Criterion on L^p -Boundedness for a class of Oscillatory Singular Integrals with rough Kernels

Lu Shanzhen and Zhang Yan

1. Introduction.

It was known that the following form of oscillatory singular integrals defined for smooth f with compact support had been studied by F. Ricci and E. M. Stein in [1]:

p.v.
$$\int e^{ip(x,y)} K(x-y) f(y) \, dy,$$

where p(x,y) is a real valued polynomial defined on $\mathbb{R}^n \times \mathbb{R}^n$, and K(x) is a standard Calderón-Zygmund kernel. That means, K satisfies:

- (1.1) K(x) is C^1 -continuous away from the origin,
- (1.2) $K(x) = \Omega(x')/|x|^n$ with Ω homogeneous of degree 0 on S^{n-1} ,

(1.3)
$$\int_{S^{n-1}} \Omega(x') d\sigma(x') = 0.$$

The following theorem is the main result in [1]:

Theorem A. Suppose p(x,y) is a real valued polynomial. If K(x) satisfies (1.1)-(1.3), then the operator

$$f \mapsto \text{p.v.} \int e^{ip(x,y)} K(x-y) f(y) \, dy$$

can be extended to be a bounded operator on $L^p(\mathbb{R}^n)$ to itself, with 1 , and the norm of this operator depends only on the total degree of <math>p(x,y), but not on the coefficients of p(x,y).

Evidently (1.1) shows that the kernel K(x) requires certain smoothness. In this paper, we shall discuss a class of oscillatory singular integrals with rough kernel. Precisely, the kernel K(x) satisfies (1.2), and

(1.4)
$$\Omega(x') \in L^q(S^{n-1}), \quad \text{for some } q, 1 < q \le +\infty.$$

In this case, the kernel K(x) can be very rough on S^{n-1} , and K(x) is not necessary to be a standard Calderón-Zygmund kernel. Since (1.1) implies $\Omega(x') \in L^{\infty}(S^{n-1})$, the following result can be regarded as an improvement of Theorem A.

Theorem 1. Suppose p(x,y) is a real valued polynomial. If K(x) satisfies (1.2)-(1.4), then the operator

$$Tf(x) = \text{p.v.} \int e^{ip(x,y)} K(x-y) f(y) dy$$

can be extended to be a bounded operator on $L^p(\mathbb{R}^n)$ to itself, with 1 , and the norm of this operator depends only on the total degree of <math>p(x,y), but not on the coefficients of p(x,y).

In fact, Theorem 1 is an immediate consequence of the following stronger result.

Theorem 2. Suppose p(x,y) is a real valued polynomial, K(x) satisfies (1.2)-(1.4), and b(r) is a bounded variation function on $[0,\infty)$. If the operator

$$f \longmapsto \text{p.v.} \int b(\mid x - y \mid) K(x - y) f(y) dy$$

is a bounded operator on $L^p(\mathbb{R}^n)$ to itself with 1 , then the oscillatory integral operator

$$Tf(x) = \text{p.v.} \int e^{ip(x,y)} b(|x-y|) K(x-y) f(y) dy$$

is a bounded operator on $L^p(\mathbb{R}^n)$ to itself, and the norm of T depends only on the total degree of p(x,y), but not on the coefficients of p(x,y).

Let us introduce two concepts before we formulate our main result of this paper.

Definition 1. A real valued polynomial p(x,y) is called non-trivial if p(x,y) does not take the form of $p_0(x) + p_1(y)$, where p_0 and p_1 are polynomials defined on \mathbb{R}^n .

Definition 2. We will say that the non-trivial polynomial p(x,y) has property \mathcal{P} , if p satisfies

$$p(x+h, y+h) = p(x, y) + R_0(x, h) + R_1(y, h)$$

where R_0 and R_1 are real polynomials.

The main result in this paper is

Theorem 3. Suppose 1 . If <math>K(x) satisfies (1.2) and (1.4), then the following three facts are equivalent:

(i) If p(x,y) is a non-trivial polynomial, then the operator

$$Tf(x) = \text{p.v.} \int e^{ip(x,y)} K(x-y) f(y) dy$$

can be extended to be a bounded operator on $L^p(\mathbb{R}^n)$ to itself.

(ii) If Q(x,y) has the property \mathcal{P} , then the operator

$$Gf(x) = \text{p.v.} \int e^{iQ(x,y)} K(x-y) f(y) dy$$

can be extended to be a bounded operator on $L^p(\mathbb{R}^n)$ to itself.

(iii) The truncated operator

$$Sf(x) = \int_{|x-y|<1} K(x-y)f(y)dy$$

can be extended to be a bounded operator on $L^p(\mathbb{R}^n)$ to itself.

Let us give out a simple application of Theorem 3. S. Chanillo, D. S. Kurtz and G. Sampson investigated the following oscillatory integrals in [2]:

(1.5)
$$f \longmapsto \text{p.v.} \int_{\mathbb{R}} e^{i|x-y|^a} \frac{f(y)}{1+|x-y|} \, dy, \qquad a > 0.$$

Since the truncated operator

$$f \longmapsto \int_{|x-y|<1} \frac{f(y)}{1+|x-y|} \, dy$$

is a bounded operator on $L^p(\mathbb{R})$ to itself, it follows from Theorem 3 that if a is even, then the operator defined by (1.5) is a bounded operator on $L^p(\mathbb{R})$ to itself. Besides, we have the following conclusion. The operator defined by

$$f \longmapsto \int_{\mathbb{T}} e^{ip(x,y)} \frac{f(y)}{1+|x-y|} \, dy$$

is a bounded operator on $L^p(\mathbb{R})$ to itself, where p(x,y) is a nontrivial polynomial. Let us make two explanations on the above conclusion. First, the above conclusion is not contained in [2]. Secondly, since the operator

$$f \longmapsto \text{p.v.} \int_{\mathbb{R}} \frac{f(y)}{1 + |x - y|} \, dy$$

is not bounded on $L^p(\mathbb{R})$, the above conclusion can not be obtained from [1].

Finally, we shall get a similar result for the maximal operator corresponding to T.

Theorem 4. Suppose p(x,y) is a real valued polynomial. If K(x) satisfies (1.2)-(1.4), then the maximal operator

$$T_*f(x) = \sup_{\varepsilon > 0} \left| \int_{|x-y| > \varepsilon} e^{ip(x,y)} K(x-y) f(y) dy \right|$$

is a bounded operator on $L^p(\mathbb{R}^n)$ to itself, with $1 , and the norm of <math>T_*$ depends only on the total degree of p(x,y), but not on the coefficients of p(x,y).

2. Proof of the theorems.

First, we state several lemmas.

Lemma 1. Suppose $\Omega(x')$ is homogeneous of degree 0 on S^{n-1} , and $\Omega(x') \in L^q(S^{n-1})$ with $1 < q \le +\infty$. If

$$Tf(x) = \text{p.v.} \int K(x, y) f(y) dy$$

is a (L^p, L^p) type operator with 1 , and <math>K(x, y) satisfies

$$|K(x,y)| \le \frac{|\Omega[(x-y)']|}{|x-y|^n},$$

then the operators

$$T_{\varepsilon}f(x) = \int_{|x-y| < \varepsilon} K(x,y)f(y) \, dy$$

are (L^p, L^p) type operators, and $||T_{\varepsilon}|| \leq C(||T|| + A)$, where C is independent of T, ε and A depends only on $\Omega(x')$.

PROOF: We split f into three parts $f(y) = f_1(y) + f_2(y) + f_3(y)$ for $h \in \mathbb{R}^n$. Here

$$f_1(y) = f(y)\chi_{\{|y-h| < \varepsilon/2\}}(y),$$

$$f_2(y) = f(y)\chi_{\{\varepsilon/2 \le |y-h| < 5\varepsilon/4\}}(y),$$

$$f_3(y) = f(y)\chi_{\{|y-h| > 5\varepsilon/4\}}(y).$$

When $|x-h| < \varepsilon/4$, it is easy to see $T_{\varepsilon} f_1(x) = T f_1(x)$. So we have

(2.1)
$$\int_{|x-h|<\varepsilon/4} |T_{\varepsilon}f_{1}(x)|^{p} dx \leq \int_{\mathbb{R}^{n}} |Tf_{1}(x)|^{p} dx \\ \leq ||T||^{p} \int_{|y-h|<\varepsilon/2} |f(y)|^{p} dy.$$

If $|x-h|<\varepsilon/4, \varepsilon/2\leq |y-h|<5\varepsilon/4$, then $\varepsilon/4<|x-y|<3\varepsilon/2$. So we have

$$|T_{\varepsilon}f_2(x)| \le \int_{\varepsilon/4 < |y| < \varepsilon} \frac{|\Omega(y')|}{|y|^n} |f_2(x-y)| dy.$$

By the Minkowski's inequality, it follows that

$$\left(\int_{|x-h|<\varepsilon/4} |T_{\varepsilon}f_{2}(x)|^{p} dx\right)^{1/p} \\
\leq \int_{\varepsilon/4<|y|\leq\varepsilon} \frac{|\Omega(y')|}{|y|^{n}} \left(\int_{|x-h|<\varepsilon/4} |f_{2}(x-y)|^{p} dx\right)^{1/p} dy \\
\leq C \left(\int_{|y-h|<5\varepsilon/4} |f(y)|^{p} dy\right)^{1/p} \int_{S^{n-1}} |\Omega(y')| d\sigma(y') \\
\leq C \|\Omega\|_{L^{q}(S^{n-1})} \left(\int_{|y-h|<5\varepsilon/4} |f(y)|^{p} dy\right)^{1/p} .$$

If $|x-h| < \varepsilon/4$, $|y-h| \ge 5/4$, then $|x-y| > \varepsilon$. So we have

$$(2.3) T_{\varepsilon} f_3(x) = 0.$$

From (2.1), (2.2) and (2.3) it follows that the estimate

$$\int_{|x-h|<\varepsilon/4} |T_{\varepsilon}f(x)|^p dx \le C(||T||+A)^p \int_{|y-h|<5\varepsilon/4} |f(y)|^p dy$$

holds uniformly in $h \in \mathbb{R}^n$.

The above estimates imply

$$||T_{\varepsilon}f||_{p} \leq C(||T|| + A)||f||_{p}.$$

Lemma 2. (Van der Corput [3]) Suppose $\phi \in C^{(k)}[a,b]$ and $|\phi^{(k)}(t)| \ge 1$ (when $t \in (a,b)$), then we have

$$\left| \int_{a}^{b} e^{i\lambda\phi(t)} dt \right| \le C |\lambda|^{-1/k}$$

where $\lambda \in \mathbb{R}$, and C is independent of a, b and ϕ .

Lemma 3. (See [1]) Suppose $p(x) = \sum_{|\alpha| \leq d} a_{\alpha} x^{\alpha}$ is a polynomial of degree d, and $\varepsilon < 1/d$. Then

$$\sup_{y \in \mathbb{R}^n} \int_{|x| \le 1} |p(x-y)|^{-\varepsilon} dx \le A_{\varepsilon} \left(\sum_{|\alpha| = d} |a_{\alpha}| \right)^{-\varepsilon}.$$

The bound A_{ε} depends on ε (and the dimension n), but not on the coefficients $\{a_{\alpha}\}$.

Lemma 4. (See [1]) Suppose $p(x) = \sum_{|\alpha|=d} a_{\alpha} x^{\alpha}$ is a homogeneous polynomial of degree d in \mathbb{R}^n , and $\varepsilon \leq 1/d$. Then

$$\int_{S^{n-1}} |p(x)|^{-\varepsilon} d\sigma(x) \le A_{\varepsilon} \left(\sum_{|\alpha|=d} |a_{\alpha}| \right)^{-\varepsilon}.$$

The bound A_{ε} depends on ε , but not on the coefficients $\{a_{\alpha}\}.$

Now, let us turn to prove the theorems.

PROOF OF THEOREM 2. We shall carry out the argument by a double induction on the degrees in x and y of the polynomial p as follows. We assume the theorem is known for all polynomials which are sums of monomials degree less than k in x times monomials of any degree in y, together with monomials which are of degree k in x times monomials which are of degree less than l in y. Our inductive step will be to add to this all the monomials which have degree k in x and degree l in y.

For general p(x, y), we may write

$$p(x,y) = \sum_{\substack{|\alpha|=k\\|\beta|=l}} a_{\alpha\beta} x^{\alpha} y^{\beta} + R_0(x,y)$$

where $R_0(x, y)$ satisfies the above induction assumption.

For k=0 and l arbitrary, the theorem is known. Let us now prove that Theorem 2 holds for arbitrary k>0 and l>0 by induction.

Without loss of generality, we may assume $\sum_{\substack{|\alpha|=k\\|\beta|=l}} |a_{\alpha\beta}| > 0.$

Case 1.
$$\sum_{\substack{|\alpha|=k\\|\beta|=l}}|a_{\alpha\beta}|=1.$$

We write

$$\begin{split} Tf(x) &= \int_{|x-y| \le 1} e^{ip(x,y)} b(|x-y|) K(x-y) f(y) \, dy \\ &+ \int_{|x-y| > 1} e^{ip(x,y)} b(|x-y|) K(x-y) f(y) \, dy \\ &= T_0 f(x) + T_{\infty} f(x) \, . \end{split}$$

Take $h \in \mathbb{R}^n$, and write

$$p(x,y) = \sum_{\substack{|\alpha|=k\\|\beta|=l}} a_{\alpha\beta}(x-h)^{\alpha}(y-h)^{\beta} + R(x,y,h),$$

where the polynomial R(x, y, h) satisfies the induction assumption, and the coefficients of R(x, y, h) depend on h.

We have

$$|T_{0}f(x)| \leq |\int_{|x-y|\leq 1} \exp\{i \left[R(x,y,h) + \sum_{\substack{|\alpha|=k\\|\beta|=l}} a_{\alpha\beta}(y-h)^{\alpha+\beta}\right]\}$$

$$\cdot b(|x-y|)K(|x-y|)f(y) \, dy|$$

$$+|\int_{|x-y|\leq 1} \{\exp(ip(x,y)) - \exp(i\left[R(x,y,h) + \sum_{\substack{|\alpha|=k\\|\beta|=l}} a_{\alpha\beta}(y-h)^{\alpha+\beta}\right])\}$$

$$\cdot b(|x-y|)K(x-y)f(y) \, dy|$$

$$= |T_{01}f(x)| + |T_{02}f(x)|.$$

Note that $||b||_{\infty} < +\infty$, from the induction assumption and Lemma 1 we obtain that T_{01} is a (L^p, L^p) type operator, and the norm of T_{01} depends on $||b||_{\infty}$, but not on the coefficients of p(x, y) and h.

When |x - h| < 1/4, |x - y| < 1, we have

$$|\exp\{ip(x,y)\} - \exp\{i\left[R(x,y,h) + \sum_{\substack{|\alpha|=k\\|\beta|=l}} a_{\alpha\beta}(y-h)^{\alpha+\beta}\right]\}|$$

$$\leq C \sum_{\substack{|\alpha|=k\\|\beta|=l}} |a_{\alpha\beta}||x-y| \leq C|x-y|.$$

Thus

$$|T_{02}f(x)| \leq \int_{|x-y|\leq 1} \frac{C||b||_{\infty}|\Omega[(x-y')]|}{|x-y|^{n-1}} |f(y)| \, dy$$

$$\leq C||b||_{\infty} \int_{|y|\leq 1} \frac{|\Omega(y')|}{|y|^{n-1}} |f(x-y)\chi_{B(h,5/4)}(x-y)| \, dy.$$

By the Minkowski's inequality, we obtain

$$\int_{|x-h|<1/4} |T_{02}f(x)|^p dx \le C \|b\|_{\infty}^p \|\Omega\|_{L^q(S^{n-1})}^p \int_{|y-h|<5/4} |f(y)|^p dy.$$
Thus
Hence
$$\|T_{02}f\|_p \le C \|b\|_{\infty} \|\Omega\|_{L^q(S^{n-1})} \|f\|_p.$$

$$(2.4) ||T_0 f||_p \le C ||f||_p,$$

where C depends on $||b||_{\infty}$, but not on the coefficients of p(x,y). We write

$$T_{\infty}f(x) = \sum_{j=1}^{+\infty} \int_{2^{j-1} < |x-y| \le 2^j} e^{ip(x,y)} b(|x-y|) K(x-y) f(y) \, dy$$
$$= \sum_{j=1}^{+\infty} T_j f(x).$$

We have

$$T_{j}f(x) = \int_{2^{j-1} < |y| \le 2^{j}} e^{ip(x,x-y)} b(|y|) K(y) f(x-y) \, dy$$
$$= \int_{S^{n-1}} \Omega(y') \int_{2^{j-1} < r \le 2^{j}} e^{ip(x,x-ry')} \frac{b(r) f(x-ry')}{r} \, dr \, d\sigma(y').$$

For a fixed $y' \in S^{n-1}$, Let Y be the hyperplane through the origin orthogonal to y'. We have, for $x \in \mathbb{R}^n$, x = z + sy', with $s \in \mathbb{R}$, $z \in Y$, and so

$$\int_{2^{j-i} < r \le 2^{j}} e^{ip(x,x-ry')} \frac{b(r)f(x-ry')}{r} dr$$

$$= \int_{2^{j-1} < r \le 2^{j}} e^{ip(z+sy',z+(s-r)y')} \frac{b(r)f(z+(s-r)y')}{r} dr$$

$$= \int_{2^{j-1} < s-t \le 2^{j}} e^{ip(z+sy',z+ty')} \frac{b(s-t)}{s-t} f(z+ty') dt$$

$$= N_{j}[f(z+y')](s)$$

where N_j is a linear operator defined on $L^2(\mathbb{R})$. Denote N_j^* be its adjoint operator. Let us now consider the operator $N_j^*N_j$ with the kernel

$$\begin{split} M_{j}(u,v) &= \int_{2^{j-1} < r-v, r-u \leq 2^{j}} e^{i[p(z+ry',z+vy')-p(z+ry',z+uy')]} \\ & \cdot \frac{b(r-v)b(r-u)}{(r-v)(r-u)} \, dr \\ &= \int_{2^{j-1} < 2^{j}} \sum_{r+v-u \leq 2^{j}} e^{i[p(2^{j}ry'+z+vy',z+vy')-p(2^{j}ry'+z+vy',z+uy')]} \\ & \cdot \frac{b(2^{j}r)b(2^{j}r+v-u)}{r(2^{j}r+v-u)} \, dr \, . \end{split}$$

It is easy to see

$$|M_j(u,u)| \le \frac{C}{2^j} \chi_{[0,2^{j-1}]}(|v-u|).$$

Now we write p(x, y) as follows

$$p(x,y) = \sum_{|\alpha|=k} x^{\alpha} Q_{\alpha}(y) + R(x,y),$$

where R(x,y) is a polynomial with x-degree less than k, and $Q_{\alpha}(y)$ is a polynomial with degree l. So we can write

$$M_j(u,v) = \int_{\frac{1}{2} < r \le 1, 2^{j-1} < 2^j r + v - u \le 2^j} e^{i(E+F)} \psi \, dr \,,$$

where

$$E = (2^{j}r)^{k} \sum_{|\alpha|=k} {y'}^{\alpha} [Q_{\alpha}(z+vy') - Q_{\alpha}(z+uy')],$$

and F with r-degree less than k, and

$$\psi(r) = \frac{b(2^{j}r)b(2^{j}r + v - u)}{r(2^{j}r + v - u)}.$$

From Lemma 2, we have

$$\left| \int_{1/2}^{t} e^{i(E+F)} dr \right| \le C \left(2^{jk} \left| \sum_{|\alpha|=k} {y'}^{\alpha} [Q_{\alpha}(z+vy') - Q_{\alpha}(z+uy')] \right| \right)^{-\frac{1}{k}}$$

From integration by parts, we have

$$|M_{j}(u,v)| \leq C \{2^{jk} | \sum_{|\alpha|=k} y'^{\alpha} [Q_{\alpha}(z+vy') - Q_{\alpha}(z+uy')]| \}^{-1/k}$$

$$\cdot \{ |\psi(1)| + \int_{2^{j-1} < 2^{j} r + v - u \le 2^{j}} |d\psi(r)| \}$$

$$\leq C \{2^{jk} | \sum_{|\alpha|=k} y'^{\alpha} [Q_{\alpha}(z+vy') - Q_{\alpha}(z+uy')]| \}^{-1/k}$$

$$\cdot \left[\frac{\|b\|_{\infty}^{2}}{2^{j}} + \frac{\|b\|_{\infty} V_{0}^{+\infty}(b)}{2^{j}} \right]$$

$$\leq C(b) 2^{-j} \{2^{jk} | \sum_{|\alpha|=k} y'^{\alpha} [Q_{\alpha}(z+vy') - Q_{\alpha}(z+uy')]| \}^{-1/k}.$$

From (2.5) and the above inequality, we get that the estimate

$$|M_{j(u,v)}| \le C(b)2^{-j} \{2^{jk} | \sum_{|\alpha|=k} {y'}^{\alpha} [Q_{\alpha}(z+vy') - (Q_{\alpha}(z+uy'))] |\}^{-\delta/k} \cdot \chi_{[0,z^{j-1}]}(|v-u|)$$

holds uniformly in $\delta \in (0,1]$.

Thus

$$\int |M_{j}(u,v)| \, dv = \int_{|v-u| < 2^{j}} |M_{j}(u,v)| \, dv$$

212 Lu, Zhang

$$\leq C(b)2^{-j}2^{-j\delta} \int_{|v-u|<2^j} |\sum_{|\alpha|=k} y'^{\alpha} [Q_{\alpha}(z+vy') - Q_{\alpha}(z+uy')]|^{-\delta/k} dv$$

$$\leq C(b)2^{-j\delta} \int_{|v|<1} |\sum_{|\alpha|=k} y'^{\alpha} [Q_{\alpha}(z+2^j(v+\frac{u}{2^j})y') - Q_{\alpha}(z+uy')]|^{-\delta/k} dv.$$

Now, we take $\delta \in (0,1]$ such that $\delta/k < 1/l$, then from Lemma 3 it follows

$$\int |M_{j}(u,v)|dv \leq C(b)2^{-j\delta} |\sum_{\substack{|\alpha|=k\\|\beta|=l}} a_{\alpha\beta} y'^{\alpha+\beta}|^{-\delta/k} 2^{-jl\delta/k}$$

$$\leq C(b)2^{-j\delta} |\sum_{\substack{|\alpha|=k\\|\beta|=l}} a_{\alpha\beta} y'^{\alpha+\beta}|^{-\delta/k}.$$

Thus

$$||N_j^* N_j||_{L^{\infty}(\mathbb{R}) \to L^{\infty}(\mathbb{R})} \le C(b) 2^{-j\delta} |\sum_{\substack{|\alpha| = k \\ |\beta| = l}} a_{\alpha\beta} y'^{\alpha+\beta}|^{-\delta/k}.$$

Similarly, we have

$$||N_j^* N_j||_{L^1(\mathbb{R}) \to L^1(\mathbb{R})} \le C(b) 2^{-j\delta} |\sum_{\substack{|\alpha|=k \\ |\beta|=l}} a_{\alpha\beta} y'^{\alpha+\beta}|^{-\delta/k}.$$

By the Riesz-Thorin's interpolation theorem, we obtain

$$||N_j^* N_j||_{L^2(\mathbb{R}) \to L^2(\mathbb{R})} \le C(b) 2^{-j\delta} |\sum_{\substack{|\alpha|=k \\ |\beta|=l}} a_{\alpha\beta} y'^{\alpha+\beta}|^{-\delta/k}.$$

Hence, we have

$$||N_j||_{L^2(\mathbb{R})\to L^2(\mathbb{R})} \le C(b)2^{-j\delta/2} |\sum_{\substack{|\alpha|=k\\|\beta|=l}} a_{\alpha\beta} y'^{\alpha+\beta}|^{-\delta/2k}.$$

Since

$$|N_j g(s)| \le ||b||_{\infty} \int_{2^{j-1} < s-t \le 2^j} \frac{|g(t)|}{s-t} dt \le C(b) HL(g)(s)$$

we have

$$||N_j||_{L^{p_0}(\mathbb{R}) \to L^{p_0}(\mathbb{R})} \le C(b, p_0), \text{ with } 1 < p_0 < +\infty.$$

By the Riesz-Thorin's interpolation theorem, we obtain

$$(2.6) ||N_j||_{L^p(\mathbb{R})\to L^p(\mathbb{R})} \le C(b)2^{-\theta j\delta/2} |\sum_{\substack{|\alpha|=k\\|\beta|=l}} a_{\alpha\beta} y'^{\alpha+\beta}|^{-\theta\delta/2k}$$

where $0 < \theta < 1$.

From (2.6) and the Minkowski's inequality, we have

$$||T_{j}f||_{p} \leq \int_{S^{n-1}} |\Omega(y')| \left(\int_{Y} \int_{\mathbb{R}} |N_{j}[f(z+y')](s)|^{p} ds dz\right)^{1/p} d\sigma(y')$$

$$\leq C(b)2^{-\theta j\delta/2} ||f||_{p} \int_{S^{n-1}} |\Omega(y')| |\sum_{\substack{|az|=k\\|bz|=l}} a_{\alpha\beta} y'^{\alpha+\beta}|^{-\theta\delta/2k} d\sigma(y')$$

$$\leq C(b)2^{-\theta j\delta/2} ||f||_{p} ||\Omega||_{L^{q}(S^{n-1})}$$

$$\cdot \left(\int_{S^{n-1}} |\sum_{\substack{|\alpha|=k\\|\beta|=l}} a_{\alpha\beta} y'^{\alpha+\beta}|^{-\theta\delta q'/(2k)} d\sigma(y')\right)^{1/q'}.$$

We take $\delta \in (0,1]$, such that $\delta < \min\{k/l, 2k/((k+l)q')\}$. Then from Lemma 4, we get

$$||T_j f||_p \le C(b) 2^{-\theta j \delta/2} ||f||_p.$$

Thus

$$(2.8) ||T_{\infty}f||_{p} \le C(b) ||f||_{p}.$$

From (2.4) and (2.8), we obtain

$$(2.9) ||Tf||_{p} \le C(b) ||f||_{p}$$

where C(b) depends on the total degree of p(x,y), $||b||_{\infty}$ and $V_0^{\infty}(b)$, but not on the coefficients of p(x,y).

Case 2.
$$\sum_{\substack{|\alpha|=k\\|\beta|=l}} |a_{\alpha\beta}| \neq 1$$

Denote $A = (\sum_{|\alpha|=k, |\beta|=l} |a_{\alpha\beta}|)^{1/(k+l)}$. We can write p(x,y) as follows

$$p(x,y) = \sum_{\substack{|\alpha|=k\\|\beta|=l}} \frac{a_{\alpha\beta}}{A^{k+l}} (Ax)^{\alpha} (Ay)^{\beta} + R_0(\frac{Ax}{A}, \frac{Ay}{A}) \stackrel{\text{def}}{=} Q(Ax, Ay).$$

Thus

$$\begin{split} Tf(x) &= \int e^{iQ(Ax,Ay)}b(|x-y|)K(x-y)f(y)\,dy\\ &= \int e^{iQ(Ax,y)}b(\frac{|Ax-y|}{A})K(Ax-y)f(\frac{y}{A})\,dy. \end{split}$$

Since $||b(\cdot/A)||_{\infty} = ||b||_{\infty}$ and $V_0^{\infty}(b(\cdot/A)) = V_0^{\infty}(b)$, from the result in Case 1, we obtain

$$||Tf||_p \leq C||f||_p,$$

where C depends on the total degree of p(x,y), but not on the coefficients of p(x,y). So Theorem 2 holds for any polynomial p(x,y) by induction principle.

THE PROOF OF THEOREM 1. When K(x) satisfies (1.2)-(1.4), from the result in [4], we know that the operator

$$f \longmapsto \text{p.v.} \int K(x-y)f(y) \, dy$$

is a (L^p, L^p) type operator with 1 . So Theorem 1 follows from Theorem 2.

THE PROOF OF THEOREM 3.

- (i) implies (ii). This step is obvious.
- (ii) implies (iii). Set

$$Gf(x) = \int_{|x-y|<1} e^{iQ(x,y)} K(x-y) f(y) \, dy$$
$$+ \int_{|x-y| \ge 1} e^{iQ(x,y)} K(x-y) f(y) \, dy$$
$$= G_0 f(x) + G_{\infty} f(x).$$

From the method similar to the proof of (2.8), we know that G_{∞} is a (L^p, L^p) type operator. So G_0 is a (L^p, L^p) type operator.

We take $h \in \mathbb{R}^n$. For |x - h| < 1, we have

$$G_0f(x) = G_0[f(\cdot)\chi_{B(h,2)}(\cdot)](x).$$

Thus

$$(2.10) \qquad \left(\int_{|x-h|<1} |G_0 f(x)|^p \, dx \right)^{1/p} \le C \left(\int_{|y-h|<2} |f(y)|^p \, dy \right)^{1/p}$$

where C is independent of h.

Since Q(x, y) has property \mathcal{P} , we have

$$Q(x,y) = Q(x - h, y - h) + R_0(x,h) + R_1(y,h)$$

where R_0, R_1 are real polynomials.

It follows that

$$Sf(x) = \int_{|x-y|<1} K(x-y)f(y)\chi_{B(h,2)}(y) dy$$

$$= e^{-iR_0(x,h)} \int_{|x-y|<1} e^{iQ(x,y)}K(x-y)e^{-iQ(x-h,y-h)} \cdot e^{-iR_1(y,h)}f(y)\chi_{B(h,2)}(y) dy.$$

Note that the Taylor's expression of $e^{-iQ(x-h,y-h)}$ is

$$e^{-iQ(x-h,y-h)} = \sum_{m=0}^{+\infty} \frac{i^m}{m!} \left[\sum_{\alpha,\beta} a_{\alpha\beta} (x-h)^{\alpha} (y-h)^{\beta} \right]^m$$
$$= \sum_{m=0}^{+\infty} \frac{i^m}{m!} \sum_{l} C_{m,l} b_{\alpha\beta l} (x-h)^{u(\alpha,\beta,l)} (y-h)^{v(\alpha,\beta,l)}$$

where u and v are multi-index.

Thus, if we set
$$a=(\frac{1}{2},\frac{1}{2},\cdots,\frac{1}{2})\in\mathbb{R}^n$$
 and $b=(\frac{3}{2},\cdots,\frac{3}{2})\in\mathbb{R}^n$,

then we have

$$\left(\int_{|x-h|<1} |Sf(x)|^{p} dx\right)^{1/p} \\
\leq \sum_{m=0}^{+\infty} \sum_{l} \frac{|C_{ml}b_{\alpha\beta l}|}{m!} \left[\int_{|x-h|<1} |(x-h)^{u}|^{p} \\
|G_{0}[e^{-iR_{1}(\cdot,h)}f(\cdot)\chi_{B(h,2)}(\cdot)(\cdot-h)^{v}](x)|^{p} dx\right]^{1/p} \\
\leq \sum_{m=0}^{+\infty} \sum_{l} \frac{|C_{ml}b_{\alpha\beta l}|a^{u}}{m!} C \left[\int_{|y-h|<2} |f(y)|^{p} |(y-h)^{v}|^{p} dy\right]^{1/p} \\
\leq \sum_{m=0}^{+\infty} \sum_{l} \frac{|C_{ml}b_{\alpha\beta l}|a^{u}b^{v}}{m!} C \left[\int_{|y-h|<2} |f(y)|^{p} dy\right]^{1/p} \\
= C \sum_{m=0}^{+\infty} \frac{1}{m!} (\sum_{\alpha,\beta} |a_{\alpha\beta}|a^{\alpha}b^{\beta})^{m} \left[\int_{|y-h|<2} |f(y)|^{p} dy\right]^{1/p} \\
= C \exp\left\{\sum_{\alpha,\beta} |a_{\alpha\beta}|a^{\alpha}b^{\beta}\right\} \left[\int_{|y-h|<2} |f(y)|^{p} dy\right]^{1/p}.$$

Thus

$$||Sf||_p \leq C ||f||_p$$
.

(iii) implies (i). Set

$$b(r) = \begin{cases} 1, & r \in [0,1), \\ 0, & r \in [1,+\infty). \end{cases}$$

It is easy to see that b(r) is a bounded variation function on $[0, +\infty)$. Since the truncated operator

$$Sf(x) = \text{p.v.} \int b(|x-y|)K(x-y)f(y) dy$$

is a (L^p, L^p) type operator, from Theorem 2 we know that the operator

$$T_0 f(x) = \text{p.v.} \int e^{ip(x,y)} b(|x-y|) K(x-y) f(y) \, dy$$
$$= \int_{|x-y|<1} e^{ip(x,y)} K(x-y) f(y) \, dy$$

is a (L^p, L^p) type operator.

Since p(x, y) is a nontrivial polynomial, by the methods similar to the proof of (2.8), we can prove that the operator

$$T_{\infty}f(x) = \int_{|x-y| \ge 1} e^{ip(x,y)} K(x-y) f(y) dy$$

is a (L^p, L^p) type operator.

Thus T is a (L^p, L^p) type operator.

THE PROOF OF THEOREM 4. We shall carry out the argument by a double induction on the degrees in x and y of the polynomial p as in the proof of Theorem 2.

As in the proof of Theorem 2, we write

$$p(x,y) = \sum_{\substack{|\alpha|=k\\|\beta|=l}} a_{\alpha\beta} x^{\alpha} y^{\beta} + R(x,y).$$

Since our conclusion is clearly invariant under dialation, we may assume that

$$\sum_{\substack{|\alpha|=k\\|\beta|=l}} |a_{\alpha\beta}| = 1.$$

If k = 0, we know that the conclusion holds from the result in [4]. For general p(x, y), we have

$$\begin{split} T_*f(x) &\leq \sup_{0 < \varepsilon < 1} |\int_{|x-y| > \varepsilon} e^{ip(x,y)} K(x-y) f(y) \, dy| \\ &+ \sup_{\varepsilon \ge 1} |\int_{|x-y| > \varepsilon} e^{ip(x,y)} K(x-y) f(y) \, dy| \\ &\leq \sup_{0 < \varepsilon < 1} |\int_{\varepsilon < |x-y| < 1} e^{ip(x,y)} K(x-y) f(y) \, dy| \\ &+ |\int_{|x-y| \ge 1} e^{ip(x,y)} K(x-y) f(y) \, dy| \\ &+ \sup_{\varepsilon \ge 1} |\int_{|x-y| > \varepsilon} e^{ip(x,y)} K(x-y) f(y) \, dy| \\ &= T_{*0} f(x) + |\int_{|x-y| > 1} e^{ip(x,y)} K(x-y) f(y) \, dy| + T_{*\infty} f(x) \end{split}$$

Now, it suffices to prove that T_{*0} and $T_{*\infty}$ are (L^p, L^p) type operators.

By the method similar to proving (2.4), we can easily prove that T_{*0} is a (L^p, L^p) type operator, and the norm of T_{*0} depends on the total degree of p(x, y), but on the coefficients of p(x, y).

We have unique $J \in \mathbb{Z}^+$ such that $2^{J-1} \le \varepsilon < 2^J$. Thus

$$T_{*\infty}f(x) \leq \sup_{J \in \mathbb{Z}^{+}} \int_{2^{J-1} \leq |y| < 2^{J}} \frac{|\Omega(y')|}{|y|^{n}} |f(x-y)| \, dy$$

$$+ \sup_{J \in \mathbb{Z}^{+}} \sum_{j=J+1} |\int_{2^{j-1} \leq |x-y| < 2^{j}} e^{ip(x,y)} K(x-y) f(y) \, dy|$$

$$\leq \sup_{J \in \mathbb{Z}^{+}} \int_{2^{J-1} \leq |y| < 2^{J}} \frac{|\Omega(y')|}{|y|^{n}} |f(x-y)| \, dy$$

$$+ \sum_{j=1}^{+\infty} |\int_{2^{j-1} \leq |x-y| < 2^{j}} e^{ip(x,y)} K(x-y) f(y) \, dy|.$$

From the Minkowski's inequality and the method similar to proving (2.8), we get

$$||T_{*\infty}f||_p \leq C ||f||_p.$$

where C depends on the total degree of p(x,y), but not on the coefficients of p(x,y). So we have finished the proof of the theorem.

References.

- [1] Ricci, F., Stein, E. M., Harmonic analysis on nilpotent groups and singular integrals, I. Oscillatory integrals, J. Func. Analysis, 73(1987), 179-194.
- [2] Chanillo, S., Kurtz, D. S. and Sampson, G., Weighted L^p estimates for oscillating kernels, Arkiv för Matematik, 21(1983), 233-257.
- [3] Stein, E. M., Oscillatory integrals in Fourier analysis, Beijing lectures in harmonic analysis (Beijing, 1984) 307-355, The Annals of Mathematics Studies, 112, Princeton Univ. Press, 1986.

[4] Chen, L. K., On a singular integral, Studia Math., 85 (1987), 61-72.

Recibido: 7 de septiembre de 1990.

Lu Shanzhen* and Zhang Yan Department of Mathematics Beijing Normal University CHINA

^{*} Supported by NSFC