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On the S4;-Norm of a
Hankel Form

Jaak Peetre

In the paper [2] a rather general theory of Hankel forms over domains  in
C" was developed, and then applied to various special cases, in the first place,
to the Fock space !. In the latter case also a very curious result (Theorem 7.8
of [2]) was established, which however does not follow from the general
theory. It states, roughly speaking, that the S,-norm of a Hankel form in Fock
space is exactly equal to a suitable L,-norm of its symbol, not only equivalent
to it, as predicted by the theory. This is a phenomenon peculiar to p = 4; it
does not hold for any other value of p, except trivially for p = 2, of course.

Recently, Wallstén [6] (see also a forthcoming paper by Janson, Upmeier
and Wallstén [3]) has published a similar result for the S,-norm — and even
stranger — for the Sg-norm of a «big» Hankel operator on a planar domain
(n = 1) under rather general assumptions on the underlying measure. (Recall
that the study of Hankel forms is essentially equivalent to the study of «small»
Hankel operators.)

This has led us to reexamine Theorem 7.8. Essentially, what we do is that
we give a new proof of this theorem, which is more transparent. In particular,
it gives an indication of that the result is peculiar to Fock space. For instance,
it is not true for the unit disk with the Drzhrabashyan (or weighted Bergman)
measure

dp,@ =1 - |z|H*dxdy  (a> -1).

! Or Fock-Segal-Bargmann-Fischer-... space.
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We shall throughout use the terminology and notation introduced in [2],
with slight modifications 2. Therefore we will assume that the reader has some
previous acquaintance with that paper — it suffices that he has browsed
through it once and, in particular, had a look at the appendices (Appendix 1
gives a quick summary of the whole theory).

Acknowledgement. Our thanks are due to the authors of [6] and [3] for put-
ting their unpublished or unwritten papers at our disposal, and to Jonathan
Arazy for an illuminating conversation about symmetric domains.

1. The S,-Norm

Let @ be a domain in C" equipped with a measure du, subject to certain
assumptions, which we need not make precise, so that the main contentions
of [2] are valid. Let b be an analytic function on 2. The Hankel form H, with
symbol b is defined by the formula

Hy(f,e)= [ bfgdv  (f,eeA%w),

where A%(u) denotes the Hilbert space of square integrable analytic functions
on Q with respect to du. Here dv is the measure «associated» with dy, i.e.

dv(2) = K(z,2) " 1du(2),

where K(z, W) is the reproducing kernel in A%(x). Let P denote orthogonal
projection from L%(x) onto A2%(p).
With the form H, we juxtapose an integral operator Hj, such that

Hy(Pf,Pg) = (H,£,8),  (f,8€L*(w)

— it is the «small» Hankel operator corresponding to H,; in symbols:
H, = PM, P, where M, is the multiplication operator and P is projection onto

A(p). )
It is clear that the kernel of Hj, is

- d _
f K@, W) b(w)d—”(w) K(w, T) du(w),
) i

2 One exception is that the reproducing kernel is denoted K(z, w); the bar is for book keeping
reasons to indicate that the function is conjugate analytic in the second argument.
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while the corresponding adjoint kernel is?
_ dv _
K(s, w)b(w) . (W) K(w, 2) du(w).
a 7

(Here dv/dp is the Radon-Nikodym derivative of dv with respect to du.) It
follows that the operator HjH,, which may be viewed as an operator from
A?%(p) into itself, has the kernel*

ﬁ K&, B0 27 (0K (o, 31 BOR) 7 K W, ) daowy) s ()
axe m M

B jjﬂ xQ K(z, W)b(W)K(wz, W;) b(Wy) K(W,, Z) dv (w;) dv(w).

From this we can obtain
"Hb"gz = "anéz
= trace H} H,

= ”‘n o KO, w1)2b(w,) b(w,) dv(wy) dv (w,).

In particular, if du satisfies assumption (V) in [2], i.e. if
L(z, w) = const - K(z, w)?,
where L is the reproducing kernel in A%(»), it follows that
|Hy13, = [ By l2, = const - [b]2s,.

This is of course in [2] (see e.g. Theorem 4.7).
Next we observe that the kernel of (H}H,)* is

jjjj K(z, w)b(w)K(w,, W) b(w,) K(w,, W3)
2xexQxQ

X b(W3)K(w,, W3) b(wy) K(Wy, ©)dv (w)) dv (w,) dv (w3) dv (w,).

3 If F(z, ¢) is any kernel, then the adjoint kernel is F(¢,7).
4 The composition F(z, {) of two kernels F|(z, ¢) and F,(z, {) is defined by the formula

F@, §) = [, Fi@ OF,(t, 0 du ().
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This gives
|Hyls, = 1,5,
= trace (H3H,)
(6))
B j j I j K(Wa, WKWy, WK (Ws, WK Wy, W3)b(W1)b(W3)
AXAXAXQ

X B(wy) b(w,) dv(wy) dv (w,) dv (ws) dv(w,).

The S,-norm of H,, or H,, p an even integer, apparently, is given by an analo-
gous expression (see Section 4).

We go on examining the S,-norm, which seems to be most rewarding case
beyond p = 2.

We shall compare the integral (1) with

@ Ib]z4 = L 1b@R)I*K~*(z,2) AN2) = L 5)|* do(2).

Recall that d\(z) = K(z, Z) du () is the «invariant» measure (see [2]), so that,
actually, dp(z) = K~ *(z,Z) dp (2).
We now «polarize», so that we get instead the integrals

4
1) J _]I K(wg, w)) - by (W1)bs3(w3) by(wy) by(w,) - 1:_[1 dV(Wj)
9t AZ5 =
respectively
2) L b,(2)b3(2) by (2) b4(z) dp(2),

with four different functions b,, b,, b;, b,. In operator terms this means that
we are considering the operator A} H, Hj H, .
Next we let by, b,, b;, by be «atoms», that is, we take

bj(z) = L(Z, z_]) (J = 1’ 2, 3’ 4)’

where 2, Z,, 23, %4 are points of Q. It is then clear that the question of pro-
portionality of the forms (1) and (2) (or (1') and (2')) is equivalent to the
identity

L LGz DLz L@ 2L, 29) do (2)
*) = const - K(z1, Z)K(z1, Z)K (25, Z)K s Zs)-
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2. Discussion of (*)

Some things are now obvious:

1. If hypothesis (V) or (V2) (see [2]) holds, for the measures du and dv, then
(*) is true on the diagonal (z; = z3, 2, = Z4). It is then question of the formula

[ L1, 2) L5, Z,) dp(2) = const - K*(z, Zy)-

It is clear that both members are proportional to L*(z;, Z3)-

2. On the other hand to verify (*) it suffices to do it on another diagonal
(z; = 22, 23 = Z4)- This is because both members are analytic in «odd» varia-
bles, conjugate analytic in «even» ones.

3. («) is true in the Fock case. This we know ([2], Theorem 7.8), but here
is the direct argument. In the Fock case’® we have

K(z, w) = e**,  L(z, w) = e**".
So it is question of the formula
”c 2@+ 27020 @ 729 o =412 gy — const - @@+ D@ T
or, writing @ = z; + 23, b = 2, + 24,
”C 2@z +b9,-4121” gy gy — const - e??,
To prove this, we first consider the «real» integral (z = x + iy)
”C p2kx+ 21ye~4(x2 +y2)- dxdy.
As the variables in the integral separate, it is clear that it evaluates to

k2 +1%/4
const - e®+174,

Next we take k = a + b, [ = i(b — @). Then
kx+ ly =az + bz,

while the previous exponent becomes

LIPS DS DR PR
4(k +l)—4(a+b) 4(a b)* = ab.

5 For simplicity (i.e. notational simplicity) we take n = 1 (and the parameter « = 1).
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3. The Case of a Bounded Symmetric Domain

Now we shall indicate why (*) cannot be true for a general bounded symmetric
domain.

First we continue for a while the general discussion in Section 1. By 2. in
Section 2 it suffices to work on the diagonal, that is we may take z; = 2,,
z3 = 24. Next, we invoke the Berezin kernel, which is a general object known
to be useful in Hankel theory (cf. [1], [4]). In our case, since we have also two
measures g and », we have two kernels, namely ®

|K(z, w)|*
Kz, Z) - K(w, W)

B,(z, w) =

L@ W*
L(z,2) - L(w, )

B,(z,w) =

Then, dividing with X*(z;, Z,;)K*(z3, Z5), we get from () the equivalent formula
() [ B.(@1, DB, (23, 2) A\ (2) = comst - B, (21, Z3).

Putting ourselves in the homogeneous situation, it suffices, again, to estab-
lish () if one of the points z; and z; is «fixed», the other «variable». (That
is, if Q is a symmetric domain, we can take e.g. z; = 0.) We can then also say
that, a priori, the integral to the left in (**) must be a function of B,(z;, z3),
that is, we get a relation of the form

[, B@1, 2B, (@3, 2) AN @) = h(B, (@1, %)),

where A thus is a function of one real variable. In other words, the question
about the validity of (x) or (**) has been reduced to the question of deciding
whether this function h possibly can be a multiple of the identity.

Let us apply these considerations to the case of the unit disk, i.e. @ = D C C.
Then

dp (z) = const - (1 — |z]?)* dx dy,
K(Z, w) = (1 — zw)—(oz+2),

(1 _ |z|2)a+2(1 _ IWIZ)cx+2
ll __Zw|2(a+2)

B,(z,w) =

6 Since these kernels display now visible properties of analyticity, it is no point to put bars over
the arguments.
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and similarly for d» (), L(z, w), B,(z, w), with a replaced by 8 = 2a + 2 (if
and only if 28 + 2 = 2(a + 2)). We have also

dxdy
a-|z»
So taking z; = 0 as our «base point», we are led to consider the integral

j(l I el L SRV I L
prECER (1 - |z»?

d\(z) = const - (Poincaré measure).

Lemma. (cf. Rudin [5], p. 18).

(1 - [z _ v+ 2: 122
v+ 1 ED 1= P dxdy = wF(6, 6;v + 2;|z|).

Proor. Use the expansion
(1—zw)~° Z} ~kL (zw)* (with 6)y, =06(6+1)---(6+k—1))

together with the fact
k!'w

2k(1 _ |12\ - .
('y+1)L|z| (1 - |z|" dxdy 1 2%

In our case we have v =28 + 2 = 4o + 6, while 6 = 3 + 2. If we write out
the resulting formula for a general point z; we get

dxdy

j B,(z;,2)B, (zs,z) 1P

()

(1 — |z, - |z312)>_

s
=——B,(z,z2)F| B+2,8+2;v+2;1— -
1 (z1, 23) <18 B I "212312

Y

(N.B. — B,, not B,!)

The hypergeometric function to the right in (}) is never a multiple of the
identity. Therefore, from this formula it is seen that only in the limiting case
a — o (corresponding to Fock space) that () or (*%) can hold. So the claim
made in Introduction is substantiated.

Let us elaborate the above somewhat. To make the transition to the Fock
case we have also to invoke the «radius of curvature» R and make R — o in
such a way that «/R? — 1. In other words, we make the substitution z ~ z/R,
so that the unit disk D gets replaced by a disk Dy of radius R, and at the same
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renormalize dp and dv so that we get probability measures. The left hand side
of (1) then becomes

J a+1 dxdy
R

B B :
b (215 2)B,(23, 2) R? a- |Z|2/R2)2
Now
<1 ~ IZIZ )2(l3+2)<1 _ |w|2>2(3+2)
2 2
B,(z, w) = u = 2(B+§ ’

Iw
“ "R

which in the limit is
B,,(Z, W) — e—2|z—w[2’

leading to the integral

J‘ B,(z1,2)B,(z3,2) dxdy = J e~ 2l -2 =20z-nl gy gy,
C

C
2 ? 123 [?
<1 - Rlz - R32

2123 |°
-5

At the same time the right hand side is

Q) 7B,(z1,z)F | B+2,8+2;7+2;1 -

As in the proof of (%), it is now convenient to put temporarily z; = 0 and to
write z; = 2. The hypergeometric function in (3) is then

|z
F B+2,B+2,7+2;7

with the series expansion

B+2' R®  (B+2B+3* \R*)
r+2 1! (ry+2)(v+3) 2!

It is clear that we in the limit t]zlen expect the contribution ¢/?”7_On the other
hand, we get B,(z,0) = e~ 27" for the first factor in (3). These two factors

7 Although this is quite trivial, we have not been able to find in the literature any asymptotic for-
mula of this kind for the hypergeometric function.



ON THE S,-NorM OF A HANKEL ForM 129

combine to B,(z,0) = e~ |z|2. Restoring the original variables z; and z,, we get
of course B, (21, z;). Thus we have effectively yet another «proof» of Theorem
7.8!

So much for the unit disk. The case of the unit ball in C” is quite parallel
(see again [5], p. 18). It seems that the case of a general symmetric domain
involves generalized hypergeometric functions encountered by Yan [8] in his
recent thesis.

Remark. So far, we have not been able to extract any other information from
a formula like (1).

4. On the Ss-Norm

Continuing the computation in Section 1, we are led to the following expres-
sions for the Sg-norm (¢f. formula (1) there)

||Hb||§6 = ||Flb|[§6
= trace (H} H,)®
= [ o DOWK W, 91 BW) K(wz, W)D(W)K (Way W3) BOWS) K (s, Ws)

6
X b(ws)K(ws, Ws) b(we)K (s, Wl)jl;ll dv (w)).

(From this it is also completely clear how the general formula for the S,-norm,
» an even integer (thus the analogue of the preceding formula reads for
p=28,10,...), must look, but we do not bother to write it down.) This
expression has to be compared with the integral

[ 16@)|°do @),

where do (z) = K3(z,Z) dp (z). Again we can polarize. The we obtain corres-
ponding multilinear forms formed with six functions by, ..., bs. In the next
step we specialize to «atoms», thus taking b, = K(z,Z) (j=1,...,6). Even
in the Fock case we have not been able to find any interesting relationship
between the resulting expressions.
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