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Hardy Space Estimates
for Multilinear
Operators, I

Ronald R. Coifman and Loukas Grafakos

Abstract. In this article, we study bilinear operators given by inner products
of finite vectors of Calderdn-Zygmund operators. We find that necessary and
sufficient condition for these operators to map products of Hardy spaces into
Hardy spaces is to have a certain number of moments vanishing and under
these assumptions we prove a Holder-type inequality in the H” space context.

Introduction

Probably, the most important example of a multilinear operator is the determi-
nant of the Jacobian of a map F: R” — R". In two dimensions the determinant
of the Jacobian of a pair of functions (£, g) from R? to R? is the bilinear map

Kho=2 kI %
x; 0x,  0x, 0Xxy
which has very interesting properties. A theorem of P. L. Lions and Y. Meyer,
says that J maps the product of Sobolev spaces L? x L? into the Hardy space
H'. This theorem has been extended for L” Sobolev spaces by [CMLS] as
follows: The determinant of the Jacobian maps L% x L? into H” as long as
1>v>2/3; p,g>1and p~ '+ g~ ' =~y !. The spaces H'(R"), ¥ < 1 are
the usual real variable Hardy spaces as defined in [S] or [SW]. The result of"
[CMLS] is false when v = 2/3 and leads naturally to the following question:
Why can’t the Jacobian-determinant map into some H" space for v < 2/3?
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46 RoNALD R. CorFMAN AND LoUKAS GRAFAKOS

In these articles we prove that a more general class of bilinear operators
map into H" for arbitrarily small r > 0 only when they have a certain number
of moments vanishing. The determinant of the Jacobian has always integral
zero but is does not have higher moments vanishing and this is the reason it
cannot map into H” for v < 2/3. Other bilinear operator on R” have higher
moments vanishing and they map into H" for r < n/(n + 1). (The index 2/3
corresponds to the case n = 2.)

A good example of an operator with integral and first moments vanishing
in R? is the determinant of the Hessian of a map (f, g): R — R? given by

*f d%g O g *f d’g . *f d%¢

H(f,8) = - - :
(/.8 ox* 9y* 9xdy dydx dydx dxdy  9y* ox?

S _
By introducing the Riesz transforms, R;f(§€) = i£f(£)/|¢| the Jacobian-
determinant J and Hessian-determinant H can be studied through the bilinear
maps J and H given by

J(f, 8) = (R./)R,8) — (RLf)(R,8)
H(f,8) = RIf)R38) — 2(R,R, /)(R,R, 8) + (R3f)(R3g)

which are of the form
N
©.1) >, (T)(T59)
J=

for some Calderon-Zygmund operators "{TJI.] AT 12.].

In part II of this work, we prove that H maps L” x L? into H for p,q > 1,
1>r>1/2and r~!=p~! + g~ . We conclude that A maps functions with
Laplacean in L? x L? into H" for the same p, g, r as above. The exponent
r=1/2 is a natural lower bound in this case since the assumptions p, g > 1
imply that r=(p~ 14+ g H 1> 1/2.

The question investigated in this article is under what conditions can we
have boundedness into H” for r<1/2. Since r=(p~ '+ g~ 1)~ we must
have p <1 or g <1 and obviously the L? spaces are not a suitable starting
pont. If we replace the L? spaces with H” for p < 1 however, we get bounded-
ness into H” for arbitrarily small . We treat general bilinear operators of the
form (0.1) and we assume that these operators have for a given r > 0 a required
number of moments vanishing to map into H'.

1. Preliminaries

We are given two families of tempered distributions {K}}Y_,, (KN |,

homogeneous of degree 0 and we are assuming that:



HARDY SPACE ESTIMATES FOR MULTILINEAR OPERATORS, [ 47

(1) The Fourier transforms of {K}}, {K?} are bounded functions.
(2) (K]}, {K?} are sufficiently smooth away from the origin and

a'Y

Kl

<C|x|"“|’|

for all |y| < M for some sufficiently large M, (j = 0 or 1).
(3) For all multi-indices o: and ¥ of norm less than M for some large M, the
partial derivatives of (K]} and {K?} satisfy:

3 o : i Y
W W(Kf(x - -Kix)| <A Wl%lﬁﬂﬁ

for |x| >2|y|, (j=0or 1).

We call T’} the operator given by convolving with K ; and T ?the operator given
with convolution with K ,2 Theorem 12 in [FS] says that the operators {T}} R
{ T?} map H” - H”. The main result in this article is the //” boundedness of
the bilinear product

B(f,8) = 2(Tif(T72)
where f, g lie in suitable Hardy spaces. We have the following theorem.

Theorem. Suppose (T}}, (T3}, i=1,2,...,N are Calderdn-Zygmund
operators on R" as above. Fix p,q < 1 and let

N
B(f,8) = ,;1 (Tif)(Te).

Assume that for some k > 0 integer, for all multi-indices || < k and for all
f HP-atoms and g H9-atoms the moments

[xB(f,9)mdx=0, o<k
Then B can be extended to a bounded operator from H? x H? — H" where

7 <r< " and 1—l+1
n+k+1 Sn+k r p gq

Remarks.

(1) Note that if fis an HP-atom and g is an H%-atom the integral defining
the moments of B(f, g) is well defined, for (T;f)(x) e L? for all p > 1
and decays like |x| ~"/P=DI-n=1 a5 |x| — 0. Therefore, the functions
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x*(T}f)x)NT?g)(x), |a| < k are L' around 0 and decay like

|xl-—[n(l/p—l)]—[n(l/q—l)]—Zn—2+[tx[ as |X| - oo,
The exponent above is less than —# as long as |a| < k and r < n/(n + k).
The operator B(f, g) is certainly well defined when fand g are finite sums
of atoms and the assumptions make sense for the range of p, g and r as
above. The conclusion is that B(f, g) maps H?” X H?— H'™ as long as
it has » moments vanishing.

(2) Our theorem is not vacuous if we assume that k£ > n. Otherwise, k <n — 1
implies that n/(n + kK + 1) > 1/2 and thus r > 1/2 which is impossible
since r=(1/p+1/q)" ' < 1/2.

Before we begin the proof of our theorem we state and prove a lemma that
will be the main tool in the treatment of all the terms that will appear in the
decomposition of B(f, g) except the main term.

Suppose ¢ is a smooth function and f an H? distribution (p < 1). We are
interested in computing the value of the constant C, in the following inequality

Jf (o) dx| < C,

where, by f Sf(x)d(x) dx we denote the action of the distribution f on the test
function ¢. We have the following

Lemma 1. Let ¢ be sufficiently smooth. For any fe H?, p < 1 there exists
an L? function f* independent of ¢ with | f* |.» < C, | f| o such that

< Nxo(¢)f+ (%), all x,elR,

’ Jf ()o(x) dx
where
N

N @)= 2 j e — Xo| **| A%| (x) dx

for some N depending on n and p only.

Proor. We call N, (9) the «norm» of ¢.
To prove the lemma we use the atomic decomposition of f. Assume first
that f = ag, is an atom supported in the unit cube Q, of R”. We will show that

< N, (#)h(xo)

(1.1) ‘ J‘ ag, (0p(x) dx

where
h(xp) =c(3 + |x|)™* and sezZ*
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is chosen such that 2s > n/p. We are assuming that ag, has at least 2s — n
moments vanishing.
To verify (1.1) we consider two cases

Case 1. x,€3Q, (triple of Q,). Then
| [ a0, 00800 dx| < C [16] dx < AN, (9.

Case 2. x ¢3Q,.

We choose a {(x) in C*(R") function, supported in |x| < 1 and we call
Exy(0) = $Q20x — x0)/ |xo]). Then §x,(¥) is supported in |x — x| < |x0]/2.
Note that for s > n/2p, A“aQo is defined because ag, has enough vanishing
moments. We have

[ag,@dx = [(A~*ay )a%¢) dx
= [ £, ag )8y dx + [ (1 = ¢ )A %0y )(A*B)) dx
=I+1L

Term 1 is the easiest to treat. First we claim that |A "aQo | ;= < C. To check
this, write

A~ag (9) = cho e =y 7" ¥agy () dy.

Use the fact that aQo( ) has at least —n + 25 > 0 moments vanishing to sub-
tract a suitable polynomial >,  C,|x|~"**>~lely* from |x — y| "*%
so that laf < = n+2s

Ix__y‘—n+2s_Il Z zca[x‘—"+zs—la|ya <C|Y'_"+2s
al<-—n+2s

and thus get
[A~ap I <C[, Iyl ¥ dy<C.
0
Then we estimate term /7 by

< jlx—xol Z|x,l/2 IIA_saQo"L”‘Asd>| dx

< Clxo| ™% |x — xo|*| A°(x)| dx

Lx—xol = |xyl/2

< h(o)N, (9).
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Term I can be handled with another integration by parts.

= J A%( Or A7 saQo)¢> dx

25—1
= j ( 2 (DI DA ay ) + s*xoa%)qb dx,

j=o

where D’ F is a sum of derivatives of F in x of total order j. Since ag, and
$x, have disjoint supports their product is zero. '

Finally, we claim that D{((A‘sago)(x) decays like |xo| 77 as |x,| = o for
|x — x| < |Xo|/2. We can see this by the following argument. We have

A™%ag (x) = J x =y 7" ¥ay () dy
and therefore
Di(A™"ay)(x) = JD{;(Ix = ¥17" ¥)ay () dy.

Note that the function |x — y|~"*% is smooth near x since y € Q, and
|x| ~ |%o| #30Q,. Using the fact that ag, has —n + 25 moments vanishing we
can subtract the Taylor polynomial of degree —n + 2s of D’(|x — y| ="~ %)
at x to get

DI(A™*2, ()

o

o —nt2sy Vo
(D’|x| =" ‘)E}ago(y)dy-

- [{pi-r=- 5

la|< —n+2s ax”
The expression inside the curly brackets above decays like
'x _ yl —n+2s—j—(—-n+2s) _ le -J as le — o0,
Since |x — x,| < |xg|/2 we have |x| ~ |x,| and thus we get the required estimate
1D£(A"aQo)(x)| < Clxg| ™ s |x| = oo,

Clearly, we also have |Df"fg-xo| < Clxg| = .
Summing on j we obtain

2s—1

2, (027, )DI(A ey )

Jj=0

< Clxo| ™%

and thus

I< Clx| —2sj 6] dx < §(x0) Ny, ().
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Putting estimates 7 and IT together we get the desired conclusion for Case 2.
Our lemma is now proved in the case where f = ag, is an atom supported in
the unit cube centered at the origin. To obtain an estimate for a general atom
a, we use translations and dilations. Observe that the norm N, satisfies the

following properties:
1 .
Nx(,(t—,, ¢<7>> = Nxo/t(d’)

Nxo(d)(' +) = Nxo+y(¢)-

For a general cube Q, the properties above and (1.1) give

‘ fag(xw(x) dx| < Q7PN (¢)h< | Q|1/n>

Summing over all Q we obtain

Ny, @) (o)

jf ()o(x)dx| <
where
f+(x0) = Z)‘ |Q[ —l/ph< IQll/n>

We easily check that | f*|,» < C|f| 4>

([ ([ (zrsa-i i) o)
<[t lorw{ ger) )

< 1l (25)"”
<Gl o

Our lemma is now proved.

2. Begining of the Proof

Fix p, g, r as in the statement of the theorem. Fix a smooth compactly supported
function ¢ > 0 in R" and define

~_1_ Xo— X
P13 = 7 ¢< t >




52 RonNaALD R. CorrMAN AND Loukas GRAFAKOS

where x, € R” fixed. We will show that

SClflarlel e

Lr

j b1,2, VB, £)¥) dx

sup
£>0

for f, g finite sums of H” and H? atoms respectively.

Without loss of generality we may assume that the support of ¢ lies in
{x: |x| < 1}. Fix a smooth cut-off n(x) supported in |x| < 4 such that n =1
on |x| < 2. Call for simplicity 7y(x) = 7(xo — X)/t, 7,(x) = 1 — 4(x). The
reader should remember the dependence of , and 7, on ¢. We write B(f, g) =
B, + B, + B; + B, where

B, = B(nof, 108)»
B, = B(n. 1, 8),

B; = B(f,m8),

B, = —B(n,.f, m8)-

We treat term B, first,
@) - [ o Buax

=2 J‘ 1,5, T ;(01.))0) — T i1 S)XNT 7(n18)(%) — T 1 8)(%0)) dx
+ D THme)) jqbz,xo(x)(T}(mf)(x) — T, f)0xo)) dx
+ 23 Ti(n1.f) %) j b1, 5, CNTn18)) — T(n18)(xo)) dx

+ Z T}(nlf)(xo)T?(ﬂlg)(xo) J' d)t,xo(x) dx.

We claim that for any fixed x such that |x — x,| < ¢ we have that,

sup | T )0 = Ti01./)%)| < Cf* (%)

where f* (xp) is an L? function of x, with | f* |, < C|f| g»-
We verify this last assertion. Fix an / and write

T )X = Ty f)xo)

= j (1 - n<x° t_y>>(K}(x -9 - K% — ) S()dy.
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Call

®(») = <1 - n< s >>(K}(x =) = Ko = ).

® is a smooth function of y and by Lemma 1 we get
| T} )00) — Tl x| < Ny (B)S (o).
It suffices to prove that sup |N, (®)| < C to verify our claim.
t>0

By the basic estimates for {K';} we get that

o o Clx — x
88K — 3) = &K G — )] < o o
Ix — ¥l
Since |x — y| ~ |xo — ¥| and |x — x| < ¢, we get
S 2 |x — Xof
sup |N, (®)| < Csup 2, |y = Xo|” ———mszmsr Ay < C.
t>0 0 t>0s5=0 |y—x0|>2t Ix—y[

We denote by

(THxSf(x) = sup

j <1 - n(xo—;l>>K,~l(xo - Nf»)dy

the smoothly truncated maximal singular integral of f. By [FS] we get that
I(THsf | gr < C| f|gr- We now use (2.1) to estimate B, as follows

j ¢z,xoB4 dx| < Zf+ (x0)g™ (xo) j ¢’t,x0 dx

+ Zf+ (xo)(T,?)*g(xo) j b1, x, dx
+ B TDS 00" 60) | 60z,

+ 21 (TDx )T )8 (%) j by, x, OX.
Since the right hand side above is independent of ¢

(2.2) sup

t>0

J ¢z,xoB4 dx| < Z ([T (xp)e™ (x) + (T,})*f(xo)g+ (xo)

+ )T 2)g () + (TP SONT7)x8(X0)} -
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We raise the right hand side in (2.2) to the power r and we integrate with
respect to x,. We then apply Hoélder’s inequality to the right hand side with
exponents p/r and g/r. We finally get that

SUUS ol e+ 1TDef o le™ | 1
i
+ 1 o 1(TDagl o+ T DS | o 1 (THrel 14}

SCISf e |8l e

sup
£>0

j ¢t,xoB4 dx

and this is the required estimate for the term B,. We now estimate the term
B;. We have

j¢t,x0B3 dx = j‘d’t,xoB(f’ 718) dx = 11 + 1,
where

L=2] J‘¢t,x0(x)T,!(f )ONT;(118)(x) — T7(118)(%0)) dx,

L = 2 T7(n,8)(Xo) j¢t,xo(x)T}(f )(x) dx.

Let us start with the term 7;. Fix an i and call
®(x) = ¢, CNT:(118)(x) — T;3(n18)(Xo)-

® is a smooth function of x. We claim that Nxo(d>) < Cg* (x,). To prove the
claim, we first estimate

aB
= (T — THmg)x)

aﬁ
= ‘ jm(y)(é;f (Kx —y) — KXxo — y))>g(y) dy‘

= | j‘l'(y)g(y) dy‘

<N, (92" (x0)-

where we set

aB
Y(y) = m(y)<§g(l<?(x —¥) — Kxo — y))> .
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An easy calculation, using the basic estimates for {K,.z}, shows that for
,X - xOI <4t

S S s aB
N, ()< 2 |y — x> A <m(y) ——5 (KX x - y) — Kxy — ¥)) I dy
5=0 Jly—xpl>2t ox
<C3—WL
Therefore

aB
’b}ﬁ‘(T?(mg)(x) — T &) | < Ct™Plg* (xp).

<C2

N
s=0

2s
j bx = %0|* 25 |DEF 78y, . | |IDUTHm18)(x) — T2018)(%))| dx
[x—xol <t j=0

where by D{;F we denote any derivative of F in x of total order j.
The above can be dominated by

N 2s
c j X — x| 2 7" ® D dx g (x) < Cgt (o).
lx—xol <t

5=0 Jj=0

This estimate finishes the proof of the claim.
An application of Lemma 1 gives that

L] < 20N, (BT )" (%) < C 2287 )T f) ™ (x).

Since the right hand side does not depend on ¢, the sup |/;] satisfies the same
estimate. Holder’s inequality will give that >0

<C2lg" I [T 1

sup |1
t>0

L

< CZI_: 12l g | Tif | 11

< C”f”[—n:ug"}lq'

We now continue with the term 7,. Term 7, satisfies the estimate

L] < C 2 (TH)g(o) (T} f)* (),
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where by (T}f )* we denote some smooth maximal function of T;f and the
same argument as before will give that

S Clelgal S o

“ sup ||
t>0 Lr

This estimate concludes the treatment of term B;. We deal similarly with
term B,.

3. The Main Term

We are now left with the term B; which is the main term of the bilinear operator
B. We start by introducing some notation. For 0 < § < 1, we denote by A; the
Lipschitz space of all bounded functions f on R” with

sup sup |h| 7% f(x+ h) — f(x)| = [ f1a, < +oo.

xeRn heRn
FormeZ, m > 1 and 0 < 6 < 1, we denote by AJ’ the space of all bounded
functions f on R” whose partials of order m exist and are in A; and whose
partials of order up to m — 1 are bounded. The | | am TOTM of a function is
defined as the sum of the | | A, DOTMS of its partlals of order m. It is easy
to see that functions in AJ’ satlsfy

fx+h - > af()— "f"AG |h|™*® for all xeR", helR"
lol=m 0X%

Form,leZ* U {0} and 0 < v, 6 < 1 we define the space A 5’ of all bounded
functions b(y, z) on R* x R" Wthh are in AY as functions of y and in A} as
functions of z and satisfy the condition:

a

al<=m
5, 7 K
- b(y + h,z
i3 028 )
e 9° he kB
+ b , <Clh m+'Yk1+5
Ialzslm lﬁlzs:1 ay~ az° O r B8l |A™ " k]

for all y,z,k,heR".
This double Lipschitz condition above is equivalent to either one of the
statements below

lol=m By

arx Dl
3.2 |h| ""‘*(b(y +h2)— > b(y,2) —>
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is in A} as a function of z

3.3) |k|"‘5<b( -3 2y )1‘5>
. Y,z et aZB I,z '3!

is in AY as a function of y for all y,z,k, heR", |h|, |k| < C.
We will now state and prove the main lemma needed to estimate term B; .
Lemma 2. Suppose that p,q < 1 andlet m = [n(1/p — 1)], I = [n(1/q — D].

Suppose that the compactly supported function b(y, 2) is in A’v"a’ . For x,e R"
let

1 — -
j FDE@ b("" - 7, x°t x)dydz

S(f, 8)(x) = sup

1 1 1
Then S(f, g) maps H? x H?— L" where o= ; + 3 as long as

R R
semy0)- o)

Proor. Let aQ( y) be an H”-atom and b,(z) be an H%atom. We will first
estimate S(aQ, bR)(xp). Let Yo be the center of the cube Q and z, the center
of the cube R. We have the following four basic estimates:

and

Case 1. x,€3Q and x; € 3R, then
S(ag, b)) < O~ 7x;5 (ko) [R| ™ /T3 (x0).
Case 2. x5€3Q and x, ¢ 3R, then

IRI—l/q+1+(I+6)/n

dist {xo, R}"*17%

S(ag: b)) < ClO| ™ 17X, 5 (x0)

Case 3. x, ¢3Q and x; € 3R, then
IQl—l/p+1+(m+‘Y)/n

diSt {xo’ Q}n+m+7 IRI

S(aQy bR)(xO) S C - l/qst (XQ).
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Case 4. x, ¢30Q and x, ¢ 3R, then

|Q|—1/p+1+(m+’v)/n |R|—1/q+l+(1+6)/n

<C-= - '
S(ag, b)) S C- G DT 7 ~dist (g R7F T8

We indicate how to prove the basic estimates.

In Case 1 we just use the L bounds for atoms.

In Case 2 we need the following estimate which can be easily proved by inte-
grating (3.3) over the y-support of b.

3°b

% dy < Clk|'*® forall z,keR"
!

kB
(ys Z)F

3.4 j 'b(y,z +k) - |ﬁ|Z

Using the fact that b, has moments up to order / vanishing we have

1 _ _
J‘jaQ(Y)bR(Z)‘tﬁb<xot 4 ’ th z>dydz
1 _ _
_ J‘aQ(y)J\bR(Z)_tT<b<th y’Xot Z>

3.5) 5 3% <xo—y’Xo_ZR>i_<zR_z>6>
ff=02° \ A A

By (3.4) the above can be estimated by

1+é

27| g

1

- _ 1
1ol ool Rl 5 |

|R| -1/g+1+(1+8)/n
< ClQI B l/pX3Q(x0) tn+l+ s ’

Note that (3.5) is nonzero if
t 2 dist {(xo, %), Q X R} ~ dist {xo, R},

since x, € 3Q and x, ¢ 3R. The required estimate for S(aQ, bg) in Case 2 fo-
llows. Case 3 is similar.

To get the estimate in Case 4 we use the double Lipschitz estimate for b.
We have
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1 Xo—Y X —2
j‘Jl aQ(y)bR(Z)ﬁ,{'b< / ’ P — |dydz

_ 1 Xo—)V Xo—2
- ﬁ a9 (Nbe@ -z {b<_{_’ .
_ > b (X%—yo Xo—2z\ 1 (ro-y\"
|lal=m Byo‘ t t a!l t

3.6) 3°b <x0—y xo—zR> 1 <zR—z>‘*

- 621 3z° r t B! t
3~ 3°b <xo—yQ xo—zR> 1
lof2m 16721 3y* 02" t t a!

Yo—r\* 1 (zg—2z o
><<———~t )B!( ; )}dydz.

1+8

dydz

Apply (3.1) to bound the above by

_ _ 1
clol IR [ |,

< Ct—2n—m—1——‘y—6lQ! —1/p+1+(m+"l)/n|R| ~1/g+1+({+6)/n
= .

Y=Y m+y Z— 2
t

Note that (3.6) is nonzero as long as
t 2 dist {(xg, Xp), O X R} ~ dist {x,, Q} + dist {x5, R},

because x, ¢ 30 and x, ¢ 3R.
Since

dist { (X, Xp), @ X R} "2 ~m=7~!=8
< Cdist {x,, Q) """ ™ "dist {x5, R} "',

the required estimate for (3.6) follows immediately.

We have now proved our basic estimates and we continue with the proof
of the lemma.
Let fe H?, g € H? be finite sums of atoms

f=Z)\QaQy g=ZﬂRbR
where A\, > 0, pgp >0 and

(ZM) = 1l (Z8)" = N8l
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Bound

S(> £)%0) X D hAghe Sag, be)xo)

O R
by L, (xp) + Ea(xo) + E3(xo) + E4(xo) where
Ej(xo) = % ;xQMR S(aQ, bR)(xo)

and the sum above is taken over all Q and R related to x, as in case j above,
1<j<4
We will show that each L isin L'(dx,) with L™ quasinorm bounded by

Clflan|gl me- Then we can sum on j, 1 <j < 4. Use Holder’s inequality
with exponents p/r, q/r to get

1/r
<J L, (xo) dxo>

1/p
< C<j‘ (Z o] —I/PX3Q(x0))P dxo> (j\ (Z”le ml/qu(xo))qu())

—-1/q

1/p 1/q
Cq ZKZIQI'ldxo> <j‘ Zu%lRl"dxo> (since p, g < 1)
30 3R
C(Z2) " (Zws)" < C1 Lo 8l sa-

Similarly

1/r
<j Z40x) dxo)
‘Q!—l/p+1+(m+’7)/n D 1/p
<C j (Z)\Q dist[xo,Q]”"’”*" > dxy
dist{xy, 0} = C|Q|1/n

|R|—l/q+l+(l+6)/n q 1/q
dx>
0

Z kR dist {x R}n+1+6
dlst{xo,R}zCIRll/n

|Q|—1+p+(m+’v)p/n 1/p
<C N — dx,
h j 2% Gis (3, 0177 L0
dist{xy, Q} = C|Q|1/n

&R|-1+q+(l+6)q/n 1/q
2 dx, >

R dist {x,, R} +/+04
dlst{xo,R}zCIRll/"

<C(2%)""(Zuk) " <ClF Luslel s
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where we used the fact that (n + m + v)p > n and

dist {xo, Q} ~ @+ + VP dx, ~ | Q|+ m PR

dist{xo,Q}ZC|Q|V" _ IQ]I_p_(m+-y)p/n

The same way we can prove that
1/r
(J Ez(xo)rdxo> < C|flaw ”g"Hp
and

1/r
(J 23(x0)’dx0> SC|fluolel ge

using a combination of the estimates above. Finally we approximate the
general fe€ H? and g € H? by finite sums of atoms to finish the proof of the
lemma.

We now continue the proof of our theorem by estimating the term B,. We
have

1 - -
j¢t,xoBl dx = Jff(Y)g(z)?;b<x0t 2, xot z>dydz

where we set
b(y,2) = 2 1Y) j B()K (¥ — 0Kz — 0)do.

N :
To apply Lemma 2 we need to prove that b(y, 2) € A’;" s where m, v, [, 6 as in
Lemma 2.
Note that the assumption that B( f, g) has moments up to order k£ vanishing
gives that the kernel of x*B(f, g)(x) is identically zero for all || <k, i.e.

ij"‘K}(y—x)Kf(z—x)dx=0 for all y,zeR™

We can therefore write

> % (o —y)"

b(y,z) = n(x)n(») Z j <¢(0) - = _T_>K 1y — oKXz — 0)do.
F o=k 0y ol

The fact that b(y,z) € AL, where m, I, v, & are as in Lemma 2, will be a
consequence of the following two lemmas.
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Lemma 3. Let G be a function on R" of class A} and let a(y, o) = G(y — o).

(a) If m, | are non-negative integers such that m + | = s and v, 6 > 0 such that
Y + 6 =1, then a(y, 0) is of class A"}
(D) If m, [ are integers such that m + [ = s — 1 then a(y, o) is of class A'l"l’

Lemma 4. Let K be a convolution Calderén-Zygmund kernel on R". If
a(y, o) € A"} then

b(y,z) = Jﬂa(y, 0)K(z — o) do e m,’al-

Proor. We denote by 0*G the partial derivative of G of order
o= (a,....,a,). To prove Lemma 3 (a), by (3.2), it suffices to show that
the function

a%a

1 hoz\
F(U) = WT‘P’Y (a(.y + h’ U) - Z ol a (}’, U)E'—)

laf=m 0y

1 h*
= i <g()’ +h-0)— 2 3Gy -o0) "—,“>
al

al=m

is in Aé in the variable ¢ uniformly in y € R". This will be a consequence of
the following two observations:
(1) F(o) is in A} with norm <Clh|'~".
(2) F(0) is in A} with norm <C|h|~".

Interpolation will then give that F(o) is in Afs with norm <C. (Recall
Y+d6=1.)

Both observations follow from Taylor’s theorem. For some &, , between y
and y + h we have that

hO(
F(o) = |h| _m_7<l !Z_; (0°G(§,n — ) — 3°G(y — 0))21_!_)
and therefore for a fixed 8 with |3| =/ we have
he
O°F(o) = || ‘”M(l % 077G - 0) - G0 - 0) ar)'

Since |a + 8| = m + I =s and since 3°G is in A, if || = s it follows that
3°*PG is in A, and thus (3°F)(o) is in Ay = L™, with norm

SClA™" 3] [8°G|, 1§, , —yI < ClA|' ™.
1 1

al=s
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Also, from the translation invariance of the Lipschitz norms it follows that
6"+ﬁG(£y,,, — 0) and 8**PG(y — o) are in A, in o, and therefore the function
0%F(0) is in A, in ¢ with norm <C|k|~". We proved that the arbitrary partial
derivative 3°F of F of order / is in A, with norm <C|A|'~" and in A; with
norm <C|h|~". This concludes the proofs of the observations. Note that
both norm estimates are independent of y.

Part (b) of Lemma 3 follows by a similar argument. We need to show that
the function

1
F(U) Ih|m+1 <a(y+h U) Z a a( ’ )—>

|l =m
- L (6r+h-0- 3 °6r-ol
BT = M G

is of class A} in the variable ¢ uniformly in y € R". For some £, n between y
and y + A, we have that

| I—m 1 o ) h®
SRR N

Fix a multi-index 8 with |8| = /. Clearly
hD(

Ih|— ) a+f ’
(m + DT |a|zm+la &=y

3°F(o) =

Since in this case |« + 8| =m + 1 + [ = s and the partials of G of order s
are in A, it follows that 8°F is in A, with norm independent of y. There-
fore F is in A} with norm independent of y and this concludes the proof of
Lemma 3.

We now indicate how to prove Lemma 4. It is a well-known fact that
convolution Calder6n-Zygmund operators map the Lipschitz spaces AT
into themselves. If a(y, 0) eA';"’; then by (3.2) the function

. - %a he
e v no- 5 200,00

is in A’a in the variable ¢. Convolution with K in ¢ will give that

§h|""“7{b(y+h,z) > o°b —(,2) }eAg in z

|| =m acx

and by (3.2) again we get that b(y, z) € Afy"; This finishes the proof of Lemma 4.
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To conclude the proof of our theorem, it suffices to check that the functions

a° 11
5 28l

1
o2k 0Y® a! }K"(y 9

a;(y,0) = i(b(a) -

are in A’;’BI . Then Lemma 4 will give that b(y, z) is in A;"BI also.
We write

wo)= % 69,0 " Kl - o)

Fix i and « with |a| = k + 1. It suffices to show that
¢(&,,,)(0 — YK {(y — o) e A",
Since ¢(£,,) is a smooth function of y and o it is enough to show that
(0 = )°K}(y — o) € AT

for suitable m, [, v, 6.

As a function of the variable x, the function x*K }(x) is smooth everywhere
except possibly at zero and it behaves like |x|**!|x| ™" = |x|¥ " as |x| — 0.
Therfore, x*K}(x) e A*~"*'. We are going to apply Lemma 3 with G(x) =

x*Kj(%).

1

Let m = Hi_ 1) = [,,(i_ 1)] Since T h L ntk+l
p q n r n

it follows that m + /is either k — nor k — n— 1. If m + [ = k — n just pick
1 1
Y > n<; — 1> — mand6>n<g— 1> — [such that v + & = 1 (this is possible

y/

1
since 1 > n<7 — 2> -—m— l> and apply part (a) of Lemma 3 withs = k — n.

Ifm+Il=k—-n—-1=s-1, apply part (b) of Lemma 3.

It follows that (¢ — »)°K }( y —o0)isin A:la[ where v and 6 satisfy the hypo-
theses of Lemma 1. The same is true for a;(y, o) and therefore for b(y, z) by
Lemma 4.

4. Applications and Examples

The vanishing moments properties of the bilinear operators

B(f,8) = X (Tf)(T%)
J
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can be written in terms of relations involving multipliers. Let mj1 and mJ2 be
the multipliers corresponding to the Calderén-Zygmund operators le. and T 12

N
B(f, g) has mean value zero if and only if B(f, 2)(0) =0, i.e.
P N
ST+ T =o.
This is equal to

2 jm}( ~-9f(-HmHHEB dE =0
J

and since f and g are arbitrary the above is equivalent to the statement

2mi(—=Hm3§) =0 forall £#0.
J

Similar reasoning shows that B has two moments zero if and only if the
following identities hold

;m}(—é)m§(£)=o for all £#0,
o Y m? ) = .
;’"j( £)<ayimf>(9_0 forall £¢#0, i=12,...,n.

The second identity can be replaced by

ad
%‘, (55 m}>(—g)mj(s) =0 for all i
in view of the first identity and the product rule.
Generalizing the above, we get that B has all moments of order up to and
including k vanishing if and only if

am
oE"

“4.1) Z%‘-(—E)( m,2->(£) =0

J
holds forall £#0,i=1,2,...,n;m=0,1,..., k. The identities above give
us an easy way to decide whether a bilinear operator has vanishing moments.
For example, using (4.1), it is trivial to check that the bilinear operator J(f, g)
= R, fR,g — R, fR,g has integral zero. To include an example, we check that
the bilinear operator H(f, g) = (R1)(R38) — 2(R,R,/)(R,R,8) + (R3)(R1g)
has vanishing first moments. We calculate (4.1) when m =1 and i = 1. Let
T:=R?, T>=R2, Ti= —2R,R,, T>=R,R,, Ty =R3, T? =R} and let
mi(§) = —£1/|87%, mi® = —&/|8°, my©® = 26,.&/|E, m3@®) = —& &/|87
mi() = —£2/|¢)%, m3(¢) = —£3/|£|* be the corresponding multipliers. Then
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> d £7 ><25 £2> <2££ >< —£3+£2$>
_gon_ 2 2, [ __S1 1€2 162 2 162
20, mi® < AN ARNTE ER

__E%_><__2E_lfi_>_
+< EAER

An example of an operator with two vanishing moments is given on R! by
the bilinear map B(f, g) = fg — (Cf)(Cg) + (Sf)(Sg), where the operators Sf
and Cf are defined on the Fourier side by

/\ ~
Sf(§) = sin (log |£)) f(8)

and

VAN a
Cf (%) = cos (log |£]) f(9).

One can easily check using (4.1) that B has integral and first moments zero
and hence by our theorem it maps H? x H?—> H" for p,q>1 and
122r=(p '+q ) '>1/3.

Examples of bilinear operators with moments of all orders vanishing are
given on R! by the maps

D,(f, g) = fe — (Hf )(Hg)
D,(f,g) = f(Hg) + (Hf)g

where H is the usual Hilbert transform. It follows from our theorem that D,
and D, map H? x H?— H' for all p,q <1 and r their harmonic mean. D,
and D, are the real and imaginary parts of the holomorphic function
(f + iHf)(g + iHg) and they can also be studied through complex analysis.
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