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Introduction

The main purpose of this work is to obtain a Harnack inequality and
estimates for the Green function for the general class of degenerate elliptic
operators described below. Let

0.1) Lu = — Y, Di(a;Dju),

ij=1

where A = [aj;] is symmetric, measurable and satisfies the following ellipticity
condition

n

0.2) v LN@E = Y a0 < wo) N WE,

i=1 i,j=1 i=1

for every £ € R" and almost every x in an open bounded set Q of R". The func-
tions \; are defined on R” and satisfy

03) M =1 N&® = Nbi, ..., x,_) € CR") () C'(R" —II) where

I = {xe R:J[x = o} for j=2,..,n

i=1
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(0.4) )\j(X], veey Xiy euny j_,) = )\j(Xl, veey = Xiy oeny xj_,), i = 1, ,J — 1

(0.5) 0 < Nj(x) = Aforeveryxe R" —1II,j = 1, ..., n. Moreover, there
exist non-negative numbers bj;; such that

0 < xi(DiN) (x) < bji\i(x)
fori =1,..,j—1,j=2,..,nand for every x ¢ R" — II.

A vector (A1, ..., A\n) satisfying these properties generates a distance d and
a quasi-distance 6 on R” in such a way that (R", d) and (R", 8) become spaces
of homogeneous type with the Lebesgue measure (see [CGJ, [CW] and [C]) and,
moreover, there exists a constant @ > 1 such that 2~ '8 < d < aé (see |FL1|).
The conditions on the pair of weights (v, w) can now be stated in terms of this
geometry. Given « € (0, 1] and ¢ > 1, we introduce the class S, , as the class
of pairs (v, w) such that satisfy

0.6) 0 < v(Q), w(Q) < o for every é-ball Q C Q, where

w(Q) = S w, v(Q) = S v,
o] Q
(0.7) there exists C > 0 such that
1/20
(M—QQ—) '@ N Ov©@)" = Cl]'|0]"
w(Qo)

for every Qo and Q é-balls in Q such that radious (Q) < 8 4 radious (Qo).
Examples of operators satisfying the preceeding conditions are the following

(0.8) Lu = — div(d(0, x)°D1u, d(0, x) " ? | xi | "Dru)

for x = (x1, x2) € R, v > 0 and 8 > 0. Since our results will apply when
Jj—1
a€(l—(XG) 1), G =1andGj =1+ Y biGi,j=2,..,n),
J

i=1
we get Harnack’s inequality and estimates for Green’s function for the operator
L in (0.8) when

2+y 4 2+ 8

L _1@d+pe—a6

We point out that our results contain as special cases those in Moser ([M]),
Fabes, Kenig and Serapioni ([FKS]), Fabes, Jerison and Kenig (|FJK]),
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Chanillo and Wheeden ((ChW2|), Franchi and Lanconelli ([FL2|) and (|[FL3])
and Franchi and Serapioni ([FS]).

In Section 1, we present a brief survey of results of the particular geometry
introduced by Franchi and Lanconelli. Section 2 is devoted to the construction
of a family of é-balls which resembles the dyadic cubes. In Section 3, we prove
Sobolev and Poincaré inequalities. Section 4 contains an analysis of the rela-
tions among our conditions on (v, w) and those in the work of Chanillo and
Wheeden. Finally, Section 5 contains the statements of the results about Har-
nack’s inequality and estimates of Green’s function.

1.

In this section we give the definitions of the natural distance d and the quasi-
distance 6 and state its basic properties.

Let us start introducing the notions of A-subunit vector and N\-subunit curve:
a vector v = (y1, ..., y») € R" is a N-subunit vector at a point x if

n 2 n
(E'ﬁ&) = Y N@E ey g e R
j=1

i=1

we say that y: [0, T'| — R" is a \-subunit curve if it is an absolutely continuous
curve and (¢) is a A-subunit vector at y(¢) for a.e. ¢ € [0, T].

Definition 1.1. For any x, y € R" we define d: R*"xR" = Ry as
d(x,y) = inf{T € R": there exists a \-subunit curve ~:[0, T| —» R",
v(0) = x, y(T) = y}.

Remark 1.2 ([FL1], [FL3]): d is a well defined distance. In fact our hypotheses
on X = (\g, ..., \») guarantee the existence of a A-subunit curve joining x and
y, for any pair of points x and y.

Four our purposes it is useful to introduce a quasi-distance 8, more explicitely
defined and sometimes easier than d to work with.

If x€ R"and t € R put Ho(x, t) = x and H,, ,(x, t) = Hk(x, 1) +
Ny 1 (Hic(x, £))e .y for k = 0, ..., n — 1. Here [ex}} _, is the usual canonical
basis in R". It is clear that the function s = Fj(x, s) = s\j(H,_,(x, $)), is
strictly increasing on (0, «) for any x = (xi, ..., X») such that xx = 0,
k=1,...,j—1,andforj = 1, ..., n. Hence it is possible to define the inverse
function of Fj(x, -), that is ¢;(x, -) = (Fi(x, -)) ' forj = 1, ..., n.

Definition 1.3. For any x, y € R" we define 6: R"x R" — R¢ as
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=1

60r, y) = mix ¢;(c*, | —yil)
where x* = (| x1], .oy |Xn])-

The following two Lemmas contain the basic properties of the functions
Fj, ¢j, d and 6.
Jj—1
Lemma 1.4. Put Gy = land G; = 1 + Y, Gibji forj = 2, ..., n. Then

i=1
(1.5) forevery xe R", s >0, 60¢€(0,1) we have

(x*
g0 < L1050y

Fi(x*, 5)

’

< Bj(x*, 0s) < 6V .
®j(x*, 5)

(1.6) if x = (x1, ..., Xa) and y = (y1, ..., yn) verifies | yi| + Fi(y*, 0s)
< |xi| + KFi(x*,s),i =1, ..., j, forsomes > 0,0 € (0, 1] and K = 1,
we have

FnaG% 09 _ ppe -1
F;,(x*, )

PROOF: For (1.5) see Proposition 4.3 of [FL2]. Let us prove (1.6) from (0.5)
we get that \;, , is increasing in each variable on (x € R":xx = 0 k = 1, ..., j],
then
Fio (%, 0) = 0sh i ([ 31| + Fi(%, 09), .., | 3] + Fi(0*, 05))
< 0N (| x| + Filx*, Ks), ..., | x| + Fi(x*, Ks))
< 0K% T FL (%, 9),

the last inequality follows from (1.5).

In the sequel we shall use the following notation for d-balls, é-balls and
their dilations
S, ={yeR"dx y <1,
O, r) = [yeR":8(x,y) <17
aS(x, r) = S, ar),aQx,r) = Qx, ar),a > 0.
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Lemma 1.7. There exist constants a, b, A € (1, «), depending only on n and
the constants in (0.5), such that

1 d(x,
1.8) — < ——(—l)— < a, forall x,y,
a 6(x, »)

1
1.9 5 |x—y| =d@x,y) =b|lx—y|"

if |[x—y| =1, where 3 = min {1/G;};
J

(1.10) |2S| =A|S]|, |2Q| = A| Q| forany d-ball S and any 5-ball Q.

PROOF: For (1.8) see Theorems 2.6 and 2.7 in [FL1]. (1.9) and (1.10) follow
immediately from the above Lemma and (1.8).

2.

Here we shall construct families of é-balls that resembles the family of dyadic
cubes. Let 7 be the set of all n-tuples s = /;...[, with ; = —1, 0, 1;
i=1,..,n ForkeZ2;l;=—1,0,1;j;€eZandi = 1, ..., n, define

TF: R" = R"; Tf(x) = x + L12%ey,
Tf ., R = RY T, (0 = TF ., 0 + LF(T , (0% 2k)e,

and

x, = @1 — 1)2¥e,
Xi g = i, + ot xfln-.l'j_, + (2-1’_ I)F"(x,:jll’ Zk)ei-

For k € Z and s = [;...l, € 7 given, the family of §-balls
DY = (Q(TF 4,06, 2°) 1k €25 i =1, ..., 1]

is an a.e. covering of R".
The following Lemma states the main property of these families.

Lemma 2.2. For X = (X1, ..., Xn) € R" and r > 0, there exists s € 7
and Qo € D** with 2*=' < 2r =< 2* such that
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(2.3) 9, n C Qo,
(24 |Qo| = C|Q&, r) |, where C is independent of %, r, k and s.

PROOF. It is obvious that there exists a center ¢; of a é-ball belonging to
D%, with sy = 1...1, and a /; in {—1, 0, 1} such that

x1(TF .1 (c1) € [B1 — Fi(®*, 0, &1 + Fi(¥*, 1)
S [ (THcr) — Fi(TFce)*, 25), xi(THe) + Fu(THe)*, 2%)),

where x1(T; (C1 )) denote the first component of T, (c1). Now, let us sup-
pose that we have determined b, ..., I, and ¢;, with Q(c:i, 2%) € D*%,
si=h._;1...1,i=1,.., min such a way that
2.5) xi(c) = X(Tf ()i =1, ., i—1,

Xi(TF_(c) € [ — Fi(®*, P, % + Fi(%, )

C a(TE, () — Fi(TE y(e*, 25, xi(T (@) + FuTE y(e)*, 2.
Then

| %] + Fi@*, 0D < |[x(Tf )| + F(TE )%, 2,
fori = 1, ..., m. Now, by using Lemma 1.4, we get
Fp %, 1) < 2F, (T 4, (cm)*, 2°).

From this inequality it follows inmediately that there exists a center c,,,, of a
é-ball in D**»:, where s,,,, = li...lm1...1, and a value of 1, .1 such that (2.5)
holds with i = m + 1. The inductive process continues to obtain (2.5) fori = n.

Then, taking ¢ = Tf ,, (cn), Qo = Q(c, 2¥) and s = I1... s, we get (2.3).
Finally (2.4) follows from the choice of k& and the doubling property (1.10).

The main results of this section are the following.

Theorem 3.1. Let 8 > 0, fixed, let Q = Q(X, r) be a 6-ball such that
Q C Qand let (v, w) € S, for a given a € (1 — (E G,) ! 1] Then, for
each u € C'(Q) such that verifies
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(B2 |xeQ:u@=0]| =58|0],

we get

1 1/2¢ 1 172
(3.3) (_”_S |u|2"wdx) < Cr(———»-g Iqulzvdx> ,
w@) ), (@) J,

where C depends only on n and the constants in (0.5) and (0.7), and
Vyu = (MDru, ..., \uDyru).

Theorem 3.4 (Sobolev inequality). Let Q and (v, w) be as in the above

1
theorem. Then, for any u € C§ <3 Q) we get

1 1/20 1 172
(3.5 (————— S | u| 2"walx) < Cr (—«—~ S [ V,ul vdx) ,
W@ )i V(D) Jing

where C depends only on n and the constants in (0.5) and (0.7).

Theorem 3.6 (Poincaré inequality): Let Q and (v, w) be as in Theorem 3.1.
Then, for any u € C*(Q) we get

1 1/2¢ 1 172
(3.7) (———-—— g ]u-—uQ|2"wdx> < Cr( X |qu[21/a’x) ,
w@) J, (@ ),

' where ug = S uwdx and C depends only on n and the constants in (0.5)
and (0.7). o

The proof of Theorem 3.1 is based on an estimate of # in terms of certain
fractional integral operators applied to V,u and on a norm inequality with
two weights for these operators.

Let us start with the definition of these operators.
Definition 3.8. Let k € Z, s € 7 and u € (0, 1). We define

10

0 if xeR"— |J @
QEDl.s

1
—TITS |f») |dy, if xe€ Qe D"
(P ) = 0
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for fe LL.(R").
Now, with these operators, we can prove
Lemma 3.9. Let 3 > 0, fixed, and let Q = Q(X, r) be a 6-ball. If u € C'(Q)
verifies
|x€e Q:ux =0}| =8]|Q]

then, for each p € (1 — (EJ Gj)™ Y, 1] there exist a sequence {a;};7~;, C R*
depending only on p with }J a; < «, a sequence of integers (k:} depending
only on r and a constant C such that

lu)| = crl@* 'L a L P (xo | Vau| ) ()

i=1 SET

Sor all x € Q.

PROOF. By using similar techniques than those in Lemma 4.3 in [FS] and a
dyadic partition, we get

2a°r 1
(3.10) |u®| =< G S ———— § | Vau() | xo(»)dydt
0 | S(X, t) l S(x,Cot) '

a*r

2i-2 dt
CoI'E (s‘” | Sx, 1r) | '_“)

2

IA

1

a*r
| S (x, _T__1>
2
for all x € Q. From Lemmas 1.7 and 2.2 follows that for each i there exists
ki€ Z, s € 7and Q; € D' such that

| Vau(») | xo(»)dy,

§S(x, Coa®r/2'-%)

3
2ki—1 < _%%’; < 2ki’
Coa’r
S X, _“F“ C Qi3

s

Coazr
ol =c|s(x327)
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On the other hand, by (1.5) and (1.8), we get | S(x, tr)| = ct*® | S(x, ) [
for ¢ € (0, 1]. Then, taking ip € N such that ¢?/2°~' < 1 < a®/2"72, we
obtain from (3.10)

2

“o ([ dt 1
lux)| = Cr § <S_ (5G| ,_u> L L.Iqu(y) | xo(»)dy
2i-—| i

aZ

1 ([T ~Copi—w 1
o £ dt|—— | [V\u0) | xedy
|SCe, ]’ ”,~=§1 <S—"—, ) ‘Qi“ggil '

<Cr|Se, "' L a L@ (] Vau| vo)) ()

i=1 SET

. . (—D[e—1(ZG) +1] .
where @; = 1 fori = 1, ..., ip and a; = 2 T Thus, since

|Q| = |S(x, r)| we get the thesis.

Remark 3.11. From the proof is easy to see that 2% = 8a’r then
Q C S(%, ar) C S(x, 2ar) C S(x, Coar/2'~?) and thus

! —

P (| Vu ] x0) () =

I I#VS IV)\uldy
Q

©

1

In the following Lemma we prove a two weight norm inequality for the
operators P: **. The proof is based on techniques of E. T. Sawyer (see [S]).

Lemma 3.12. Suppose ] < p < q < . Let E C R" be a bounded open
set and let (v, w) be a pair of non negative integrable functions defined on E.
Then

1/q 1/p
(3.13) <§ IPf”fl"wdx) sc(,(g |f|”vdx> ,
E E

Sor all f € LP(E, vdx) with supp f C E, if and only if
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I r

1/p—1 1=1/p
l_p_l(_g ﬂ Q)> < Co

(3.14) wE N Q)Vq<

for all Q € D**. The constant Co in (3.13) and (3.14) is the same.

PROOF. For sake of simplicity P, and D denote P,f’s and D" respectively.
Now assume that (3.13) holds. Let us first show that v="%"Vx,, €
LP(E, vdx) for Q € D. Suppose this is not the case, then since

S v Dy = S v P Vydx = oo,
ENQ ENQ
we can find a g in L?(E, vdx) such that

S gv vdx = o,

ENQ

which is a contradiction with (3.13) taking f = g on E for every Q € D. We
get (3.14) by taking f = v~ """ Vx4 ¢ in (3.13). Conversely assume that
(3.14) holds. Then

S | P.f| wdx = ), S <|_Q1FS |f|dy>qwdx
E QeD JE(Q o

—/=Ng qp—N/p q’/p
Y wE N 0 (” I;I“m Q’) (S lfl”vdx) .
QeD o)

IA

Finally, from (3.14) and the fact that,

)3 (ngpudx)q/p < (}: §Q|f|l’udx>q/p

QeD Q€D

for ¢ = p, we obtain (3.13).
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PROOF OF THEOREM (3.1). From Lemma (3.9) we get

1 1/20
(——— § |u|? wdx)
w(@ |,

1/20
-lQll—uE E( _§ P:i’s(|V>\u|xQ)|2"de> )
Q

SET

Now, the inequality (3.3) follows by applying (0.7), (0.8) and Lemma 3.12 for
the k; such that 2 < 84%r and the Remark 3.11, the Schwartz inequality and
(0.8) for the remainders.

PROOF OF THEOREM 3.4. We need only to apply the above theorem in the
ball Q, keeping in mind that, by the doubling property (1.10), it follow
inmediately that | Q — (1/2)Q| = | Q].

PROOF OF THEOREM 3.6. With Q and u given it is always possible to
find a number b = b(Q, u) sich that Q" = {x € Q:u(x) = b} and @0~ =
{x € Q:u(x) < b} verifies

1 1
@19 o] =—lol ad |Q| =0l

Assume this fact, then both functions (4« — b)* and (¥ — b)~ satisfy the
hipotheses of Theorem (3.1) with 3 = 1/2. By that Theorem we get

1

_— S |u — b|*wdx < (CH* (—1—— g |qu|2udx> ,
w@) - w(@Q) J,-

adding these two inequalities we have

1

— S |u — b|*wdx = 2(C* (—1— S IV)\uizudx> .
w(@ J, (@ J,
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Then, since

1/20
(g |u — ug| 2"wdx)
Qo

IA

1/20
(S | u — bl”wdx)
Q

+ (W(lé) SQ I u — bl de> W(Q)l/zo

1/2¢
2<§ |u—b|2"wdx) ,
0

we obtain the thesis. Let us prove (3.15). Observe that the two functions
é() =|lx € Qux) = | and Y(©) = |{x € Q:u(x) = 1}| are respect-
ively increasing, right-continuous and decreasing, left-continuous. Define
b = inf {t:¢(f) = 1/2| Q|} then by the right-continuity ¢(b) = 1/2| Q| .
Suppose now, by contradiction, that ¥(b) < 1/2| Q| . Then by the left-
continuity there is ¢ < b such that y(z) < | Q| /2, so that ¢(t) > | Q| /2
and this contradicts the definition of . Finally (3.15) holds.

IA

In [FS], B. Franchi and R. Serapioni prove inequalities of type (3.3), (3.5)
and (3.7) for the case v = Cw. The assumption on the weight is that w € A,
respect to the d-balls, i.e.: w(S)w™'(S) = | S| ? for all d-ball S. Inequalities
of the same type for the euclidean case, i.e.: \; = 1 for all i, have been proved
by S. Chanillo and R. Wheeden in [ChW1]. The hypotheses on the pair of
weights in that work are the euclidean case of

(4.1) w € D« respect to 6- balls, i.e.. w(Q) = w(2Q) for every 6-ball Q
(4.2) v € A, respect to 8-balls, i.e.: v(Q)v~'(Q) = | Q| ? for every §-ball Q

(4.3) there exists ¢ > 1 and C > 0 such that

6y 4 1/20 172
(L@Q_l) ’ w(69) > <C (3509—)-) , for every é-ball Q, and 8¢ (0, 1],
w(Q) v(Q)
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We say that (v, w) belongs to C, if (v, w) satisfy the conditions (4.1), (4.2)

“and (4.3). The main purpose of this section is to find relations among the con-

ditions of type A> and C, and the condition S, ,. We begin with the follow-
ing result.

Lemma 4.4. Let (v, w) € S, , for some a € [I — (£;G;)™", 1] and Q = R".
The (v, w) verifies (4.2) and (4.3).

PROOF. By taking Qo = Q in (0.7), we get v(Qo)v ™ "(Qo) = C| Qo | 2 and
thus v satisfy (4.2). Now assume that « = 1 — (Z;G;) " then, from (0.7), we get

1—(ZG)!

( w(eQ)

1/20 (Zey-!
-1 1/2 < J
T ) = 'OQv ) = C| Q]| |60 |

for any é-ball Q and any 6 € (0, 1]. From this and Hoélder inequality follows
(4.3), in fact

60] \F (wo0) | |60
=C -1 172
0] w(©) 760V ()

< ( V(OQ) )1/2.
v(Q)

Now, to complete the proof, it is sufficient to prove that if ay, a2 € (0, 1]
and a; > axthen S, , C S, ,,. Note that only is necessary to prove that (0.7)
with & = a holds. This is trivial if w(Qo () Q) or v *(Qo () Q) is zero.
Assume that both w(Qo (| Q) are positive. The inequality in (0.7) with @ = oy
is equivalent to

| Qo | )a' | Qo ( w(Qo) )ma
4.5 <=C .
@3 ( | Q]| @ Qo N Or(Q)'* \w(Qo [\ Q)

On the other hand, since Qo (| Q # ¢ and radious (Q) < 8a* radious (Qo),
the doubling property (1.10) allow us to write
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(_l_QoI) SC( IQol)
0] Q|
with C independent of Qo and Q. From this and (4.5) follows that

(V, W) E So,uz'

We shall next show that condition C, implies a condition S, . In the proof
of this fact we shall use the following result.

Lemma 4.6. Let (v, w) be a pair of non negative weights satisfying (4.1) and
(4.3). Then there exist n € (0, 1) and o’ € (1, o) such that the inequality
(4.3) holds with (£,;Gj)/n instead of £ G; and ¢’ instead of .

PROOF. Since w € D, we get

w(Q)

Il

sz
//
N
LS

+

<
N
©Q

I

0| —
L

vV

+

>

&3
—/
N | —
S

for every é-ball Q. By iteration we have a 8 = 1 such that

w(bQ)
w(Q)

@.7 > C0® for every 6 € (0, 1], and every &-ball Q.

On the other hand, from (1.5) it follows that

02,‘0,‘

[6Q| = | Q| forevery 6 € (0, 1], and every &-ball Q.

Then, this inequality (4.7) and (4.4) allow us to obtain the inequality

< |60 | >(?G’)_l“_‘ﬁ’ (w(fg) it - C( [60Q] )@G,-)“u—eme66 (w(BQ))%
\ Q] w(Q) ="\ o] w0
-1 1
c( |60 | >(§G” <w(0Q))75
0| w(Q)

(0Q) 172
c )
( v(Q) >

IA

IA
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for all @ € (0, 1], e > 0, and all é-ball Q. Finally, by taking € in (0, min {1/8,
g

(1 — 1/0)/20}), we get the thesis withn = 1 —efand 6’ = ———.
1+ 2e0

Lemma 4.8. Let (v, w) € C,. Then (v, w) € S,. , for some o € (X;Gj)” L]
and some ¢’ € (1, o).

PROOF. We only need to prove (0.7). Let Qo = Q(xi1, r1) and Q = Q(xz, r2)
be two 8-balls such that r, < 8a’r;. If Qo (| Q = ( there is nothing to prove.
Assume Qo () Q # (@, then there exists C1 = Ci(a) > 1 and C; = C2(a)
such that Qo C Q = (Cir1/r2) Q C C2Qo. Now, let ¢’ and 5 be as in the
above Lemma and § = r,/Cyr,. Then, from (4.1), (4.2), (1.10) and Lemma 4.6
it follows that

1/2¢"
(~~%9) @~ (Qo ) Q(Qo)?
< W(OQ) v -1 ~ A\ 172
< c(w@) ™' 60)v(D))
) C< 2 )(?Gj)_lﬂw-l(oQ)va*»‘”
160
- (ZEG)™ . 1—=(ZG) ™
<c|g]7” "eg| "
(£G) ' 1—(ZG)) "
=C|Qo| "’ o] .

Thus, (v, W) € S, , With @ = 1 — (£;G)) " 'n.
Now, by using the above result, we get

Lemma 4.9. Let w € Az with respect to d or 8-balls. Then (w, w) € S,
for some ¢ > 1 and some o« € (1 — (£,Gj)™ ", 1].
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PROOF. From the previous Lemma, we only need to prove that (w, w) € C,
for some ¢ > 1. We know that

w(0Q) w(OQ)w™(Q)
> C > C
wQ) - IR IR

Ko

for all # € (0, 1] and all é-ball Q. Then, by taking ¢ > 1 such that
1/6 > 1 — (£;Gj)™*, we get

(, 160 )‘?Gf)_l (K@)ZL ~ ( |60 | )(go,-)" (w(oQ))zl—,*%—%
Q| wo | ~ ol v ©
! -1, 1
- C(w(ﬂQ))E( |60 | >(§cj) .
-\ wmo Kl

o[22y
w(Q)

wQw~'0Q) C( |60 | )2

Thus (w, w) € C,.

Let us describe some examples of pairs (v, w) that satisfy the hypotheses
(0.6) and (0.7) for any Ay, ..., N\, in the conditions (0.3) to (0.5).

EXAMPLE 4.10. In [FS], Franchi and Serapioni prove that d(0, x)® for
B € (— n, n) is a weight in A with respect to d-balls. In particular they prove
the following inequalities

IA

4.11) 5 d(0, x)Pdx < [d(0, y) + rB|B|1°| S, |
S(y,r)

if d(0, y) = 2r,

IA

S d, x)Pdx < cr’| Sy, n|,
S,r)

if d(0, y) < 2r.
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These facts allows us to prove that there exists values of 8 in (0, n) such that
v(x) = d(0, x)? and w(x) = v(x)~! belong to a class S, . for some o > 1
and some « in (1 — (Z;G;) " *, 1]. Since both v and w belong to A, we only
need to show that there exists ¢ and « such that (0.7) holds with S instead of
Qo and 6S instead of Q for any 6 in (0.1], where S is any d-ball. Let us now
prove this fact. First, note that, by the A4, condition, we get

i i(l + l)
w(6S) ) w@S)w™'(S)> °

4.12) ¥ 0l 0S)rES)Y? < C©
w(S) - |S|12

foralle > 1. Let S = S(y, r). If d(0, y) = 2r, from (4.11) we get

1 1
WS-y Y - 3ﬁ|s|'—%(l+£)|os|%(”5)
|S| 1/0 - .

On the other hand, if d(0, y) < 260r, from the same inequalities and Lemmas
1.4 and 1.7 it follows that

(1+) (1+)

1 1
wOS)w™1(S))? ©=F|s| eS|y °
lsl 1/0 = C lSI 1/0

ST TP\ B TR L T
< oy DD o 0=

The case 20r < d(0, y) < 2r follows in a similar way, so we get that (v, w)
belongs S, , for

Then, by taking ¢ = 1 + 8/n, we can choose (o € (0, n) such that
a€(1—(X;G)™ 1, 1] for all 8 € (0, Bol.

EXAMPLE 4.13. Let w(x) = d(0, x)~* for 8 € (0, n). From (4.11) and Lemmas
1.4 and 1.7 we get

B
0S 0S| \'"n
v:f(s)) =C (!) for every d-ball S and all 6 € (0, 1].

(4.14) 5]
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The for v = 1 we get that for any ¢ > 1 and ¢ € (0, 1), it holds

1 (—F)L !
W(os) 20 <C | OSI n’ 20 | osl 2
ws) )~ US| v=1(6S)

I——(§+(l—§)2_10) | os I %+(]_§)§!6

v~ (6S)v(5)"2

IA
Q

Thus, (v, w) € S, , fora = €/2 + (1 — 3/n)/20¢. By takinge = 1 — b/n
and ¢ = 1 + 8/n, we can choose 3o € (0, n) such that « € (1 — Z,G;) "', 1]
for every 8 € (0, Bo.

EXAMPLE 4.15. Let v(x) = d(0, x)?, 8 € (0, n), and w(x) = 1. Then, from
(4.14), we get

1

b7 Y (. i X P T P
)20(1;“‘(05)1;(8))”25C|S|' S1+2)6-5) (1+)(-5)

o _;loslz 4 n

w(6S)
w(S)

for all ¢ > 1. Thus, by reasoning as in the preceding examples, we get that
there exists Bo € (0, n) such that (v, w) € S, ,, for some ¢ > 1 and some
a€ (1l —(ZGj)™ 1, 1], for all B € (0, Bol.

Let S be a d-ball such that 2a>S C Q. For ¢ and v in Lip (S) we define

(.1) ao(¢, ¥) = S (AVe, V)

N

(52) a(¢’ 11/) = 00(¢9 ‘L) + S ¢\l/W.

N
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It is easy to prove that (5.1) defilles a scalar product in Lipe(S) and that (5.2)
defines a scalar product in Lip(S).

Definition 5.3. We denote with Ho(S) and H(S) to the completion of
Lipo(S) and Lip(S) respect to the norms |l -lo = ao(-, +)"* and
-l =a(-, -)?, respectively.

Remark 5.4. From Sobolev inequality (Theorem 3.4) we get Ho(S) C H(S).

Remark 5.5. It is possible to associate a function in L*(S, wdx) to each
element in H(S) and define its derivative as functions in L2(S, vdx).

Definition 5.6. Let f be such that f/w € L*’*~(S, wdx) and let ¢ € H(S).
We say that u € H(S) is a solution of

Lu=f in S
u=1y in 94§

if
ao(u, ¢) = g uo forall ¢ € Hy(S),

s
and u — y € Hy(S).

Definition 5.7. Let F = (f1, ..., fx) be such that | F|/v € L*(S, vdx) and
let Y € H(S). We say that u € H(S) is solution of

Lu = —div, F in S
u=y in 9S

if
ao(u, ¢) = S (F, V,@) forall ¢ € Ho(S),
s

and u — Y € Hy(S).

Remark 5.8. We can prove, by the representation theorem for continuous
linear functional on Hilbert spaces, the existence and uniqueness of solutions
for the above Dirichlet problems.
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Remark 5.9. The above definitions and remarks hold if we change d-balls
by é-balls.

By using the results of Sections 3 and 4, and the technique in [ChW2], we get

Theorem 5.10 (Harnack inequality). Let Qo = Q(X, 4R) be a é-ball in Q.
If u € H(Qo) is a non-negative solution of Lu = 0 and Q = (1/4)Qo then

{ ( w(2Q) ) (w(zg))”} .
sup u < exp{C inf u,
0 w((1/2)Q) v(2Q) 0

where v = (36> — 20 + 1)/(¢ — 1) and C depends only on the constants in
(0.5) and (0.7).

Let S be a d-ball such that 2aS C Q. For y € S and ¢ > 0 fixed such that
0, = Q(y, @) C S, we define the mapping

1
- , ¥ € Ho(S).
1% (0 SQE\//W ¥ € Ho(S)

From Sobolev inequality (3.4) follows that the above mapping is a continuous
linear functional on Ho(S). Then, there is a unique G, € Ho(S) such that

aO(G}I’Ia Ip) =

W@, SQ yw, forall ¢ € Ho(S).

In the next, Gy = G°( - , y) will be called the «g-approximate Green function
for S with pole y». For the sake of simplicity we often will use the notation G*.

Lemma 5.11. G° is non negative on S.
PROOF. Follows the line of the euclidean case. (See Section 3 of [ChW3].)

Lemma 5.12. There exists a constant C such that

w(2Q)

- forally €S, g > 0 withQ(y,0) C S

R* '\’
e
w(Gy >t})) = C (u(2Q)>

where R is the radious of S and Q is the 6-ball with the same centre that S
and radious aR.
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PROOF. The technique is the same that Chanillo and Wheeden have used for
the euclidean case (see Section 3 of [ChW3]) but with Sobolev inequality for

our particular geometry (Theorem 3.4).

Then, with the above result we have

Lemma 5.13. For each p € (0, o) there exists C such that

w(S(y, 4r/3)) ;(Ji—rs r? w(S(y, 84°r/3)) e
(S, N v(S(, 1) inf  w(S(z,r/(4a%))

r/’2<d(y,z)<r

sup Gi=<C
rl2<d(y,x)<r

for all g € (0, r/4a) and for all y and r such that S(y, 3a*r) C Q.

PROOF. Letx € {x € S:r/2 < d(y, xX) < 3r/4} and g € (0, r/4a), then
S(x, r/4) C SOy, ) \ S(y, ag). Note that G° satisfies Lu = 0, then for
each p € (0, o), we have

g
w(Q(x, r/4a)) \ Pe—D 1 p
s1a) sup Ge<c(X@E A\ (1 [ o, N
( )Q::l'?sa) - ( v(Q(x, r/4a)) ) (W(Q(X, r/4a)) S Q(x,rE4a)) W)

where C depends only on the constants of (0.5) and (0.7) (see Lemmas 3.1 and
3.11 of [ChW2]). On the other hand, from Lemma 6.2 follows

(G®?w < Cw(S(, 24°r) (

2 p
g O(x,r/4a) v(S(y, 2r) )

for each p € (0, 0). From this and (6.4) we have

sup G°=C
Q(x,r/8a)

w(Q(x, /4a)) S [ W, 28\ P
v(Q(x, r/4a)) w(Q(x, r/4a)) v(S(y, 2n)
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for all p, ¢ and x. Then, for each p € (0, o) the inequality

(5.15) sup G*©
r/’2<d(y,x)<3r/4
02
<c WS, ) \Fen w(S(y, 24*r)
=\ v, ) vSG, 1) inf  w(S(, r/4d%)

r/2<d(y,2)<3r/4

holds for all ¢ € (0, r/4a), and all y and r such that S(y, 3a*r) C Q.

The above inequality allows us to obtain a similar one but on S \ (1/2) S.
Indeed, if G§ denotes the g-approximate Green function for So = S(y, 4r/3)
with pole y then, by the weak maximum principle (the proof is similar that
the Lemma 2.6 of [ChW3]), se have G® < G§ on S, and from this and (5.15)

sup G*°
2r/3<d(y,x)<r
02
w(S(y, 4/3r)) \ 5= r? w(S(y, 8a*r/3)) p
v(S(y, 4r/3)) v(S(y, 4r/3)) inf  w(SQ, r/3d%))

2r/a<d(y,z)<r

Then, the thesis follows from (5.15) and the last inequality.

Lemma 5.16. Let S(xo, R) be a d-ball such that S(xo, 13a*R) C Q. Then,
foreach p € (0, o), there exists a constant C, independent of xo and R such that

o

=T dt
(5.17) sup G;(x) < C (Fl (y’ t)o-—l FZ(y, t))l/p _;_ ,

R 2
r2<d@x)<r S, v(S(, 1)

for all y € S(xo, R/2), r € (0, R/2) and ¢ € (0, r/4a), where

w(S(y, 124%*1))

B0 = =60, )

and
w(S(y, 124d°t))

t
inf  w{S{z, ——
d(y,7) < 12a°t ( ( 12805 ))

Fz(}’, t) =
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PROOF. First, let us consider the case y = xo. For s > 0. Let us denote with
Ss to S(», s) and with G? to the approximate Green function for S5 with pole
y. Now, for (¢1, ) € R* x R*, we define

02
w(saz,.>>»‘<a'—ﬁ rf( w(Sz,) )

gy, k) = ( (S, v(S,,) inf w(S@z, &)
dy,7) <t

Note that this function depend on p, is increasing on ¢; and decreasing on £,.
Let r < R/2 and m € N such that (3/2)" ' r < R < (3/2)"r. Then on
Sr I r/2s hOldS

m
(5.18) Gr < G, = G + ¥ (Gg,, —G¢ ) )

Jj=1

From the above lemma follows

(5.19) sup G < C 8a’r r forall o€ (0, —
. u ? < —— 5 ], or a s |
S,—g/z £ 3 402 ¢ 4a

for each p € (0, o). By the other hand, by using a similar argument to the Lemma
2.7 of [ChW3] and the above lemma, we get

3s s
e - 2
Sl;p (G(3/2)s —_ ng) = Cg (4[1 S, ‘gz‘) , for all (o] € (O, E) 5
for each p € (0, o). Then, from this inequality, (5.19) and (5.18) follows

(5.20) sup G%

S CA N EA A
S, —Si2 oy 2 \ 2 4a

m—1 (372Yr
t\ dt
ng g@“ﬁ%r

j=1 (3/2)7'r

R
t dt r
C 6a’t, — ) — -, for all 0, —

A

IA

IA
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for each p € (0, o). Finally, since any y € S(xo, R/2) verifies S(xo, R) C S(y,2R),
we get G® < G3r on S(x, R) and then, from (5.20), follows the thesis

2R
t dt
sup  G° = CS g <6azt, ——2) —
6a

r/’2<d(y,x)<r

IA

R
t dt r
C 12d*t, — | —, forall pe (0, —].

Corollary 5.21. With the same hypothesis as in Lemma 5.16 for a.e.
y € S(xo, R/2) there is a constant C = C(y, xo, R, w, v) > 0 such that

R

t2 ar (% 1 dt
(5.22) sup  Gf(x) < Cmin - =y — =
r2<din<r A (G785 1 B S M {6 % )1 4

for all r € (0, R/2) and all ¢ € (0, r/4a).

w(S(y, 124°1)) S, 1)
P W = e T = —
ROOF. We set C1(») 52‘3 oSO ) C:(») flslg "0 1) a
Ci(y) = flslg ;‘(SE(%}}’%; Now from (5.17) follows

(5.23) sup Gp(x) < CCI(y)(

r/’2<d(y,x)<r

P C(y)

0;:}“)1 SR ? dt
LS, 0]

for each y € S(xo0, R/2) and for all r € (0, R/2) and g € (0, r/4a). On the
other hand, from (1.5), (1.8) and (1.10), we get

( : )§G’< |50, 0|

a’R ~ |SU, R)|
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then from Lemma 4.4, it follows that

2 _or? (w(S(y, aR))>‘/" 1

——— =< , 0<r=R.
v(SO, 1) w(S(y, t/a)) v(S(y, R))

This inequality and (5.17) allows us to obtain

(2. 1) w(S(, aR) \ "’
G?e < CC o—1 rC 1/o R2 °
w G = cao T P o (1)

| Teoar T
S, |V ¢

r

Now, from (5.23) and the above inequality, by taking infinum on p, (5.22)
follows.

The next Lemma gives us an estimate of V,G® in terms of G°.

Lemma 5.24. Let S = S(xo, R) be a d-ball such that 2S C Q. Then there
exists a constant C such that

C

(AVGE, VGY) = — (G2)’w,

»‘S \NQu,r) SQ(y,r) \NQO,r/2)

Sorally € 1,2) S, r € (0, R/2a) and ¢ € (0, r/2).

PROOF. The proof is very similar to that of Lemma 4.2 of [ChW3] by
keeping in mind that exists n € C*(R") such that y = Oon Q (¥, r/2), 7 = 1
outside Q(y, r) and |V,n| =< C/r (see [FL2], p. 537).

Now, the above lemma and Corollary 5.21 allows us to obtain the follow-
ing result.

Lemma 5.25. Let S = S(xo, R) be a d-ball such that 13a*S C Q. Ifn > 2,
then, for a.e. y € (1/2) S there exists a constant C = C(y, xo, R, w,v) > 0
such that
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R
1 dt
S IV)\G)? | 2y <= C S — e
SN QUL r/2a |S(y, 1) I t

for all r € (0, R/2a) and for ¢ € (0, R/2a).

r
PROOF. Let o € |0, ——], then

C
(5.26) S |V,\G2|%v < —
S\ Q.

2
r r/2a<d(y,x)<ar

2
w(Q(, r))( sup Gy@(x)>

j<logaa® + 1

C 2
< — WU, 1) < ) sup Gﬁ(X))

; ar ar
j=1 2»/-;.I<d(y,x)<~2vi

cwEo, M) (. (¥ r? ar (¥ 1 dr \*
S — R mln —— - S S —_—
r? el SO ) ISt

IA

Sweon ([ 5o D (1 sy )
r g el SO NI

On the other hand, from Lemmas 1.4 and 1.7 it follows that
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2+
R 2 L) 2a 2
S L § L
r/2a | S(y’ t) | t j=1 J27r | S(ya t) l t

2 ©
. _Cr Y 2/e-n
SO 0| =

Then, from this and (5.26), we get

(5.27) s | v\Gg|*v = C
SN OO,

__cr
o so, |

WU, M) SR 1 d
e, Nl ), IS, 0]V ¢

Now, if ¢ € [r/8a%, R/2a), by applying Sobolev inequality in Q = Q(xo, aR)

we have

Then

1
w(Q(, o) S o

S S —
w(Q(0, @)

G2w

1/20 172
R <_ w(20) ) (_1_ S IVAGyg,zV)
w(Q(, @) w2Q) Jg

1
ao(Gy, Gy)'>.
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C

V,G¢|%*v < a(G?, G?) = ——————
L' Gy = GG = ok, o

- IS(}’, r) | 1/6 p R 1 _di
~ \w(QU, r/8a%)) e 18O DYt

Finally, from (5.27) and the above inequality, we get our thesis.

With Lemma 5.25 we can prove the following integrability property of
|V Ge|.

Lemma 5.28. Let S = S(xo, R) be a d-ball such that 13a*S C @ C R"
with n > 2. Then for each q € (0, 20/(c + 1)) and a.e. y € (1/2) S there exists
C = C(q, y, x0, R, w, v) > 0 such that

R
(5.29) S | VXG;’I" < C forall g€ (0, ——) .
s 2a

1 R
PROOF. Let y € > Sand g € (0, —2—) . From Lemma 5.25 we get
a

1
(1,68 > sh =L f 19,68 |2 + v(QW, 1)
SN\ Qu,n

@9

o 15O aT77 ¢ T 1C0 TR 100 ]

IA

C SR 1 dt v(Q(y, 1)
2

N

R
BN P
s ) |SOLD|Y 8
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for a.e. y € (1/2) Sand for all r € (0, R/2a) and s > 0, where C = C(y, S, w, v).
Then, by using the properties of d and 4, it follows that

21y

C(IQ( TN SN - a
y,r JR— .—a ——
s ) 1SoL ]Vt

J —_
2a

A

v({| VaGE| > s))

IA

1 © .
C(|Q(y, L N B e —— ) 2—"1/0)

S|S0, |7 =

IA

1
C(lQ(y,rH + —)

s o, n |

20
Now, by choosing r such that | Q(y, r)| = s °*', holds

20
v((| V,GE| > s) < Cs °*T

for all s > |Q(y, R/2a)| ~“""* for all ¢ € (0, R/2a) and for a.e.
y € (1/2) S. From this inequality (5.29) follows inmediately.

Let S be a d-ball such that 2¢S C @ C R"” with » = 3 and
, @) €11, 0) X [1,20/(c + 1)). Let X, , be the completion of Lipe(S) with

the norm
1/p 1/q
loll,, = (S |¢l”w> + (S [de)l”udx) .
s s

Now the above results about G; and V, Gy, allow to prove existence of
the Green functions Gy( - ) = G( -, y) for S with pole y.

Theorem 5.30. Let S = S(xo, R) be a d-ball such that 134*S C Q. For a.e.
Yy € (1/2) S exists a sequence [gr] C (0, R/2a) and a function G, such that
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(5.31) o« { 0and {Gka; converges weakly to G, on X, ,

for all (p, @) € 11, ) x [r 2 ) ;

(5.32) G, , = C

2
Sforevery (p, q) € |1, 0) X [1, £—1> , where C is independent of y;
g

Ao

. . e W\ qo—1 1 20
(5.33) if (v, w) satisfies | — - v € L' (S, dx) for some qo € |1, I
14 [

then
s

1
for all € Lipo(S), and a.e. y € 5 S;
(5.34) if u is solution of (5.6) with y = 0, then

1

uy) = S Gy(x)f(x)dx a.e. y € 5 S
N

(5.35) if u is solution of (5.7) with y = 0, then

u(y) = S (V,\Gy(x), F(x) > dx a.e. yE€ % S.
N

PROOF. Follows from the above results about G; and V,Gg with the
arguments in sections 5 and 6 of [ChW3|.

Now, we prove another estimate for Gy . Then we shall to use this and the above
to prove some estimates of size for the Green function.

Lemma 5.37. Let S(xo, R) be a d-ball such that 13a*S C Q. Then exists a

constant C depending only on the constants of (0.5) and (0.7) such that

R t? 2 dt
(.37 inf G = C| —— e CROMRO0T T
r/2<dy,x)<r ’ W(S(y, 2at)) t
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for all y € S(x0, R/2), r € (0, R/8a*) and g € 0, r/4a*), where F,(y, t) and

) 30> — 20 + 1
F>(y, t) are the functions of (5.17) and v = SR
o’ —

PROOF. First, let us consider the case y = xo. Let r € (0, R/4a*). For s > 0,
let us denote with Gy the approximate Green function for S(y, s) with pole
y. From Lemma 5.24, we get

9!

v G2

2ar

I

) <

~

(5.38) S (AVGE

2ar’
S»,2an)\ Q1)

2
> W@, r) (S sup G§a,>

,ar)—S(y,r/2a)

On the other hand, since LGS, = 0 on S(y, 2ar) \ S(y, r/4a), the
Harnack inequality (Theorem 5.10) allow us to obtain

3 e
inf X G2,
Q(x,r/8a%)

w(S(,2ar)) ) <W(S(y, 2ar))>"2}

inf w(SG, r716a%)] \v(S(y, 2ar)

sup G, <exp {C(
d(,z)<ar

Qlx,r/8d%)

for all ¢ € (0, r/4a*) and all x € S(y, ar) \ S(, r/2a). From this inequality
and (5.38) follows that

2
(5.39)( inf Gga,)

S(,ar)\ S(y,r/2a)
Ccr? w(S(y, 2ar)) " (w(S(y, 2ar)\ "
P exp __C — 3
w(QWU, r) inf  w(S(z, r/16a°)) v(S(y, 2ar))
d(y,z)<ar
s (AV G3,., VG3,).
S(,2ar)\ Q(y,r)

C
Now, by taking 1 € C¢’(S(y, 2ar)) such that y = 1on Q(y, r) and |V, | < —
r

and applying the ellipticity condition, we get
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—
I

do (ngar’ ”)

IA

C 172
- W(y, 2ar))1/2 (S <A v Ggar’ v Gzear>> °
r S(,2ar)\ Q(y,ar)

Then, from (5.39), holds

(5.40) inf G?

2ar
S(y,ar)\ S(y,r/2a)

= “*"?rz —exp| —C w(S(y, 2ar)) T (w(S(, 2ar)\"’
= w0, 2a0) inf WS, r/16a%)) \v(S(y, 2ar)

d(y,z)<ar

for all o € (0, r/4a*). Now, by applying the weak maximum principle, it
follows that

(5.41) G¢ — Gp

2ar

cr? [ ( w(S(y, 2ar)) )’ <w(S(y, 2ar)))"2}
= ————exp] —C|— P T e
w(S(y, 2ar)) inf  w(S(z, r/16a%)) ) \ v(S(y, 2ar))

d(y,z)<ar

a.e. in S(, r) and for all g € (0, r/4a”*). On the other hand, if m € N is such
that 2a)"r < R < (2a)™*'r, we get

m—1
(5.42) G% = G%p, = G, + Y, (G&-r, — Ggypp)s ace. in S(p, 2ar).
Jj=1

Then, with S; = S(», t) and

g(t1, )
2 ¥ 1/2
_  h expl—cf w(S,) . w(S,)) 4 eR”.
w(S,) inf  w(S(z, t1/16a”)) v(Sy,y)

dy,z)<ar

from (5.40) and (5.41) the inequality
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m—1

C Y g(Qa)yr, 2ay*'n)

Jj=0

(5.43) G%

v

\%
o)}

C
's‘" X
o
—
=
a]~
~N
~
~| 2

[lLei) T el ) 7]
= gl 73> - gl—7—> -
| J4a*r 4(12 ! 2ar 402 t

v

9
T 1
N -]
)

o
—//
N

~

N
\“/
~ &

+
0| =
e
~ [N

)

1,5}
S
1)

[\e]
8
~——

B
| |

holds for a.e. in S(y, ar) \ S(, r/2a) and for all ¢ € (0, r/4a*). Finally,
the result for y # xo follows easily from the fact that G} = G%,, a.e. in
S(y, R/2) and (5.43).

In the following we prove a result of functional analysis which shall be
used to prove the size estimates.

Lemma 5.44. Let E C R" be a measurable set, h € Li,.(E, dx) be positive
a.e.inEandp € (1, ). If {fk] C L?(E, dx) converges weakly to a function
f and satisfies supk fk < Cy a.e. in a bounded set F C E, for some constant
Co, then f < Cp a.e. in F.

PROOF. From the hypothesis we get

S (Co — fk) ghdx = 0,
E
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for every k and for all g € L?(E, hdx) such that supp g C Fand g = 0 a.e.
in F. Then, by letting k — oo, the inequality

S (Co — f)ghdx = 0,
E

holds. Now, by taking g = XE( 7> copr W€ Bet the thesis.
Finally, we are in position to prove

Theorem 5.45. Let S = S(xo, R) be a d-ball such that 13a*S C Q. Then
for a.e. y € (1/2) 8. G, is non-negative a.e. in S and satisfies

R 2

. (S, 1)

(5.46) sup ®mscs «N%Wﬂmmwg—

r/2<d(y,x)<r

for each p € (0, o)

R 2 dt
(5.47) inf G =C| —— — e hNRLIT
r/’2<d(y,x)<r r W(S(y, 2at)) t
2 2
306° — 20 + 1
for all r € (0, R/8a?), where Y= —q--—l-' , Y2 = —-‘z———?l—»— and F)
o — o —

and F; are define as in (5.17).
PROOF. It follow from Lemmas 5.11 and 5.36 and Theorem 5.30 by using
the above lemma.

Finally, we shall prove a result about the integrability without weights of

the Green function.

Theorem 5.48. Let S = S(xo, R) be a d-ball such that 17a*S C R"
with n = 3. Then G, € L?(S, dx) for a.e. y€ (1/2) S and for all

€ (1 max LG 1+ " ( 1)})
s _...__.____.._, N~ o~ a - -
P Y G —2 T G
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PROOF. From (5.46) by applying a similar argument to that Corollary 5.21
follows

(5.49) sup  G,(x) < Cmi ’ £ dr (" ! dt
. = n _— S
r/2<dy,0<r g , | SOy, b | t , | Sy, 1) | Vo

for a.e. y € (1/2)S and all r € (0, R/8a*) where C = C(y, xo, R, w, v). By
denoting with G, .. the Green function for S(y, 164*R) with pole y, the weak
maximum principle, (5.49) and the properties of d allow us to get

(5.50) S (Gy)P dx < S (G dx
S(xo0,R) S(xo,R)

1A

(Ggup)” ax

>

i

w© 16a’R 2 dr \?

2

S.S(y 2R/2)—S(y,2R/2'" ")

2_1+1

—~ (v £ dr\
Rt
i=0 \j=0 %zf | S, 0] ¢

=Cc)

i=0

o

<i (R 21—i2j+l)2 )P

- R _,
J=0 S (y’ 2i—1 21>

(R 21—1)2

< CE <_ R E 2/(2-—n))
i=0 S( ¥ 2i_]) I j=0

(R 2i—1)2p

R
2

p—1

<CcYy
i=0
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<c @ry” R i S (EiG—2p—,G))
[SB2R 77 S0 R |[PTT

Note that the right hand side is finite if and only if p < (X;G;)/(X;G; — 2).
On the other hand, by applying (5.46) again and a similar argument, we get

c i il/a((p—1)E;G; + n(1—o0)
s (G)Pdx < ——- <1 + Yo e hEGEnd ”),
S(xo,R)

where the right member is finite iff p < 1 +

| SO, R [ #7071

i=1

(6 — 1). Finally, from

j Y

this and (5.50), we obtain the thesis.
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