa(S)W(S) and N(S) = wi1(S)/v(S) for a d-ball S. Here the
constants c1, c2 depend only on the constants which arise in (i), (ii), (iii).

Theorem B’: Assume hypothesis (i), (ii), (iii) of Theorem A hold. Let
O0<p<oaf>0,a2<a <afB/2<B <pBandletSx, a) =S,
S(x0,a’) = S" and R(a, B) = S X (lo— B, t0 + B), R4 (@, B) = S" X (to— B/,
to + B). If u is a solution of (1.1) in R(a*«, B), then u is bounded in R’ (c, B)
and

€ss SUPgyp | # |7 =

D@E@?B~NS) ™ + DVED (o~ 2B8A(S) + )¢ S S | u|P(c™2Bw, + v)dxdt
R(@*a,B)
aZ +b B
(a—a’P*?B—8")

constants which are independent of u, p, a, a’, B, 8’.

. Here h > 1,

where D is as in Theorem B, and C = ¢
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