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1. Introduction.

It was known that the following form of oscillatory singular inte-
grals defined for smooth f with compact support had been studied by
F. Ricci and E. M. Stein in [1]:

p.v. / e? VK (z —y)f(y) dy,

where p(z,y) is a real valued polynomial defined on R" x R", and K(z)
is a standard Calder6n-Zygmund kernel. That means, K satisfies:

(1.1) K(z) is C'-continuous away from the origin,

(1.2) K(z) = Q(z')/|z|™ with Q homogeneous of degree 0 on S™~ !

(1.3) /S Q(z") do(z') = 0.

The following theorem is the main result in [1]:
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Theorem A. Suppose p(z,y) s a real valued polynomial. If K(z)
satisfies (1.1)-(1.3), then the operator

f—pv. / 6ip(x’y)f\’($ —y)f(y)dy

can be eztended to be a bounded operator on LP(R™) to itself, with 1 <
p < +oo, and the norm of this operator depends only on the total degree
of p(z,y), but not on the coefficients of p(z,y).

Evidently (1.1) shows that the kernel K(z) requires certain smooth-
ness. In this paper, we shall discuss a class of oscillatory singular in-
tegrals with rough kernel. Precisely, the kernel K(z) satisfies (1.2),
and

(1.4) Qz') € LI(S™1), for some ¢, 1 < ¢ < 400 .

In this case, the kernel K(z) can be very rough on S™~!, and K(z)
is not necessary to be a standard Calderén-Zygmund kernel. Since (1.1)
implies Q(z') € L°°(S™™!), the following result can be regarded as an
improvement of Theorem A.

Theorem 1.  Suppose p(z,y) s a real valued polynomial. If K(z)
satisfies (1.2)-(1.4), then the operator

Tf(z) = p.v. / PN K (2 — ) f(y) dy

can be eztended to be a bounded operator on LP(R™) to itself, with 1 <
p < +oo, and the norm of this operator depends only on the total degree
of p(z,y), but not on the coefficients of p(z,y).

In fact, Theorem 1 is an immediate consequence of the following
stronger result.

Theorem 2. Suppose p(x,u) 1s a real valued polynomial, K(x) satis-

fies (1.2)-(1.4), and b(r) 1s a bounded variation function on [0,00). If
the operator

f — puv. / b(| 2 —y VE(z — v)f(y) dy
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18 a bounded operator on LP(R™) to utself with 1 < p < 400, then the
oscillatory integral operator

Tf(z) = pv. / PN 2 —y VK (z — y)f(y) dy

18 a bounded operator on LP(R™) to itself, and the norm of T depends
only on the total degree of p(z,y), but not on the coefficients of p(z,y).

Let us introduce two concepts before we formulate our main result
of this paper.

Definition 1. A real valued polynomial p(z,y) s called non-trivial
if p(z,y) does not take the form of po(z)+ p1(y), where po and p; are
polynomaials defined on R™.

Definition 2. We will say that the non-trivial polynomial p(z,y) has
property P, if p satisfies

p(z + h,y +h) = p(z,y) + Ro(z, k) + Ri(y, h)
where Ry and Ry are real polynomials.
The main result in this paper is

Theorem 3. Suppose 1 <p < +oo. If K(z) satisfies (1.2) and (1.4),
then the following three facts are equivalent:

(i) If p(z,y) 18 a non-trivial polynomial, then the operator

Tf(z) = pv. [ VK@ - u)fw)dy

can be extended to be a bounded operator on LP(R™) to itself.
(i1) If Q(z,y) has the property P, then the operator

Gf(z)=pv. / QD K (2 — y)f(y) dy

can be eztended to be a bounded operator on LP(R™) to itself.
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(ii1) The truncated operator

Sf(z) = / K(z - y)f(y)dy

|lz—y|<1

can be extended to be a bounded operator on LP(R™) to itself.

Let us give out a simple application of Theorem 3. S. Chanillo, D.
S. Kurtz and G. Sampson investigated the following oscillatory integrals
in [2]:

(1.5) fr—pwv. /11; ele—ul® ﬁ-f—l(z%y_l dy, a>0.

Since the truncated operator

fly)

|z—y|<1 1+ |z — yl

fr—
is a bounded operator on L?(R) to itself, it follows from Theorem 3 that
if a is even, then the operator defined by (1.5) is a bounded operator on
LP(R) to itself. Besides, we have the following conclusion. The operator

defined by
gy SW)
S / T+ —y ™

is a bounded operator on LP(R) to itself, where p(z,y) is a nontrivial
polynomial. Let us make two explanations on the above conclusion.
First, the above conclusion is not contained in [2]. Secondly, since the

operator
f(y)
—p.v. | ——~—d
S Aelﬂw—yl Y

is not bounded on L?(R), the above conclusion can not be obtained
from [1].

Finally, we shall get a similar result for the maximal operator cor-
responding to T.

Theorem 4.  Suppose p(z,y) s a real valued polynomial. If K(z)
satisfies (1.2)-(1.4), then the mazimal operator

T, f(z) = sup
e>0

/ eip(z,y)l\"(g; — y)f(y)dy
[z—y|>e
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18 a bounded operator on LP(R™) to itself, with 1 < p < +o0, and the
norm of T, depends only on the total degree of p(x,y), but not on the

coefficients of p(z,y).
2. Proof of the theorems.

First, we state several lemmas.

Lemma 1. Suppose Q(z') is homogeneous of degree 0 on S™ 1, and
Qz') € LIY(S™ ) with 1 < ¢ < 4o0. If

Tf(z) = p.v. / K(z,9)f(y) dy

is a (LP, LP) type operator with 1 < p < 400, and K(z,y) satisfies

2[(z —y)']|

II\"(way)l < I:v—yl"

y

then the operators

T.f(z) = /lz_ KEI\"(z,y)f(y) dy

are (LP,LP) type operators, and ||Te|| < C(||T|| + A), where C s inde-
pendent of T, € and A depends only on Q(z').

PROOF: We split f into three parts f(y) = fi(y) + f2(y) + f3(y) for
h € R™. Here
A1) = F)x{1y—hl<er23(¥),

F2(¥) = F(¥)X{e/2<ly—h1<5e/4} (Y),
f3(y) = F(Y)X{ly—hi>5e/4) (¥) -

When |z — h| < /4, it is easy to see T, fi(z) = T f1(z). So we have

/ IT. f1(2)P dz < / T fi(2)P da
|z—h|<e/4 R"

(2.1)
< |TIP / F)P dy.
ly—k|<e/2
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If |t —h| <e/4,e/2 < |y — h| < 5e/4, then €/4 < |z — y| < 3¢/2.
So we have

Tf(o) < | Bl 5,2 — )y

e/4<|y|<e ly}n

By the Minkowski’s inequality, it follows that

1/p
( [ maer dar)
|lz—h|<e/4
gooore ( [ inE-ur dx>w dy
e/a<lyl<e Y™ lz—h|<e/4

1/p
C P d Qy")| do(y'
< (/ly_h|<5€/4lf(y)| y> [ oo

1/p
< Cl«QLacsn-1) </ Lf(y)? dy) :
ly—h|<5e/4

If |zt — h| <e/4, |y —h| > 5/4, then |z —y| > €. So we have

IN

(2.2)

(2.3) T. fy(z) = 0.

From (2.1), (2.2) and (2.3) it follows that the estimate

/ IT. f(2)[P dz < C(|T|| + AY? / F@)P dy
lz—h|<e/4

ly—h|<5e/4

holds uniformly in & € R"™.
The above estimates imply

1T flls < CUTI + Al fllp-

Lemma 2. (Van der Corput [3]) Suppose ¢ € C®)[a, b] and |¢F)(t)| >
1 (when t € (a,b)), then we have

b
[/ eiz\d>(t) dtl < CI/\[_l/k
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where A € R, and C is independent of a,b and ¢.

Lemma 3. (See [1]) Suppose p(z) = E|a|<d aez® 13 a polynomial of
degree d, and € < 1/d. Then

—E&

sup /| e ptde a3 e

yeR" |aj=d

The bound A. depends on € (and the dimension n), but not on the
coefficients {aq}.

Lemma 4. (See [1]) Suppose p(z) = Z|a|=d anz® 15 a homogeneous
polynomial of degree d in R™, and ¢ < 1/d. Then

—&

| @ o) < 4 [ 3 oo

lor|=d
The bound A, depends on ¢, but not on the coefficients {aq}.
Now, let us turn to prove the theorems.

PROOF OF THEOREM 2. We shall carry out the argument by a double
induction on the degrees in z and y of the polynomial p as follows. We
assume the theorem is known for all polynomials which are sums of
monomials degree less than k in z times monomials of any degree in y,
together with monomials which are of degree k in z times monomials
which are of degree less than [ in y. Our inductive step will be to add
to this all the monomials which have degree k in z and degree [ in y.
For general p(z,y), we may write

P(z,9) = D aapz®y® + Ro(z,y)
la|=k

18l=t

where Ro(z,y) satisfies the above induction assumption.
For k = 0 and ! arbitrary, the theorem is known. Let us now prove
that Theorem 2 holds for arbitrary £ > 0 and [ > 0 by induction.
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Without loss of generality, we may assume Z laqs| > 0.

|a|=k
18l=t
Case 1. Z |aag| = 1.
|a|=k
|8l=t
We write

Tf(z) = / PED Y|z — y)K(z — v)f(y) dy
lz—y|<1

+ / eP@VY(|z — y)K (z — y)f(y) dy
jz—y[>1 '
= Tof(z) + Too f(2).

Take h € R™, and write

p(z,9) = Y aap(z —h)*(y — h)’ + R(z,y,h),
la|=k
|8]=1

where the polynomial R(z,y, k) satisfies the induction assumption, and
the coefficients of R(z,y, ) depend on h.
We have

Tof(z)| < I/I l<1e><p{i [R(z,y,R)+ Y aap(y —h)***]}
Ty

la|=F
1Bl=t

|z =y K(lz — y1) f(y) dyl

+| {exp(ip(z,y)) — exp(i[R(z,y,h) + Y aap(y — h)*7])}
lz—yl<1 [a|=k

181=t
-b(|lz —yK(z — y)f(y) dy|

= [To1 f(z)| + |Toz f ()] -
Note that ||b]|cc < 400, from the induction assumption and Lemma

1 we obtain that Tp; is a (L?, LP) type operator, and the norm of Tjy;
depends on ||b]|, but not on the coefficients of p(z,y) and h.
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When |z — k| < 1/4,|z — y| < 1, we have

| exp{ip(z,y)} — exp{i [R(z,y,h) + D aas(y —h)*+)} |
|a|=k
1B1=t

<C Y Jawslle 3] < Cla —y].
|o|=k
|8l=1

Thus

lz—y|<1 |z — y|*?
Q !
< Clblleo /| )N 60— xmnsa(e - v)ldy.

y|<1 ’yln_l

By the Minkowski’s inequality, we obtain

/ Toaf ()P do < CIBEI W (sn-ry [ ()PP dy.
|z—h|<1/4 ly—h|<5/4
Thus || Tozfll, < Cllblloo [[2lzasn-1) I Flp-
Hence
(2.4) 1Tofll, < C £l
where C depends on ||b]|, but not on the coefficients of p(z,y).
We write
+oo .
Tof@) =Y | D[z - y)K (= — ) f(y) dy
D1 /Y <z —y|<
+oo
=D Tif(x).
J=1
We have

T;f(z) = / | PV K (y) f(z — y) dy
2~ 1<y <2

— / Q(yl) eip(z,.z:—ry') b(T’)f(.’E —TY ) dr dO’(y’)
Ssn-1 2 -1gr<2 r
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For a fixed y’ € S®~!, Let Y be the hyperplane through the origin
orthogonal to y'. We have, for z € R*,z =z + sy’, with s € R, 2 €Y,
and so

/ eip(z,x—ry') b(T)f(:L‘ — T‘y,) dr
2 -f<r<2i

r

T

= / eip(ztsy’ z+(s—r)y") o(r)f(z+ (s —r)y") dr
2/ -1<r<2/

; ’ ’ b(S - t)
ezp(z-l-ay yz+ty')\° 4 tu') dt
/2:’-1<s-t32i s—t fz+1y)

= N;[f(z +-¢")](s)

where N; is a linear operator defined on L*(R). Denote N be its
adjoint operator. Let us now consider the operator N}N; with the

kernel

M;(u,v) = / eilp(ztry’ 240y ) —p(z+ry’ 24 uy’)]
2/ -1 <r—v,r—u§2i

b(r — v)b(r — u) dr

(r —v)(r —u)
= / ler<t eilp(2 Ty’ 2oy’ 2 4vy) —p(2 ry' + 2oy 2 4uy’)]
zi“<;i r+_;—u$25
b(27r)b(2r + v — u) P
. , r.
r(2'r + v —u)
It is easy to see
C
(2:5) |Mj(u, )l < 55 Xqo,26-1)(Jv — ul).

Now we write p(z,y) as follows

p(z,y) = > 2°Qa(y) + R(=,y),

lol=k

where R(z,y) is a polynomial with z-degree less than k, and Q,(y) is
a polynomial with degree [. So we can write

M;j(u,v) = / ' ‘ ' e B+ dr |
1<r<1,2 71 <2 rtv—u<
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where

E=2r)* 3 y'°[Qa(z +vy') — Qalz + uy')],

|a|=k
and F with r-degree less than k, and

_b(27r)b(27r + v — u)
¥(r) = r(2ir +v—u)

From Lemma 2, we have

t
/ H(E+F) g, <C 9k
1/2

From integration by parts, we have

1

5

Z yla[ch(z + ”yl) — Qa(z + uy')]

|a|=k

M;(u,0) < CL27*F [ S 4" [Qalz + vy') — Qalz +uy')][} 7/
|el=k

)]+ / e ()

29"l rpv—u<2’

< CE*] Y ¥ [Qalz +vy) = Qalz +uy)]} /"

|al=k

[bl2 , 1BlloVs™(5)
[ 2 > ]

< C)27 {2 3 ¢ [Qalz +vy') — Qulz +uy')]| }TH*.

|o|=k

From (2.5) and the above inequality, we get that the estimate

M| < CO27{2*] D" ¢ [Qul(z + vy') — (Qalz + uy )|} 5%
|la|=k

“ X[o,z-1)(Jv — ul)
holds uniformly in é € (0,1].
Thus

/{Mj(u,v)[dv:/]_ < |M;(u,v)| dv
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py2—Jio—Jé "M0ul(z "N~ Q. \—6/k
< C(b)2772 | /|v—u|<2i l|a§|=ky [Qa(z +vy') — Qua(z + uy')]| dv
—136 §: o . u ’ ' _
< C) /Ivl<1||al=ky [Qa(z+2 (v+ 5;)¥") = Qalz +uy")]| =/ *dv.

Now, we take é € (0,1] such that §/k < 1/I, then from Lemma 3
it follows

/|Mj(u,v)|dv < C(b)27%) Z aaﬂy/a+ﬂ|—6/k2—j15/k
laf=k
18l=1

<O Y aupf
lo|=k
18]=1
Thus
INF Nl Lo my— 2= my < C(0)277] 3 agy* 2|85,
lo|=k
1B]=t
Similarly, we have
i —J a+B -
N Nillzimy—rimy < C(b)277°] Z aagy' TPk,
|al=k
|8]=t
By the Riesz-Thorin’s interpolation theorem, we obtain
N NjllL2)y—L2r) < C(b)2774] Z aa/;y'a+ﬂ]“5/’°_
|a|=k

181=1

Hence, we have

1Nl z2my—22m) < C(0)277872] S aqgy' |78k,

|a|=k
|8l=1
Since
Ni9(6)] < bl [ 90| 4 < o(v)y HL(9)(s)
2i-1<s—t<oi S — 1
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we have

”Nj”Lpo(]R)_,Lpo(m) < C(b,po), with 1 < po < F00.

By the Riesz-Thorin’s interpolation theorem, we obtain

(26)  IN;jllzo@y—rrmy < C(B)279512] N gyt |708/2k
|a|=k
[B]=l

where 0 < 6§ < 1.
From (2.6) and the Minkowski’s inequality, we have

T 0 < [ 1061 [ Nl 0P dsde)! 7 do(y)

S C(b)2—915/2||f||p /Sn_l IQ(yI)” Z aaﬂyla+ﬂl—05/2k da(y')
laz|=k
|bz]=1

< 27 (| flp 19l a(sn-1)

’

1/q
atf.— !
. (/S ~ | Z aaﬂyl BI 86q' /(2k) do,(yl)) )

|o|=k
|B|=!

We take 6 € (0,1], such that § < min{k/l,2k/((k+1)¢')}. Then

from Lemma 4, we get

(2.7) ITi fllp < CB)2772 | £, -

Thus

(2.8) 1 Too fllp < C(B) I £l -
From (2.4) and (2.8), we obtain

(2.9) ITfl, < COIIfI,

where C(b) depends on the total degree of p(z,y),[|d]|c and Vi°(b),
but not on the coefficients of p(z,y).

Case 2. Z laag| # 1
|al=k
|8]=!
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Denote A = (34/=k,181= _tlaas|)/ 5D We can write p(z,y) as
follows

Az €
pe)= Y w2 (Aa)(ay) + Ro(5, 2Y) & Qax, ay).
a|=k
|8l=!

Thus
Tf(z) = / RUABA (| — K (z — ) f(y) dy
-/ ) Gt (YT EAP

Since ||b(-/A)||co = ||b]|oo and V5>(b(-/A)) = Vi>°(b), from the result
in Case 1, we obtain

I7fll, < Cliflls

where C depends on the total degree of p(z,y), but not on the
coefficients of p(z,y). So Theorem 2 holds for any polynomial p(z,y)
by induction principle.

THE PROOF OF THEOREM 1. When K(z) satisfies (1.2)-(1.4), from
the result in [4], we know that the operator

f— pov. / K(z - y)f(y)dy

is a (LP, LP) type operator with 1 < p < +o00. So Theorem 1 follows
from Theorem 2.

THE PROOF OF THEOREM 3.
(i) emplies (ii). This step is obvious.
(ii) smplies (iii). Set
Gf(z) = / Q=N K (2 — y) f(y) dy
lz—y|<1

t / Q= K (2 — y)f(y) dy
|:c y[>1

= Gof(z) + Goof(2).

From the method similar to the proof of (2.8), we know that G
is a (LP, LP) type operator. So G is a (L?, LP) type operator.
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We take h € R™. For |z — h| < 1, we have
Gof(z) = Gol[f(-)xB(h,2)())(2)-

Thus

(210) ¢ / (Gof (2P de)H/? < C( F)P dy)'/?
|z—h|<1 [

y—h|<2

where C is independent of h.
Since Q(z,y) has property P, we have

Q(z,y) = Q(z — h,y — k) + Ro(z, ) + Ri(y, h)

where Ry, R, are real polynomials.
It follows that

Si@ = [ K@= )i @xans)d
lz—yl<1
_ o —iRo(z.h) / Q) (g — y)e—iQE—hy=h)
Jz—yl<1

.e~iR (y,h)f(y)xg(h,:e)(y) dy .

Note that the Taylor’s expression of e~*Q(z=h.y—h) i5

‘o o
—iQ(z—h,y—h) _ - _ghag, _ 1a\Bim
e = = Zom![;ﬁaaﬁ(z h)*(y — h)’]

>

+oco
0
= Z — Z Com tbapi(z — h)™@AD (y — p)P(@BD
=0 1

where u and v are multi-index.

Thus, if we set a=(%,%,--- ,%) € R" and b = (%, ,%) € R™,
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then we have

( |Sf(z)|P dz)'/?
|z—h|<1
+oo
D3 |Crmibagi o — B
= i m! [/]z-—h|<1 I m*F

|Gole™ M F()xBn2H () = R)N(2)P dz] v

I/\

1/p
) ()P I(y —R)*P dy)}

i Z Ilebaﬂlla [/ )
too
|Cm1bam|a bY [Crmibagila®t”
Z [/Iy—hl<2
1/p
apffym 2
=¢ Z !(;iaaﬂla b%) [ /]y_m F)P dy]

1/p
= Cex aopla®b? s .
-c p{Zl osla } Uy-m 7wl dy}

a,B

INA

1/p
Lf(y)IP dy}

+o

Thus
1SFll, < ClIfllp-

(ii1) emplies (1). Set

_ (1, reo,1),
b(r)_{O, r € [1,400).

It is easy to see that b(r) is a bounded variation function on [0, +00).
Since the truncated operator

5(e) = pov. [ Wl = yDK (e = )0 dy
is a (L?, L?) type operator, from Theorem 2 we know that the operator
Tof(2) = 5. [ 7Dz~ yDK (e~ )f () dy

- [ IR s dy
|lz—y|<1
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is a (LP, LP) type operator.
Since p(z,y) is a nontrivial polynomial, by the methods similar to
the proof of (2.8), we can prove that the operator

Tofe)= [ e"eVK@-)f()dy

lz—y|>1

is a (LP, LP) type operator.
Thus T is a (LP, LP) type operator.

THE PROOF OF THEOREM 4. We shall carry out the argument by a
double induction on the degrees in z and y of the polynomial p as in
the proof of Theorem 2.

As in the proof of Theorem 2, we write

p(miy) = Z aaﬂxay +R(‘T7y)'
laj=k
18|=t

Since our conclusion is clearly invariant under dialation, we may

assume that
> lassl =1.

la|=k
18l=t

If k = 0, we know that the conclusion holds from the result in [4].
For general p(z,y), we have

T.f(2) < sup | / =D K (2 — ) f(y) dy]
0<e<1 Iz—y|>e

+ sup | ePEV R (z — y) f(y) dy|
e21 Jjz—y|>e

< sup | / P K (z — y) f(y) dy|
0<e<1 Je<|z—y|<1

1 / =9 K (2 — ) f(y) dy|
lz—y|>1

+ sup | ePEYV K (z — y) f(y) dy]
e>1 |z—y|>e

= T f(z) + | s e?EVK (z — y) f(y) dy| + Tuoo f()
z—y|2>1
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Now, it suffices to prove that T,o and Tyo, are (LP, LP) type operators.
By the method similar to proving (2.4), we can easily prove that

Tyo is a (LP, LP) type operator, and the norm of T,y depends on the

total degree of p(z,y), but on the coefficients of p(z,y).

We have unique J € Z% such that 2/~! < ¢ < 27. Thus

Q !
Tiof(z) < sup / l(—y,,nlf(w—y)ldy
Jez+ Jas-1<yi<2r 1Yl
+sup » | e?ENK (2 — y)f(y) dyl

Jez+ ;71 J2i-1<|a—yl<2i

Q [
< sup / BN, 2 — g1y
Jez+ J2I-1<|y|<2Y ly|
+oco
+3 / | PN (2 — y) f(y) dy].-
o Jirglemyi<

From the Minkowski’s inequality and the method similar to proving
(2.8), we get
ITeco fllp < CNIfllp -

where C depends on the total degree of p(z,y), but not on the coeffi-
cients of p(z,y). So we have finished the proof of the theorem.
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