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Introduction

One way we can define and construct orthogonal polynomials is by apply-
ing the Gram-Schmidt orthogonalization process to the sequence of powers
1, x, x*, ... More precisely, we embed these power-functions in L*(dy), where
dp is a probability measure living on some space (usually the closed interval
|— 1, 1], the real line R, or the unit circle T), and then we orthogonalize with
respect to the scalar product induced by the measure du. In the classical theory,
dp is usually absolutely continuous with respect to the Lebesgue Measure, and
given by some very explicit weight function, but recently, in [CM|, R. R. Coif-
man and M. Murray have proposed a different analytic approach to the study
of general orthogonal polynomials, based on a «perturbation theory» of the
orthogonalization process.

The approach of R. R. Coifman and M. Murray allows one to study
orthogonal polynomials within the framework of non-linear Fourier Analysis.
As in similar studies of other non-linear problems (dependence of the Riemann
mapping on the domain, shape of water waves, Navier-Stokes equation) the
main result consists in showing that some relevant operator gmantities are
analytically dependent on a B.M.O. parameter. In this kind of analysis, the
theory of weighted norm inequalities, A, weights, and the relationships
between good weights and BMO, play a central role (an excellent source of
reference for this is [GCRF]).

This particular problem belongs also to the context of Toda flows (see
[DLT]) where a certain non-linear matrix differential equation admits closed
form solutions. These solutions are a «flow» of infinite tridiagonal matrices that
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can be interpreted as the three-term recursion relation attached to the orthogonal
polynomials.

In [CM] the program is carried out in detail starting from two situations:
polynomials on the circle T orthogonal with respect to Lebesgue measure, and
polynomials on [— 1, 1] orthogonal with respect to a Jacobi weight. In this
work we carry out the same program starting from a set of polynomials on
T first introduced by Szegd, in fact used by him as a tool for the proof of his
equiconvergence theorems.

We then show some new results. Using the closed subspace VMO, we give
a better characterization of the BMO region where the analyticity result holds.
This can be seen as the definition of a very general set of polynomials that
can be «analytically perturbed». The relationship with the theory of Toda flows
is exploited to derive new identities that can be used interchangeably with the
Kerzman-Stein formula, shedding a new light on the connections among the
different operators involved. The flow itself is expressed in terms of conjuga-
tion by a self-adjoint projection Q whose dependence from the parameter gives
rise to interesting formulae. In fact, starting from Chebychev polynomials, the
first Gateaux differential of Q can be expressed via Hilbert transforms and a
bilinear singular integral operator first considered by Calderdn (see Section 7).
The L*-boundedness of this operator is still an open problem.

We do not deal with numeérical applications, but let us note that this
theory can provide some useful computer tools. The Kerzman-Stein formula
can be used to efficiently compute orthogonal polynomials relative to standard
and non-standard weights. The analyticity results suggest the possibility of
building fast algorithms (complexity n log n) to convert an orthogonal expan-
sion relative to a fixed set of polynomials into the expansion relative to another
set of polynomials, provided they are within the «analyticity range» (see
Theorem 1 in Section 6, and se also [AR] for an example of numerical conver-
sion from Chebychev polynomials expansions into Legendre polynomials ex-
pansions).

2. Orthogonal Polynomials Dependent on a BMO Parameter

Consider a «perturbed» space L* (u*dp) where u(x) = e?® is a suitable func-

tion. Notice that if b(x) is close to zero (in some Banach Space norm which
will be chosen later), then the new measure

(1) U () dp(x) = e**Vdp(x)

is «close» to the original one dpu.
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Now, given f € L*(u*dy), we can develop it into a series of orthogonal
polynomials (the polynomials which are orthogonal with respect to udy) and
consider the partial sums S, f of this series. Notice that, for a fixed measure
u*dp living on a fixed space, the orthogonal polynomials are uniquely deter-
mined (up to a normalization), and so is S,. Notice also that the partial sums
operator S, can be thought of as an operator-valued function of b. In fact,
we want to study the mapping

) b — Su(b).
It is hard to study (2) directly because S,(b), in spite of being a well-defined

projection from L?(u*dpy) into polynomials of degree equal or less than #, acts
on different L? spaces as b varies. On the other hand, we can look at

3) b — Va(b)
where
(0)) Va(b) = uS.(b)u~' = e’S,(b)e".

With a little abuse of notation, in the above definition we use a function
to denote the operator of multiplication by that function. It is easy to check
that V,(b) always acts on L?(dp), that the L?(dpu)-boundedness of V,(b) is
equivalent to the L?(#*dp)-boundedness of S,(b), and that the two operator
norms are equal.

The mapping (3) can now be seen in the context of calculus on Banach
Spaces, see for example [B], where notions like continuity, differentiability,
and analyticity and well defined.

We claim that the «natural» Banach Space for b is BMO (Bounded Mean
Oscillation) and that in «many» situations, depending on the choice of the
measure space we start with, the dependence (3) is in fact analytic. We will
make this claim precise later, and we will prove it.

Let us notice at this point that a further simplification in the study of this
problem is brought about by a remarkable formula due to Kerzman and Stein
[KS]. The formula is

5) V =PI+ (P— P*)!

where V is a self-adjoint projection sending a Hilbert Space H into a proper
closed subspace K and P is an oblique projection (non self-adjoint) also send-
ing H into K.

The first step in the proof of (5) is to show that the operator I + (P — P¥)
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is invertible, but in fact, since (P — P*)* = P¥ — P = — (P — P*), we sce
that P — P* is skew adjoint, which means that its spectrum is purely imaginary.
In particular — 1 ¢ spec (P— P*), which shows the invertibility of 7 + (P— P*).
We can now rewrite (5) as

VI + (P—P¥) = P

and this is the same as

P=V+ VP—VP* =V + P— VP*
which simplifies into

VP* = V.

Finally, we prove this last operator equality using an elementary lemma from
Functional Analysis (see for example |R| p. 296) and the following chain of
scalar-product equalities, which hold for any element 4 € H:

(VP*h, h) = (P*h, Vh) = (h, PVh) = (h, Vh) = (Vh, h).

Having proven (5), we now apply it to our situation by choosing
V = Va(b) = €’Su(b)e"

and
(6) P = Pu(b) = €"S.(0)e"".

Notice that (with the same abuse of notation) we have used e” to indicate
the operator of multiplication by e®. Both V,(b) and P,(b) are projection
operators from L*(dy) into the same closed subspace; V,(b) is self-adjoint while
P,(b) is an oblique projection that satisfies

)] Pn(b)* = Po(— D).

The Kerzman-Stein formula (5) tells us that the analytic properties of P,(b)
as an operator-valued function of b are inherited by V,(b). This is a great
simplification because it is easier to deal explicitly with the integral kernel of
S,(0) than that of S,(b). So, once we have proven the uniform analycity of
P, (b), we have proven it also for V,(b). To be self-contained, let us state here
the following

Definition 1 of Uniform Analyticity for a sequence {P,(b)} of operator-
valued functions of b € B (some Banach Space).



ANALYTIC DEPENDENCE OF ORTHOGONAL PoLynoMIALS 291

The sequence {P,(b)} is uniformly (real) analytic in a neighborhood of
0 € B if and only if there exists § > 0 such that for every f € L*(dy) and all
b with |lbllg < 6 we have

8) Pu(b)f = Y, Auk (b, ..., b, f) Jor every n
k=0

where An is a bounded (k + 1)-multilinear operator sending B* x L*(dy)
into L*(dp) and satisfying the estimate

©) I A By -.vs By Nl gy < X IDIEILN 200 -

The constant c in (9) does not depend on n. Notice that Ak (b, ..., b, °) is the
k™ Gateaux differential of P.(b) at 0 in the direction of b.

A similar definition can be given, when b belongs to a complex Banach
Space, for the uniform holomorphy of {P,(b)} in a neighborhood of 0. Actually,
as in the case of one complex variable, the existence of one derivative in an
open domain (e.g., a neighborhood of 0) implies holomorphy in the same do-
main (see [B]), so we have

Definition 2 {P,(b)] is uniformly holomorphic in a neighborhood U of
0 € B (complex Banach Space) if for every n, and all b € U we have

(10) (Pa(B)ll2;2 <= ¢ and  Pa(b) is Gateaux-differentiable.

We also have a notion of the «biggest space» in which the variable b can
live and maintain the dependence & — P,(b) holomorphic. It is given by

Definition 3. B is the space of uniform holomorphy at 0 for |P,(b)} if
[Pn(b)} is uniformly holomorphic in a neighborhood of 0 and

(11) sup A, (b, 9)ll,2,2 < o ifand only if b€ B

We will see later that, for the particular sequence of projection in our
problem, proving conditions like (10) or (11) amounts to the proof of some
suitable weighted norm inequalities.

3. Connections with Infinite-Dimensional Toda Flows

The set-up we have outlined in the previous paragraph is intimately
connected with the theory of Toda flows. This theory has been studied



292 ENRICO LAENG

independently, at first without any reference to orthogonal polynomials (see
for example [DLT]).

Let us consider again the «perturbed» space L*(e*®du) where we have
added the real parameter ¢ € (— ¢, €) in the exponential and where we consider
the function b(x) fixed.

If we apply the Gram-Schmidt orthogonalization process to the sequence
1, x, x*, ... embedded in this L> space, we get a sequence {p;,(x)} of or-
thogonal polynomials which depends on the parameter ¢. These polynomials
satisfy a three-term recurrence

(1 xp; () = AjOp;1,,(x) + Bi(Op;,(x) + A;_,(Op;_, ;(x)

with j = 0, 1, ... and p_, ,(x) = 0. Since, for each 7, they are a complete
orthonormal system in L?(e*®dy), the map f(x) — xf(x) induces a bounded
linear map T(¢) on / i that can be represented with an infinite tri-diagonal
matrix

Bo(®) Ao(D) 0 0
Ao() Bi(®) Ai(® 0
) T@®) = 0 A1() By A0

0 0 Ax(t)  Bs(r) As)...

If our measure dp (and our polynomials) live on the closed interval
[— 1, 1], we have the following explicit formulae for the recursion coefficients
(see, e.g., Szegb [Sz))

1
(3) A0 = g xPj,z(x)Pj+1,j(x)921b(x)d#(x)~
—1

1
3" Bj(t) = S X Py, (0 €*"® dp(x).

—1

We claim that, in general, the operator 7(¢) is a solution of the (infinite
dimensional, non-linear) Toda equation, which can be written as

@) T = [T, b(T)]

where the square brackets stand for the commutator of two operators and 5(7)
is a sort of Hilbert Transform obtained in the following way: first we use
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operator calculus to define the function b evaluated at 7, getting some sym-
metric infinite matrix

N b,
5) b( = d

b_ AN

which we have separated in (5) into lower triangular block (b - ), diagonal (d),
and upper triangular block (b ), then we define
\ —bT
(6) b(T) = 0
b_ N

i.e., we put zeros on the diagonal and replace the upper triangular block ()
with the transpose of the lower triangular block (b-) multiplied by — 1.

PROOF of the claim

First we want to show that the solution of (4) is expressed by

Q) T(t) = Q" TOQ(®)

where the infinite orthogonal matrix Q(¢) comes from
® e = QR()

The right hand side of (8) is the QR decomposition of the 1.h.s.; this decom-
position is uniquely determined by asking that Q be orthogonal and R upper
triangular (see [DLT]). After showing that (7) is indeed a solution of (9), we
will show that the 7'(¢) so obtained coincides with the 7'(¢) in (2).

In the computations that follow, we will assume implicitly that matrices
denoted by capital letters are functions of ¢, we will denote differentiation with
respect to ¢ with a dot, and use the notation 7o = 7'(0). By differentiating both
members of (7) we get

© T=0"TQ + Q"ToQ
= QTOTQ"Q + QTQTQTQ
= Q'QT + TQ'Q.
The second equality is obtained by plugging in the expression for 7°(0) that comes
from (7), the third equality holds just because Q’Q = I.
We want to check that

T = [T, 5(T)) = TH(T) — b(D)T
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but, looking at the last term of (9), this amounts to showing that
(10) b = Q"0

Notice that, by the definition of 5(T), both terms of this equality must be
skew-adjoint, therefore if the equality holds we must have

Q79 = 00 = — Q0.

and this is true, as we can see differentiating the identity Q7Q = I.
To prove (10) we differentiate (8) and use the fact that the exponential of
an operator commutes with that operator. We get

(11) b(To)OR = OR + OR

and multiplying both terms by Q7 on the left and by R ™' on the right we get
Q"b(To)Q = Q"Q + RR™'

which, after noticing that Q7b(T,)Q = b(Q" ToQ) = b(T), can be rewritten as

(12) b(T) = Q"0 + RR™ .

Let us now go back to the block notation for (7)) that we used in (5), and
show that, in that notation, our last equality (12) becomes

N b, N —b" N b, +b"
(13) d = 0 + d
b_ N b_ N 0 N

In fact, we know that the first matrix on the right hand side of (12) is skew-
adjoint, and we know that the second one is upper triangular (because differen-
tiating, inverting, or multiplying triangular matrices we still get triangular
matrices). This knowledge induces a chain of deductions that allows us to «fill
in» with the proper blocks the two matrices on the right hand side of (13). The
diagonal of the first matrix on the right hand side of (13) must be 0 and this
forces the diagonal of the second matrix to be d. Since this second matrix is
upper triangular, we know that the lower triangular block is 0 and this forces
the lower triangular block of the first matrix to be b - . By skew-adjointness,
the upper triangular block of the first matrix is — 47 and this forces the same
block in the other matrix to be b, + b, completing the picture.
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The equality (12) written in the block notation (13) shows in particular that

\ — bt
0’0 = 0 = b(T)
b_ AN

but this is the identity (10) we wanted to prove, so (7) is indeed a solution of (4).

Now we want to check that the solution 7'(¢) of the Toda equation defined
by (7) is the same 7(¢) defined in (2) as the representation in the orthogonal
polynomial basis {P; ,(x)] of the operator M,: f(x) = xf(x). To do that, notice
that we can write

(14) e’ S,(bt)e " = e"R™'RS,(bf)R™'Re” = 08,000 .

Here, as in the first paragraph, S,(bt) is the partial sum projection operator
for the orthogonal polynomials P;,(x) € L*(e**'dp), while R~ is the upper
triangular infinite matrix representing the coefficients of the «perturbed» basis
of {P;,(x)} in terms of the «unperturbed» one [P;,(x)], and finally Q(¢) is an
orthogonal transformation defined by

(15) o) = e”R™1(1.

Let us point out that the action of R is given by

(16) Y ap00 = X ap. e = Y ap,.

j=0 j=0 j=0

while the action of Q is given by

o0 Q (=] in =]
(17) Yo apio®) = Y 6p (9P = Y ¢ip; ().

Jj=0 j=0 j=0
These last two diagrams show that S,(0) = RS,(bf)R ™', an identity that
we have implicitly used in (14). Also they show the orthogonality of Q.

We observe now that the matrix of 7(0), defined as in (2), represents the

multiplication operator My in the orthonormal basis (P;,}. We also have

(18) b(T(0)) = Mbw

and
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(19) elb(T(O)) — e[Mb - Melb — elb

In the last step, we have simply used again the shorthand of indicating a
multiplication operator directly by the multiplicator function.

We observe that (15), because of (19), give us the QR decomposition of
7O and therefore the Q appearing in (15) is the same one that appears in
the solution of the Toda equation (4). Because of the action of Q, we see that
the T'(¢) in (2) is the same as in (7).

4. The Role of Weighted Norm Inequalities

According to Definition 2 in Section 2, the sequence of operators {P,(b)] is
uniformly holomorphic in a neighborhood U of 0 € B if P,(b) is uniformly
bounded in operator norm and Gateaux-differentiable for b € U.

It turns out that, for the particular sequence of projections P(b) = €?S,(0)e~°
which we are considering, the uniform boundedness in U implies also Gateaux-
differentiability. The idea that leads to this simplification is due to Coifman,
Rochberg, and Weiss [CR], and goes as follows:

We can write

(1 (Pn(D)f} () = S "Dy (x, y)f(»)dn(y)

where D, is the Dirichlet Kernel for the partial sums operator S,(0) relative
to the orthogonal polynomials on L*(dp). Let us fix b and multiply it by a com-
plex parameter z. We then have

d
@ {'E Pn(zb)f} ®) = S(b(X) — b)) Dy (x, y) f(»)dp(y).

Notice then that

27
3) —Lgaw%m—mmfw
2T 0

e "°do

1 o [P () — b()e?)
_ES
k=0

27 . k!

b(x) — b(y)
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Therefore we can write

d 1 2 . )
4 {EE Pn(zb)f] . ES S exp(z + €”) (b()— (b))} Dulx, ) f(¥)dp()e " db

0

which, using the notation P,, = P.((z + €”)b) can be written as
27

d 1 ‘
() {-—d Pn(zb)f} ) = — S (Puft )e™™ db.
Z 27

0
We are assuming by hypothesis
6) Ibll < 6 implies | Po(b)ll;2,2 < C

Therefore, choosing |z| < 1 and lIbll < §/2, we have

1 27
< -— § ”P,,g”LZ_,LZ df < c.
2 0

o e
dz 122 T
So the uniform boundedness expressed by (6) implies locally also uniform
analicity.
Notice that (6) can be seen as a weighted norm inequality for S, (0). In fact,
the assumption that for bl < & one has

”Pn(b)f“Lz(du) = CIIf”LZ(d“) fOI' all f € Lz(d[t)-
just by setting f = ePg, is seen to be equivalent to
(8) ISn(0)gll 2g2q,) = Cllgllizng, forall g e L*(e* dp).

We will see that in many cases the partial sums operator looks essentially
like a Hilbert Transform, while e*® is a good A, weight when b has a small
BMO norm. This allows us to prove weighted norm inequalities like (8) using
the results of Hunt, Muckenhaupt, and Wheeden (see [HMW] and also [CF]).

In order to identify BMO also as the space of uniform analyticity at 0, we
need to prove, according to Definition 3 in §2, that

) b € BMO if and only if sup | A1 (b, ®)ll2 2 < .
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Let us compute the Gateaux differential that appears in (9). We have

d Pn(2b)
dr " =0

d
- (etbS (O)e—tb)
dt " =0

be®S,(0)e~ " + €28,(0) (— be')
[b, Sx(0)] =0

So condition (9) can be rewritten asking that there exist c¢;, ¢ > 0 such that

(10) b, < sup 1[5, Sa(O)]ll2npz < c2lIBI,

where we indicate with a * subscript the BMO norm.

Actually, the inequality on the right is a consequence of uniform holomor-
phy (which implies the boundedness of all derivatives), so we only need to prove
the one on the left.

S. Perturbation Theory of a Family of Orthogonal Polynomials
Introduced by Szego

In Szegd’s classic book [Sz] on orthogonal polynomials, the starting point
for the proof of his equiconvergence results is the study of a particular family
of orthogonal polynomials in L*(T, dp). The measure dp on the unit circle is
given by

1 db
@) du(6) =

g®) 27

with g trigonometric polynomial of degree m and g(6) > 0 for all 6 € [0, 2].
It turns out that for any fixed g, even though it is not easy to find a closed
formula for the first m orthogonal polynomials, there is in fact a simple ex-

pression for them when the degree is greater than or equal to m. This restric-
tion does not affect Szegd’s proofs, and will not affect ours either.

We have the following:
Proposition 1 The sequence {¢;(z)] of complex polynomials (normalized

with a strictly positive coefficient for z/) satisfying

1 {7 — 1
2 Z—T—S_?j(Z)d)k(Z) m di = ok

z = e in the integral) is given, when j = m, m + 1, ..., by
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3 $i(2) = Z7"h*(2)

where A(z) is a complex polynomial of degree m such that

i0

4 g0 = |h(@)|? when z = e

and h* is the reciprocal polynomial of A, i.e.,
_ (1
%) h*(z) = z"h <?>

PROOF. The existence of representation (4) for the positive polynomial
g is a special case of a more general one, from H” theory, that holds in fact
for all f such that log f € L!(T). Notice that we can choose #(0) > 0 and A(z)
# 0for |z| < 1.

We can rewrite (3) as
() 6i(z) = Zh@E™Y).

He_re, as before in (5), we use the convention that if A(z) is a polynomial
in z, h is the polynomial obtained from A by conjugating the coefficients

(not 2).

Plugging (6) into (2) we can easily verify the case j = k just remembering

that on the unit circle we have 7 = z~ L.

To prove the case j # k we actually show that

1 N — 1 )
7 - . = — 10.
@) . S_:b,(z)g(z) ) di =0 when z = e

for any polynomial g of degree j — 1. In fact we get

— -1 J—1 = —1
1 - Q(E ) dz _ 1 27 e@™)
2mi SFZJ @) Gere @ ) hm ©
2mi |, h@)

The last equality holds because we are integrating along the unit circle I'
a meromorphic function with no poles inside.
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Given a closed expression of the polynomials, one can give an expression
of the Dirichlet kernel of the partial sums operator (we refer to [Sz], p. 292,
for the algebraic details). In our case we have

h(eie) h(el\b) _ ei(n+ 1)(0~\0)h(ei0)h(ei\b)
® D, (0, ¢) = 1 — ei(o_.p) .

This expression is valid whenever n = m, and shows explicitly the
dependence of the kernel on the weight. Following our general plan we look
at P,(b) which is now given by

o 7O

I N —
©) P.(0)S}0) = o E e’ Dn (0, ¥)e 2W) 1

—%

LT e S@) (RET) ey hE)
2T S ¢ 1—e"9 | h(E™) ¢ h(e”) W

—xl

= {(Pa(b) — PA(B))S1 (6)

where
(10") (P )/ 6) = % S A e = _fgfz_w e Vh(e")! dy
and

(10 ”) [(Pn”(b)f} (0) - % S ei(n+ l)9+b(0)@ l_fgﬁz_@ e—i(n+ l)\[z-—-b(ﬁ)m— ld¢/.

—7%

The operators in (10’) and (10”) consist of a singular integral (essentially
a Hilbert transform) conjugated by a multiplication operator on the left and
the inverse of the same multiplication on the right. Let us look at a third operator

(10 m ) [(le (b)ﬂ (0) = % S eReb(o)g(e)l/Z l_f.:f(o)_‘n e—Reb(\ﬁ)g(‘p) -1/72 d‘p

—x

which, by the result in [HMW], is bounded for e***®g(6)'/? € A,. This last
condition is satisfied when the real part of b(f) has BMO-norm smaller
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than some suitable 6. (See [GCRF]|, chapter 4, and notice that g(f) is a
polynomial without zeroes for every 6).

The same condition on b(#) implies uniform boundedness also for (10’)
and (10”), just noticing that they are both obtained from (10” ) multiplying
on the left by a complex function of modulus 1 and on the right by the inverse
of that same function. By what we have seen in the previous paragraph, for
this particular kind of operators uniform boundedness implies uniform
holomorphy, so the family of projections {P,(b)} is uniformly holomorphic for
b in a neighborhood of 0 € BMO.

By Kerzman-Stein formula (2.5), or also using the Toda Flow identities of
Section 3, the same uniform result holds for the self adjoint projections V,(b).

The next step of the plan consists in showing that BMO is in fact the space
of uniform holomorphy of the {P,(b)}, and, as we have seen in general, that
amounts to proving the inequality

(09)) cillblle < sup ll[b, Sx(0)]1l 122 f2.

To do that we define

(12) LH®) = xx (@) A — ) h(EY)
where I is a closed subinterval of [0, 27].

We have

APIETN
13) (b, S OO = — 5 ®O) — b)) {h(e"’)—e"‘"*”“"”w} dy.
27 ), h(e™)
By Riemann-Lebesgue lemma we have
1 . 1 .

(14) lim {[b, Sx(0)] £} 0) = > S(b(ﬁ)—b(lﬁ))h(e’”) dy = %rl—h(e"’)(b(ﬂ)-—mz(b))

n—o I

where my(b) is the average of the function b over I. By Fatou’s lemma we have

do

asy |1 S | 50) — mi(b) | df < c lim sup S | (B, Sa©@))f} ) |
I I |h(e”)]

n—co

Therefore (11) will hold if we can bound the right hand side of this by
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c|I|?sup li[b, S.0)]Il

where ¢ does not depend on n and 1.
Let o be the midpoint of 7; a straightforward computation allows us to
rewrite (12) in the form

16 /W) = ¢ sin L fi) + 097 cos L% fo(9)
where fi1 and f> do not depend on 6, and are given by
. . o d)/2 a— Y
(16”) fi¥) = —2ixi(Y)h(e¥) e cos —
. N a2 . X — Y
(16") L) = —2ixi(¥) h(e) e sin —
Using (16) and Schwarz’s inequality, we get
db
17 b, S (0 | ———
_ 2 172 de 172
. 2 -
< (SI sin d0> <§I| (b, $:(0)]/1}6) | [hE@™ | 2)
_ 2 172 , do 172
+ (S, cos d0> (S1| {[b’ S,,(O)]fz](o) ' I h(em) | 2) .

This last inequality holds for every n, so we can take the upper limit of the
left hand side. Also, we notice that the right factors in the two terms on the right
hand side are, for k = 1, 2, exactly the L*>(dy) norms of [b, S.(0)]fx, since
du(6) = | h(e")| ~do.

We have

do
(18)  lim sup 5 | (B, Sx(0)].f3}(0) | ThE | < [I]** Al fill 2,

n—o

+ ¢ | Il 172 A ||f2||Lz(d,,),

where ¢, ¢; de not depend on # or 7 and
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(19) A= sup I [b, Sn (O)] ”Lz(du)—'Lz(dp.)’
To complete our proof we only need to check that
(20) Ifill gy < es[I]Y2 and N foll g, < ca| I]°7?

and this is easily seen to be true by our choice of fi and f>.

6. Generalizations and the Role of VMO

In the previous paragraph we have proven that the family of orthogonal
projections

Va(b) = €®Su(b)e™": L*(dp) ~ L*(dp)

is uniformly holomorphic (Definition 2.2) for b belonging to a neighborhood
of 0in BMO. Also we have shown that BMO is the space of uniform holomor-
phy at 0 (Definition 2.3). Notice that our du is a measure on T expressed
via a non-vanishing weight of the form (5.1).

In fact, as long as we satisfy the proper estimates, we could have started
from a measure du, given by a weight with zeroes. The intuitive idea is that
a BMO function can contain unbounded logarithmic spikes (and the exponen-
tial of a negative spike can be 0); here we want to make this idea more precise,
getting an analyticity result that holds for a «starting set» of orthogonal
polynomials more general than those of the form (5.2).

We need first to introduce an important closed Banach subspace of BMO
It is called VMO (Vanishing Mean Oscillation) and is defined by

(1) VMO = {f € BMO: lim M,(f) = 0}
a—0
where
1
2 M.(f) = sup -——S | f() — fi1] dx.
[I]<a |“ 1

As usual I denotes an interval and f7 the average of f on I. Notice that, with
this notation, the usual BMO norm is given by

(3) Ifle = lim M,(f)

a— o
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This space has been studied by Sarason, and in [Sa] one can find the state-
ment and proof of some basic properties; we are going to use, in particular,
the fact that VMO is the closure, in BMO-norm, of the subspace of continuous
functions.

Lemma 1° Given a real-valued function v € V.M.O. (T) one can find a se-
quence of strictly positive trigonometric polynomials g;(0) such that

lim

joeo

o ()l -0

PROOF. Continous functions are BMO-dense in VMO and since
i fIl« < 2llfllo we only need to show that for any real-valued 3(6) € C(T) one
can find a sequence of strictly positive trigonometric polynomials g;(6) such that

) 1 _
4 llirg Iﬁ'(e) — log (gj(ﬂ)) ”uo =0
we have
©) | 6(0)—10g( ) | = |log(gi(0)e*®)| = |log(1 + €"?(g;(()—e"?))| .
g0

And the compactness of T implies the existence of two positive constants
¢1, ¢z such that

(6) < e <.

But this implies that the quantity in (5) can be made uniformly small just by
uniform approximation of the positive continuous function e *® with the
positive polynomials g;().

Lemma?2 The radius of analycity é for the mapping relative to the orthogonal
polynomials (5.2) does not depend on the particular g(6) contained in the
weight.
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PROOF. Going back to the previous paragraph, we notice that we have
analyticity for those functions b € BMO wich satisfy

™ eRt® \/g(6) € A, .

It is a property of A, weights to be invariant under multiplication by func-
tions bounded away from 0 and infinity (see [GCRF], chapter 4). On the other
hand the first factor in (7) is an A, weight in general only if lI[Re bl < 6.

Remark. If one makes additional assumptions on the nature of b, one
can find functions with large BMO norm whose exponential is still in 4. This
surprising fact is well illustrated by a theorem of Garnett and Jones which says
the following

®) A(b) = sup(\ > 0: e € 4] ~ (dist (b, L7)) ',
BMO

where the symbol « = » means «same order of magnitude» and where

) dist (b, L=} = inf{llb — fll«: f € L™},
BMO

In particular, the exponential of any VMO function (regardless of the BMO
norm) is an A, weight.

We can now state our general results as follows

Theorem 1. The uniform analicity of the mapping b — V,(b) holds for
all orthogonal polynomials on L*(dp) where dy. is a measure on T of the form

(10) du(®) = 20O+60) a9
27

with v(0) any real-valued VMO function and 3(0) a complex-valued BMO
function such that

(11) IRe Bllsx < &

where 6 is the radius of analyticity for the Szegé polynomials (5.2).

The new radius of analyticity, if we start from the polynomials relative to
the measure (10), is given by

(12) 5 = & — lIRe B4
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PROOF. Let us fix some BMO function 8 satisfying (11). We know that
starting from a measure of the form (5.1) we can expand V,(b)f into a series
of multilinear operators (2.8) satisfying an estimate (2.9). Let us define a new
«starting space» for our perturbation

1 db
2 _ 72 2B(0)
(13) L2(dw) = L (e @ 2 )

Then let us denote, according to the notations of Section 2, by S, and V, the
projections relative to the L? space in (13), while we denote the same projec-
tions relative to the 8 = 0 situation by S? and V,?. We have

Sx(0) = S3(B)
(14) Sa(b) = Sp(b + B)
Va(b) = e’S2(b + B)e™"

where the operators in the «new» space are expressed in terms of those in the
«old» space. Using these identities we can write

b 0 —(b+
(15) I V”(b)”Lz(d;z)‘*Lz(du) = lle +BS,,(b + B)e ¢ +“”L2(g)—'L2(g)

1 df
where we denote by L?(g) the space relative to the measure — — — .
g 2«

By the results of Section 5, we have uniform holomorphy for V,(b) if
(16) IRe(d + B)llx < &

and this holds for any 4 whose real part has BMO norm less than the 6’
in (12).

Finally, lemma 1 and lemma 2 imply that we can substitute 1/g(6) in the
right hand side of (13) with €*'® where v € VMO. We remark that weights
of the form (10) can have any number of zeros (only with restrictions on the
rate of decay of the weight around each zero).

7. The ~ Operation on Infinite Matrices Expressed Via the
Hilbert Transform and a Remarkable Bilinear Operator

Starting from our knowledge of the operator-valued function

b — Va(b)
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and given the identities (3.14-3.15), i.e.,
Va(d) = €’Sn(b)e™" = Q(1)S.(0)Q(b) !

where
Q) = e"R™'(b)

is an orthogonal transformation depending on b € BMO, it is a natural problem
to study the mapping

0] b — Q(b).

The first step of this study is to compute and understand the Gateaux dif-
ferential of (1) at 0. We claim that

d _
(0] _cFQ(bt) |0 = Ms

where M, is the operator of multiplication by b and M, is defined as in
(3.5-3.6).
In fact, by the Kerzman-Stein formula (2.5) we have

Va(b) = Pu() I + Pn(b) — Pu(— b)) ™"

therefore

d d d
(3) _f Vn(bt) | t=0 — —Pn(tb) [ 1=0_Pn(0) P,,(l‘b)——P,.(—tb)} ' =0

d dt E{
[b, Sn(0)] — SA(0) {[b, Sx(0)] + [b, Sx(0)]}
(I — 25,(0)} [b, Sx(0)]

[Mb, Sn(O)J .

The last equality can be checked by writing the operators as infinite matrices,
remembering that S,(0) is the identity on the first (n + 1) X (n + 1) entries while

) b = My = (mx) implies M, = (sgn(n — k)mu)
Because of identity (3.14), we have

©) [0(0), Sx(0)] = [Ms, S.(0)]
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and since this commutator equality holds forn = 0, 1, 2, ..., and Q* = — Q,
we can conclude that

0(0) = M.

While studying the explicit form that the operator M} takes for some explicit
sets of orthogonal polynomials, we discovered a remarkable formula. It is an
operator identity expressing the operation ~ on infinite matrices via Hilbert
Transforms on the circle, and via the bilinear operator

6) B, f)(x) = »L S b(x — 6) f(x — 26) cot i db .
27 2

Notice that it is still an open problem to establish whether operators
like (6), or their analogues on the real line, are L?-bounded for b € L*
(or b € BMO).

The context in which the formula arises is cosine polynomials (Chebychev
polynomials after a change of variable).

Consider the L? space of functions of the form

©) f() = Y fj cos jx (bj € C)

j=0

and the multiplication operator

® Mpfl(x) = b(x) f(x)

where

) b(x) = Y, bj cos jix (bj € C).
j=0

The operator M}, can be represented in the basis {cos jx] by an infinite matrix
(10) My = (mnk) nk=012,..
and we can define
1n My = (—i sgn(n — k)max)

which is the usual definition, apart from the constant factor — i.
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Introducing a new variable 6, we can write an integral expression for M,
in fact

_ I 6
(12) My = — | UMyU_,cot — db
27 . 2
where
(13) U f = E e 7§ cos jx,
ji=0

U_of = Y, ”f; cos jx.

j=0

Now, we have

(14) U_,f= Y fi(cos jb cos jx + isin j@ cos jx)

Jj=0

cos j(x + 0) + cos j(x—0) N sin j(x + 0)—sinj(x—0)>

=.Ef’< 2 2
j=0

!
= TS + Tof + i(T_Hf — T,Hf)

where
(15) (Tof}(x) = f(x — 0)

and Hf is the Hilbert Transform of f (on the circle).
A similar computation shows that

1

(16) Uy f = TET—af + Tf — i(T_oHf — T,Hf)].

Using (14) and (16), let us compute the operator U,MyU_,. In what
follows, in order to make the notation less cumbersome, we will simply write
M for M. We have
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(17) 4U,MU_, =
U,IMT_, + MT, + i(MT_,H — MT,H))

T_,MT_, + T_yMT, + iT_yMT_,H — iT_,MT,H

+ T,MT_, + T,MT, + iT_,MT_,H — iT,MT,H
—iT_,HMT_,—iT_,HMT, + T_,HMT_,H—T_,HMT,H
+ iT,HMT_, + iTyHMT, — T,HMT_,H + T,HMT,H.

If we plug these sixteen terms back into (12), we notice that the eight terms

0
giving the real part cancel after integration against cot 7(10. In fact, we have

(18) (T_MT_, + T_,MT, + T,MT_, + TMT)f}(x) =
=b(x+0)f(x+20) + b(x + 0)f(x)
+ b(x—0)f(x) + b(x—0) (x— 20),
and these four terms define an even function of #, which in the integral is

multiplied by the odd function cot 6/2.
Similarly, the other four real terms applied to f give (using the notation

Hf = f)

(19) HOb(x + 0)f(x + 20) —b(x + ) f(x) —b(x—0) f(x) + b(x—0)f(x—26))

0
and these cancel, too, if we assume that the integration against cot 5 df can

be done before the Hilbert Transform H in the x variable.
Let us now look at the other eight terms in (17); they are

0) i(T_,MT_,H — T_,MT,H + T,MT_,H — T,MT,H
— T_,HMT_, — T_,HMT, + T,HMT_, + T,HMT,)

and applying them to f(x), we get

(1) 4Im{(U;MU_p)f}(x)
= b(x + 0)f(x + 20) — b(x + 0)F(x) + b(x—0)f(x) — b(x— 6) f(x—26)
+ H{—b(x + 0)f(x +20)—b(x + 0) f(x)
+bh(x—0)f(x)+b(x—0)f(x—20)].

Plugging this expression into (12), and making the change of variable
0 — — 6 in the four integrals that contain x + 6 or x + 26, we get
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(22) Mf = -; {Zf"(x) S b(x—60)dm(6)

—2 S b(x — 0)T(x — 20)dm(0)

+ <2f(x) S b(x—-0)dm(0))

+ (2 S b(x-—0)f(x—20)dm(0)) }

where we have used the notation

6 dob
23 dm(@) = cot — - —
(23) m(0) = co > 5
and dm(f) lives on [0, 27].

The final formula is

2

4 [Mfi(x) = L {f'(x)b"(x) _ b S b(x — 0)f(x — 26) cot i db
2 27 2

0

+ (f8)” (x)
3 +*)
+ — b(x —0)f(x —26) cot — db .
2w 0 2
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