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Introduction

This is the first paper on a subject whose motivation lies in a geometric
problem that I shall now explain.

Motivation. Let us consider locally in @ C R” (or in a more general C*
manifold) a ‘self-adjoined second order differential operator with positive
characteristic (¢f. [13] [7] [8] [11] [10]):

©.1) Lf=h™' 3 @ia,9,hf),  feCs,

[2¥)
with A, A1, a;€e C* and real and with the matrix A = (a;) > 0 non-negative.
We associate then to L a canonical distance by the following «recipe»: For
every x € 0 we say that y € B,(x) lies in the r-ball (» > 0) centered at x if y is

the end point of an absolutely continuous path /(¢) (0 < ¢ < r) with /(0) = x,
[(r) = y that is «sub-unit» for L. This means that the speed vector

- 3
it) = dl<§> y

is almost everywhere subunit for L, i.e. that

(Z E,-k,-)z <TaN\,  NeR

The value d(x,y) = +co is admitted here if y lies in no ball centered at x.
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2 N. TH. VAROPOULOS

The above operator is formally self-adjoint in X = L*(h? dx), it can therefore
be closed in X and the complex powers L*(c € C) of L can be defined. We
shall say that L is subelliptic if for some positive e > 0 we have

18712 S CULS 2 + | f12)

where A is of course the positive Laplacian. (Alternatively L is subelliptic if
the distance d(e, *) induced by L is Hélder continuous with respect to Euclidean
distance (cf. [11] [12]).)

Let now L; and L, be two subelliptic operators as above and let d,, d,
denote their two corresponding distances. For two fixed «, 8 > 0 (it will have
to be 8 < @) let us consider the following three conditions:

(i) There exists C > 0 such that
1,y < Cdi(x,y), xyeQ.
(ii) There exists C > 0 such that

IL8f e S CULE Sl o+ | fl)s  feCT.

(iii) For every 1 < p < +oo there exists C > 0 such that

1LSf ) S CULS o + | fl),  feCh.

As we shall see below it is reasonable to conjecture that the above three con-
ditions are all equivalent.

The basic original approach to this conjecture is due to Hoérmander [14]
who (among other things) proved that essentially (i.e. with a loss of an €!) (i)
implies (ii) with L, = A (the standard Laplacian) and

Li- B3

a «sum of squares» operators (sometimes called a «H6rmander» operator)
where the Xj’s are first order differential operators, without constant term,
ie. X; are C*® fields and X¥ denotes their formal adjoints (with respect to
Lebesgue measure). The equivalence of (i) and (ii) was proved in [11] for
0 < a,B < 1when L, = A. The implication (i) implies (ii) for arbitrary L,, L,
was shown in [15], but for 0 < «, 8 < 1/2. The equivalence of (i), (ii) and (iii)
was shown in [8] for arbitrary L,, L, but a = §. Finally the implication (i) im-
plies (iii) for L, = A and arbitrary «, 8 > 0 was shown in [3]. In this paper the
conjecture will be reinforced further and the following theorem will be proved

Theorem. LetL,, L,, d,, d, be two differential operators with their corre-
sponding distances as above and let us assume both L, , L, are subelliptic Hor-
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mander operators. I shall further impose on L, the following technical con-
dition

di,y) <Clx—y|"%, xyeQ,

for some fixed C > 0.

Then (i) implies (iii) for arbitrary o, > 0. Conversely, if (ii) holds for
some fixed oy, By > 0 then (i) holds for a = oy and B = 8, — € and arbitrary
e>0.

At this stage I do not see how to eliminate the technical condition of the
1/2-Hoélder continuity of d;, except by replacing it by other conditions that
are equally unnatural (¢f. Section 8). On the other hand, in a second instalment
of this paper I do hope to eliminate the other (artificial) condition of this
theorem that L; and L, are «sum of squares». The ¢ > 0 in the second part
of this theorem should not of course be there. At the end of this paper
however, I shall give an example of two operators as above that are sums of
squares for which we have: d, (s, ) < C.d] (s, +) holds for all € > 0 but not
for e = 0. A phenomenon that cannot occur when L; = A and L, is a sum of
squares.

The Commutators

The technical result that makes everything work is a theorem on commutators
of pseudo-differentials that I shall now describe in «general terms». Precise
statements will be given later. Let H, = { £ A°fe L?} with

62 172
A= (r-2)
4

denote the standard Sobolev spaces and let L € OPS f,o be a pseudo-differential
with a positive symbol that induces a non-negative Hilbert space operator A
(e.g. A= L(x,D)+ L*(x,D) + cI or L(x,D) + cI or simply in our special
case

A= XX,

a sum of squares operator). The complex powers A°(c € C) can then be
defined and the basic commutation result that we shall prove in this paper is
this:

For any choice SJ. € OPS;'{O, n;e R, 1 <j<kandany meR, g eC we have

©2) 11+ [4° S, 8] -+ S |y S CLA ™ f |y s o 4myr JECT



4 N. TH. VAROPOULOS

[A, B] = AB — BA denotes as usual the commutator of two operators and
|+ | denote the Sobolev norms in H,. The above will be proved for sum of
squares operators in this paper and we will present a general proof in a later
work.

We shall see in Section 8 the incidence that this commutator theorem has
on our previous geometric problem. The result (0.2) has however another
important consequence that I shall not develop here.

Indeed we shall see in Section 3 that for Re o > 0 we have

0.3) |4f | S Clflms2resr FECo-

and also that for Re o < 0 we have

0.4) A | S ClSflms2a-syrear  S€CT

provided that A satisfies the subellipticity condition

0.5) | fli-s < CIAY*f |2

for some 0 < 6 < 1. If we combine (0.2), (0.3), (0.4) we see that for S; eS{,O
and Re o < 0 we have

u[' °c [AaaSI]: .. -’Sk]f”m < C”fl|m+k5+2Reg(1__5)-

If we combine this with Beals’ characterization of pseudo-differentials (cf.
[16], [17], [18]) we immediately see that the subellipticity condition (0.5) for
0 < 8 < 1/2 implies that A° € OPS2%°°" =9 (Res <0, 6 < » < 1 — 8). This is
already, of course, a theorem of Beals (cf. [16]). The present method, however,
allows us to handle more general operators than in [16]. In particular the
pseudo-differentials do not have to be polyhomogeneous. Another advantage
of this approach is that we get (for free, so to speak) all the L” norms. So that
in (0.2), (0.3) and (0.4) we can, for operators as in (0.1), replace the H, norms
by the L?-Sobolev norms (i.e. A%fe L?) and this is quite significant since, as
is well-known, the general Hormander classes OPSg' 5 do not operate on L”
(cf. [18], [19]). At any rate, I shall say no more about that aspect of the theory
here. It will be developed in a later publication.

In our commutator result (0.2) and in some of its consequences the self
adjointness of the operators (Alternatively real symbols) is not essential. This
can easily be seen from the proofs. I shall only consider self-adjoint operators
here however because this is all that will be needed for the Geometric Applica-
tions. Concerning self-adjointness, it turs out to be irrelevant with respect to
which particular measure du = h%dx (h € C®) the differential operators are
self-adjoint. For simplicity therefore I shall always take A= 1 in (0.1).
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1. The Real Interpolation

Let X be a Hilbert space (more general Banach spaces can also be considered)
and let A = I + A, where (4,1, f) = 0is a positive closed self-adjoint operator
that generates the semigroup e~ “ € £(X) with |e™“| < e~ ". I shall denote by

X,={feX: A**feX)}, ack.

The corresponding scale of «Sobolev spaces».

Typically X = L>(R") (n>1) and A, = a(x, D) + a*(x,D) + cI for an
appropriate ¢ > 0 where the symbol a(x, £ € Sf.o is non-negative a(x, £ > 0.
More general manifolds can also be considered. Weyl calculus should of
course be used here and we should set 4; = @"(x, D) + cI. We shall however
not do so, at least not systematically, in this paper. The fact that [e~ | < e’
implies that

A= cf:t”’le“"’dt

is a bounded operator on X, (a € R) for every » € C with Re » > 0. This means
that the Sobolev spaces are naturally nested: X, C X3 for o > 3. When
A, = A we obtain of course the standard Sobolev spaces which will be denoted
as usual by H, (¢ € R).

It will be essential in what follows to introduce the corresponding Besov
spaces A3 (a>0) (¢f. [1]) which I shall denote for simplicity by X ~. We
have fe X, if

supt""/2||Dp(t)f||X < 400,
t
where we denote by D,(f) = t"A”exp(—tA). The p> 0 in the previous
definition is immaterial as long as it is large enough (in fact p > «/2). I shall
always assume that this is the case and drop the index p. Different choices of
p as above give equivalent norms (c¢f. [2], [3]). The following two facts are

vital for us
First we have X, C X, (a > 0). Equivalently we have

ID@) f < Ct*?| flq

where here and in what follows ||, denotes the norm in X|,.
Second if we use the real interpolation method we obtain

(1.1) Xow+a-0p=[Xa>Xglo,2 = [Xo» Xglo,2

provided that @, 3 >0, 0 < 8 < 1. Cf. [1] [4] for the above facts.
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Let us now consider
®(t): Cg(R™ — C*(R™), t>0,

a family of mappings from Cg to C* that depends on the positive parameter
(t > 0). Notice that I have restricted myself, for simplicity, to our basic
example X = L%(R"). The modifications in the abstract setting are obvious.
Typical instances of ®(¢) in our applications will be

0 =T,

*0) =T, -1,

®() = T,M - MT, = [T,, M],
() = M,[T,, M]

and also higher commutators. In the above examples M, M;:8 — 8 are
continuous operators and 7, = e~ *? is a continuous semigroup of operators
that acts (i.e. is a continuous semigroup of bounded operators) on all (or the
relevant) X, spaces. We could for instance take X, = H,, the classical Sobolev
spaces and take T, = e~ L where L is some pseudo-differential operator as
above (cf. [3]). In this context I shall adopt once and for all the following
convention:

Semigroups (7;);~, as above will be substituted, when necessary, and
without further notice, by the corresponding semigroups (e~ *'T)),., for
appropriate Ay > 0 so that the behaviour at infinity will be controlled. This,
equivalently, corresponds to replacing L by L + \, and, since all our conside-
rations are local, it will have no effect in our theory.

I shall now consider the integral

I, = j:t"lcp(t)dt, feC,

(for the principal determination of ¢ with 6 complex) and I shall immediately
take advantage of my convention and assume that the above integral converges
in norm at infinity. The issue will be the convergence of the above integral at
0. The discussion that follows in the rest of this section will be devoted to this
problem.

We shall assume that there exist two constants A € R, B > 0 such that

" ®(1) " g By = O(tA + B(ag - ﬁo))’ t—0

for some fixed g, By € R. The notation | « |, g here and in what follows indicates
the operator norm X, = X;. If we have Ref + A + B(cp — By) > 0 then the
integral I, clearly converges at 0. We shall consider therefore a 6, € C for which

Ref, + A + B(ag — B) = 0.
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We have quite generally for any fe Cy with | f], =1
O PR N EOLCH L
= (0P [MeReO-1) Gt £, d
+ 10202 (SR B(g) £, d

=L+,
where we assume that 3, v;, ¥, > 0. I shall now make the stronger assumption that
(1.2) |2(t)] g p = O@* BB, -0

for « = oy and Be[By — ¢ By + €] for some positive € > 0. With 6 = §,,
B =P8y and v; = By — € Y, = By + € in the above estimate we obtain

It < Ct(’Yl - 50)/2)\Re 6o+ A+ B(ag— 7y
]t < Ct(72+[30)/2[>\Re 0p+A+ B(ag—"7,) + 1]’ for \ < 1’
I' < Ct 2= Fo/2)\ =<0, for x> 1.

Where we tacitly assume that
0|2, .y, = OE™), £ oo,

for some fixed ¢, > 0. (Our convention will take care of that in all our applica-
tions.) If we ‘assume as we may that ¢ > 0 is small enough, and choose
\ = t1/?8 we obtain from our hypotheses that I, + I’ < C for all ¢ > 0. This
can be reinterpreted by saying that I, induces a bounded mapping. (I shall
assume here that o, 8y > 0)

(1.3) Iy, =X%—>X‘§o.

As a final step assume that (1.2) holds for a €[y — €, ap+ €] and
BelB, — € By + €] for some € > 0. The mapping I,,o is then bounded as in
(1.3) for a whole range of o and B, around the central values. The interpola-
tion theorem (1.1) implies therefore that
(14) 19 : Xao—)XBo

0

is a bounded mapping also.

The case g, 8, < 0 is handled by duality, since X% = X_,. We have to
assume that the semigroup 7} satisfies analogous conditions and we work
with the analogous ®*(¢). Once we have (1.4) with «g, 8, >0 and with
o, By < 0 we interpolate and obtain (1.4) in general.
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2. First Illustrations of the Rezl Interpolation Method

Let Six, & e S%f':) (m > 0) be real and let us assume that the operator S(x, D)
satisfies the sub-elliptic estimate

@.1) 1715, = If 15 s SCRe < SfF> +[£13)

for some C>0 and 0 <6< 1. It is easy to see then that the semigroup
e~ = T, acts continuously on all the classical Sobolev spaces H,. For
0 < 6 < 1 the proof is banal: To say that e~ *S acts on H, is equivalent to
saying that exp (—fA*SA~%) acts on L*(R") but the generator A*SA~% is
semibounded (i.e. Re (Af,f) = —C| f|3) by our sub-ellipticity condition and
the standard commutation relation (c¢f. [5])

8

A*SA™% - Se OPSi':':)‘ ’mod (Skew-adjoined operators).

The above argument works even for 6 = 1 provided that m = 1. For more
general m > 1 we can still show that S is semibounded on H,, n=1,2,...,
provided that we give the following equivalent norm on H,

[£13 = @S>+ QLN+ 4 (AP 4

for appropriate ¢, c,, ..., ¢, > 0. At any rate this is not the issue here and
let me simply assume that e~ *S acts on all the H,, spaces (« € R).

Because of the sub-ellipticity condition (2.1) we can identify S with a closed
Hilbert space operator and we can then define all the powers S? (6 € C) of S.
The semigroup e~ could for instance be used to define these powers (cf. [6]).

I shall illustrate here the results of Section 1 by showing that for every 6 € C
with Re 0 > 0 the operator S’ can be identified with a bounded operator

2.2) N+ S8)"H,»H,_»nzrc0 aelR,

(for \y > 0 large enough. Following my convention in Section 1, I shall drop
the A\, from now on). It is clearly enough to prove this for 0 < Re 0 < 1 where
we have the formula (¢f. [6])

2.3) S°=C, j:z—"-l(T, ~- Dt

Our theory in Section 1 with X, = H,, implies and the result (2.2) follows at
once as soon as we show that ®(¢) = T, — I satisfies

2.4 1T, = I|ama-2m=00), -0, «a€R,
a fact that, by interpolation, once combined with the trivial bound

” Tt - I”cx—‘a = O(l)
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gives
”Tt_I"a—'a—Zm)\:O(t)‘)’ t_)O; CXE[R, )\G[Osl]
But (2.4) is of course evident. Indeed
t
T,— = cjosrédg

and we only have to observe that S e OPSf:'B and that T} acts on the Sobolev
spaces H,.

Negative powers can also be treated that way, in other words we can assume
that Reo < 0. Here we have to impose the condition that 0 < é < 1. For
simplicity I shall also assume that m = 1. (The results work in general but for
our applications we shall only need the case m = 1.) It was then shown in [3]
that

2.5) | Tl amp=O@C=P20=9) ¢,

for all & < 8. The theory of Section 1 applies again (with X, = H,) and we
deduce that

(2.6) S Hy > Hy 51— 9)Reo> a€R,

for all 0 € C with Re ¢ > 0. This was proved in [3] with the same method.
The above methods give no information on the pure imaginary powers. In
fact, we shall see in the next section that

2.7 . s*: H,~»H,, oteR,

is a bounded operator (since S” is a group in ¢ the norm of that operator
increases at most exponentially in # € IR) as soon as the symbol S(x, £) = 0 is non-
negative. This fact together with complex interpolation theory (between «integer
values» o =n+it, n=0,1,...) can be used to reprove (2.2).

3. Duhamel’s Formula, the Pure Imaginary Powers,
and an Overview of the Ideas

I shall introduce now some of the main ideas of this paper. For simplicity I shall
first consider an operator that is self-adjoint and a sum of squares of fields

L-Zx

(a Hérmander operator) but on which I impose no sub-ellipticity conditions
whatsoever (in other words I do not assume that the successive brackets of the
fields X; span the tangent space).



10 N. TH. VAROPOULOS

I shall consider the two semigroups
T,=e ™, R=e™  A=J+L), B=A*4AA""

where A = (1 + A)2. «Duhamel’s formula» then is the following observation

td
R -T,= Jog(Rst-s)dS

t
= J R,(A — B)T,_,ds.
0

Using the standard commutation relations for pseudo-differentials we see that

A-B=3(XE)+E
J

=2 (EX) +E
J

where from here onwards, when confusion does not arise, I shall use the letter
E to indicate an arbitrary zero order in OPSS | pseudo-differential (that can
be different from place to place). We have therefore
t t
R-T,= Zj REX,T,_ ds+ j R,ET,_,ds.
7 Jo 0
In the above decomposition the last term is harmless. It has an L*> - L?
norm (in fact an L” — L? norm ¢f. [3] 1 < p < + o) that is O(¢). This is simply
because both T, and R, _ ; (by Section 2) are L? (in fact L”) bounded uniformly
for0<t<1andsois E€S] .
The terms

t t
3.1) JORSEXjTt_sds= LR,EXJ.A—val/th_SdS

are more subtle. Indeed we have:

|42 oL =007 120,
and clearly
(.2) Xl < 1Al J=12,...

This means that | X;4~"2|,_,, < C. Putting all these remarks together we
see that we can estimate the |+|,,_,, norm of the terms in (3.1) by

t
c‘[ s _ ou.

o E= o
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In fact the ||, ,» (1 <p < +) of these terms can also be estimated by
O(t'?) by the same method. This however is more delicate since it depends
on the L” — L” estimate of the singular integral transform: X,L ™" (cf. [7],
[81, [9]). This is only known to hold for a sub-elliptic operator L. I shall not
press the matter further at this stage.

Another incidental fact that we notice at this stage is that the above estimate
automatically implies that

|7 = Rilana = OC?)

(just take differences!) where | « |, 5 are operator norms between the classical
Sobolev spaces H,. Furthermore, writing

Tzr - R2t = TI(Tt - Rt) + (Tt — R)R,

allows us to conclude that for a §-sub-elliptic operator with 6 < 1 (i.e. (2.1)
is verified for m = 1 and that ) we have: (we use (2.5) which is then automati-
cally also valued for R))

G-3) | T~ Ri|ap = O@2+ =020 10,

for every 8 > «. One can also show by an easy modification of the above argu-
ment, that for 8 € [ — 1, a] we have in (3.3) the bound O(t/2* ©~P72) These
remarks are not essential however kere, they are merely meant to illustrate the
ideas involved.

Let us now recall the standard formula valid for any semigroup generator
Dand e>0,5s€eR

(3.4) D™+ 5 = C(e, 5) j:zf—“"se—‘”dt.
Let us fix s # 0 and decompose
[Frett iR dr = [T a4 [TV ER, - T dt.

The second integral can be made to converge absolutely and uniformly as e = 0
in the norm |« |,,_,;,. This is because of (3.3) and our standing convention
of Section 1 about # — co. The first integral expresses A ~¢*  and by the spectral
theorem on the spectral decomposition of L it converges strongly to the unitary
operator A, Our conclusion is that A*4*A =% is an L?> — L? bounded operator
which is our required result. In fact, since the convention of Section 1 was used
to control the infinity of the above integrals, the way we have written (2.7)
is not correct. What is correct is

(3.5 N\ + L)*: H,— H,
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is bounded for «, s € R for some (in fact, all) A, > 0. I will however systema-
tically ignore the addition of positive constants and continue to write a formula
like (3.5) in the slightly incorrect but more convenient form (2.7). Observe finally
that e~ ™ acts holomorphically on each H,, space. Indeed, consider for some
appropriate Ay > 0, exp (—N\oz — zA4) = U(z) (Rez > 0) so that |U(2)|,_,,. < C
forRez > 0and |U(2)| - < C when z lies on the real axis. By an appropriate
conformal mapping we can re-express this in the form

" Arxm/ZU(w)A — (aw/2) ” 1212 < C

when Rew =0 and Rew =1 (here 0 < Rew < 1) and Phragmeén-Lindel6f
does the rest (c¢f. [20]).
Alternatively, we can use the action of A* on H,, to interpolate the informa-
tion on |(t4)%e” | -, fora =reR, Rez=0and « =0, Rez=1,2,....
In the same spirit if we use complex interpolations between the H” spaces
(1<p< +x)

H? = {f: A**fel”)
we see that
L*: H?— H?,
for 1 < p < +00, a € R. The other non trivial information used here is the fact
that
d+Lys: LP—> L7

is bounded for 1 < p < + (c¢f. [20]).

Before we move on, we shall address ourselves the question whether the

above considerations generalize to more general self-adjoint differential
operators

3.6) L=h"'33;a;hd)
i,j

with positive characteristic (a;) >0, h, h~ 1 e C* or better still for pseudo-
differentials with positive symbol p(x, £) >0

3.7 L =px,D)+ p*x,D)+ C

for appropriate positive C > 0.

The answer is yes in the most general case (3.7) for L? norms. Everything
we said about L? norms for (p # 2) also holds in the case (3.6). But to see all
this it is difficult and totally alien with the methods of this paper. It will be
presented in a second instalment of this work.
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4. Commutators with E€ SY ,

Let us get back now to the main theme of this paper. I shall fix from here
onwards the following notation

A=I+L=1+2 XX,
for C* fields X g and I shall also denote as in Section 1 by
@.1) X,=(f AY*f}, «aeR

the corresponding Sobolev spaces. (No confusion will arise, I am sure, between
the fields X; and the spaces X,!)

Let Ee OPS‘I),0 be an arbitrary zero order pseudo-differential. By standard
commutation we have as before

[4,E] = AE — EA = 3,(EX) + E
J

(for different E’s in OPS?’O) this means that

A, E1f ]2 < %} |EX;f |2+ |Ef | 1

SCENX S+ 1112
<ClAYf |

(observe, and, this will be a recurrent point in what follows, that |AY2f],,
2> C| f|2)- Considerably more is in fact true.

We shall assume that L is sub-elliptic i.e. that the sucessive brackets of the
fields XJ span at every point the tangent space. The use of sub-ellipticity that
we shall make at this stage is that it implies the estimate

4.2) 1X, X, - X, fl, < ClAf| o, fECG

fork=1,2,... . Thisis a deep result and unlike (3.2) (for £ = 1) it is not just
a consequence of a formal identity. There are many ways of seeing this and
they all depend on singular integral theory (c¢f. [9], p. 96). My favourite way
of seeing it runs like this: First prove (4.2) for a nilpotent Lie group and
«constanty fields (i.e. elements of the Lie algebra, ¢f. [21]). Then use the para-
metrix and the lifting theorem of [22]. Be it as it may, we are going to take
(4.2) for granted here.

Using successive commutations again and developing A% (k = 1,2,...) as
sums of products of fields we see that (4.2) implies (observe that |A’f| is an
increasing function of j € R) that
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IIA*, E1f . < ClA* " 2f | s
|A"AX, E1f] . < C A" 5%,

fork,n=1,2,... . But, denoting from here onwards by ||, = |+], , this
simply says that ;

1A El 5 - yan < C
which by interpolation implies that
4.3) (%573 | R &

for all « € R, and « large enough.

If we dualize the above statement (observe that X * = X _ ) and then inter-
polate again we finally obtain that (4.3) holds for all«eR, £k =0,1,2,... .
In particular we have

4.4 14, Elfq+1-a <C

for all & € R. Our next task will be to prove the following more general and
basic fact

(45) ||[AG’E]“a—va—2Reu+l<C

for any o eC. (4.5) follows automatically for Reo < 1 from the theory of
Section 1 as soon as we have shown the estimate

(4.6) [e™ ™ El|gmp=O@2* 02, 10,
6

for o, B € R with 8 > a — 1. Indeed it suffices to insert in the 7, of Section 1
the two formulas (2.3), (3.4) and to observe that [e™" — I, E] = [e"*, E]. To
prove (4.6) we first observe that

[E,e”*] = e “[E,e”™] + [E,e”“]e” "

t
[E, e ] = J %(e'("””Ee”M)ds
0

t
= j e” C=9E, Ale™ " ds
0
which together give

t t
(4.7) [E,e-ZtA] = j e—(2t—s)A[E’A]e—sA ds + j e-(t-s)A[E,A]e--(s-H)A ds.
0 0
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(In all these formulas, and they will be many, I tend to ignore irrelevant =+
signs.) We shall now «factorize» the |[E, e~ 2] inside the integrals and
estimate it by

a—f

t - - -
[ 1em 9y B All e €™ umads

Ly —-@-s - (s
+f0(|e =9 g lE, Allgs 1o TP yups1ds.

|[E, Al] 4 - 1 is Of course bounded by (4.4) and we also have |e ™ ™|,z =
O(s“~P72) for 8 > a, because of the holomorphic action of e~ “ on L2. We
see therefore that the two integrals can be estimated respectively by

f; Q1 — )@ 1=B/2gg = Q12+ - B2y Bea-—1

Lt)(H_ §)@=1=B2 go = O1/2+ @~ B/2) B>a—1.

The estimate (4.6) and the estimate (4.5) for Re o0 < 1 follow. To obtain (4.5)
for arbitrary o € C we just use (4.3) and formula

[A“*7, E] = A¥[A°, E] + [AX, E14°

with £k =1,2,... Reo <0 and observe that for arbitrary ceC, A”: X, —

X, _2Rreo 1S an isomorphism.

The estimate (4.5) is a special case of the following more general result
4.8) Il [A% E Eol - -+ s Ell g a—2Reo+k < C
for arbitrarya € R, 0€C, k= 1,2,... where E,,... € OPS(I’,0 are zero order

pseudo-differentials. I shall give below the proof for £ = 2. (The general case
is similar and we shall have no immediate use of anyway.)

We start with the formula (4.7) where E = E, and take the commutator with
E, so as to obtain [[e~%4, E\l, E,]. We insert the commutator with E, inside
each integral so as to obtain six different terms. The first three are

I = [ [e”® 9, E,lA, Eje™* ds,
L= [ ™ ®=9[A, Ey, Eyle™* ds,
I = L‘) e~ ®'=9414 E lle*, E,] ds.
The other three terms 7, I, I are identical except that 2¢ — s on the first

exponential is replaced by ¢ — s and the s in the second exponential is replaced
by s + .
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We shall first analyse the terms /; and I;, we have

t
/Y PR 1 Y PSRPIY Y PRRIY PY P -
The factors are written of course in the same order and
[*laz1p = OQ1 = )72+ @172

by our estimate (4.6) for 8 > o — 2. For 8 > o — 2 we have thus |/],.g=
O@t'+©=P’2) Similarly we factorize

[5lans < [ Iolam2mpl*lam1maczl*lama-1ds.

Theterm |« |, ,_1 = O(s) because of (4.6), |*]q-12a-2 < Cand |+|o_2-p
= O((2t — )~ P271) for B > o — 2. We obtain thus | 3], = O@** @~ 772
for>a—2.

To estimate the middle term we have to phase some new phenomena that give
us a glimpse of what happens in (4.8) when k& > 2 is arbitrary. We factor again

t
4.9) 1B)ag= [ 1ol lay | lamads

and we may as well assume that 8 > o — 2 since this condition is imposed on
us by the other two terms. We distinguish two cases:

Case (i): 8> a. We then set ¥ = o and we shall show that the middle term
satisfies

(4'10) " [[A’EI]sEZ] "a—’a < C.

Assume this for the moment. Then the first term gives | [,z = 2 — 5)©® 9?2
and we obtain |L,[ .- = O@'* @~ ?"2) as before.

Case (ii): B €[ — 2, a]. We then set ¥ = o — 2 and from (4.10) it follows
a fortiori (since X, C X,) that the middle term in (4.9) satisfies |¢|q4-r < C.
The first term satisfies then ||,z = O(2f — 5)® ™21 50 that we obtain
then | ;| 4- g = O~ ®/?) which for 8 = o — 2 gives | L] 4—q-» = O(f). But
since by our previous case we have |L|,-,= O(f) it follows that
|11] o— g = O(t) for all 8 € [a — 2, a]. We can unify all the above and simply
say that

|1, + I + ;] g = O(max (¢, '+ = ~972})

for 8 > a — 2, (which in O(¢) if 8 < a).
It remains to prove (4.10) which is a special case of the following more general

(4.11) IIA*, E, Byl | g o 2642 S C

valid for k=1,2,....
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The estimate (4.11) is proved exactly as in (4.3) provided that o = 2n is an
even integer. Indeed (4.11) simply says then that

(4.12) |AM[A*, E\), Exl| 1. < ClA™ %7 f | 1

and we use pseudo-differential calculus and the basic singular integral estimate
(4.2). (In the development of the commutators [[A¥, E;1E,] two fields X, i and
X;, are knocked out. This is done because either two commutators of the form
[X, i E|] and [X, iy E] appear. These commutators then convert these fields into
S?,o operators. Or only one such commutator appears but then we must have
a term of the form [E,, E,]€e Sf,é that combines with some X; €S } o
to give an element in S?,o-) To finish the proof of (4.12) for arbitraryaoz €eR,
i.e. we dualize and interpolate.

We are left with the other three terms 74, I, I5. The discussion is entirely
analogous and will be left for the reader. The important point is that we now
have to perform the «jump» from o to 8 at the term e~ “* 94, Before we made
that jump at the term e ~ @~ 94, This is to make sure that the integrals converge
at the two ends.

Putting everything together we finally obtain

(4.13) |lle™“, E)), El| o g = O+ @~ P72

for all B > a.

We are finally in a position to give the proof of (4.8) for £k = 2. Indeed the
theory of Section 1 together with (4.13) and formula (3.4) allows us to conclude
that

4.14) I1L4% E\l, Esl | oo - 2Re0+2 S €

for all «eR, 0 C, Reog < 1. To obtain the result for arbitrary c € C we
develop

[lA°*5, By, Byl = [[4°%, Eil, E;lA* + [A°, EqlIA", E;]
+ [4°, B4, Ej] + A°[[A, E\, E)]

withk = 1,2,... ; Reo < 1. It is then only a matter of combining (4.11), (4.5)
and our previous result (4.14) and we are done.

5. The Conjugation Operation c,

This section runs parallel to the previous one. Here we shall consider expres-
sions of the form

A—NALN° = NTA, A1 = [A°, A]ATF, seR,
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with A = (1 + A)"? and the standard Laplacian A. I shall also denote
¢;(A) = A°’AA™F so that we have

A[A, A™IA% = ¢, (4) — ¢, (A).

For s, + s, = s and appropriate \, u € R.
The operator A, the spaces X, (¢ € R) and the norms |+, = |-, have

the same meaning as before. It is also clear that with s; + 5, = s we have
| A A, A™*IA%f | . < C A L

Similarly if we impose sub-ellipticity on A we obtain by the singular integral
theorem and commutations of pseudo-differentials that

(5.1) lex(4") — ¢, (A gon-2k+1 < C

for arbitrary «€R, and k =1,2,....
Our first aim is to prove the analogue of (4.5)

(5-2) |A[A% AT°IA% ] g = [ (A7) — €, (A)[o-p < C

forB=a—2Reo+ 1, aeR, 0eC (and s; + s, = 5 of course). It is clearly
enough (take differences) to assume p =0 and consider (/ — ¢\)(A4A%) = A°
— BA°B~! with B some real power of A.

Just as in Section 4 to show (5.2) it is enough to prove the following
estimate

(53) ”(1— c)\)(e_tA)"a—*B — 0(t1/2+(oc—5)/2)’ t"’O,
for B > « — 1. This implies in particular that
(5.9 lenE@™ ) gmp = 0P, 10,

for B > «. Indeed (5.4) is a consequence of the holomorphicity of e~ on X
for A = 0 and it follows for general N\ by this special case and (5.3). The
estimate (5.3) by the same method implies the result (5.2) for Reo < 1.

But then if we combine this special case Re o < 1 together with the special
case o=k =1,2,... of (5.1) and the identity

(1 = o)A %) = A°(1 — )" + [(1 — e )A)]e, (49
we obtain the estimate (5.2) in general. Observe here that
(55) " c)\(AP)"a—Hx—ZRep < "Ap ”a—*a—ZRep + "(1 - c)\)Ap”cz-*a—ZRep S C

(Alternative pseudo-differential calculus and the sub-elliptic estimate (4.2) can
be used directly to control ¢, (4¥) for k=1,2,....)
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The proof of (5.3) is done in two steps. Let ¢, (e~ ) = Be"“B~! = R,. The
first step consists in showing that (5.4) holds for Be[a,a + 1[, € R.
Towards that let

o) = e - R,

- I;e‘("S)AB[A,B”‘]des
(5.6)
= [ e==MBLA, B~ o(s) + 1),

I(t) = L’)e“"”‘B[A,B"]e‘“’ ds.
We shall first estimate 1(¢),
t — (-5 _ — s
NOIPEES fo le= =240, oI BIA, B™ Nlyan—1le™ | ounds

we shall choose ¥ > «, 8 > v — 1 so that the above integral can be estimated
by

t —i- - -
JO (t — 5)0~1=B/2g@=N/2 go _ (12 + (@=B/2)

aslongasy—1—- 83> —2,a — v > —2. Allin all, for the above to work we need
YE[o,a +2[N]B - 1,8+ 1] =a,and a # Jifandonlyif Be[a — 1, + 3[.
In the range B € [a — 1, « + 3[ we have therefore the estimate |I(¢)|,-z=
o>+ @972

If we inject that information in the formula (5.6) and set y(¢) = |#()f| ;s
for some fe Cy in the unit ball of X, we see that

57 ¥)< CL; le=“~94B[A, B~ "] 5. 5¥(s)ds + O+ @=02),

Taking the adjoint of the operator inside |« | 5_, 5 and using (5.1) we see that
it satisfies |+ ]z-5= O((f — )~ '/?). We end up thus with the following inte-
gral inequality

(5.8) W)  Crl/2+@=8r2 CL’) Wt — s)s~ V2 ds.

Now if fe Cy y(¢) is (semi-)continuous and ¢(0) = 0, so if 7, is the first
value of ¢ for which ¥(¢) > 1 we have 1 < cty/2*©@~/2 4 ¢t}/? and therefore
tozc>0if Bela— 1, o + 1.

This simply says that ¥(¢) = O(1) uniformly in f. Injecting this information
in (5.8) gives

(5.9) Wit) = O@2@=P72 4 4 1/2) Bela—1,a + 1[.
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That information could be reinjected in (5.8) to obtain a more precise result
on ¥(f). This however is unnecessary at this stage. All we need is to combine
(5.9) with the estimate e~ |,z = O(¢“~®"%) (8 > «) and we deduce (5.4)
in the range 8 €[, a + 1].

At this point we start from scratch. We shall assume (by induction) that
(5.4) holds in the range 8 € [, o + k[ for some integer k =1,2,... and we
shall prove the inductive step that then (5.4) holds in fact in the range
Bela,a+ k+ 1[. (This easily implies that (5.3) holds in the range
[« — 1,a + k + 1[.) Once this is done the proof of both (5.3) and (5.4) is
completed for their full range. Towards the proof of this inductive step we
proceed as follows

We have

e — Ry = | e”® 9Bl4, B~ IR, ds + [ e “"9Bl4, B~'IR,, ds.

It follows that we can estimate the norm |e™" — R,|,- s by the sum of the
following two integrals,

t - - -
[ 1emC 9 g IBIA, B anan [Rlamads,

t —(t — -
[ ey g IBIA, B st [ Ry i amar .

By a process that should by now be familiar to the reader, the first integral can
be estimated by O(z'/2* ©~#’2) for arbitrary 8 > « — 1. In the second integral
we shall use the inductive hypothesis and choose v € [a, @ + k[ (close to
~ o + k) we must also have B e[y — 1,7 + 1] (so that |3 — v + 1] < 2 which
gives convergence of the integral at the upper end!). ForBe[a + k,a + k + 1]
we obtain therefore the required estimate O(¢1/%* ©~52) of that integral. We
conclude that

67 = Rylap = O3 =)

for Bela + k,a + kK + 1[. This together with the estimate |fe““‘||a_.5 =
O(t*~P’2) B > « that always holds completes the inductive step for (5.4). The
proof is now complete because once we know (5.4) for arbitrary 8 > « the
estimate (5.3) for arbitrary 8 > o the estimate (5.3) follows by the previous
argument.

At this stage I shall become more brief. The double «commutator» estimate
of the form

(5.10) ” (C)\l — c)‘z)(c)‘3 — c)\4)e—tA"a—>ﬁ - 0(t1+(a—6)/2)

at least for 8 > « (with the same refinements as in Section 4 for 8 € [a — 2, a])
will be proved the same way as in Section 4. If anything, things are simpler
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here because the situation is more symmetric. We have for instance

(ex = €€, (P)) = (ex 4y — Cus )(P) = ¢, (0 — € )(P).

To control the «middle terms» (the analogue of I, of Section 4) we have to
check that for k=0,1,2,...

(5.11) Iex — e)(en = VA ) o w242 < C.

The N\’s above are of course in general different (and this a notational convention
that will be adopted from here onwards). (5.11) for « = 2n is done again by
commuting pseudo-differentials and using the singular integral estimate (4.2).
We then dualize and interpolate.

Just as before the use of Section 1 of (5.11) and of formula (3.4) gives

N

(5.12) (e — e)len — A ) gsa-2Re0+2 S C

provided that Reo < 0.
We shall then develop

(e — e)(er — YA )

fork=1,2,... Reo <0 and combine (5.11), (5.2) and (5.12) (for Re g < 0)
to conclude that (5.12) holds in general for any o e C.
Any multiple difference can be treated that way and we obtain

I(cx — Cx)k(Aa) ||a—»ﬁ =[x —c) (e — e)A?) lans<C

for 8 = o — 2Re o + k. This will not be used for our main application in this
paper for any k > 2.
We shall finally need to control mixed expressions of the form

M, =I-c)IA%E], M, =[(I-c)A),E]

and of course multiple commutators with E € S‘l’, o and powers of the operation
(¢, — ¢) can also be considered.

It should be clear to the reader by now what the appropriate estimate is.
Just for the record, let me sketch a proof of the fact that

| My ] o5 IMy] < C
for 8 = @« — 2Re o + 2. Observe also that
|M; — My| g = |B™'[B,E1A°| yog + |[B™ ', E][B, A°]| 45

(for any operator norm), where B = A®. We shall see in the next section that
we can control the terms on the right since they are of the form | S, A°| and
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| S,[B, A°]| for appropriate pseudo-differential operators S;. We can therefore
pass early from M, to M, and vice versa, (at least this is the case when § =0
and, in a final analysis, as we shall see, this is all that counts). At any rate,
we shall not need this passage from M; to M, here since we can estimate M,
and M, separately just as easily in a symmetrical manner.

Indeed observe first that

(5.13) ([T, E]) = [a(T), B,

with E — E, = ¢, (E) a bijection on S‘l’, o- 1t therefore is enough to control one
of the two terms (5.13). Say

A (TwED = [} cr(e™ ), (4, EDex (™) ds

+ ﬂ) cn(e™ 9, (4, E])er (e~ €+ %) ds.
Bearing in mind the estimate (5.4) and the following estimate
(5.14) |4, El|gma-1 = [[ex(A), B\l ana -1 < C
valid for all « € R we obtain as before
(.15) |alTsEllanp |e(T), Ellqupg= 0@+ @72, B>a—1.

The estimate (5.14) can (probably!) be reduced to the other similar estimates
that we have already examined. There is no need to do so however; a direct
proof along the same lines as our previous similar proofs is preferable. Indeed
(5.14) is clear by pseudo-differential calculus and the sub-elliptic estimate
(4.2) (just as in the proof of (5.11)) when o =2k +1 (k=1,2,...). We
simply dualize and interpolate as before.

We next write (we use our convention in (5.11) for the various c,’s)

[(er — eve ™, ET = [ [ ex(e™ (e — c)(A)ex(e ™) ds, E |

+ [ [l exte™ "9y — ey (e™ ¢y s, E]

and we see from (5.15) that we can subject this expression to the same treatment
as in the proof of [[e ™24, E,], E,] or (¢, — ¢,)(c\ — cy)e ™ 2 as soon as we have
the estimate

“ [(c)\ - C)\)A,E] "0("0( < C.
We have of course more generally

[lex = e)A*, Elamps [ (e = @IAS, Ela-p < C,
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with 8 = o + 2k — 2 with the same proofs as before (i.e. we first prove it for
« = 2n, an even integer).
The estimate

(5.16) | llex — A% El| 4 < C

for 8 =a + 2Reo — 2 follows by the same machinery. Notice that when
going through this last step of that proof we must use the fact that the
l*lama-2rep+1 nOrm of ¢,[4% E] = [c\(4°), E] is bounded, for p = k =
1,2,... or Rep < 0. But this is clear from the corresponding estimate

T = e)A°), El| s a-2Rep+2 < C

and the already known estimate of |[4%, E]|y~a-2Rep+1-
The estimate for M, is identical and I will spare the reader the details.

6. The Classical Sobolev Spaces H,,

In this section I shall face some new aspects of the theory. First of all, I shall
change the scale and consider the scale of classical Sobolev spaces

H,={f: AfeX)

where X = L%(R") throughout, and A = (I + A)*? for the standard Laplacian
A. Ishallrefer to |+[o = |+lp » [*la-p = |*]x,-p, and it is important of
course that no confusion should arise with the norms | « | X X, considered in
the previous two sections. In this section we shall analyse the mapping properties
of operators of the form P = [A° E], P= (¢, — 6 )(A°)--- of Section 4,
Section 5 (and even more general operators) between spaces of this classical
Sobolev scale i.e. P: H,— Hp.

The strange thing is that to do so we shall use the results of the previous
two sections but only when 3 = 0 i.e. from the previous two sections we shall
only retain information of the form

I[A% E1f|x < ClA°™V2f|

or more generally |Pf|, < C|Af|, for an appropriate € R. Our aim
consists simply of generalizing these estimates to the A, (« € R) scale so that
one of the things that we shall see, for instance, is

4%, Ell,, < ClA®™ |y,

for all « € R.
In the considerations that follows the letter B will be reserved for some
power B = A® (se R).
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The first thing to prove is that we have | BA°B~'f |, = | A°f|  in the sense
that

6.1) CTA |, < |BAB™ |, < C|AT |

for 0 € C and some C > 0 independent of f.
One of the two inequalities is evident. Indeed

|BA’B™ f|x < C|Af|x + C|BIA°, B~ '1flx
C([AS | x + 14 [0

<
<ClAx

by Section 5 (and the fact that |A°*/f|, > C|A%f |, j = 0).
For the other way round we shall assume first that Reo > 0 and just as
before, because of Section 5, observe that

| A% |x < CUBAB™ S| + A7~ 2f | ]

6.2) = i/2p— 1 k/2
<C Z%) |BA° 2B~ Y|, + C|A° ¥,
J:

forany k=0, 1, ... . If we choose a k large enough for Re (¢ — k/2) < 0 we
have

|4°=*2f1x < Clflx < CIBAB™ fl.

The last inequality holds because Reo > 0 and because e ! acts on H,.

Indeed our convention (¢f. Section 1) about the behaviour at infinity of that
semigroup guarantees that

BA’B L' X-> X

is bounded if Rep < 0. Since the terms under the summation sign of (6.2)
are decreasing in j we finally obtain that |4°f|, = |[B~'4°B|, as long as
Re o > 0. By taking inverses this of course means that the same is true for
Reo < 0. The pure imaginary o’s are evident since A”(t € R) act boundedly
on H,.

The above has several consequences. In particular, we see that the norms

(6.3) | flas=|A“A°APf|, where o+ B =a is fixed

are all equivalent norms for fixed a € R, o € C. (To see this one applies (6.1)
with f= A"¢ for appropriate v.)
The next thing to observe is that

(6.4) A% E1f | < A7 |
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(ceC, meR). Indeed, perform the change of variables f= A~ "¢ and the
above inequality is simply transformed (because of (6.1)) into

lealA”, Elo|, < ClAT™ 20 4.

This is a special case of (5.16) in Section 5 (and the few lines that follow).
Let us now consider the most general inequality of this type with one or less
commutators, this is

|SmAS™ ] < LAY I, |S™IAC, SIS | < CLA V2,

where S" e OPS;’:' o and where we suppose that 2;n; + m = p. I shall prove
the second, the first being easier. I proceed as follows: I first factor §" = A™E
= EA", expand the [, <] and refactor, if necessary, to bring it to the form

| EA"[A°, PIA”ES | < C A7V,

with P = E or A” and ord P + »; + v, = p (here we set ord E = 0, ord A” = »).
The two E’s can be eliminated. The one on the left is absorbed in the ||,
the one on the right disappears by the change of variable £Ef = ¢ and (6.4).
A final change of variable Y = A ~?¢ reduces everything to the case p = 0 (we
use (6.1) for that). So we are finally left with proving

| A4, PIAS | < C AT |4

with p; + u, + ord P = 0. But here we are on familiar ground, for the operator
on the left is in one of the following two forms:

(& — o)), o[4% E].

Both of these have been dealt with in Sections 4 and 5.
Let us now pass on to second commutators. The estimate we shall need is
the following

|S™IIA4°, §™, S™1S™f |, < ClA°™ |,

where p = m + 2,n;, and S" e OPS’I’:‘O. The proof is easy. Use the factorization
of "€ OPS] ,into 8" = A"E = EA" a number of times over and we see that
the expression on the left can be estimated by

(6.5) | EAMA®, RINZESf | + |EAMIA®, P], QIARES |

P, Q, R = E or A’ for some seR.

Just as before, the two E’s on the above two expressions can be disregarded.
The one on the left is absorbed in the norm | « |, the one on the right disappears
by the change of variables ¢ = Efsince we clearly have, from what has already
been done, |A°"'¢[, < C|A°”'f|,. The first term in (6.5) has already been
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treated and turns out to be bounded by |4°~'2f|,_,. To check that it is
indeed the H, _ ; norm that we actually have here, we must consider cases. The
idea, however, is simple: since only one commutator appears in this term this
means that two pseudo-differentials have been «contracted» by a commuta-
tion [S"1, S™2] but that is of course a pseudo-differential that belongs to
OPS;{; -1 and that explaining the gain of one derivative that gives p — 1.
Since, by Section 2, AY*: H,— H,,_, is bounded, we see that | 4°~"*f|,_, <
|A°~'f|,. We thus see that the first term in (6.5) is controlled.

To control the second term in (6.5) we start by the change of variable
f=A"P¢ and a use of (6.1) that reduces the problem to showing

|A1A4°, P1, QIS S C LA™ f |4

with P, Q = A* or E and ord P + ord Q + » + p = 0 (here again ord E = 0,
ord A” = »). This is a familiar expressions from Section 4 and 5. The four
cases P, Q = E, A* have to be checked separately

(1) P,Q = A" gives
A’[IA°%, P, QIA* = (coy — o)(en — o)A

(2) P,Q =E gives us a term of the form [[c)(A°), E,], E,] which can be
controlled by the three terms [[A4° E\], E,], E,[(I — ¢,)A° E;] and
[ — c)A’, E(]E, . The E, on the right of the last term is then eliminated
by the change of variables E, f = ¢.

(3) P=E, Q = A gives us a term of the form (¢, — ¢\)[A4, E].

(4) P= A" Q=E is reduced to the previous case modulo A’[4°, S*~!]A*
with $*~!e OPS} .

We shall go no further here. It is clear however that if we proceed that way
we obtain the basic commutation estimate of the introduction (at least for
«sum of squares» sub-elliptic operators). Things can be presented in an even
more symmetrical way. We can denote by

Z5= ([ A*Nfe X))

which is a double index scale of spaces. The order at which A and A are set
is immaterial (¢f. (6.3)). From the above considerations together with some
additional work (cf. Section 11) we can establish the precise mapping properties
in Z 5 of commutators of one power of A with an arbitrary number of pseudo-
differentials. I shall not pursue the matter further here. A typical result that
can thus be obtained is

|4%A°%, 8" f |y < ClA™ S|y, S"eOPST,.

+n
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7. The Interaction of Two Distinct Operators

We shall now consider L and M, two distinct differential operators, both of
which I shall assume are sums of squares of fields

7.1) L,M=ZXJ’."XJ..
I shall also assume that they are both sub-elliptic

(V8 P
1 f1:-a

with 0 < d, 6 < 1. (X = L?). The spaces H,, are as before the standard Sobolev
spaces of Section 6 and |+|, = |+[, refer to these norms. The aim of this

Cl + L)"?|,,
Cl(1 + M),

VAR

section is to prove the following basic

Proposition. Let L, M, 6 and d be as above and assume that d + 6 < 1. The
semigroup e~ ™ acts as a continuous semigroup on each space X, (xelR)
induced by the operator L (cf. (Section 4)).

In fact a slightly more general result will be proved (under the same
assumption that 6 + d < 1). I shall prove that for all 3 > « and all je R we
have

(7.2) |+ LY?e™™(1 + L) /?| ,u5 = O@©~P20=D),

For oo = 8 = 0 this is the content of our proposition. Observe straight away
that it suffices to prove for j = 0, 1, ... . Indeed the action of ( + L) (s€ R)
on H, implies that we then have the same result for jeC, Rej=0,1,... .
Complex interpolation of an analytic family of operators for fixed « and
gives then (7.2) for any j € C, Rej > 0 we then dualize and have the general
result. (In the above complex interpolation there is a slight difficulty: We have
to recover the factor ¢©~720=9 for the interpolated operator. This is no
problem here since we have the same factor at both ends of the interpolation
interval ¢f. [4]. Things would have been different if we had different factors
C,(¢) and C,(¢). It would not then be necessarily true that we obtain C!C}~?
after interpolation. At any rate, if you do not feel comfortable with complex
interpolation, proceed differently: Prove (7.2) for j=0,1,... and general
a,B€R, B = a, and then interpolate only when o = 8 = 0. We still obtain our
proposition.)

The fact that (7.2) holds for j = 0is just the content of (2.5). We shall assume
therefore that (7.2) holds for j=0,1,...,k, and prove it for k + 1. The
remainder of this section will be devoted to this task.
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Our first step will be to analyse the expression

M, 1 + L)(k+ 1)/2] — Z [X;k}{_[’ a+ L)(k+ 1)/2]
J

= 2 X7, I+ D02 + S X7, (1 + DX,
J J

Xj will be, of course, the fields XJ in the decomposition of M and the index
J as well as the summation will be dropped from here onwards. We shall
rewrite this in the following form

MI/Z[M—I/ZX*[X, (I+L)(k+1)/2] +M_1/2X[X*,(I+L)(k+l)/2]}

(7.3) +[[X*, (7 + L)* 2, X1,

For all the X’s or X *’s that are inside a bracket [+, «] the only information
that we shall retain is the fact that they belong to OPS i,o- Then we can use
the results of our previous sections to estimate all the brackets that appear in
(7.3). The double bracket B, that appears at the end of (7.3) satisfies for ins-
tance |B,f|. < C|(1 + L)* V2| .., (@ €R) and the single brackets B,
that appear within {-} in (7.3) satisfy

|Bif la SCIT+ LY S s

The two «Riesz transforms» satisfy
(7.4) |7 2X 4 0, IMTV2Xf |0 < C| S |a-

The X * can in fact be ignored in (7.4) since X — X* € S(I),O' The estimate (7.4)
holds in general even without sub-ellipticity, i.e. d = 1. To see this, consider-
ing the adjoint operator, it is clearly enough to show that

|Xfla <C|M"*f|, (xeR)

(by our convention M is really Ay + M, X\, > 0). This last estimate is clear
enough since

| Xf o = |A°XS [«
SCXAS|x+ 1 flo)
SCIMY2Af [y + C| fla
SCUMYf o+ CIIMY2, A%1f |
< C|MYV ],
(since M~ 2. H_ - H, is bounded) by the results of Section 6. In fact, a closer

analysis of the above proof shows that the «M. Riesz transfer theorem» works
both ways on the H, scale (even without sub-ellipticity conditions)
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CHMYf |, < DX S o+ | fla
J

<CIMYf |-

The analogue for higher Riesz transforms also holds but it does need sub-
ellipticity and is harder to prove (¢f. Section 11)

X.-I"'XikM_k/Zi H,—H,, a€elR, k=1,2,...

is a bounded operator.

At any rate we shall not need here these higher Riesz transforms. What
we need rather is to combine all the above information and simply conclude
that

(7.5) M, (I + L)** D% = M4 + B
where
(7.6) AQ+Ly"**H, ,—-H, Bl+L %Y:.H ,-H,

are bounded operators (k=1,2,...,a€R).
We shall now denote by

R® = (1 + Ly*"%e~™(1 + L)~ *?
and analyse the expression
[e—ZtM’ (1 + L)(k+ 1)/2](1 + L)-(k+ D72 _ e-ZtM _ Rg;+ D _ I(t)
we first decompose
[e—ZtM, (I+ L)(k+ 1)/2] — e—tM[e—tM’ (1 + L)(k+ 1)/2] + [e—tM, (I+ L)(k+ 1)/2]e—tM
and then write

I(t) — j':)e-(Zt—s)M[M’(l + L)(k+1)/2]e—stS(1 + L)-(k+1)/2

+ J.:)e—(t—s)M[M’ a +L)(k+1)/2]e—(t+s)Mds(l +L)_(k+1)/2.

In what follows I shall assume that k£ > 1 (the case k£ = 0 is much easier but
has to be treated separately). The middle term in the two integrals above will
be decomposed as in (7.5) and we shall have to deal separately with four dif-
ferent terms ;(¢), i = 1,2, 3,4. We have

[ @] ams < [} 1”@ MM Y2) |AU + L)~ *2] |RP|ds | (1 + L)1)
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where we have a «cascade» of |+| ., norms that run as follows

”(I+ L)_1/2||cx—>a+1—6 S C,
AT+ L) |0t 1-5-0-s < C,
IR lasi1-smas1-5=0(),
”e—at_S)MMl/Z"a-a—*B — 0((2[ . S)(a—B—é)/Z(l -d) - 1/2).
The first of these estimates is a consequence of (2.6). The third estimate is of
course our introduction hypothesis, the second is (7.6). To obtain the fourth,

we use the holomorphicity of the action of the semigroup e~ "™ on each H,,
space that allows us to conclude together with (2.6) that

[MYe M),y = |MPe™ M e M), = O@T 20D
for all s > r, N > 0. If we put all the above estimates together and integrate

we obtain that

II (t) — O(t(a -B)/21-d)y+(1-6-dy/2(1 -—d)).

The I, term is quite analogous except that the (2¢ — s) has to be replaced
by (¢ — s) and the s in R%® has to be replaced by ¢ + s and we shall perform
the jump form « to B at the first level. We have again for the same reasons

@+ L) "] geas1-5<C,

IR® [ us1—smpss = Ot + 5)@ B 20 =Dy
[AT+ L) "5, 1.5<C,

”e—-(t—s)MMl/ZI!B_’ﬁ — O((t _ S)_VZ),

after integration we obtain exactly the same estimate for I;(¢).
The decomposition of I,(¢) is different

t —(f— _ _ " _
[BO]amp < [} 1o~ @M [BA+ LT** 2] [RE D) ds |1+ 1)7'].
The estimates are similar and for the same reasons
"(1+ L)_l||a->cx+2—26 S C’
IBU+ L) Y2 s 25ma-2<C,
IRV qs2-25mas2-26 = O,

"e_(Zt—S)M"a—Za—DB — O((2t _ S)(a—B—Zﬁ)/Z(l—d))-

After integration we obtain the estimate I, (¢) = O(t©@~#/20 -d+A=é=d)/0-d))
The final term 7,(¢) is of course like the I, with: 2t — s ¢ — 5, s2 ¢ + s inter-
changed, and the jump performed at the first level
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||(I+ L)_1"a—>a+2—26 < C’
|BU+ L)~ %P2 5,,.5<C,

k-1 —B-28)/2(1—d
||R§+,)||a+2—25—>/3+2=0((t+5)(a B-20)2(1 ~dyy

le= =M 55 = OQ).

Integration gives the same estimate as 7, ().

We can finally complete the inductive step. Indeed, by our hypothesis:
d+6<1; I(t)=e ™ — R¥*D has just been seen to satisfy |1(¢)]q-p=
O(t©@~P720-D) for B8 > . But since the same estimate holds for e~ by
(2.5). We obtain that [R** |,z = O~ P20 ~D) which is our inductive
step and we are done when k£ > 1.

Let us now examine the case k = 0. The commutator [M, (I + L)'/?] is then
factored (with the same notations as (7.3)) as follows

(7.7 M2 2XHIX, (L + LYY + (X%, (1 + D)Y2I(XM ™ V2 M2,

The terms within {} have a bounded |+|, -, norm for reasons that have
been explained many times over. The M'/? on the extreme left of (7.7) once
put in the integral is absorbed in the e~ #~9M or ¢~ ¢~9M ap( the integral
converges. Similarly the A2 on the extreme right is absorbed in the e ~*™ or
e~ ¢*9M and again gives a convergent integral. This simply gives after the
computations

"e——tM _ Rgl)”a-*ﬁ — O(t(a—ﬁ)/2(1-d)+(1—6—d)/2(1—d))

as before. In fact, the distinction of cases k = 0, k > 1 is artificial and with
a little more work I could easily have unified the presentation.

In the above proof we have used both the sub-ellipticity of L and of M (i.e.
that both d and é < 1). It is clear however and much easier to prove that when
6 = 0 then d could be 1. This is just the fact that e ™™ acts on the classical
Sobolev spaces. Slightly more can be proved when d = 0. Indeed we shall
show in Section 10 that if we introduce the following scalar product on X,,,
n=1,2,...

n

<fif>n= 2 XU+ L1, ),

j=1

then for an appropriate choice of the ¢, > 0 the operator A = — 3} (3*/dx})
(the «positive» Laplacian) (or more generally any second order elliptic opera-
tor A) is semibounded bellow

(78) Re <Af,f>>n = —-C< f’f>n

The reason why this is important is that it easily implies that A* is also semi-
bounded (by subordination) and so is, therefore, every operator of the form
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L’+ A (w20, 0<p<1). As a result it follows that the semigroup
exp (—#(L® + A*)) acts as a continuous semigroup on each of the spaces X,
(x € R), a fact that we would be hard pushed to prove otherwise.

The final question that arises is to decide to what extent the sum of squares
property of L and M is essential for the above proposition and to what extend
it holds for more general operators of the form (3.6) or (3.7). This issue I will
analyse in a second instalment of this paper. Let me however say that the above
proof will give us for free, so to speak, a slightly larger class of operators L.
We shall explain in Section 9 how we can generalize all the previous machinery
to make it work for perturbations of «sums of squares» of the form:

(7.9) L=3 XX+ A" =L+ A
J

where XJ are C” fields as before and 0 < o <2

32 1/2
<A =+ = <1— ZEE> >

1

These remarks will be important for our main application in the next section.

8. Powers of Operators and Subelliptic Distances

Let L and M be two operators as in Section 7 both of them subelliptic (i.e.
8,d < 1). We shall assume that for two positive a, 8, > 0 we have (X = L*(R")

(8.1) |L*f |, < C|UT + M)*|

(it is easy to see that this can only happen if o, < B,). The issue is to decide
to what extent we can conclude from (8.1) that we in fact have

8.2) |L7f |, < C|U + M), »>0
or more generally
8.3) |L™f | ., < C|U + M), »>0, 1<p< +o.

A few banal remarks are in order. First of all (8.1) implies (8.2) for
0 < » <1 by general operator theory (¢f. [23]). Secondly, if (8.2) holds for
arbitrary » > 0 then (8.3) also holds for arbitrary » > 0, 1 < p < + 0. This is
because the operator L*o(1 + M)~ %P is L? — I” bounded for Re z = 0 and if
it also is L> — L? bounded for Rez = » > 0 arbitrary we can interpolate.
Let us denote now by

AS = (feL™ |f() - fO)| < Cdj(x, )
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for every 0 < o < 1 where d, (¢, ») is the distance induced by the subelliptic
operators L (¢f. Section 0), we also have the analogous definition A3, of M.
The validity of (8.3) for all 1 < p < 40 and all » < », for some fixed », has
the following important consequence

(8.4 A C AT, e>0

which in turn (trivialy) implies the following Holder estimate of one distance
with respect to the other

d5 (e, ) < Cd¢ (x,3), €>0

(C. does not depend on x, y but, a priori at least, does depend on ¢ > 0). To
see how (8.4) is derived we shall have to use the «Besov spaces» A;, 7 introdu-
ced in [15]. To make the distinction between the two operators L and M, 1
shall note by A;" /D) and Aﬁ, ¢ (M) the corresponding spaces for L and M.
By standard arguments involving real interpolation (cf. [4], p. 153 where it
is easy to check that (4) is also valid in our setting) we see that the hypothesis
we have made implies
(07 (07
A (M)CA® (L), 1<p<+o, —=-2
b M) C A (L) p 5 b
provided that 8 < »,8,. On the other hand, we always have
8.5) A2 G A% (L) G AL (D).

What is less standard and very much depends on the subellipticity of M is that
for all 8 > e > 0 there exists p = p, large enough such that

(8.6) AB (M) G ABZS(M) G AL

To prove the first inclusion of (8.6) one should combine the abstract
«dimensional» result of [2] that give these types of inclusions for general
«semigroups of finite dimension» together with the rather obvious fact (¢f. [12])
that the semigroup e~ is «finite dimensional» in the sense of [2] provided
that M is subelliptic. In other words we have ’

e ™| ,i. == 00", t—0

for some finite m > 0.

In (8.5) and (8.6) we also use twice the fact that AZ (M) = A3, (0<a <)
this depends on subellipticity and is proved in a manner entirely analogous to
the one used for the corresponding classical spaces AZ . = A, on R" (cf. [24]).
Some of the ideas of [15] have to be used in this proof but the problem is much
easier than the one treated in [15]. At any rate, I shall not give the details of
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these proofs at this point because they are totally alien with the spirit of this
paper.

The above remarks put together complete the proofs of the required inclu-
sions (8.5), (8.6).

At this stage I shall recall that conversely d5 < Cd$° implies the estimate
(8.1) provided that 0 < a, By < 1/2 (¢f. [15]). All in all we finally see that to
close this circle of ideas and obtain a proof of the theorem announced in the
Introduction it suffices to find a way to prove that implication (8.1) implies
8.2).

The implication (8.1) implies (8.2) is an immediate consequence of the
considerations of [3] as soon as we know that the semigroup e~ acts
continuously on each Sobolev space X, of the operator L. In other words, we
are in the situation of Section 7. We can therefore assert straight away that
the theorem holds under the subellipticity condition d + 6 < 1 for the two
operators L and M. It holds in particular if 0 < d, 6 < 1/2.

We shall finally show how (8.1) implies (8.2) under the weaker condition
0 < d < 1/2 and in fact under a slightly more general condition that depends
on oy, B,. Towards that we shall assume as we may that (8.1) holds for «,,
B, small <1 and let us consider the perturbed operator: L = L + AY where
v =min {2, B¢/} it follows that

1L [y = GAD < NEVF Ly = WA + [y

But since the semigroup e L generated by L acts on the Sobolev spaces X,

of L. This follows from the fact that A? is semibounded (in the sense of (7.8))
on X, which makes A” 0 < vy < 2 automatically semibounded (cf. end of Sec-
tion 10) we deduce that

8.7 |Lof |, < C|L™|,, »>0.
The same semiboundedness result implies that
(8.8) L < C(L% + APo)V*, A < C(L% + APo)l/=o

since we clearly have L% < L% + APo and APo < L% + APo, and since L is also
semibounded on H,, for the natural scalar product (cf. [3]). (Here < indicates
the partial order of positive Hilbert space operators: P> 0 if and only if
(Pf,f) =2 0.) By adding we obtain that

(L + A") < C(L% + APo)l/=o
and since 1/, > 1 by abstract operator theory we deduce that

8.9) L% = (L + A)% < C(L% + APo) < CMPo.
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(Since A < M.) It remains for us to show that (8.9) implies that
(8.10) LS |y < CIM™f |, v>0

and then putting together (8.7) and (8.10) we have a proof of the implication
(8.1) implies (8.2).

The estimate (8.10) will follow from (8.9) (¢f. [3]) as soon as we know
that d the subellipticity index of M and 1 — /2 [a quantity that is (if any-
thing) bigger than the subellipticity index of L] add up to <1 i.e. it is enough
to have

d< _'8,0_
Zao
for the implication (8.1) implies (8.2) to work with this mehod. By the fact
that 8, > o it follows in particular that this is always the case when d < 1/2
and the proof of our theorem in the Introduction has been completed.

9. The Perturbed Operator

Let us consider the operator I = L + A>* of (7.9) 0 < «, < 1 and let us define
the corresponding Sobolev spaces X, = {f: L**fe X} we shall still denote
by 0 <6 <1 the subellipticity index of L i.e. |f|,_; < C|L"?|, and we
shall also consider a second operator M as in Section 7 with subellipticity
index d < 1. We shall make one more additional hypothesis: We shall assume
that L is already subelliptic (but with no control of its subellipticity index) i.e.
we shall assume that some finite number of brackets of the fields X; of L span
at every point the tangent space. What we shall show is that the proposition
of Section 8 still holds and that e~ " acts on each X, space provided that
6+d< 1.

The proof of that fact relies on one simple observation: The operator L can
be written as follows

n
L= jg,l YYY;

where Y, € Si,o and are either one of the fields X;of LorY,= A%, With this
decomposition we see that all our theory of Sections 4, 5 and 6 (and therefore
also Section 7 which gives the required result) goes through, provided that we
can prove the equivalent of the singular integral estimate (4.2) in Section 4.
Namely all we need to prove is the following estimate

O 1Y, Y, .- Y flx < CIL*f | .
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To show (9.1), by induction on k, I shall generalize the problem slightly and

Y

assume that the Y’s above consist of exactly p — X; fields and g — ST,
operators (with p + g = k). I shall commute the ¥’s in (9.1) between themselves
to bring all the X fields at the beginning (never commute two fields X; be-
tween themselves). We obtain thus that the left hand side of (9.1) is

0.2 | X Xy oo X ST [+ oo

where the ... come from the successive commutators and are identical expres-
sions with a /lower k. The ... can therefore be dealt with by the induction
hypothesis. As for the principal term in (9.2) by our singular integral theorem
it can be estimated by |L?7/257%| x- This gives the required inductive step by
Section 6 since (L is really 7+ L)

©3) L, = 1A S O + A E 02

To see how the last estimate is obtained in (9.3) observe first that by the
considerations that lead to (8.8) we have

0 |LPAF| < CIE + AR,

’ [A%9(L + AYF| < C|(L + AL + AY’f|, feC
fors,teR,p,g=20,0<r<2,0< a < 1. It suffices therefore to prove that
9.5) ILPAf| S CIAS(L + ADPf|; p20, 0<r<2, seR.

The estimate (9.5) for p =1 followes from (9.4) and the commutator
estimate (¢f. Section 6)

©.6) A% LIf| S CILV2AS| S CILAS|2|AS Y2, feCy.

Indeed the right hand side of (9.6) can be estimate (Peter-Paul!) by e| LAf| +
(C/e)| A’f| and €| LA’f| can be absorbed with the left hand side of (9.5)

|77 A | < CI(@ + ADLPAY |
SC|LPNL + A f| + CIL, LPN1 S| + C|A, LA f|
=0+ 5L+, fecCy.

I, is estimated by the inductive step (set g = (L + A") f). By Section 6, we have
L < C|LPTY2Af| < €| LPHIASF| + C(e)| A,  €>0,
and we finish as before by Peter-Paul. Finally we have

LLC|LPT 2N F| S CILPATf S CIN T + NYf| = C A ™ ],
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feCy, g= (L + A)?f, by the inductive hypothesis. But
|A g < |A + ANg| + |A°Lg]|

and the case p = 1 applied to g finishes the proof of (9.5) for p and arbitrary
non-negative integer.

The final problem that we have to face is that for (9.3) we need (9.5) for
p = half integers (and I am indebted to the referee who pointed out that diffi-
culty to me). In fact as we have said (9.5) holds for arbitrary p > 0. To see
how this is done let us use the notation at the end of Section 6 and write (9.5)
for fixed se R

©.7) |12 S IL + MY N pe,  FeC5, z=p.

It is clear that (for fixed s) Z? = Z” is a «complex interpolation scale». If we
can complexify z = p + isin (9.7) we will then use the analytic family of ope-
rators ¢(z) = (L + A")™ % and we are though. That complexification p — p + is
amounts simply to showing that L* = (L + A") = H,— H, is bounded
(0 < r £ 2). The proof of that fact given in Section 3, for the operator L, also
works for the operator L (indeed L e Sf, , and already in [3] it was shown that
e~ acts on H,) and we are done.

There is another way (more elegant but also more subtle) to deduce (9.7)
for all ze C, Rez > 0 from the validity of the same inequality for just one
value z = p, > 0. It suffices to apply the theory of [3] on the interpolation
scale Z? (p > 0, s is fixed. The fact that this scale is not self-dual i.e. (Z%?)*
= Z~” (and not Z; ”) cause no problems). For that we must show that e ™"~
acts on spaces Z?, p = 0,2, ... . By a moments reflexion we see that this is
a consequence of Section 10 and of the fact that ¢, (L) is semibounded (in the
sense (7.8)) on the spaces X, (@ =0, 2,4, ...) of Section 1. This last fact will
be left as an exercise for the (patient) reader. (Hint: ¢, (L) =L + XjE
+ E is a «small» perturbation of L.) The proof of (9.3) is complete.

10. The Semiboundedness Property of A

Let L be as before [¢f. (7.1)] and let us denote by

n

S w= 23 e+ L1, f>
j=
for c; 2 0, (¢, > 0) where (-, +) indicates the canonical scalar product on
X = L%, Thus for any choice of the ¢;’s is a Hilbert space scalar product on
X,,, n=0,1,... I shall show that (with appropriate choices of the cj’s) the
operator A is semibounded in the sence of (7.8) on these scalar products. More
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precisely, I shall show by induction on 7z that I can choose the cj’s so that
Re((A + M) fdn Z KIAU + LY'f|},  fECT

for some k = k, > 0 and all A\, > 0 large enough.
Assume that the result holds for some » = 0,1,... . We have then

(10.1) KA +N) i dnr1= T+ LA+ NS dn + (A + M) L
T+ LA+ NS Yn= A+ NI+ D) f,d+ L)Y+ <A, LS, (L + L) )y
The first term on the right hand side of (10.1) has a real part that is, by our

inductive hypothesis, > &, |A(1 + L)"*!| ,2( The second term in the right hand
side of (10.1) can be estimated in modulus by

Zo KA+ LYIA LIS, T+ LY Ty = DX Xy . X AE Y. Y f)|
=

whereEeS‘l))O, a<2j+1,8<2j+ 2andthe X’s and Y’s are chosen among
the C7 fields that define L ( = X X *X ) as in (7.1). By commutating and taking
adjoints we can therefore rewrite every (e, ») on the right as

KX, X, ... X AEf, Yy, ..., YsAESY| < | Xy o, XoAEf |y | Yy, ..., YAES| 4
S C|(+ LY?AEf |, |(1 + LY*?AEf |
SCIU + Ly '2AEf || (1 + L)Y 'AEf | 4
SCIT+ LY 2Af |y [(1+ L)Y 'Af |4

By the singular integral estimate (4.2) and the estimates that we developed in
Sections 4, 5 and 6. But by the log-convexity properties of |(1 + L)’Af | (as
a function of », since X = L?) we can finally estimate this scalar product by

< |+ LY A2 4 le| (@ + LYY PAS |, + CO|AS | 4]
Se|d+LYAS|E + Ci|ASf ]

for arbitrary ¢ > 0 and C(e), C(e) > 0. If we put everything together and
choose the ¢, on the last term on the right of (10.1) sufficiently large we obtain
the required inductive step.

For odd integers (and other values of ) we can also show directly that A
is a semibounded operator for an appropriate scalar product of X,. It is
preferable however to proceed indirectly. Observe that A semibounded on
some Hilbert space X if and only if

o™ ]y <

for some A\, > 0 and this estimate, once established for the Hilbert spaces X,,,
goes throught to all the other X, (o € R) by duality and interpolation. It is also
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this estimate that, by subordination (cf. [6]), easily gives the corresponding
result for all A%, 0 <a < 1.

The above proof that I gave is very much in the spirit of this paper but it
is very unsatisfactory because it uses the subellipticity of L in a place that it
probably has nothing to do. The result is probably correct without that hypo-
thesis. I shall give a proof below of that fact for « =1 or 2.

If L= ZXJ’.“XJ., for o = 1, we much show that

Re (X Af, X f) + c(Af,f) + c(f,./) 2 0

for appropriate ¢ > 0. But this is clear enough since X j[AXg] e:-Sf,0 mod
(skew adjoint terms), which allows us to write

Re (X, Af, X f) = 21 1A X, f| + (8£,1)
for some S € OPS; . For o = 2 we must show that

Re (L AS, Lf) + ¢, 21 Re (X Af, Xif) + &(Af,f) + ¢5(f,./)) 2 0

again for appropriate ¢’s that can be chosen at will. From the case o = 1 we
conclude therefore that it suffices to choose ¢; > 0 below so that

(10.2)  Re(LAf,Lf) + ¢, 2 [AY X f|2 + &, | AY?f |5 + 5| f15 =0,
Re (L Af, Lf) = |AY2Lf|3 + Re(IL, Al f, Lf),

and after a number of easy calculations we finally see that it all amounts to
controlling from below the expression

Re 33 (A4, %,/, X, /)
LJ

n
i,j=1

where A;; = X;[A, X;]. This however is easy for if we denote by Q = (4,)
then it is clear that

Q+Q* =2([[AX]X]),;, mod(OPS} )

and the control from below is thus supplied by the second term of (10.2).

11. Final Remarks on the Method of the Proofs

The main functional analytic tool used to obtain the critical indices in Sections
4, 5 and 6 was the machinery of real interpolation. It turns out that there is
another approach, in some ways dual to the one used, which could have been
adopted instead. This approach is interesting in its own right and without
going into details I will describe its main features.
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The key is to prove that
(11.1) l(ex — C,L)(A"e"“‘)ﬂa_,a = Ot~ Reo+172)

for \,p,a € R and Reo > 1/2. | +| - refers here and in what follows to the
H_,— Hgnorm. It is clear by the observation that | ¢, (*) |46 = [er+a(*)[0=0
and by taking differences that we can assume that o = 0 (and even \ = 0). It
is also enough to assume that ¢ = 1, 2, ... and then use the standard formulae
for the powers of an operator with positive real part.

The problem thus becomes to establish

k
.(I— cv(%e"")

for k=1,2,.... There seems to be no automatic way of obtaining this
without introducing some new idea. The idea is to consider the holomorphic
function

- 0(t1/2— k)
X—-X

) =(1-c)e™ ™), |Argz|<n/4

and to start by establishing that [®(z)],_, 5 (or even |+|,-,) is O(|z|"?) in
that sector. This is done just as in Section 5 since e ~*! is a holomorphic semi-
group. Then we use Cauchy’s theorem and the required estimate for
(d*/dz")®(z) is obtained.

Having estimated (11.1) we then proceed to estimate

(11.2) ”A”(c)\ — cu)(e"’A) ”a—'a =0~ Reo + 1/2).

This time the result clearly also holds for Res = 0 and therefore for any
Reo > 0. Thislfor og=1,2,... is deduced from (11.1) and the formula

(11 .3) (- c)Ae™ ™) = AT - c)e™ "] + [ — ¢, )(AD)]c, (e~ ™)

where (for k=1,2,...) (1 — cﬂ)(A") is dealt with by pseudo-differential
calculus as before. To obtain (11.2) we finally have to make a rather subtle
use of complex interpolation. Observe that [E, A%~ "] and A°[Ee~ "] are
obtained analogously and they are in fact simpler since the last step that uses
complex interpolation is not needed. I will not give the details.

A final step in this approach to our theory consists in proving estimates of
the type

(11.4) [ = )X, - - - Xge™ ) 4y = O(CP7)

for A-sub-unit fields XJ This, in term, allows us to show at once that the
multiple Riesz transforms R = X;--- X, A~ *? is an H,— H, bounded
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operator. To prove the estimate (11.4) we first reduce it to the corresponding
estimate of X;--- X, (I — c)(e”“) by the analogue of formula (11.3) and
then we use the singular integral theorem (4.2) to reduce it to (11.2). The Riesz
transforms then follow from (11.4) by the same «trick» that was used in
Section 3 for the pure imaginary powers (¢f. Section 3). I will not give the
details here.

12. An Example

Some of the results of this paper will be illustrated by the following example
L,=X*X+Y*Y+ Z}Z,, i=1,2

] 3 2 0
X=—> Y=x—0!> Z.=a;(p)e”
o xay i = a;(»)e %

> x,yeR)

where the 0 < g;(y) e C*(R\ {0}) are chosen to be, together with all their
derivatives, O(|y| =) as y — 0 so that the two above operators are C* subelliptic
Hormander operators in R* as in Section 7 with 6 = d = 1/2.

Then q;, i = 1,2 will be chosen so that
(12.1) a,/a, ¢ L*(R), a,/a, e [P (R); forevery 1<p< +o

loc

(e.g. a;(») = —log|y|, a,(») = 1 for small y).
From this it follows that for all C > 0 we have

(12.2) ILY*f 1. & CULY*f I+ | fld, feC.
Here we should note that |L}2f|, = | V;f|, with
af 2 ) ) a2 af 2\ 172
V. = —_— N Y —_ .
if (%) <‘ 3| & HaNeT™) 3

It is an automatic consequence of (12.2) (or it can be seen by direct calcula-
tion) that the corresponding distances satisfy

dy(s,+) &€ Cd,(+,+); forevery C>0.

We shall see however that for @ C C R? and for all € > 0 there exists C > 0
such that

(12.3) dy(+, *) S Cdi™ (s *)s [LT2f |2 S CAILY*f |2 + | f12, f€ CT@.

The above two estimates are in fact equivalent because of our main theorem.
To see the second estimate (12.3) observe that the second condition of (12.1)
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and Holder’s inequality implies that for all 6 > 0 there exists C; > 0 such that

(12.4) V1Sl 2o S Cs(| V2 S [ 2 + [ fl ) fECo.

The behaviour at infinity is irrelevant in the above considerations but the
reader can easily check, if he so wishes, that (12.4) holds even globally
provided that L; are correctly modified at infinity.

At any rate what counts here are the following two estimates

(12.5) VSl + 1l = ILf o+ 1 flps 1<p <+, feCy.

And also for every e > 0, small enough, there exists 6 > 0 and C > 0 such that

(12.6)  |LY* Sl + 1 f 12 S CULY*f | 1= + | £ 2-4)s feCyq.

(12.4), (12.5) and (12.6) put together imply (12.3).

The estimate (12.5) is the M. Riesz theorem for subelliptic operators already
used in sections 3 and 4, cf. [8], [9]. The estimate (12.6) was already used in
a slightly different form in Section 8 and is a consequence of the abstract
Hardy-Littlewood theory and the finite dimensionality of the semigroup
e L2 cf. [2], [12].
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