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1. Introduction.

Quasiregular mappings are defined as the quasiconformal mappings
by replacing the homeomorphism requirement by continuity. More pre-
cisely, a continuous map f : G — R", where G is an open set in
R" and n > 2, is quasiregular if f € W,hoc(G) and there exists
K, 1 < K < o0, such that

If'(2)|" < KJs(z) ae.

Here W;,IOC(G) is the space of maps that are locally in the Sobolev
space W} of L"-integrable maps with distributional first order deriva-
tives in L™. Furthermore, |f'(z)| is the operator norm of the for-
mal derivative of f at z defined in terms of the partial derivatives,
and Js(x) = det f'(z). With this definition a quasiregular map turns
out to be differentiable a.e. The definition extends easily to the case
f:M — N, where M and N are oriented Riemannian n-manifolds.
We say that a continuous map f : M — N is locally quasiregular if
for each z € M there exist neighborhoods U of z and V of f(z) and
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charts ¢ : U — R™ and ¢ : V — R™ such that o fop™ : o(U) — R
is quasiregular in the above sense. Then T f, the differential of f at z,
exists a.e., and f is called quasiregular if there exists K, 1 < K < oo,
such that

T f|" < KJg(z) ae.

In this paper we call f K -quasiregular if it satisfies the above condi-
tions with K.

Quasiregular maps constitute a natural generalization into n real
dimensions of the analytic functions of one complex variable. For
example, a Picard type theorem was established for n > 3 in 1980 in
the following form.

Theorem 1.1. [R1]. For each n >3 and each K > 1 there ezists a
positive integer go(n, K) such that every K —quasiregular map f : R™ —
S"\ {a1,...,a,}, where ¢ > qo(n,K) and ay,...,a, are distinct, is
constant.

Theorem 1.1 is known to be sharp for n = 3 in the following sense.

Theorem 1.2. [R5]. For each positive integer p there ezists a noncon-
stant K(p)-quasiregular map f: R®> — R® omitting at least p points.

Both these results can be extended considerably to yield a defect
relation [R2], [R6], [R7] together with a sharpness result [R6].

The purpose of this paper is to give an affirmative answer to a
question posed by M. Gromov, namely, whether one can put any
Riemannian metric on 8™\ {a,...,a,} and still get the constantness
of the K —quasiregular map. We formulate our result as follows:

Theorem 1.3. For each n > 3 and each K > 1 there exists a positive
integer qo(n, K) such that the following holds. Let N be an oriented
compact differentiable n-manifold and let ay,...,a,, ¢ > qo(n,K),
be distinct points in N. Suppose M = N\ {a1,... ,a,} 13 given any
Riemannian metric (, ). Then any K -quasiregular map f:R™ — M
18 comstant.

Gromov’s question was partly solved in [H1]. For the proof in
[H1] a regularity condition was needed on the metric which guaranteed
the existence of certain path families. Up to very recently, all existing
proofs of Theorem 1.1, including the extension of it in [H1], contain
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estimates in terms of moduli of path families (see [R2], [R4], [R7]). The
heart of the matter has been to get a rapid growth on a measure v in
R™ in terms of the number of omitted points. For a Borel set E, v(E)
is the average covering number of f | E over a fixed (n — 1)-sphere in
the target.

The main ingredient to the problem is the paper [EL] by A. Ere-
menko and J. Lewis where they present a purely potential theoretic
proof for Theorem 1.1. They obtain this as an application of a general
statement on A-harmonic functions (see Section 2 for definitions). In
[EL] there is to each .A-harmonic function w attached a measure pu,
and this measure can be estimated by the growth behavior of w. In
some sense such measures u replace measures v described above. To
get a proof for Theorem 1.3 a technique developed in [H1] is used to
produce certain n—harmonic functions in M with prescribed behavior
near the ends of M. In addition to this we need from [EL] their Lemma
1 which relates the growth behavior of the measure p to that of the
corresponding A-harmonic function. The rest of the proof follows more
or less ideas established in [R1] and [R4]. An alternate way to get a
proof for Theorem 1.3 is to use the construction in Section 3 and the
main theorem (Theorem 1) from [EL]. However, for our purpose we can
avoid a great deal of the complications in the proof of [EL, Theorem 1].
We therefore feel that it is justified to present a direct proof were only
a part of the paper [EL] is used.

2. Quasiregular mappings and 4-harmonic functions.

Throughout this section let G C R" be an open set and let
A:GxR" - R"
be a mapping defined by
(2.1) Az, k) = (8(z)h - b)™* 7 0(2)h

where 6 : G —» GL(R",R") is a Borel map with the following proper-
ties. For all £ € G the linear map 6(z) is self-adjoint and there are
constants 0 < a < f < co, called structure constants of A, such that

(2.2) a®/™ b < @(z)h-h < B |A)

for almost every z € G and all h € R". It follows from (2.1) and (2.2)
that A has the following additional properties for almost every z € G
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and all A,k € R":

(2.3) A(z,h)-h > alh|”

(2.4) |A(z,h) - k| < B|A|"" K|

(2:5) (A(z,h) = Az, k) - (h—k) = 5 |h =k (A" + []"7?)
>a2!7" h— k| .

For the proof of these properties we refer to [BI]. A continuous function

u € W, 1,.(G) is said to be A-harmonic in G if it is a weak solution
of the equation

(2.6) —divA(z,Vu) =0

in G, that is,

/ A(z,Vu) - Veodzr =0
G

for all ¢ € C§°(G). The equation (2.6) is the Euler-Lagrange equation
of the variational integral

/F(z,Vu)dm, F(z,h) = n~(8(z)h - B)"/*.
G

Therefore A-harmonic functions are also called F-extremals in the
literature.

An upper semicontinuous function v : G — R U {—o0} is called
A -subharmonic in G if for all domains D CC G and all functions h €
C(D) which are A-harmonic in D the condition ~ > v on 8D implies
h>wvin D. If u and v are A-subharmonic in G, then obviously
max{u,v} and Au+ g, A > 0, p € R, are also A-subharmonic in
G. A lower semicontinuous function u : G — R U {oo} is said to be
A-superharmonic if —u is A-subharmonic.

There is a close connection between .A-harmonic functions and
quasiregular maps which is proved by Yu. G. Reshetnyak, see e.g.
[Re, Theorem 11.2]. Namely, if f is a quasiregular mapping of G into
another open set G' C R™ and u is A-harmonic in G', then uo f
is f# A-harmonic in G where f#A, the pullback of A, is of type
(2.1) and depends on A and f. We shall make use of this important
result in the following case to where it easily extends. Let G' be an
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open subset of an oriented Riemannian n-manifold M. A function
u € C(G")YNW},,.(G') is said to be n-harmonic in G' if

f (|IVu|"" Vu, V) dm = 0

for all ¢ € C§°(G'). Here (, ) is the Riemannian metric of M. Suppose
that f: G — G' is a K—quasiregular map. Then uo f is A-harmonic
in G where A is defined by (2.1) with

TN @) T f T f 1, if Jp(z) > 0,
o(z) =
id

, otherwise.

Here T, f~'* : R*® — Ty(;)M is the transpose of the linear map T, f .
We can choose

(2.7) a=1/K and f=K""!

as structure constants of A. We can apply the invariance property to
chart mappings as follows. For each ¢ € M, choose a neighborhood
U of z and a 2-bilipschitz chart ¢ : U — B"(0,7). Then ¢! is
quasiconformal and u o ™! is A-harmonic in B*(0,r) if u is n—
harmonic in U. In this way we easily obtain some basic properties
for n—harmonic functions in U such as Holder continuity, Harnack’s
inequality, and Harnack’s principle.

During the last few years A-harmonic functions have been ex-
tensively studied in a more general setting than the one introduced
here, see [GLM], [HK]. The study has also been extended to Rieman-
nian n-manifolds to create a classification theory of manifolds based
on the existence of A-harmonic functions with various properties [H1],
[H2], [HR]. To simplify the presentation in this paper, we consider .A-
harmonic functions only in the Euclidean n-space and n—harmonic
functions on Riemannian n-manifolds.

3. Construction of n-harmonic functions in M.

Let N be an oriented compact differentiable n-manifold and let
M = N\ {ai1,as,...,a,} be equipped with an arbitrary Riemannian
metric (, ). We suppose that the points a; € N are distinct and write
P ={a1,...,a,}. In this paper a condenserin N will be a pair (G, C)
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where G # N is an open set in N and C is either a compact subset
of G or a closed set in GN M such that C U (G N P) is compact. The
n-capacity of (G,C) is defined by

cap,(G,C) = inf |Vu|® dm
v JenM

where the infimum is taken over all v € C(GN M) N W 10 (G N M)
with v = 0 in 0GNM and v = 1 in CN M. If the infimum is
attained by some function u within the class, we call u an n-capacity
function of (G,C'). In that case u will be n-harmonic in (GNM)\C.
From now on we assume that (,) is given such that the deleted set
P = {a,,... a4} is of zero n—capacity, r.e. cap,(G,P) = 0 for all open
sets G C N containing P. Let C be a smooth (n — 1)-submanifold
of N which divides N into two domains U; and U,, one of them,
say Uy, containing a;, and U, containing the points a,,... a,. Write
U=Ui\{a1} CM and V =0, \ {ag,...,a,} C M. This notation
will be used throughout the paper.

In this section we construct n—-harmonic functions in M that in
some sense correspond to functions —log|z —a;| in the case M =
8"\ {ai,...,aq} equipped with the Euclidean metric.

Lemma 3.1. There are functions h; € C(VUC), j =2,...,q, with
the following properties:

(3.2) h; is n-harmonic in V,
(3.3) h; =0 on C,
(3.4) sup h; = oo (near a;), and

(3.5) hj is bounded in some neighborhood of ar, k # j.

PRrROOF: Fix j and choose a decreasing sequence C; C Uz of compact
connected sets with nonempty interiors such that N;C; = {a;}. For
each 1, there exists a function w; € C(V U C) which is n—harmonic in

V\ Ci with w; =0 in C and w; = (cap,(Uz,C:))"/" ™ in C;, and

which minimizes the Dirichlet n-integral

/ |Vu|™ dm
V\C;
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among all functions u € C(V UC) that coincide with w; in CUC;. For
each a, 0 <a < (capn(Ug,Ci))l/(l_n), min{1l,w;/a} is the n—capacity
function of (Us, {z : wi(z) > a}). By [H1, 3.8],

(3.6) cap,(Us, {z : wi(z) > a}) = a' ™.

If B CV is a compact topological n—ball, then it follows from a local
Harnack inequality that for sufficiently large ¢

max w; < ¢; minw;
B B
where ¢; is independent of ;. On the other hand,

mbjn w; = cap, (Uz, {z : wi(z) > mg‘n w,-})l/(l-n) < cap,(Uz, B)Y/—™)

and so
max w; < ¢; cap, (U, B)Y/(-™

for large :. Therefore (w;) is a locally uniformly bounded sequence in
V' and it follows from the Holder continuity estimate [GLM, 4.7] that
(w;) is equicontinuous in V. Ascoli’s theorem and a standard diagonal
process then give a subsequence, still denoted by w;, which converges
locally uniformly in V' to a function A € C(V). Since the class of n—
harmonic functions is closed under uniform convergence [HK, 3.2], the
limit function h is n—harmonic in V. By a boundary estimate due to
V. G. Maz’ya [M, p. 236], h is continuous in VUC and h=0 in C.
Therefore conditions (3.2) and (3.3) hold.

To show that h is nonconstant, take a small topological (n — 1)-
sphere S C V about a; such that it separates a; and the rest of the
points ar. Then

mé'a,x w; < cs msin w;

for large . Here the constant cs depends on the choice of S. But now
msin w; > cgl mgx w;
- 1/(1—
= CSI capn(Ug, {z : wi(z) > msaxwi}) /a=m)

> ¢3! cap,(Uz, $)V/(—™ >0,

Thus A is not a tonstant.
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Next we show that h is bounded near the points ax, k # j. Let
S C V be as above. Suppose that h takes arbitrary large values near
some point ax, k # j. In particular, some w; takes larger values near
ax than m = sup,; maxsw;. Truncating w; by m near the point ax
we obtain a function that coincides with w; in C U C; but its Dirichlet
n—integral over V' \ C; is strictly smaller than that of w;. This is a
contradiction, and (3.5) holds.

Suppose that supy h = A < co. Then (capn(Ug,Ci))l/(n_l)w,- >
h/X in V' \ C; for all :. This implies that

cap,(Uz,Ci) > ¢ >0

since (capn(Ug,Ci))l/(n_l)wi is the n—capacity function of (Uz,C;).
In particular,

capn(Uz,{a;}) > 0

which is a contradiction since (, ) is assumed to be such that P is of
zero n—capacity. Hence (3.4) is true.

Similarly, we can find a decreasing sequence K; C U; of compact
connected sets with nonempty interiors such that N;K; = {a;} and a
sequence of functions u; € C(U U C) with the following properties

(3.7) u; is n-harmonic in U \ Kj;,
(3.8) u; =0in C and u; = (ca.pn(Ul,K,-))l/(l—n) in K;,
(3.9) cap, (U1, {z : ui(z) > a}) = a' ™"

foralla, 0 <a< (capn(Ul,K,-))l/(l—n) , and
(3.10)  u; — hy locally uniformly in U .

The limit function h; is continuous in UUC, n-harmonicin U, h; =0
in C, and supy hy = 0.

The main result of this section is the following lemma. The proof
is similar to the proof of [H1, 4.13].

Lemma 3.11. There ezist n-harmonic functions vj, 7 =2,...,q, in
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M and a positive constant k such that

(3.12) |vj| <k mC,
(83.13) |vj—vi|<2cin U,
(3.14) supw; =00,

U
(3.15) ir‘}f v; = —00,

(3.16) wv; 1s bounded from below near ax, k # 1,7, and
(3.17) ifvj(x) > K, thenz € U; if vj(z) < —k, thenz € V.

Proor: Fix j € {2,...,q}, and let C; and w;, : =1,2..., be asin
the construction of h;. For each ¢, let v = v; be the largest integer
such that

v < min { (capa(U2, €))7, (cap, (U1, K0) T}

Then v; is increasing and tends to oo as i — oo. Write

G, =N\ {z:wi(z)> v},
F, ={z:ui(z) > v},

and
T = (ca,pn(G,,,F,,))l/(l_n) .

Let e, € C(M) be a function which is n-harmonic in G, \ F,,

6,,|F,, = '71//2,
and
eul{z  wi(z) 2 v} = /2

such that it minimizes the Dirichlet n-integral over G, \ F,, among all
functions taking these values in F, and {z : w;(z) > v}. First we note
that —v,/2 <e, <%,/2 in G, \ F,. Applying Harnack’s inequality to
ey +7,/2 and to v, /2 —e, we obtain that, in fact, —v, /2 <e, < 7,/2
in G, \ F,. Write M, = maxce, and m, = mince,. The function
v, (ey + 7, /2) is the n—capacity function of (G,,F,). Applying [H1,
3.8] to this function yields

M, —m, = cap,({z : es(z) > mu}, {z : eu(2) > M, )77
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The sets {z : e,(z) > m,} and {z : e,(z) > M,} contain continua
E, and E,, respectively, that join C' and some point of F,, UP U {z:
wi(z) > v1}. Therefore

capn({x rey(z) >my} {z e (z) > Mv})

> inf Mn(A(El,E2§ Gu1 \F"l)) >0
E,,E,

where E; and E, are as above. Here M,, (A(El,Eg; G, \F,,l)) is the

n—modulus of all curves in G,, \ F,, connecting E; and E,. Hence
(3.18) M,—m, <k

where k < co is independent of v.

Next we show that {z :e,(z) > M,} CU and U C {z : e,(z) >
m,}. Suppose there is a point zo € G, \ (U U C) such that e,(z¢) =
a > M,. Then the component A of {z € M : e,(z) > a} whose
boundary contains zo must be a punctured neighborhood of some ai
and A is entirely contained in G, \ (U U C). Replacing e, | A by a
decreases the Dirichlet n-integral of e, which gives a contradiction.
On the other hand, e,(z) > m, for every z € U. It follows from
Harnack’s inequality applied to e, —m, in U\ F, that e, > m, in U.
Applying [H1, 3.8] to v, (ey + 7, /2) yields

/2 — M, = cap, ({z : eu(z) > M,,},F,,)l/(l_n)
< cap,(Uy, F,)M0=™ =y,

Similarly,

1—n
/2 = m, = cap,({z : e(x) > m,}, F,) 7

> capn(Ul,F,,)l/(l”") =v.

We claim that m, < 0 < M,, that is, each e, takes the value 0
in C'. Suppose that we can find v such that, for instance, {z : e,(z) >
0} CU. Then

v!™" = cap,(U,F,)
< cap, ({z : ex(z) > 0}, F))
= (2/n)"
= cap, (G, {z : e,(z) > 0})
< cap,(G,,UUC) =vI"".
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This is a contradiction. The case UUC C {z : e,(z) > 0} can be treated
similarly. Since M, —m, < k, we obtain m, > —k and M, < k.
We have proved

v—k<v+m, <v,/2<v+M,Jv+k.
Thus u; —k < ey, <u;+k on (U \ F,) and therefore
(3.19) u;—k<e, <u;+k
in (UUC)\ F,, see [GLM, 4.18], [HK, 3.7]. We also have
—w; —k< e < —w;+ kK
in (G, \U)N M. We want to show that
(3.20) Cwi— ke, < —wit R

in (G, \U)NM. For large v, the boundary of G, \ U contains some
points of P. Therefore we can not use [GLM, 4.18] in this case. Suppose
that there is a point zo € (G, \U)N M and € > 0 such that e,(z¢) =
—w;(zg) + K+ €. Let A be the open connected subset of {z € M :
es(z) > —w;(z) + k} that contains zo. Now e, and —w; are n—
harmonicin A, e, = —w;+« in 0ANM , and Ve, and Vw; belong to
L™(A). Since P is of zero n—capacity and e, + w; — £ is bounded, we
can find a sequence @y € C§°(A) such that ||Ve, +Vw; — V| n,a — 0
as £ — co. Therefore

/ (|Ve,|" % Ve,, Ve, + Vw;) dm
A
= / (IV(=w;)|""* V(~w;), Ve, + Vw;) dm = 0.
A
We conclude that e, = —w; + k in A since

21—"/ Ve, + Vw;|" dm
A

< / (IVeu "2 Ve, — [V(=w;)|"™? V(=wy), Ve, + V) dm = 0
A

Hence no such zo and € can exist. The left side inequality of (3.20)
can be proved similarly.



142 HOLOPAINEN, RICKMAN

As in the proof of Lemma 3.1 we find a subsequence of (e,) which
converges locally uniformly in M to an n-harmonic function v;. We
can choose x in (3.18) so large that it is independent of j. Then

(3.21) hi—k<v;<hi+k
in UUC, and
(3.22) —hj—k<v; < —hj+k

in VUC forall j =2,...,q. It follows from (3.21) and (3.22) that
functions v;, j =2,...,¢, and the constant « satisfy the conditions of
the Lemma.

4. Measure attached to an A—harmonic function.

Let A be of type (2.1) and let w be an A-harmonic function
in a domain G C R*. Then w* = max{0,w} is a continuous A-
subharmonic function in G which belongs to W;JOC(G). By [HK, 3.14],

wt is an A-subsolution in G, i.e.
/ A(z, Vwt) - Vodm <0
G
for all nonnegative ¢ € C§°(G), see also [GLM, 5.17]. Hence

cpr—-»—/.A(x,Vw'*')-chdm, o € C(G),
G

is a positive linear functional. By the Riesz representation theorem,
there exists a measure y on G such that

(4.1) —/A(:I:,Vw+)-V<,odm=/cpd;L, p € C5°(G).
G G

In the following we denote by b;, ¢;, ¢ = 0,1,..., positive constants
which depend only on n and the structure constants of A.

Lemma 4.2. Let w be A-harmonic in G, let B™(z,2r) C G, and
suppose w(z) =0 for some z € B™(z,7r/8). Then

%M(w,m,?r/S) < M(—w,z,r) < coM(w,z,8r/7)
0
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where

M(w,z,t) = Bm(ax)w.
"(z,t

PROOF: It is enough to prove the left hand inequality. Set ¢ = w +
M(—w,z,r). Then g is nonnegative in B™(z,r) and we can apply
Harnack’s inequality to g in the ball B"(z,7r/8) and get for some
¢z > 1 that

1
M(—w7$77‘) = g(Z) > Z; maxE"(z,Tr/S) g

_ -clz(M(w,x, Tr/8) + M(~w,z,7)),

and the lemma follows.
The next lemma is essentially Lemma 1 in [EL] for the special
case p = n. For completeness we include the proof which is somewhat

shorter in our case.

Lemma 4.3. Let w be A-harmonic in G, let B*(z,2r) C G, and
suppose w(z) =0 for some z € B"(z,r[4). Then

(44) ~u(z,r/2) < M(w,2,r)"™ < cap(a,2r),
1

where p is the measure defined by (4.1) and p(z,t) = p(B"(z,t)).
PRrROOF: To prove the left hand inequality of (4.4) let o € C5°(G) be

such that 0 < ¢ < 1, spt 0 C B"(z,3r/4), o | B*(z,r/2) = 1, and
|Vo| < 8/r. Then by (2.4) and Hoélder’s inequality,

/,t(:c,r/2)§/adp=—/A(a:,Vw+)-V0'dm
G G

(4.5) <8 |Vwt|" ™" |Vo| dm
Bn(z,37/4)

(n=1)/n
<c / ‘Vw+|n dm .
B"(z,3r/4)
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By the so called standard estimate (see [GLM, 4.2]) and Lemma 4.2,

/ |Vw+|n dm < / |[Vw|™ dm
Bn(z,3r/4) Bn(z,3r/4)

(4.6) < ¢4 osc(w, B™(z,7r/8))"
<ecs M(w,z,r)".

The left hand inequality of (4.4) follows from (4.5) and (4.6).

For the right hand inequality of (4.4) let A be the .A-harmonic
function in B"(z,2r) such that h — w* € W] ;(B™(z,2r)). Then
0 < wt < h. By Harnack’s inequality applied to h we get

(4.7) M(w,z,r) < M(h,z,r) < e2h(y), y€ B (z,r).
Holder continuity of w ([GLM, 4.7]) gives for 0 < p < r/4 the estimate

M(w, z,0) < osc(w, B™(z,0))
<ecs (§>7osc(w,B"(z,r/4))
(4.8) <ecs (g)vosc(w,B"(x,r/Z))

2¢s (g)vma;c {M(w,z,7/2), M(—w,z,r/2)}

IN

< cg (9)7M(w,z,1~),

"
where we also used Lemma 4.2 and the fact that w(z) = 0. Here

v €]0,1[ is a constant which depends only on n and the structure con-
stants of 4. Choose p < r/4 maximal such that

1
(4.9) Co (g)v M(w,z,r) < 3 Mmingn, ) h.

Let y € B™(z,p). Then inequalities (4.7)-(4.9) imply

1 1
. — <= < - = h
(100 MO S g g, P m g
< h(y) — M(w, z,0)
< h(y) — w(y) < ezh(2)
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Let ¢ € W, o(B™(z,2r)) be defined by ¢ = min{h — w™*,c2h(2)} and
set F'= {y € B"(z,2r): Vy(y) # 0}. By (4.10), Poincaré’s inequality,
and by (2.5) we get

h(z)"o" < C7/ e"dm < 67/ o™ dm
Bn(z,p) Bn(z,2r)
< csr"/ V| dm
F
(4.11) < 097'"/ (A(z,Vh) — A(z, Vuwt)) - Vo dm
F

< —ch"/ Az, Vut) - Ve dm
Bn(z,2r)

= cgr"/ pdp < cocar™h(z)pu(z,2r).
Bn(z,2r)

Since p/r has a positive lower bound depending only on n and the
structure constants of A, we obtain the right hand inequality of (4.4)
from (4.11) and (4.7).

5. Proof of Theorem 1.3.

Let f : R® — M be a nonconstant K —quasiregular mapping.
If the Riemannian metric of M is given such that {a;,...,a,} is of
positive n—capacity, it is possiblt to construct a positive nonconstant
n—harmonic function v in f(R™) using the ideas from Section 3. Then
v o f is a nonconstant positive A-harmonic function in R™ which is
impossible by the Harnack inequality [GLM, 4.15]. Therefore we may
assume that {ay,...,a,} is of zero n—capacity. Let vz,...,v, be the
n-harmonic functions in M constructed in Section 3 and satisfying
properties (3.12)—(3.17). Let u; = vjo f, j = 2,...,q. Then each
u; is an A-harmonic function in R", and the structure constants of
A depend only on n and K. By Harnack’s inequality, us can not
be bounded either below or above. Hence u, and —u, take arbitrary
large values in R™, and it follows from (3.17) that there exists o € R™
where f(xo) € C. Set w; = uj —uj(zo). We write w = w, and define
the measure y by (4.1).

Let Ao be a sufficiently large number so that obvious estimates in
inequalities (5.3) and (5.5) are true. We shall choose A more precisely
after (5.7). Since M(w,z,s) — co as s — oo, Lemma 4.3 shows that
u(z,s) = oo as s — oo. Take r so large that

(5.1) w(zo,m) > Ao .
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By Lemma 4.3,

(5.2) w(zo,7) < e; M(w,zo,2r)* 1,
and by the properties (3.13), (3.17), and Lemma 4.2,

M(w,z0,2r) < M(wj, zo,2r) + 4k
(5.3) < 2M(wj, zo,2r)
< 2¢o M(—wj, z9,3r), J=3,...,q.

From (5.2) and (5.3) we get

(5.4) p(zo,m) < byM(—wj,z0,3r)" ™,  j=2,...,q.

For j =2,...,q, let z; € B"(z0,3r) be a point such that
M(~wj, z0,3r) = ~w;(z;).

For 0 < p < r, Holder continuity, Lemma 4.2, (3.13), and (3.17) imply

osc(w;, B"(zj,0)) < by (g)vosc(wj,B"(zo,élr))
v

< 2b, (g max {M(wj, zg,4r), M(—wj, z¢,4r)}

YM(wj,x0,5r)

¥y

(5.5) < 2bs ¢

AN TN
SR 3 3

S 2b2 Co (M(’w,CL‘(), 5T) + 4K,>

‘Y .
S4bgCo( M(w,zg,57), ji=2,...,q.

From (5.4), (5.5), and Lemma 4.3 we obtain

1/(n—1
(5:6) max w; < — 00 : )+b3 (Q)v#(% 10r)t/(*=1)
B 7 b r ’

forO0<o<randj=2,...,q.

By covering the ball B"(z¢,10r) by balls of radius r/4 we find
a constant d, > 1, depending only on n, such that if u(xo,107) >
dppu(zo,7), then there exists z; € B"(zg,10r) such that p(zy,r/4) >
p(zo, 7). We may assume that ¢ is so large that ¢ < r can be chosen by
the formula (¢ —1)o™ = 2(4r)". Suppose that u(zo,10r) < d,pu(zo,r).
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From (5.6) we see that there exists an integer go(n,K) such that if
q > qo(n, K), then

1 [ u(zo,r) 1/(n=1) 1 1/(n—
5.7 R e < —=(Ao/by)V/ (1)
(5.7) pmax w; < 2( 5y ) < —5(Xo/b1)

From (5.7), (3.16), and (3.17) it follows that with a sufficient large Aq
each set fB"(zj,0) is contained in a neighborhood of a; such that
these neighborhoods are disjoint. Hence the sets B"(z;, ¢) are disjoint.
But the balls B"(z;, ¢) are all in B™(xq,4r) which is impossible by the
choice of p. Therefore, if ¢ > go(n, K), then u(zo,107) > dpu(zo, ),
and so u(z,,7/4) > p(zo,r) > Ag for some z; € B”(xo,IOr). Since the
support of p is contained in {z € R" : w(z) = 0}, we also have w(z) =
0 for some z € B™(z;,7/4). We can then repeat the above by starting
from the ball B"(z,,7/2) instead of B"(z¢,7). We get a sequence
B™(z,r/2F) of balls converging to a point y with w(zr,m/2%) > X
By Lemma 4.3 this means that w would be discontinuous at y, which
is a contradiction. The theorem is proved.
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