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Hardy Space Estimates
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Loukas Grafakos

Abstract. We continue the study of multilinear operators given by products
of finite vectors of Calderon-Zygmund operators. We determine the set of all
r < 1 for which these operators map products of Lebesgue spaces LP(IR") into
the Hardy spaces H'(R"). At the endpoint case r = n/(n + m + 1), where m
is the highest vanishing moment of the multilinear operator, we prove a weak
type result.

0. Introduction

A well-known by now theorem of P. L. Lions says that the derminant of the
Jacobian of a function R"— R"” maps the product of Sobolev spaces
L} x - -+ x L% into the Hardy space H'. Coifman, Lions, Meyer and Semmes,
[CLMS], went below H' by showing that for p,q>1, the Jacobian-
determinant maps L?(R?) x LI(R?) into H'(R?), where r"'=p~1 + g7}, as
long as r > 2/3. Their result can be generalized to give the n-dimensional
version that the determinant of the Jacobian maps L”'(R") X - - - X LP»(R")
into H'(R"), as long as the harmonic mean r of the p;’s is strictly greater
than n/(n + 1). In this work we prove a positive result in the endpoint case
r=n/(n+ 1). We treat more general multilinear operators with vanishing
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integral since our methods show that this is the only assumption needed. We
also study the case of multilinear operators with higher moments vanishing.
The number of vanishing moments is related to the lowest  for which these
operators map products of Lebesgue spaces into AH”. If such an operator has
all moments of order <m vanishing, then it maps products of Lebesgue spaces
into H" for r>n/(n + m + 1). Also, a weak type estimate holds in the
endpoint case r=n/(n+ m+ 1) and no boundedness result holds for
r<n/(n+m+ 1).

1. Statements of Results

Throughout this article, N and K will denote fixed integers >2. We are
given a matrix of sufficiently smooth convolution Calderén-Zygmund kernels
{K{ ]f": 1,1’; , on R". We call T{.' the associated Calderén-Zygmund operator.
We denote by L(f;, ..., fy) the K-linear operator

N

originally defined for smooth compactly supported functions fj, ..., fy. For
p < 1, we denote by H? the usual real variable Hardy space as defined in [S]
or [FST], i.e. the set of all distributions f on R” for which the maximal
function su;g |, *f(x)| is in L?, where

t>

¢t(x) = 71,{¢<‘;%>

and ¢ is smooth, nonzero and compactly supported. We alsc denote by H”*®
the weak H? as defined in [FRS] (or [FSO] in the case p = 1), i.e. the set of
all fin R" for which the maximal function sup,. , |¢,*f(x)| is in weak L”.
The weak LP (quasi)norm of this maximal function is by definition the
| |gp - (quasi)norm of f.

Our first result concerns the general multilinear operators L of the type
above and it presents very clearly the method that will be used in this article.
Note however, that there is an unpleasant restriction about the exponents that
will be lifted later.

Theorem 1. Assume that for all (f,,...,f € (C)X, the K-linear operator
L satisfies

[L(fis. o f@ax =0
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Suppose that p,,...,py > 1 are given and let r= (p; '+ --- + pc ) ™! be
their harmonic mean. Assume that the harmonic mean of any proper subset
of the p;’s is greater than 1. Then

() Ifr>1, L maps LP* X --- X LPk—> L.
@ Iflzr>n/(n+1), L maps LPt X --- X LPx—> H",
B)Ifr=n/(n+1), L maps LP1 X --- x LPK—> H">,

Next, we treat the case of multilinear operators with vanishing higher
moments. The significance of the number of vanishing moments is that it
gives the lowest r for which such operators map into H". We also get rid of
the assumption that the harmonic mean of any subset of the D;’s is always
greater than 1. We are assuming however, that the K-linear operators L have
a special form.

When K = 2, we consider operators L of the general form (1.1), i.e. inner
products of two vectors of Calderén-Zygmund operators. For K > 3, we
consider operators built inductively as follows:

We are assuming that for any j there exist

A{':A{(flv .. ’j}—la 410t -,fK)

(K — 1)-linear operators already defined by the induction hypothesis with the
same number of vanishing moments, such that

M
(12) L(fls e st) = i; T,](L)A{(flv T ’f;'_ i1 ,fK)'

Condition (1.2) essetiaily says that the multilinear operators L look like
determinants of matrices. They are built by induction starting from arbitrary
bilinear operators as the ones in Theorem I (when K = 2) and at each stage
they look like sums of products of multilinear operators of one smaller degree
multiplied by a Calderon-Zygmund operator. These sums have a certain
degree of symmetry because it follows from a repeated application of (1.2)
that for each j,,...,J;, there exist (K — /)-linear operators A{l """ Jt with the
same number of vanishing moments such that

L(fus o fid = 20(Tf) - - - (TNt (remaining £'s).

In most applications we have in mind, the multilinear operators have this
form, for example determinants of matrices.

In the case of bilinear operators, K = 2, there are no additional assumptions
about the operators L and this is why we state and prove this case separately.
Also, this case is going to serve as the first step of an inductive argument that
will be used later.
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Theorem IIA. Assume that for some m, 0 < m<n—1 and for all f,ge
Cy(R") the bilinear operator

N
B(f,9)= 3 (TI)(T}e)
satisfies
[x“B(f,)dx =0 for all multi-indices « with |a| < m.

Suppose that p, q > 1 are arbitrary and letr = (p~ ' + q~ ')~ ! be their harmonic
mean. Then

() Ifr>1,Bmaps L Xx L7—> L".
Q@ Iflzr>n/(n+m+1), Bmaps L” x L?—> H'".
B)Ifr=n/(n+m+1), Bmaps L? x L?—> H"",

Next, we generalize Theorem Ila for K-linear operators of the form (1.2)
and for these type of operators we do not have any additional assumption
about the pj’s

Theorem IIB. Asume that for some m, 0 < m < n(K—1)— 1, and for all
fie Co(R") the K-linear operator L(f1, . . ., fy) has the form (1.2), where each
A{f satisfies

Jx"‘A{.' dx =0 for all multi-indices o with |a| < m.

Suppose that p,, . ..,p, > 1 are arbitrary and let
r= ( 205 1) !
I3

be ther harmonic mean. Then

() If r>1, L maps LPr X --- X LPx > L',
@ Iflzr>n/(n+m+1), L maps LP! X --- X LPx—> H".
B)Ifr=n/(n+m+1), L maps LP* X --- X LPx > H"",

Remarks.

(@) The assumption m < n(K — 1) — 1is necessary in Theorem II, since other-
wise r = n/(n + m + 1) < 1/K which would contradict that p;>1.

(b) The hypothesis that the harmonic mean of any subset of the p;’s is greater
than 1 seems to be necessary in conclusions (2) and (3) of Theorem I. It
is obviously not needed in conclusion 1) of Theorem I and it is always
automatically satisfied when r = 1 or when K = 2. This condition imposes
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an upper bound on the degree K of multilinearity of the K-linear operator
L. For, let p; = p > 1 and let r > 1 be the harmonic mean of the p;’s. Then
Kr = p. The assumption on the harmonic mean of any subset of the pj’s
gives p/(K — 1) > 1. We conclude that K < 1/(1 — r) which is a restriction
on the size of K. Note, however, that when r = 1 there is no upper bound
on K nor any restriction about the exponents and our theorem implies for
example, that any K-linear operator as above with mean value zero maps
LPrx - X [PK—> H' when Zp ' = 1.

(c) The vanishing integral hypothesis for L in Theorem I can be relaxed to
the milder condition that for all f; smooth with compact support and
Sor some f,, ..., fy in the corresponding Lebesgue spaces the integrals
jL( J15J2 - -+ » fy) dx vanish. Then conclusion (2) of Theorem I will be
that the operator g— L(g, fs,...,f;) maps L”* to H" with norm not
larger than a constant times the product of the L” norms of the f}’s,
Jj=2,...,K. Conclusion (3) of Theorem I will be similar.

2. Proof of Theorem I

We fix p,...,pg > 1 and we let 7 be their harmonic mean. Clearly only the
case r <1 is interesting because the case r> 1 is just Holder’s inequality
together with the L” boundedness of Calder6n-Zygmund operators. Fix a
smooth compactly supported function ¢ in R”, an x, € R” and define

1 —
¢t,x0(x) = ?T¢<x Xo>.

t

Without loss of generality we may assume that ¢ is supported in |x| < 1. We
need to show that

sup
t>0

[uttrin- s an

is in L" when r>n/(n + 1) and in L™* when r = n/(n + 1). We also fix a
smooth cut-off n(x) such that n = 1 on |x| < 2 and supported in |x| < 4. We
call for simplicity

xO_

mo(X) = n< x> and 7;(x) =1 —7o(x).

The reader should remember the dependence of 5,, 7, on #. We now decompose

L(fi,. .. J)=Lo+Li+---+Lg,
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where

Ly = L(nof1,M0S2s - - - ,ﬂofK)
K
L'. =j§L(f1,---,?71fj,- -"fK)

Ly=- X KL(fl,---,mf},-.-,mﬁ,---,f,()

1<j,l=
i<l

LK = (_1)K+1L(771fl’ 7’1f2s ceey nlfK)

In each L, above exactly u functions among the f;’s are multiplie by #; and
the remaining are left intact. To get this decomposition of L we expand

L("’Iofl,-- -s"lOfK) =L(f1 - "11f1,- --’fK— anK)

and then we solve for L(f},...,f)-
Note that for any fixed i, k and any x such that |x — x,| < ¢ we have

sup | T¥(, )x) — TE@)0)| < sup j(K K = ») — K¥ep — ImO) SO dy

< Csupj X — x| |y — %] """ S| dy
v —xol =12

t>0
< Clf1*Cxo)

where by g*(x,) we denote the Hardy-Littlewood maximal function of g at the
point x,. We also use the notation (T{)* for the maximal truncated operator
of T. The term L, is the main term term of the decomposition and is treated
last. We begin with term L,. We write as

K K
jgl L(fl’ R (nlf[)(x) - (nl-f})(xo); s ’fK) + jé-:l L(fla RS | (nl.f,‘)(xo)y s ’f]()'

We then have

K N
sup I‘f’r,xolex <% 2 Sugjl%,xoll IL ITAl(Tnf)e = TSzl
> j=1i=1t> sks '
2.1) e + | T, f) (o)) dx
K N
<C

J

, < I1 ITffk|>*(xo){|f;txo)|+(T{)*f,.(xo)1.
1i=1\1sk=<K

k%]
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Define o, by o, ' + p; ' = r~'. By Hélder’s inequality the L’ norm in x, of
the last term in (2.1) is bounded by

K N
Cj§1 i;} (" l-f;l* um + II(T{f;)* l]m)

< II |Tffk|>*
1=sk=<K

k#j

Los
K N .
<C2 2 flw| I1 1T
j=1i=1 1sksK
k=j Lo

M=
M

<C
J

||f,~l!w 1 slk].:sK " Tffk ”ka

k=j

It
—

i=1

M=

<C
J

NSl IL el o

k#=j

K
=C H "fk"LPk-
k=1

We conclude that the L” (quasi)norm in x, of sup, , HQSMoLl dx, is bounded
K

by C II | fel.» and that the measure of the set
E<1

)

j b¢,xy L1 dX

{xo :sup

t>0

K
is bounded by C\™" [T | f|7o-
k=1
Term L, is treated similarly. First write

Ly=Ly + Ly + Lys + Ly

where

Ly =- ISJZ,] KL(fls o M) — (mf)xo)s - - - (1 /)X — 1 Do) - - -5 S
jer

L22 = _lsjzlsKL(fl, seey (nl-f_;‘)(xo)s seey (nlﬁ)(x) - (nl.fl)(x())s “ee ,fK)’
j<i

L23 = - . stIsKL(fl’ R (nlf,)(x) - (ﬂlf;-)(xo), DR (771f})(x0), s :fK)’
i<i

L24 = - lsjz;‘sKL(fl’ ceey ("71.13-)()(0), S (771f1)(xo), “en ’fK)'
j<i
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Same reasoning as before will show that any term L,,, u = 1, 2, 3, 4 satisfies
the following estimate

sup j‘ ¢t,x0L2u dx| <C Z Z II | T,{cf k| *(xo)(cjfj)(xo)(clﬁ)(xo)
t>0 ls;,<llsK i=1 llf;fjs,lK

where each C,f; is either | f}|* or (T/)+f and therefore | Cifil 1o < CL S| -
Now define o, by o; ' + p; ' + p;”! = 1. Holder’s inequality gives that for each
u=1,2,3,4

j ¢t,xoL2u dx

sup
t>0

Lr

<C X X

1=<ji<K i=1

<1 L ITiA > 1Ci7i 1 Cuil

i<l k#j, 1 Lol
t k
<C 2 2| IL 1Tl 151wl fill
1<j,l<Ki=1|1<k=sK

i<t | =41 Lool

N

K
c Z Z H X " Tffk"LPk "-f_}“[}’j "ﬁ"]f’l

1=j,l<K i=11<ks=<
i<l k#j,1

<C X IL 1Sl loo 1 fi) o

1<ji<K 1<sks
i<l k=j,1

<C II Sl
1sk=sK

is bounded by

‘We conclude that the L" (quasi)norm in x;, of sup
t>0

K
C >} | fil . and that the measure of the set
K=1

j ¢, 5, Lr dX

{xo :sup

t>0

K

J qbt,xoLZ dx
]
is bounded by C\™" [T | fil 1o
k=1

We treat the terms Lj, Ly, . .., L in a similar way. In particular, we write
the term L, as a sum of 2K terms of the form 4 = L(g,, .. ., gx) where each

g; is either (n,/)(x) — (n1/)(xo) or (1,f)(%o). Same reasoning as before will
show that the maximal function of L, satisfies

sup
t>0

N
<C ; (CH Do) - - - (CT fi)(x0)

J br, ;A dx
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where each C/f, is | f|* + (T f;. Holder’s inequality gives that

sup
t>0

J- b1,x,A dx
Lr

is bounded by CII | f | ».. Exactly the same estimate as above holds for the
maximal function of L and the weak type estimates follow from Chebychev’s
inequality.

We are now left with the term L,. This is where we are going to use the
assumption that L has mean value zero. We will show that for some
1 <s; < p; we have

K

(2.2) When r>n/(n+ 1), sup j¢t,xoL0 dx| < C T ((fel**Ceo)) V.
t>0 k=1
K

(2.3) When r=n/(n+1), sup Iﬁbz,xoLodx < C IT ((filP* o)) 7%
t>0 k=1

Let us now indicate how (2.2) and (2.3) imply assertions (2) and (3) of
Theorem I. To get assertion (2) observe that when r > n/(n + 1)

K
sup fda,,xoLodx < €| IL (el )

t>0 Lr

Lr

K
< € IT 1 o) o

K
< C H [’fk"y’n
k=1

where we used above that p,/s; > 1. We denote by |4| the measure of the set
A. To derive conclusion (3) of Theorem I, let

€= — €x.1=1 and e€,...,>0
be arbitrary. It follows from (2.3) that

C
> )\} {x: (|f}ip_,-)*(x0) > <Eje*1 >pj} ' .
J

By the weak type (1,1) result for the Hardy-Littlewood maximal function we
get that the above is bounded by

K €: —pj
o) <!_-1> j|fj|pjdx_
=1\ €

J

K

<2

Jj=1

J' d)t, xoLO dx

{xo: sup
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This expression minimizes in ey, . . . , €, > 0 when all the terms that appear in
the sum are equal. This happens when

-1 _ LIBO/CY g joas K
e 1%l B

With this choice of e j’s we get the weak type estimate

By

It remains to prove (2.2) and (2.3). We denote by 7* the adjoint operator of
T and by [¢,,, , (T1)*] the commutator of ¢r,x, and (T)*. Since ¢ is a Lips-
chitz function of order 1, it follows that

<SCONTIT A 20

{xoz sup j b1, x,Lo dx

t>0

|1, (TD*UN| < i J.K}(x = ) @r,x,(X) = b1, x, ONS(P) dy

S [ oL,

= tn+1 ‘x_yin—l
and by the Hardy-Littlewood-Sobolev fractional integral theorem we get
Q4 b TN e S Ct™" M f],, When 1/r—1/o=1/n.

Since L(f}, . . ., fy) has integral zero for all sufficiently smooth functions f;,
the identity

N K
i;} (T:)*<k1;[2 Tf("lofk)> =0

justifies the third equality below. We have

N p
J‘ ¢t,x0L0 dx = Z d’t,xo T,1 (nofl) e Tf(nof]() dx

i=1,

]

K
ﬂofl(T,-l)*<¢r,xo kI=Iz T,{c(”lofk)> dx

N p K
@.5) =2 n0f1<(Ti1)*<¢t,xok].;.[2 Tf-‘(nofk)>

K
-4, XO(T})*<kI=IZ Tf(m,fk)» dx

M=

= J N0 1 [d’t,xo’ (T})*](Fi) dx

i=1
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where
K
Fi = H T,{((ﬂofk)-
k=2
Apply first Hélder’s inequality with exponents p, and p} = p;/(p; — 1) and

then (2.4) with 0 = pj and 7=s5=(p; ' + --- + pg )~ ! the harmonic mean
of p,,...,p,. This is where we use the assumption that s > 1. We get

N
12.5)] < [m0f1] 1o ,;1 1162, x5 (TD*IE) | 1o
N
gct 1 Im0S11 1o: i; VF; | s

N
< Ct""lll N0.J1 "LPl 2;1 ” T?('ﬂofz) ”LPz te || T;K("IofK) “pr
< Ct"’”lllnofl ||LP1 ""lofz"LPz‘ v 1|’70fK||pr

K
S Ct_"— 1 H ((l.’;‘lpj)*(xo))l/pjtn/pj
j=1

K
= le:[1 (1P *Ceo)) P

This establishes (2.3). To prove (2.2) observe that the assumption r > n/(n + 1)
gives

sTl—) P =ps et - = - 1<

Therefore for a suitable selection of 5;<p; we can make the expression
() '+ -+ (s ' — (D)7 equal to n~'. Then the same argument as
before will give that

K K
2.5 <ce ! H1 ([19* e/ t™% = C II1 ((FDREN) A
Jj= Jj=
The exponent of ¢ above is zero because of the choice of the sj’s. Taking the

supremum over all £ > 0 we obtain (2.2). The proof of Theorem I is now
complete.

3. Proof of Theorem Ila

Clearly, we only need to do the case r < 1. Fix a ¢ and 5 as in Theorem I and
split the bilinear operator B(f, g) as the sum of By, + B;; + B, + B, where
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By = B(no.f, 108);
By, = B(f, m8),

By, = B(n./, &),

B, = —B(n.f,m8)-

The arguments presented in Theorem I will give the required estimates for the
terms By, , By, and B,. (Note the mean value zero assumption was only used
in the treatment of term L,.) It remains to get the required estimates for term
B, which is the main term of the decomposition .We have

J bt x,Bo dX = ”f(y)g(z)b,(y, 2)dydz
where
N
b, (¥, 2) = 1o(¥)o(2) _Zl K} (x — YKHx — )8, . dx.

The following lemma, whose proof we postpone until the end of this section
describes the behavior of b,(y, z).

Lemma 1. b,(y, 2) is a smooth function off the diagonal y = 7 and satisfies
the following estimate

-n—m-— m —n Xn — X0 — 2
|b.(»,2)| < Ct L n< 0 y>n< 3 >

t t

Sfor |y — z| small.

Assuming the lemma we estimate by

J ¢t, xOBO dx

3.1) Ct*"""'lj‘ j If(y)llg(z)lly—z|'"+'”“dydz.
ly—xgl =2t Jlz—xpl =2t

We denote by I, ., ; the potential of order m + 1, i.e. convolution with the
kernel |x| ~"*™*! in R". Assume first that m + 1 < n.
In the case r > n/(n + m + 1) select p; < p and g, < g such that

1 1 m+1

9. P ~ n

This is always possible since the expression
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is by assumption strictly less than (m + 1)/n. Holder’s inequality together
with the Hardy-Littlewood-Sobolev theorem on fractional integrals give
that

13.1)| Ct_"nm_lufx|y—x0|52t“L”' Hlm+1(gx|z—x0| ]
C't_"_m_l”fxly—xolsh”LP' "gXiZ‘xo(SZ‘"Lq’

e A (N R (DR R

N NN

where by x, we denote the characteristic function of the set A. By the choice
of p; and ¢g,, the exponent of ¢ above is equal to zero and we conclude that
ifr>n/(n+m+1),

(3.2) sup < C(S1P* o)) P11 171 Geo))

t>0

J‘ ¢t,xoBO dx

In the case r = n/(n + m + 1) simply repeat the argument above with p = p,
and g=¢q,. Wegetifr=n/(n+m+1)

(3.3 sup < C((S 100D P (181D * (o)) 2.

t>0

J' 1,5, Bodx

Conclusions (2) and (3) of Theorem IIa follow as in Theorem I. In fact (3.2)
and (3.3) are repetitions of (2.2) and (2.3) in Section 2.

When m + 1 = n only the case r > n/(n + m + 1) = 1/2 can occur. Then
(3.2) follows from (3.1) directly from Holder’s inequality.

It remains to prove Lemma 1. We have that

Xo— )Y XO—Z>
’

1
b(y,2) = Wb< ; ;

where
N
b(y,2) = n(¥)n(z) j Z)l K}(y - 0)K iz — 0)$(0) do.

The estimate for b, in Lemma 1 is then equivalent to the estimate

1b(y,2)| < Cly — z|"* '~ "n(¥)n(2).

The vanishing moments assumptions for B(f, g) are equivalent to the condi-
tions

JZK}(y - 0)KXz — 0)0*do=0 forall |a|<m.



82 Loukas GRAFAKOS

We can therefore write b(y, z) = 7(¥)n(z)d(y, z) where

d(y,2) = j 2Ky - 0K}z - 0)[¢(0) - 2 (y)(v - y)"} do.

lof=m Oy

z‘m+1—n‘

It will suffice to show that for |y|, |z| < 4, we have |[d(»,2)| < |y —
Fix a smooth function {(¢) on R", equal to 1 on |o| < 16 and supported in
|o| < 32. Split d(y,z) =1, + I, where

11=J?K}(U)Kf((z—y)—0)[¢>(0+y)— ES] —a—¢( }i‘(o)dv

L= IZK}(G)Kf((z -y - 0)[¢(0 +y) - ZS }(1 — {(9)) do.

Then ¢(o + y) = 0 in the integral I, and |6 — (z — y)| ~ |o]. It follows that

o

¢
27" (62)]

|o]°|1 - ¢(0)| do

L] < CZ,j 16lffl"‘la—(z—y)l‘”IZ

alsm

<C j o] ~"lo] ~"]o| do
lo| =16

SCLCly—zm*1="
since |y — z| is small and m + 1 — n < 0.

Finally we treat the term ;. First fix an / and a y and let

aa
a,(0) = K }(v)s“(a)<¢(a +y) - aZsm ay¢ (»)o* >

a, is a smooth function away from zero and has compact support. We use the
mean value theorem to write

a,(0) = K(0) " Z’]H ay (Ey y+a)0”

for some &, , ., between y and y + o. It follows that

a,©0)= 2 a,,0)

|la|=m+1

where
a, (o) = 1(0) (Ey y+a)0%

Each a, ,(0) = |o|™" 1- "X, (0), where X, (¢) is homogeneous of degree 0 in ¢ and
bounded above and below on the unit sphere |s| = 1. We have the following
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Lemma 2. Let y(o) be a compactly supported function in a neighborhood
of 0 such that Y(o) = B,|0|'x(0) as |a| = 0, for some —n <1< 0, B, constant
and Xx(0) homogeneous of degree 0 in o and bounded above and below on the
unit sphere |o| = 1. Then for any Calderdn-Zygmund operator T, there is a
constant C depending only on T and on X such that the estimate | T(Y)(w)|
< CB,|w|' holds as |w| — 0.

The following short proof of Lemma 2 was suggested to me by Peter Jones.
Fix a smooth compactly supported function 6 equal to 1 on half of its support
so that

[x|'~ > 27762’x) as |x|—0.
Jj=z0

Then
T)(w) ~ 2 Bo2 ' T(0x)(27w).
Jjz0
T(6x)(w) is bounded near zero and has rapid decay as |w| — . Therefore the

terms in the sum giving T(y) with 2/ < C/|w| contribute

<CBy, 2, 277<CBy,<CBylw
Jj=log(C/|w))

while the terms with with 2/ > C/|w| contribute

CyBy, 2, 2772\ w)"N < CBy|w|
Jj=log(C/|w|)

as |w| — 0. This finishes the proof of Lemma 2.
We conclude that (T2(a,, ,)(z*— »)) is O(|y — z|™*' ") as |y — z| = 0. Since

I =2 Yl (T7a,,)(z ~ )

i |lal=m

it follows that I, satisfies the required estimate I; < C|y — z|™*'~". The
proof of Lemma 1 and hence of Theorem IIa are now complete.

5. Proof of Theorem IIb

We will now combine some ideas from Theorems I and Ila to prove Theorem
IIb. Again we only need to do the case r < 1. Fix ¢ and 7 as before and split
the K-linear operator L = Ly + L; + - -+ + L., asin Theorem I. Already the
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treatment of term L, presents some differences. First of all for a fixed j define
s; by s; ' +p ' =r"' L, is the sum of K terms of the form

L(fls ] (nlf[)(x) - ("hfj)(xo), .. ,f[() + L(fla RIS (T’lj}')(xo)’ e ,fK)'

By Lemma 1 in [CG], for any F in H” and v sufficiently smooth we have that

j Fydx| < F* (xg)Ny, (%)

for any x, where NXO(\//) is the norm of ¢ as defined in [CG] and F* is an L”
function with |F* |, < C|F|,,. A computation after Lemma 1 shows that
if Y = T, /) — T f)(), then sup,, N, (4) < CIf*(x0). An
application of this fact with A= F gives that the maximal function of L,
satisfies

sup
t>0

j ¢t, xoLZ dx

M
4.1 <2 X sup
j i >0

Jj=1li=11

J‘@,XO(T’,-'(mﬁ)(X) ~ TIn f)X%o) + T (i f)XoDA] dx

K M
< Cj; ,-; | f1*Oio) () * (o) + (T f; (o) () (x0).-

If 5;> 1, the argument in Theorem I applies. Suppose then that s; < 1. We can
assume by induction that

”A{:”Hs, = (A{)* “sz < Ck];[j ” Jx "Lp-

By Hoélder’s inequality, the L" norm in X, of the last term in (4.1) is bounded
by

K M
C 3 B A L " Lo+ 1T "1,

Mz

K
SC2 2 Sl I1 1 ficl o
j=11 lsksK

k#j

1

K
= C IT | /el o

the term L, can be treated similarly. A simple computation shows that the N,
norm of the function

¥ = (T ) — T )N T30 /HX) = Ti(n1./)(%)
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satisfies

sup Ny, () < CIf1* o)l fil*(xo)-

As in Theorem I, we write term L, as L, = L,; + L,, + L,; + L,,. Since the
A/ satisfy property (1.1), for each j,/ we can write

R
L= 3 (TI)TIAL,

where each A{” is a (K — 2)-linear operator of fi,...,fi_ i, fjv1>--->Ji-15
Ji+15 +++»Jg. Another application of Lemma 1 in [CG] will give that the maxi-
mal function of any term L,,, u = 1, 2, 3, 4 satisfies the following estimate

sup
>0

4.2)

J‘ ¢t,xoL2u dX

M
<C . Zl] p _ZI (Cof))(CLL) XA Y * () + (A7) (xo)]
<jlsK i=
J<l!

where C,f, = | f}|* + (T))+f and therefore |C,f;| . < C| f;| - Now define
S by sjjl + pj’1 + p,'1 =1.If s; > 1, the argument in Theorem I establishes
the result. If s; < 1, we can assume by induction that

VAL ron = 1Y 1 S C TT il g -
k#j,1

By Holder’s inequality, the L" norm in x, of the right hand side in (4.2) is
bounded by

| L7

sup
t>0

J ¢t, xoLlu dx

M
¢ ) Zl | Cifill oo | Cufil Lo LI AT * [ o + [ ASD ™ [ ]

<j,I<K i=
i<l
M
<C .
=< ]sj’zlsk i; Hf;”LP/ ”fl“l'mlsksK “-fk“LPk
ji<i

<C II B | ficll e

l<k=

We conclude that the L" (quasi)norm of the maximal function of L, is bounded
by a constant multiple of the product of the L”* norms of the f;’s.
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Clearly, this procedure can go on for terms Lj, ..., L, _,. In the case of
the term L, _,, the operators Aj" "/kK~1 are bilinear operators as those in
Theorem Ila. Finally, as in Theorem I, the terms L, and L, , satisfy the
following estimate

sup
t>0

+ sup
t>0

JI ¢t,xoLK dx j¢t’xoLK+ dx| <C Z (C,!fl)(xo) T (C,{(fK)(xo)-

It follows that the L" (quasi)norms of the maximal functions of L, and L, ,

are bounded by constant multiples of the product of the | f,| s
We are now left with the main term of the decomposition, L,. We have

K
(4-3) J'(ﬁt,xoLo dx = J‘ N J'k]__Ilfk(yk)bt(yl, e ’yK) dyK. .. d}’1
where
K N K
b(yi, .. ¥ = kHI 10 (Vi) J 221 HIK{(yj = )¢, 5, dx.
= i=1y=

We first do the case r = n/(n + m + 1). We find g, > p,, ..., qx > py such
that

Let

n < 1 1 >
6k = e
m+1\pe qx
The §,’s are positive numbers and their sum is 1. The following lemma describes
the behavior of b,(yy, ..., »p).

Lemma 3. b,(yy,...,Yy) is a smooth function off the planes y; = y; and the
satisfies the estimate

K K
|b:(y15 - . - ,yK)| < Ct_n_m—lkHI 10(Vk) ]Iz |y = le Trrdm+ D,
= j=

Assuming the lemma, we prove the theorem as follows. Holder’s inequality
with exponents p; '+ ¢; '+ -+ gg' =1 together with (4.3) give the
following

K
-n-m-1
& ||f1X[x0-.yl|52t"Lp‘H ||I(m+1)5.(-lexo—y~|52t)"1-"i
j=2 J J

‘ I s,z Lo dx
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where by 7, we denote convolution with |x| "% on R". By the Hardy-

Littlewood-Sobolev fractional integral theorem we get that

sup
t>0

| X
j¢thodx gcfglgt e 1|}f1X|xo...y1|szz||Lij=:[2 ”fjxjxo_yj;szt“m

K
< Csup e~ 1 T (P4 0co) /2872
>0 Jj=1
K
= C I (1;)*C)) ™
J=

of (2.3) inT heorem I and the required weak type result follows as in Theorem I
In the case r> n/(n + m + 1), select s; < p; such that

K 1 n
Sl ——
=1’ n+m+1

By the previous result, we get that
sup j b,z Lodx < C Z ((FARREY

and this estimate is the equivalent of (2.2) in Theorem I. The required result

follows as before.

It remains to prove Lemma 3. Note that

! Y Xo—Y
bz(}’n-‘-,yk)=}—ﬂg~b< ; 1o, Ot K>

where
N
b(yy, -y = H 1Y) { Z (1= 0) - K{(¥g — 0)d(0) do.
The estimate for b, in Lemma 3 is equivalent to the following estimate
—n+d;(m+ 1).

b7y, -5yl < CHn(yk)Hl,vl il

The vanishing moments assumptions for L are equivalent to the conditions

jZHK{(yj—a)a“dazo for all |a|<m
iJ
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We can therefore write

b()’], s syK) = ];[n(yk)d(yla s ’yK)

where
J 3¢ [
Ay -y = | 211K — 0| (o) — 2] 5 (o —y1)
i J lal<=m
All we need to show is that for |y,|,...,|y.| <4, we have that

K
|d(yl9 L ,)’K)l S ]-_-[ziyl _yjl'n+6j(m+1)-
ji=

Fix a smooth function {(¢) on R”, equal to 1 on |o| < 16 and supported in
lo| <32. Split d(yy,...,y,) =1, + I, where

laf=m 0XY

K . 9%
L= j 5K TLKU0, =9 - o)[¢(a - N 22 (e }s*(O) do,

%

S —— (V1) :|

K

L= jZ}K}(o) QK{((yj -y) - a)[¢(o +y1) - Z
i Jj=

X (1 — ¢(0)) do.

Then ¢(o + y;) = 0 in the integral I, and |0 — (; — y1)| ~ |o| for all j > 2. It
follows that

0%

ye —= ()

la|*|1 — ¢(o)| do

1) < czj Hla—(y SR>

|| <=m

N

cj o] =] ~ €~ D"|q" do
lo} = 16

K
< Cs CH |yl _yj|—n+6j(m+1)
ji=2

since | yi— »1] < 8 and the numbers —n + 6 (m + 1) are negative.
We now treat term [, . First fix an i/ and yl,yz, .+ .»Yg such that y; # y, for
J#1 and let

K a
a, (0) = K }(0) _H?,K{f((yj =) - a)§(0)<¢(a +y) - Z % (f Oy >
J= =m

a, is a smooth function away from 0 except possibly at the points y; — y;, it

has compact support and like in the proof of Theorem IIA, it is equal to a
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sum of functions a, ,,

of Lemma 2 with constant By ~ |y; — y,| ™" -- }le -
Also note that

o| = m + 1 where each a satisfies the hypotheses
Vo
l - ".

I = Z (T,.Zayl)(yz - ).
It follows from Lemma 2 that

K
|L| < 2 [(T7a, )(y2 = y)| S Clyp = yy| 77"+ L1y =nl™"
13 Jj=

The above is also true when y, is replaced by y,, s =3,..., K. We get that

@4 LK Clys—y|7"™* 1 I1 |y;=nl™" for s=2,...,K.
3<j=K
J#Es
We raise (4.4) to the power 6, s = 2, ..., K and we multiply all the resulting
inequalities. We get the desired conclusion for |I;| and hence for b(y,, . . . , y)-

6. Examples and Final Remarks

In this section, we discuss examples of operators that satisfy the hypotheses
of Theorems I and II. The determinant of the Jacobian of a map from R? to
IR? gives rise to the following bilinear operator

J(f,8) = R1)R:8) — (Rf)(Ry8)

where R; are the usual Riesz transforms. J has always integral 0 but it does not
have any other vanishing moments. It can be easily checked that for p, g > 1
with 1/p + 1/q = 3/2, J never maps L? x L? to H*’* and therefore our weak
type result is sharp. In general, if a bilinear operator has all moments up to
and including order m vanishing and one moment of order m + 1 nonzero,
it does not map L? x L to HY®*™+D when 1/p + 1/g = (n + m + 1)/n.
Hence, the number of vanishing moments of the bilinear operator gives the
lowest r for which the operator maps products of Lebesgue spaces into H’.
The same is true for more general multilinear operators.

We now discuss probably the most important example that satisfies the
hypotheses of our Theorem II, a bilinear map that involves sums of products
of derivatives of order 2 and is the analogue of the determinant of the Jaco-
bian. The Hessian of a map F = (f, g): R — R? is the spacial 2 X 2 X 2 matrix
which has on the top the 2 X 2 matrix:
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e

ox2  axdy

I IS

aydx  9y*

and on the bottom the 2 X 2 matrix:

[(¥g &g )

x> axdy

g Tg

dydx  ay*

We denote by H(f, g) the determinant of the 2 x 2 x 2 Hessian matrix above
defined as follows

_ Y e ¥f g &@f g I P
~ ax* 9y* axdy dydox dyox dxdy = dy® x>

H(f, g)

After formally replacing the partial derivatives of F with the corresponding
Riesz transforms we get the following bilinear operator

H(f, ) = RINR38) — (R R.N)RyR, 8)(RyR,8) — (RR )RR, 8).

It was shown in the last section of [CG], that A has integral and first moments
zero. By Theorem Ila it follows that A maps L? x L? to H" for all p,q > 1,
where r is their harmonic mean. It follows that the determinant of the Hessian
H, of a map F: R* - R? maps pairs of functions with Laplacean in L? x L4
into H" for all p, g > 1, where r is their harmonic mean. This result generalizes
the correspoding theorem about the Jacobian in the case of second order
derivatives and has analogues in higher dimensions.

We now discuss generalizations of H in R". Let F = (F,, ..., F,) be a map
from R” to R". Form the n X - - - X n matrix M by stacking the n X n matrices

O°Fy , k=1,2,...,n
ax; 9%, /, ; v

on the top of each other. We call M the n-dimensional Hessian of F. The
determinant of this matrix is defined by induction on # as the sum of its n?
minor determinants suitably signed. After formally replacing the 4/ ij
derivative of F by the j-th Riesz transform, the n-dimensional determinant of
this matrix gives rise to an n-linear operator A" with vanishing integral and
first moments. When n = 2 the resulting bilinear operator A2 is the operator
H defined above. When 7 = 3 the resulting trilinear operator A>(f, g, ) is the
sum of the nine terms (—1)~ +J'(R,-th)b?,.j( /. &) where each H;; corresponds
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to the determinant of a Hessian of a 2 X 2 X 2 minor. It is therefore clear that
that A satisfies the hypotheses of Theorem IIb. Our result then says that that
for p,q > 1, A maps L? x L? into H” when the harmonic mean r of p and
g >3/5. In general the operator A" maps L? x L? into H" for 1 >r>
n/(n + 2) since it follows by induction that H™ has integral and first moments
zero. (k=1.)

It is conceivable that determinants of matrices of higher order derivatives
of maps from [R” to R" give rise to multilinear operators with higher moments
vanishing but these cases are not investigated in this article. Examples of
bilinear operators with moments of all orders vanishing in one dimension
are

D, (f, g) = fg — (Hf)(Hg)
and

D,(f, g) = f(Hg) + (Hf)g,

where H is the usual Hilbert transform. D; and D, are the real and imaginary
parts of holomorphic functions and their mapping properties are well unders-
tood. More generally, examples of K-linear operators with all moments
K
vanishing are given by the real and imaginary parts of [[ (fy + iHf%)-
k=1
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