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Weak Type (1,1)
Estimates of the
Maximal Function for
the Laguerre Semigroup
in Finite Dimensions

Ulla Dinger
Abstract

We prove that, in arbitrary finite dimensions, the maximal operator for the
Laguerre semigroup is of weak type (1,1). This extends Muckenhoupt’s one-
dimensional result.

Introduction

Let (F, v) be some positive measure space. A semigroup {T’}o << 18 under-
stood to be a family of bounded linear operators, defined simultaneously on
LP(»), 1 < p < oo, satisfying measurability in ¢ and the semigroup axioms
T'**=T'T° and T° =1 is the identity. The semigroup {7"} is called a
«symmetric diffusion semigroup» if it has the following properties

O ATSl,<|fl,, 1€<p< (Contraction)

(II) T' is self-adjoint on L*(») (Symmetry)

) T7>0 if f>0 (Positivity)

av)y T1=1 (Conservation)

W) tli{)n+ T'f = fin L*(») for all fe L*(») (Strong continuity on L?).
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The maximal operator M associated with the semigroup {7°} is defined by

Mf(x) = sup | T (x)].

Under the assumptions (I), (II), and (V), the maximal theorem due to
E. M. Stein ([St]) states that
(@) M is bounded on L”(»), i.e. |Mf|,<A,|f|p, 1<p<oo.
(b) If feLP(»), 1 < p < oo, then lim Tf(x) = f(x) a.e.
t—0+

An operator is said to be of weak type (1,1) if it maps L'(») boundedly into
L*(»), where L"'*(») is defined by means of its quasinorm

| fl1,0= zg%ﬁv{xz | f(x)] > B].

It seems to be unknown whether weak type (1,1) holds for M, as a substitute
result in the maximal theorem when p = 1. However, the Hopf-Dunford-
Schwartz ergodic theorem ([DS] p. 690) gives that the «maximal average
operator» M, defined by

’

Mf(x) = sup
s>0

1 (%, ,
5y J‘o T'f(x)dt

is of weak type (1,1) if the semigroup {7} satisfies (I).

In several concrete settings, the maximal operator M of a symmetric
diffusion semigroup has been investigated and found to be of weak type (1,1).
This is done by well-known methods when the semigroup is defined as
convolution with an «approximate identity» and the underlying measure is
translation invariant. For instance the Poisson and Gaussian kernels in
(R", dx) define semigroups of that kind. On the other hand, semigroups
defined in terms of «classical orthogonal polynomials» have to be handled
differently. For the ultraspherical harmonics, the Hermite polynomials, and
the Laguerre polynomials —each with the appropriate measure space in one
dimension —it has been proved that the corresponding maximal operators are
of weak type (1,1). For the ultraspherical harmonics this is a joint result by
B. Muckenhoupt and E. M. Stein ([MS]), whereas it is due to Muckenhoupt
([M]) for the Hermite and Laguerre semigroups. In [Sj1], P. Sjogren proves
the same result for the Hermite semigroup in higher (finite) dimensions, and
the Laguerre semigroup in higher dimensions is treated in the present paper.

The setting is as follows (cf. [M]). Let R% = {xe R%:x; > 0 for every i} and
denote by 7, the measure on R% given by the density

d
Yo) = T x%e™%.

i=1
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For a > —1, the d-dimensional Laguerre polynomials
d
L;l,(x) = ].;[L;tli(xi): m = (ml’ ) md) € Nd;

form a complete orthogonal system in L*(y,). The definition of the m;-th
Laguerre polynomial, Lf‘,,i, used here will be the one used in [Sz]. For a func-
tion fin L'(v,), its «Laguerre-Poisson integral» M ¢ fis defined for 0 < r < 1 by

M) = [ K206 ) /() d1a(9),

where

d
K7 (x, y) = II1 Ki(x, ), xyeR%,
=

K, y) = 3 rLiGLE()/Te + 1)<” ; °‘>-

The kernel may also be expressed in terms of the standard Bessel function J,,

_ -a/2 _ —
( rst)r exp( r(s+t)>Ja<2\/ rst>’

Krs 0= 1- 1—r 1—-r

which can be estimated to give

(l—r)"“'lexp<—_rT(s_irQ>, 0<d4rst< (1 -r)?,

0.1)K%(s, 1) ~
0.DK3(s, 1) (4rst)’°‘/2_1/4_ <_r(s+t)+2\/r—st_> arst> (1 — PP
a-n7 - s drst > .

Here, and in the sequel, f ~ g means ¢ < f/g < C for some positive constants
c and C. In (0.1) the constants depend only on «. Thus, for 7 and x fixed, the
function K¢ (x, ) is bounded. Therefore, the Laguerre-Poisson integral M f
is well defined for each fe L'(v,), 0 < r < 1. In particular, if a function in
L*(v,) has the Laguerre expansion a,,LZ, then its Laguerre-Poisson integral
is the function of x and r which for fixed 7(0 < r < 1) has the Laguerre expan-
sion Tri™la, L2, |m| = Em; (see [M]).
The Laguerre semigroup, with parameter o > —1, is defined by

T'=M%_,, 0<t<oew, and T°=1.
This defines a symmetric diffusion semigroup, whose infinitesimal generator is
Lu = Z(x;0°u/3x? + (1 + a — x;) du/dx;),

ie. u(x,t) = T'f(x) satisfies 0u/0t = Lu and u(x, 0) = f(x).
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By virtue of Stein’s maximal theorem, the operator

M%f(x) = U |M7 f(x)|

is bounded on L”(v,), 1 < p < . The following theorem is the main result
in this paper.

Theorem 1. For each finite dimension d and o> —1 there is a constant
¢ = c(d, o) such that

IM°fl1,0<c|f|, foreach feLl(vy.

Corollary. lim M2f(x) = f(x) a.e. iffeL'(v,).
r-1-

The almost everywhere convergence is as usual a consequence of the estimate
for the maximal operator. Everywhere pointwise convergence is easily verified
for polynomials. Since they form a dense subset of L'(v,), the proof of the
Corollary is then quite standard and we omit it. The use of polynomials was
suggested to the author by Fulvio Ricci.

There is a natural way to define v, and K7, and hence M, for multi-
indices @ = (g, . . . , @g), @; > —1. For such o, Theorem 1 still holds and the
proof is only slightly modified.

It is noticeable that in the proof of Theorem 1 the constant ¢ depends
heavily on the dimension. Both for the Hermite and the Laguerre semigroup,
it is an open problem to obtain constants independent of the dimension.

Some conventions: ¢ and C denote various positive constants, which usually
depend on the dimension and «. In case ¢ depends on a parameter k£ we indicate
this by writing ¢, . We abbreviate f < cg by f < g. Usually we will not indicate
the underlying space for measures, e.g. dv,(x) means the measure
(IIxfe ") dx on {x; >0, all i} where the dimension will be clear from x.

1. Sketch of the proof

The flavour of the proof of Theorem 1 is not «semigroup theoretical» —the
semigroup property is not used at all. On the other hand, the fact that M}
is given by a symmetric positive kernel and leave constant functions invariant
(implying (I)-(IV)) is essential.

The proof is split into several lemmas. First it is proved that M is of weak
type (1,1) when « is an integer or half-integer. If 2a = n — 2, for some
n=1,2,..., this is done by a transformation to the Hermite case in R" and
an application of Sj6gren’s result. Next, for general o the supremum is restrict-
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ed to the intervals 0 < r < 1/2 and 1/2 < r < 1, respectively. The main part
is the proof that the operator

Mif(x)= sup |M?f(x)
1/2=<r<1
is of weak type (1,1). For this, the course of action is as follows.
For any pair of disjoint subsets I’ and I"” of I'= {1,...,d} let

AW, Iy = {(x,¥): y;<x;/D foriel',x;/D<y;<Dx; foriel”,
yi=2Dx; foriegl'UI"},

where D is a large constant. The operator M} can be written as a finite sum
of operators, each given by the kernel K7 (x, y) restricted to one of the (pairwise
disjont) regions A(I’, I'"). Of course, it then suffices to prove weak type (1,1)
for each of the corresponding maximal functions.

When I’ = I” = (g the corresponding maximal operator turns out to be
bounded on L'(v,). This implies (see Proposition 1), because of the product
structure and the fact that K7 (x,y) = 0, that it remains to prove weak type
(1,1) for the cases I'UI" = 1. If I' = (@, i.e. x;/D < y; < Dx; for all i, this is
done by a comparison (locally) with the case o = —1/2, which is already clear.
The proof for the remaining case I' # (g, I'UI" =1 is rather long and
technical. It is divided into five steps, of which we give a brief summary.

In Step 1 the kernel is estimated. Dependig on whether i belongs to I’ or
not, basic estimates of K (x;, ;) are obtained. These imply an appropriate
division of the space into regions where additional (local) estimates are made.
In this way a sum emerges, to which the summation theorem in L** due to
E. M. Stein and N. Weiss ([SW]) is applied. The range of 1 — r is split into
the intervals [4~~~1, 4~ V], and in Step 2 the task of estimating the terms in
the sum above is reduced to prove that, for 0 <a < 1,

= A
(1.1) NZ‘_.O a"v,{xeQ: Uy ,2x)>a"B} < 7" lel gy, B>0.

Here, the Uy ,’s are operators obtained in the series of estimates, Q is a
«dyadic» rectangle, and g is any non-negative function supported in Q and its
surrounding rectangles. For x in Q, the size of x; is about 4":. Assuming
without loss of generality that NV, is the largest of the N;’s, we split the sum
in (1.1) into two parts, N < N; and N > N, . In Step 3, the sum over N > N,
is estimated by an application of Proposition 2. This proposition gives an
inequality similar to that in (1.1), where the operators are averages over
subsets belonging to hierarchical partitions. The sum over N < MV, is estimated
term by term in Step 4, where a covering argument is crucial. The covering
argument is justified in Step 5.
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2. Transformation to the Hermite Case

For certain « it is possible to prove the theorem by a transformation to the corres-
ponding operator given by Hermite expansions and then apply the result in [Sj1].

Lemma 1. M*®:L'(y,)— L"*(v,) is bounded for 2a = —1,0,1, ... .

For a given filgite dimension n we denote by u the measure on R” given by
the density e~ 1", Let H, denote the k-th Hermite polynomial (see [Sz]) and
define, for 0 < r < 1, the kernels

P(x,y) = I_I1 P.(x,y), X yeR,

where

Pr(xi’ yz) = kgo rka(x;)Hk(y,-)/W—r 2kk'

Define the operators N,, 0 < r < 1, and the corresponding maximal operator
N by

N.fx) = f P.(x,») f(») du (»),
Nf(x)= sup |N,f(x)|.
o0<r<1
The theorem proved in [Sj1] can then be stated as follows.
Theorem A ([Sj1]) N: L}(p) = L'*(p) is bounded.
Now, if 2a=rn—2 (n=1,2,...) let p live on R* x - - - x R" = R% and
define G: R%" —> R% by
Gy ..., xH=(x" ..., XD, x'eR.

Then
@1 [pnf ° GO AL = ¢ [, F() 1, (2)

for each fe L'(v,).
Moreover, expanding the function L{(|x|?), x e R", with respect to the
orthogonal basis {Hkl(xl) .- -Hkn(x,,)} ke il L?(u, R™), we get the formula

(2.2) L;:(|x|2)=k ij L i ok, (1) - - - Hye (%), x€R”

1t n

......

for2a=n-2,n=1,2,....
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ProoF oF LEmMMA 1. Let 20 =n—2 for some n=1,2,.... Assume
feL*v,) and let

f&) = . Zl bi,, ...k Lk, (1) - L, (xg) = }I;bkL?(x)

.....

be the Laguerre expansion of f. From (2.2) we have, for y € R%",

S0 GO) = XbeLg, (7' LE, (151

d
= ; bk i];Il < ...... lnHZIl (yll) o Hz(ﬂ()’it)) .

L+

1 n i

The product is a sum of Hermite polynomials in R?” of degree 2|k|. Since (see [M])
Nr<Z aka) =2 rlk'aka
3 K

this gives
NS o OO = Zrtbe Lg(y'P, - 1)
=My .. 1)
= M%) © G().
Since both K%(x, ») and P,(x, +) are bounded functions (see [M]), we get
2.3) IN,(fo G)| = (M%) ° G

for all fe L'(v,), by taking the limit for f; € L*(v,) such that f,— fin L'(v,).
Taking the supremum over 0 < 7 < 1 on both sides in (2.3) gives

(2.9) N(foG)=WM°%) oG, [feL'(v,).
Finally, from (2.1), (2.4), and Theorem A we get
Yo (xR : Mf(x) > B) = u{y e R™: (M°f) © G(») > B}
= u{yeR™ N(fo G)(») >8]
C
g? ”fo G"Ll(u)

C
= F “fULl('ya)’

which proves Lemma 1.
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3. The Case 1/2<r<1

In this and the next section we intend to prove the following lemma —the
main part of the theorem.

Lemma 2. The operator

M{fx)= sup |M}f(x)]

1/2=r<1

is bounded from L'(v,) into L""*(v,) for all o> —1.

We split the proof into three more lemmas, where we restrict the kernel to
different areas of integration. A simple result about non-negative kernels will
be used several times. Therefore, it is convenient to state it in a general form.

Let (E, ) and (F, ») be measure spaces, with x and » non-negative and o-
finite. Further, let 7 be a countable subset of R. Suppose that, for rel,
A,(x,y) and B,(x’,y’) are non-negative measurable functions on E X E and
F x F, respectively, such that

A, (x,s)eL”(p) and B,(x',+)eLl™») forall rel, xeE, x'eF.
Then the following operators are well defined, giving rise to measurable func-

tions, on L'(x), L'(»), and L'(x X »), respectively

d

Af(x) = sup | | A,.(x, ) () du(y)

rel |

> xeE,

Bf(x') = sup B,(x’,y’)f(y’)dv(y'){’ x'€eF,

rel | )

A® Bf(x,x") =sup | | A,(x,»)B,(x", y)f(»,y)du(¥)dv (¥')|> (x,x)EE X F.

rel | J

Proposition 1. If A: L'(g) = L"*(u) boundedly with norm C, and B: L'(v)
— L'(v) boundedly with norm Cyz then A® B:L'(p X v) = L"™(p X ») is
bounded with norm C,C,.

Proor. Since the kernels are non-negative, it is enough to consider f = 0.
Then

AQBf(x,x") < SuIID JA,(x, y)<su11> jB,(x’,y')f(y,y’) dv (y’)> du(y)

= AF,(x)
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where
Fx'(.y)=Bf;l(xl)s fy(y'):f(y’y’)
Thus

(p X n{x,x) AR Bf(x,x") > B} < j‘#{)ﬂ AF,(x) > B}dv(x')
<C,8! j 1Fol x40
= CAB-I J (jny(X')dV (X')> du(»)

<C,CpB™! J 151 1 91 )

= CACB,B_IHf"LI(‘LXV)’

which proves the proposition.

Notice that the condition «/ countable» (to ensure measurability) will not
cause us any problem, since the kernels we are dealing with are nice enough
to enable us to restrict the supremum to e.g. r rational.

Now, by Proposition 1, the following three lemmas will imply Lemma 2.

Lemma 3. For large D, the operator

1/2=r<1

Af) = j sup K7 (6 Y)Xyy 2 py,, aniy S| @72 ()
is bounded on L(v,).

Lemma 4. For any D > 1, the operator

B°f(x) = sup

1/2=r<1

j K706 Xy b <y, < Dx, anip/ () @Ya () '

maps L'(v,) boundedly into L"*(v,).

Lemma 5. For large D, the operator

C%*f(x) = sup

1/72=r<1

J‘ K?‘(X, y)X{yi<Dxi,alli, someyisxi/D}f(y) d'Yu (y) ’

maps L'(v,) boundedly into L"*(v,).
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Throughout the remaining proofs, (0.1) will be used frequently. Therefore
we set (5,7eR4+,0<r<1)

o —a— —r(s+1)
Dr (s,0)=(1- r) lexP < 1—r >X{4rst<(l—r)2}

N (4rst)—/2-1/4 —r(s+ 1) + 2~/rst

E" s,0) = a- r)I/Z 1—r x{4rstz(1-—r)2}'
With these notations, (0.1) says that

(3.1 K7(s,t) ~Di(s,t) + EX(s, 1) (s,t€Ry4)

and, consequently, we have

G2 K%y~ 3 (HD?(x;,yi)Xl_l}IEﬁ’(x,-,yi))’ X, yeR .

I1{1,...,d} \ieI

Proor oF LEMMA 3. The lemma follows if we estimate K 7'(x, ), when y; > Dx;,
1/2 < r< 1, by a function A(x, y) such that

jA(x, y)x{x,.sy,/paui} av, () < c.

Of course, it is enough to do this in one dimension.
For fixed x and y in R, let

Dr)y=(1-r"*lexp <;r(i_+;ﬂ>, 1/2<r<1.

Then D'(r) equals (@ + 1 — (x + y)/(1 — r)) times a positive factor. Hence, D(r)
takes its maximum at 1 — r = (x + »)/(1 + «) if (x + ¥)/(1 + &) < 1/2, which
gives D(r)<(x+y)"*"!. On the other hand, D(r) is decreasing if
x+y)/( + a)>1/2, giving D(r) < D(1/2) < 1.

Thus, for all x,ye R+ and 1/2 <r < 1, we have

(3.3) DX, ) <1+ (x+y) L.

In order to estimate E(x,y), we set, for fixed x and y with y > Dx,

6= =) e (ZTEEDEIE ) L1y e 0,
1/2<r< 1.
Then

G =-(1—_1_—r»)7(\/xy/r — (x+ ) + Nrxy ) = pos(Ny/x —r J(Nx/y = r)
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and
G'(r)y=pos(1/2 + (1 — N f'(r)).
With D large enough, G'(r) = 0 implies
(-7 =20x+y -2V 0 +n/Nr 252-4v2/D)>y.
Moreover, since f is decreasing for y > 2x,
JO)SFA/D = —(x+3) +2V2xy <x.
Thus, if G'(r) = 0 then
G(r) <y~ expf(r) < ()~ Vie".

Since G(1/2) < exp( —(x+y) +2v2xy ) and lim G(r) = 0, this gives

r—-1-

E%(x,) < ()~ %2 V4exp [ —(x+y) +2V2xy } + (y)~ V2 V2ex,

This and (3.3) give the desired estimate of K/ (x, y).

ProoF oF LEMMA 4. Because of (3.2), it is enough to prove the lemma with
K ¥(x, y) replaced by the kernel

<H D?("‘b)’i))(ﬂ EZ(x;, yi))
iel i ¢l
for a fixed, but arbitrary, I. The operator
f- j [H I+ G+~ 1)]X{xi/D<yi<Dxialli}lf(y)l v ()

is easily seen to be bounded on L'(v,,) for any dimension. Thus (3.3) implies,
by means of Proposition 1, that we only have to prove that the operator

(3.49) E%(x)= sup

172=sr<1

d
J‘ <].;[1 E?(xi’ yi)>x{xi/D<yi<Dx,-alli}f(-y) d‘/a(y)

is bounded from L'(v,) into L*“(y,) for any dimension d, for D > 1 and
o> —1. We write (3.4) as

E°f(x) = S |Ef(x)|.

Again, it is enough to consider f > 0. For m = (my, ..., my) eZ% let

Q™= (x: D" <x;,<D™*'i=1,...,d)}
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and

O™ ={(x: D" l<x;<D™*%i=1,...,d}.
Since E®f(x) ~ E; /2f(x) for all x, we get, by applying Lemma 1,

v, (x€ Q™ Ef(x) > B} < D@*VIEmy  (xeQ™ E™V’f(x) > cB)
< DCHVDEMy ) (x: MTV(f] gm)(X) > cB)

D@+ 1/DEm,
< —”B— "flé"'"Ll('Y-Vz)

1
-~ F j‘flgmd‘ya'

Summation over m yields that £ is bounded from L(v,,) into L' *(v,), which
proves Lemma 4.

So far we have used the Hermite result, but to prove Lemma 5 we have to
investigate the kernel in more detail. Before the proof we recall a result
(slightly restated) due to E. M. Stein and N. Weiss. We also state a proposition
generalizing a special case of Lemma 1 in [Sj2].

Let (E, ») be a measure space, with » non-negative.

Theorem B ([SW], Lemma 2.3) Suppose g Jj=1,2,..., are non-negative
measurable functions on E, satisfying

v{x: g;(x)>a} < ch/a, a>0,
where ¢, are positive numbers such that X, ¢; < o and P ¢ In(1/ ¢) < . Then

v{x: Zgj(x) > a} <2AC/a, a >0, for some positive number C.
J

E is said to have a piece hierarchy if for each N=1,2,... there exists a
partition of E into at most countably many disjoint subsets called N-pieces
with the following properties

@) Each N-piece is measurable with positive finite measure,
(ii) Any (N + 1)-piece is contained in some N-piece.

Now, suppose E has a piece hierarchy. Denote the N-pieces by P{v,
J=12,...,and let Py(x), for x € E, be the N-piece that contains x. Assume
A is a one-to-one map from {P{V: Jj=1,2,...} into itself for each N, such
that

»(P4) ~ v("PJ)  (uniformly in N, j).
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Define the operators T, on L'(») by

le()| dv (3).

1
Twe® = S5p &) j P oo

Proposition 2. For any 0 < a < 1 there is a constant ¢ = c(a) such that
ot c
NZ_}I a"v{x: Tyg(x)>a"B} < 5 1&g, B>0.

Proor. Since Tyg is constant on each P4, the set I = {(N,j): Tyg>a™B
on P4} is well defined and the sum equals
(3.5) >, dwPP)~ > @ -aVH("P).

N, j)el W,j)er
Regard [0, 1] X E as a measure space. Then, the last sum above is just the
measure of the union of the pairwise disjoint sets

Ay,;=1a""1,a I x "PL 0,11 XxE, (N,j)el

‘ The family {A Nt N, Jj) €I} is partially ordered by
Ay <Ay, if and only if "Pj, S"P} and M>N.

Notice that every A N is included in a maximal set. In measuring the union
of the sets A, ;, we first measure the sets smaller (not strictly) than a given
maximal set. We then sum over all maximal sets. This means that the sum to
the right in (3.5) equals

(3.6) > ( > @ = a" (P, ) :
W, el M, i)el
AN,J-maxima.l AM_,-SAN,J-

The inner sum in (3.6) may be estimated by

M§N(0M_ aM+ l)( ZI: V(AP;W)> <aNV(AP{v .
APY S APY,

Since
-N

. a
v("P) < "B Japs |g| dv
N

for (N,j)e€l, (3.6) is less than

1
— dv.
B (N%E.I JAP{V el

A N, jma.xxmal

Since these "P{V are pairwise disjoint, this proves Proposition 2.
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4. The Proof of Lemma 5

For n=0,...,d — 1 we let x, denote the characteristic function of the set

x;/D < y; < Dx;, i=1,...,n

“.1) ‘
y,~<xi/D, i=n+1,...,d.

By symmetry, it suffices to prove the lemma if we let, forn=0,...,d -1,
Cf)= sup |C7f(x)]
1/2=r<1
with
Crfx) = J K700 )X S () @Yo (9)-
Moreover, for the same reason as in the proof of Lemma 4, it is enough to
prove boundedness (from L(v,) into L**(v,)) for the corresponding maxi-

mal operator, still called C*, where K7 (x;,y;) is replaced by E}(x;,y;) for
i=1,...,n. We write

n d
4.2) Crx,y) = H1 EXx,y) 11 1K FO, y) = E7(x', y)K 7 (x", y")
i= i=n+
with x = (x’, x") in the obvious way. The proof will be split into 5 steps.

Step 1: Estimates
Since, for y; ~ x;,

ISR, N R (R C71
S S ( )1/2 i 1—-r
and
(\/’C—i"‘/”—z‘)2 _ (}’i—xi/")2 r >c(}’i_ i/r)2
1-r x(A=r A +~ri/x )2 ~7 x(1-r)
we get

1

n -—a-1/2 n
4.3) EXx,y)< [ I g )1/2} exp (Eljx,) exp( ey (f; a _'/,r)) >
Fori=n+1,...,d we have

rOog +y) — 2Ny = xi(r = 2Nmi/x; ) 2 x/4
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if D is large enough. Hence, if o > —1/2 we get
EXx;,y) < (1 -~ * lexp(—x/4(1 - ),

while for —1 < o < —1/2 the following holds
—a—1/2

75 exp (—x;/4(1 = r)).

EX(x;, y) < W

Since

D, y) < (1 =~ exp(—-x/4(1 - 1),

these estimates imply

1 d
4.4) K;(x",y")sexp| ——— X;
@.4) K"y p( ) >

d 1 —a-1/2
Xi
n1+11 <(1 —r)**! + (1-n"? X{-1<a< -1/2}>‘
For fixed x’, we divide R% into the rectangles
2 (=) < |pi-xfrl <2k -1, k=0,1,...,

where the left hand side is interpreted as 0 for k; = 0.
Further, R%™" is divided into strips (with respect to x”’) where

d
Y- 1-n< D x<¥1 -, j=0,1,....
n+1

Again, j = 0 means 0 to the left.
Estimating the right hand side of (4.3) and (4.4) in these rectangles and
strips, respectively, gives (we assume f > 0)

.5) f CrO XS D) AV (D) < 2 a1 =)~ @D DX o iy

Jj=0

n —a- 172 n
X 2 bk<H x'—1/2> exp <Z xi) j F(y)dv,(»),
a-n 1 R (r,x)

k;=0,1,... i

where
F(y') = jf(y',Y") av,(y"),

R (r,x") = {¥": |y; — x;/r| < 25x;(1 — 1), x,/D < y; < Dx;},

a,= 2@-Miexp (—4772),
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and
by = exp <—cZ4k">-
1

The factor 2¢~™ in a; is what remains from the case —1<a < —1/2.
Taking the supremum over 1 — re[4 V=1, 4] (written 1 —r~4"™) in
(4.5) yields

(4.6) CrO =22 sup N EDY ; Ty, f (%),
e J

7 kK N=0,1,
where
Ty i, ;i) =a;b, gN@-met I)X{x": Tx;<4i-N}
n n
X <H 2Nx; %" 1’2> exp <Z x,-> sup j F(y")dv,().
1 1 1-r~4-N JR,(r,X)

Hence, by iterating the result in Theorem B, we get Lemma 5 if we prove

1
4.7 Yolx: T ;f(x) > B} = kg FATETRY
with ¢, ;= ci - ck cj such that
(4.8) D<o, Dicin(/c)<eo, i=0,...,n.
=0 =0

Step 2: Localization
Let

n n
Sy, Fx") = < I 2% =~ 1/2> exp <Z xi> sup j‘ F(y)dv,(¥).
’ i=1 1 R (r,¥)

1-r~4-N

Then

7a{x: Tk,jf(x)>ﬁ} <N§0‘ya[x: TN,k,jf(x)>B}

d
'ya[x": S x< 4"”}
0

n+1

<

f[\ja

X Yo (X't Sy (F(x) > Ba; ‘b 14~ M@=t Dy

4U- M@=+
0

Ms

<
N

X Yo {X': Sy (Fx') > Ba; by 14~ N@-mer Dy,
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Hence, if we prove
4 9 < N, 1. ’ N, Ak
4.9 Ngoa Yo X't Sy (Fx') > a"B) <35 IFlp@y om, 0<a<l,
then (4.7) follows (take a = 4~ @~ M@ +Dy with
n
(4.10) Cr j~ 4@+ DYE@ =M exp (47~ %) exp < -c ; 4"i>Ak.

Thus, with 4, good enough, (4.9) would complete the proof of the lemma.
Actually we have assumed here that n=1,...,d — 1.
In the case n = 0, we have

Cf= 2, sup 4N D2Vexp (4" xp, cii-mylflie,

j=0 N=0,1,...
= >, sup Ty, .f(%).
245uP ~, i)
With
N = min {N: 4¥C+ D2 exp (—47=2)| £ ., , > B},
we get

Ya [x: sup Ty i f0) > B} < Ve {x: x5 < 41'-No}

< 4d(j —Ng)(a+1)
. . . 1
d, 1 -2
< 47 D2 exp (~47) 2 |y

These constants are good enough to imply, in view of Theorem B again, that
C* is bounded.

Next, to simplify the proof of (4.9), we reduce it to a local property, which
in particular enables us to get rid of the o’s. From now on we drop the primes,
ie. xX’=xeR%. Let {Q™: meZ"} be the partition of R% into rectangles
defined by

Q"= {x: D"<x;<D™*', i=1,...,n)
and let

Qm: [x: Dmi_]<xi<Dm,-+2, i= 1,..‘,,’}.
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In proving (4.9), we may, without loss of generality, assume that D = 4 for
some M e N. For a given m € Z", let N;eZ be such that

4.11) D™+l = 4Ni i=1,...,n
and let, for g > 0,
(4.12) U% c8@) = <H 2”‘”") exp <Z x,-> sup j g(y)dy.
i=1 1 1—r~4-N J|y,—x/r| <2ki+ Ni-N
Then, if xe Q™
SN,kF(X) < U%,k(FIQm'YO)(x)-

Hence, the sum in (4.9) is less than or equal to
4.13) > (H4°‘Ni> 2 @V (xe Q™ UY ((FlomY)®) > ca™B}.

meZn 1 N=0 ’

If we prove that the sum over N in (4.13) is less than a constant B, not
depending on m, times

1
— | F| 5. dv
3[ lom @

we get (4.9) with A, ~ By.
For a fixed, but arbitrary, me 7", let Q = Q™ and Uy , = Uy ,.
It remains to prove that, for 0<a <1 and g = gIQ >0,

= A
4.14) 2 @ (xeQ: Uy g(x)>a") < 7" l&] L1cayy s

with 4, good enough (see (4.10) and (4.8)). Of course, A, may depend on a.
Since the N;’s are related to m as in (4.11), x € Q clearly implies x; ~ 4™ for
all i. For symmetry reasons, we may assume that

N2 2N2N;, ;> =2N,.

We split the sum in (4.14) into two parts, 2. N, and 2, _ N, In Step 3 we
will apply Proposition 2 to 2, N, while in Step 4 we estimate the sum
Zins N, term by term. In Step 4 we use a covering argument, which will be
justified in Step 5.

We consider k€ N”" fixed.

Step 3: Proof of (4.14) restricted to N > N,
For xe Q, let

Ry ={yeR%: |y — x| <3-25*Ni=¥ for every i}.
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Since N > N; for each i, this set contains all y with |y; — x;/r| < 2%*Ni=N,
=1,...,n,if 1 = r~4~"N. Thus,

Uy, 80) < <1112N N>exp <ZX> JR ()g(y)dy-

Let
n
Qﬂ={xefR'ﬂ,:n<in<n+1}, 7=0,1,.
i=1

Suppose x€ QN Q,. Then R, (x) is included in the set

), = U QTJ+I’ a=3):2kia
Il=—a

where Q, = Q, for n <0, so that

" 1
(4.15) Uy, gx)<e” <H > Re@| Jx ()gIQ »dy, xe@NnQ,.
N N "

Here |+| denotes the volume in R".

Let Py, for N=0,1,..., be the partition of R%: consisting of rectangles
with sidelengths 6-2%*M~N (i=1,...,n). Then {P,} defines a piece
hierarchy in R . Let P,(x) denote the rectangle in P,, which contains x, and
P{v(x), J=U1s-.-sJn)sJi = —1,0,1, the rectangle in P,, obtained by moving
one step to the left or right in the x;-direction depending on whether j;, = —1
orj; = 1. If j; = 0 one does not move at all in the x;-direction. With these nota-
tions, we have

(4.16) R,(x) = U P’ N0

j,._—lol

Let

U h(x) = k()| dy  (i= —1,0,1).

PLe| (x)| j{v(x)

For each choice of j we apply Proposition 2 to U{v to get, using (4.15) and
(4.16),

>, @™ (xeQ: Uy gx) > da"B)

N>N,

i}Zae”

>N

{erﬂQ,, 3 Ul(el g )0x) > ea™pe™ T1274]
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o
< 2

n=0

(=

(112%)lelg, | scar

) (1)

F; "g"Ll(dy) .

N m'»—n

<

This proves that the inequality in (4.14), for >, replaced by >, , holds with
Nz0 N>N,

4.17) A ~ T 2%k,
i=1

Step 4: Proof of (4.14) restricted to N < N,
Let N be fixed, 0 < N < Ny, and let

0@ =(yeR%: |y;—zi| <2k*Ni=N i=1,...,n)
K(z) = con (Q(2))

where con (4) means the conical hull of A4, i.e. the intersection of all cones
containing A. With these notations we have,

n

Uy 80 = TI2V"N )exp (X %) sup g dy
i=1 1-r~4-N JO@/r)

< <1='[1 2”'”") exp (Z x,-) L«x) g(»)dy

= ~N,kg ).
Let /; = 2 - 2%+ Ni=N pe the sidelengths of Q(x).
Our method of estimating

4.18) Yo(xeQ: Uy 200> B)

depends on whether /; is larger or smaller (up to a constant) than the side-
length of Q in the x;-direction. We get two cases.

Case 1: 21> 2M*N(D — 1)/D?.
In this case we may estimate the integral in the definition of U’N, +&() by
Ilg"Ll(dy) . set

B' = B/(I;[ZN_Ni> ug"],l(dy) .

n n
Using the fact that the area of QN {Z X; = t} is < _H 4Mi and that N; < N,
for all i, we get ! i=2
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TolxeQ: Uy 800> B) <mofxeQ: exp(Tx) >8]

< <H 4Ni> j' e 'dt
i=2 Ing’

1 “ N; i N~ N;
<5 () (B2 el

1
= »a(n—DIN+Ny)9N- N,
$ 32 12 l"g"Ll(dy)'

Thus, in Case 1 we can estimate (4.18) by

c

4.
(4.19) 3

20 DN Mg -

Case 2: 2% <2M*N(D - 1)/D>.

In Step 5 we will construct a covering of Q, consisting of pairwise disjoint
convex cones K s J €N, such that

() If xe QNK; then ONK(x) € K;, where K, is the union of a bounded
number of cones «near» K -

n n n—-1n n
K,-“{Zx,:t} $<22""> TI2%N if o<t T=24M
1 n—1 1

2 1
Here |+|,_, denotes (n — 1)-dimensional area. Set

_ : N-N;
B,-—B/<i1=112 )L_g(y)dy-

J

(i)

Assuming this covering, we get

YolxeQ: Uy 8 >B) = D 7(xe QNK;: Uy (800 > B}
J

< %}’Yo{erﬂKj: exp (Zx,) > Bj}

n
an{Zx,.:t} dt
1

T
< j e”!
7 J@nmByva/D)

< (iz’ﬁ)ﬂ ) 1(1;‘112Nf-"’><1f[2”‘ Nf) %2}] szg(y)dy

n-1

n X n—1 NoN 1
$<22i> A 1E”g"u(dy)'
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Combining this with the estimate in Case 1, (4.19), we get that (4.18) is less
than or equal to

c n X n-1 NoN

Since this quantity is summable over N < N,, the inequality in (4.14), for
Ny

> replaced by D) , follows with
N=z=0 N=0

n
Ay ~ T 2@~ Dk,
i=1

Together with the result in Step 3 (see (4.17)), this yields (4.14), with

n

Ak _ H 2kimax{2,n— 1}

i=1

Obviously, A, is good enough.
Apart from the covering, this proves the lemma.

Step 5: The covering
Let

K=con(Q), L=KN{x; =4"/D?%}.
Notice that x; ~ 4™, i=1,...,n, for all xe L.

Cover L with pairwise disjoint (n — 1)-dimensional rectangles R~j, JEN,
with sides parallel to the axes and of length

n
L= 1,~< 2 2"f>/2"i, i=2,...,n.
Jj=1

Rj=RjﬂL, Kj=con(Rj).

Next, let

We have to verify (i) and (ii).

(i) Assume xe QNK;. For arbitrary y and z in LNK(x), the conditions
251 < 2M*N(D — 1)/D? and N, > N; imply that y; — z; < L;. Hence,

LNKx)<c U R,,
nel(j)
where I(j) represents a bounded number of the R,’s near R i This clearly
implies
ONKx)c U K,= I?j.

nel(j)
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(i) Take 0 <t < T, je N, and let
A=Kjﬂ{2x,-=t}-
1

Let A’ be the orthogonal projection of A into the hyperplane {x; = 0} and
let R’ be the smallest rectangle, with sides parallel to the axes, in {x; = 0}
containing A’. The sidelengths, L, of R’ are given by

n n
L) = maxx; - minx; = t(maxx,./Zx, - minx,-/Zx,> sy (i=2,...,n).

X€A x€A xeRj 1 stj 1

Suppose the function x;/2 x; takes its maximum and minimum (over Rj)
at ¢ and b, respectively. Set b,=a;,+ r;, I=1,...,n. Then

L;= t(aizrl— r,-Zaz)/Za:Zblga.-Zrz/Zaz—r,-

where we used the fact that 1 < T~ >, b;.
By assumption, N; < N; if / > i. Therefore,

aiLl/ZalnggLi, 1>

On the other hand, if / <i then N, > N; implies
n
aiLl/Z a,Sa,-L,/a,~ 4Ni_N’< Z 2kj>2NI_N$Li, ls i
ji=1
Thus L;< L; (i=2,...,n) and, finally,

[Aln-l = \/—n_'Alln_l =< IZIL:

n
N

L;

2

The proof of Lemma 5 is complete.

5. The Case 0<r<1/2

The following lemma completes the proof of Theorem 1.
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Lemma 6. The operator

Mgf(x)= sup |M?f(x)
0<r<1/2
maps L'(v,) boundedly into L**(v,) for all o > —1.

Proor. Since DZ(x;,y) < ¢ for 0 < r < 1/2, we may replace K2(x,y) (see
(3.2)) by
EY(x,y) =1 EY(x;, »).

Let
Ef(x) = sup/ZUEi‘(x,y)f(y)dva(y) .

0<r<1

We claim that (0 <r<1/2)
S.1) EXs,t)<c if ag<-1/2, s<1 or a>-1/2, s<a+1/2.

Assuming s < 1, we get

—r(s+ 1)+ 2~/rst < _\/rst 4 —rt+3/rt <- st +c

1-r = 1-r 1-r
and, if also a < —1/2,
E7(s,t) < c(rst) ™2~ Vexp(—~/rst) < C.

Next, assume a > —1/2, s< a + 1/2. The derivative (3/3t)EZ(s,t) (t >
(1 — r)?/4rs) equals a positive factor times

o 1
—rt+\/r?t_—<7+z>(1—"),

which is negative for all r, s, ¢ under consideration. Hence,
EX(s, 1) SEX(s, (1 — 1)?/4rs) < C

and (5.1) holds.

Because of (5.1) and Proposition 1 we may, when measuring the level sets
{xeR% : E*f(x) > B}, neglect the region where any x; < 1 if « < —1/2 or
any x;<oa+1/2 if o> —1/2. Therefore, we assume x;>c= c(a),
i=1,...,d.

In the interval 24~ 1/x; /r < |y; — xi/r| < 2%i/x; /r(;= 0,1, ...), a simple
calculation where we use x; > c(a) gives the following estimate

E,‘f‘(xi, y,) < a,ix,-_ a=172 exi,
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with
a, = glile+ 172l ey (—c2%).

Thus, for f >0, we get

© d d
(5.2) E*f(x) =< <1'_[ a,i>< T x "2 e"") sup j S av,(»).
;=0 \i=1 i=1 0<r<1/2 Jly;—x/rl s2liJx;/r
Let
0 = [yeR% : |y — x| < 2%i/x; for all i},
Then the conical hull of Q(x), con(Q(x)) = K(x), contains the domain of
integration in (5.2) for all r > 0. Set, for f> 0,

Af(x) = <H X2 e"") J F) adr. ().
i K@)

By Theorem B, Lemma 6 follows if we prove that, for some M,
c d M
(.3) TulxeR: AS@)>6) <5 ( 11 2’-) Fie
i= o

For keZ? let Q% = {xeR%: 2% < x; < 2%+ for all i}. Of course, (5.3)
would follow from

(5.4 Yelx€ Q% Af(0) > B} < % 1 f 21y

with

Zk) k1 < (111 2"'>M.

Depending on whether a sidelength of Q is greater or smaller than the
corresponding sidelength of Q(x), xe Q¥, we will treat the coordinates in
different ways. Therefore, for fixed k£ and /, we let

I'={i: k; 22(; + 1)}, I"'=1{1,...,d}\I,

and write x = (x',x") e R%, Q¥ = Q* x Q" in the obvious way. Further,
with d’' = #1I', we define K(x’) and A,F quite analogously as above, for
x'€R% and functions F>0 on R%. Let

F(y) = jf(y’,)”') Yo (")
Then
A[f(x', xn) < ( H xi—a— 1/2 ex")A,F(x').
ier”
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Notice that

G J ( I x7 =12 e"f) dv,(x") ~ ] 242
Q" \ier” i

iel”

To prove (5.4) we will prove that (ford'=1,...,d)

(5.6) Volx' € QF: AFG) > B) S L IF | 14, -

According to Proposition 1, (5.4) follows from (5.5) and (5.6), with
) €k, = eyt T1 272
iel”
(We interpret products and constants with indices over empty sets as 1.)
We will construct a covering of Q¥ consisting of pairwise disjoint convex

cones {K;} such that, for ¢, = ] 2%,
L]

() If x' e Q¥ NK; then K(x") € K;, where K, is the union of ~c{" ™" cones

«near» Kj.
@) &N {Zx,- = t} ’ <c? I 25*if0<r< Y25 =T and i is
r d-1 iel\{ig} T
given by kio = maxkx;.
iel’

Suppose we have this covering. Then, with

8= cB2* V”’;T"f/ j Fdy,,
K,

J

we get

Y. (X' €Q¥: A F(x") > B} < ;70‘ {x’ € Q¥NK;: exp (;}x,.) > Bj}

T
szaz"fzj e Kjﬂ{in= t} ’d,_ldt
J J@AmB)V(T72)

< 2a)3k,-c7< H 2k,~/2> _é_z—(tx+ I/Z)Ekiz j‘K_Fd'YCI
I Ih

i#iy
1

<—¢]

B

1 - o
gEClZd 1(1112 k‘/2d>"F“L1(’YQ)'

d'— 1y - k; /2 HF“LI(V.,)
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Hence, the covering would imply (5.4), with (see (5.6) and (5.7))
Co s~ 21,->2d’ - 1( 9- k,-/2d’>< 2k,-/2> .

Since

d
- - k,-/zd’) < Zk,./2> < ol
keZZﬂ' <kiazI(;;+1) kl.<:2[;'l[,.+1) i1=11 ’

this would complete the proof.

It remains to construct the covering. This will be very similar to the cons-
truction in the proof of Lemma 5. Therefore, after describing the cones, we
just sketch the verifications of (i) and (ii).

From now on everything takes place in R%, so we drop the primes on the
elements. Let

0= U 0®, K=con(Q),

xeQk
and

L=KnN {x: X,'o = zkio = 2,io+kio/2}.

Next, cover L with pairwise disjoint (d’ — 1)-dimensional rectangles R i JEN,
with sides parallel to the axes and of length

Li=24572 el  i#i.
Let
R;=RNL and K, = con(Rj).

(i) Suppose xe Q“NK,. The condition k; > 2(; + 1) ensures that y; ~ 2%,
iel', for all ye (. This and the choice of i, imply that y; — z; < ¢,L;,
whenever y and z are points in K(x) N L. This gives (i).

(i) Let 4 = K;N ['Zj x; = r} and let A’ be the orthogonal projection of A into
{x,~0 = 0}. Further, let R’ be the smallest rectangle, with sides parallel to
the axes, in {x,-0 = 0} containing A‘. Imitating the verification of (ii) in
Lemma 5, we get

L;<c¢L;, iel, i#ig,

where L] are the sidelengths of R’. This gives (ii).
The proof of Lemma 6 is complete.
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