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Introduction.

Suppose 2 C C is a domain conformally equivalent to D/T" for
some Fuchsian group I' acting on D = {z : |z| < 1}. Let z5 €  and let
G(z,z0) be Green’s function for Q with pole at z;. Define S(z) to be
the set of critical points of G(z, 2¢), that is

S(z0) = {zj : VG(zj,29) = 0}.

In Theorem 1 we characterize those domains 2 for which there
exists a constant ¢ = ¢(¢) independent of zg, such that

Z G(zj,20)' 1 < c(e) .
2; €S(z0)

We will prove that this holds if and only if 92 is a uniformly perfect
set. '

A set K C Cissaid to be uniformly perfect if there exists a constant
¢ > 0 such that

Kn{z:ecr<|z—a|<r}#0 for a€ K, 0<r< diam(K).

An equivalent definition is the following: There exists a constant n > 0
such that

cap(KN{z:|z—a|<r})>nr, fora€ K, 0<r < diam(K),
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240 M.J. GONZALEZ

where cap denotes logarithmic capacity, see [9].

We will also need another characterization. Let I' be a Fuchsian
group such that D/T" is conformally equivalent to 2, then 9 is uni-
formly perfect if and only if there exists p > 0 such that each disk in D
of hyperbolic radius p contains no two I'-equivalent points, [9].

Examples of uniformly perfect sets are the standard Cantor sets. A
Cantor set can be constructed as follows: Fix a,0 < a < 1/2, and take
from the unit square four “corner” squares of side length «. Then take
from each square four “corner” squares of side length o?. By continuing
this process, at the n-th stage we get 4" squares Q7 of side length a™.
The limit set E = E(«) is a Cantor set.

Consider now the domain whose boundary is the Cantor set E. It
is shown in [1] that to each square Q7 can be associated a critical point

z} such that G(z},00) ~w(c0, Q7 N E,C\E) and then that

Z G(zj,00) = .

z; €S(oc0)

However, by Theorem 1, Z:z,-ES(oo) G(zj,00)'*¢ < oo for all € > 0.
The main motivation for these results is Widom’s Theorem, which
states that

Z G(zj,z0) < oo if and only if H;°(D) # {0} for all A € T'*,
2; €S(z0)

where H{® denotes the space of bounded analytic functions in D satis-
fying foy = A(y)f for all y € T, [12].

Also in the spirit of these results, there is a theorem by J.L.
Fernandez involving uniformly perfect sets. If 2 = D/I’ has Geeen’s
function then the Poincaré series 37 1 — [y(0)| converges. What he
proves in his paper [2] is that if O is uniformly perfect, then for some
>0,

Y (A=) <.

~eT

In Theorem 2 we give a characterization of domains whose bound-
ary is a uniformly perfect set in terms of the geometry of the funda-
mental domain. We will prove that 0f2 is uniformly perfect if and only
if there exists a fundamental domain whose boundary is a quasicircle.
In fact, there is a fundamental domain F such that OF is chord arc and
OF N 9D is also uniformly perfect.
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We recall here the definition of quasicircles and chord arc curves.
C is a K-quasicircle if it satisfies the three point condition |z3 — 21| <
clzg — z1| for some ¢ = ¢(K) > 0 and any three points on C with
z3 on the arc of smaller diameter between z; and =z, [6]. Equivalent
definitions can be given in terms of quasiconformal mappings.

Suppose now 7 is a locally rectifiable Jordan curve. For any two
points z1, 22 € v, let £(y(z;1,22)) denote the length of the arc in v from
21 to z9 of smaller diameter. The curve v is chord arc if there exists a
constant M > 0 such that

L(v(z1,22)) < M|zy — 25|, for all z1,2, € 7.

To prove Theorem 2 we construct a simply connected domain Q2 C
2 satisfying certain metric properties. The preimage of €y under the
covering map will be the required fundamental domain.

Pommerenke proves in [7] that if > G(zj,20) < oo then
z; €5(z0)

mes(0F,, NOD) >0,

where F,, denotes the normal fundamental domain of 2 with base
point at zo. Another theorem by Pommerenke involving the “size” of
OF N 0D for a particular domain is the following: If §2 is a domain for
which Green’s function exists and F denotes the Green’s fundamental
domain, then cap(0F N dD) > 0, cf. [8].

Finally, we would like to point out the connection between Theorem
1 and 2 with the conjecture stated by P. Jones in [5].

Acknowledgements. This paper is part of my thesis. I would
like to thank my advisor, Peter W. Jones, for his encouragement and his
guidance. I also thank J.L. Fernandez for many helpful conversations.

1. Uniformly Perfect Sets and Green’s Function.

Theorem 1. Suppose Q is a domain on the Riemann sphere C. Let
2o € 2 and let G(z,z9) be Green’s function for Q with pole at zy. Denote
by B.,(t) the first Betti number of the domain Qy = {z € Q: G(z,z9) >
t}. Then OS2 is uniformly perfect if and only if there exists € > 0 such
that

(1.1) / 158, ()dt < c, forall zo €,
: 0
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and for some constant ¢ = ¢(n) > 0 depending only on the uniformly
perfect constant n. Moreover, whenever this holds, we have

(1.2) Z F(G(zj,20)) < ¢(n,A) forallzg €,
VG(zj,20)=0

for all increasing function F such that F(0) =0 and

/—F;(zt)SA<+oo.
0

REMARK. Note that if 2 is a domain whose boundary 052 is a uniformly
perfect set, then cap(0€?) > 0 and therefore there exists Green’s func-
tion for . Moreover, it can be shown by applying Wiener’s criterion
that 2 is regular for the Dirichlet problem. Therefore, as a consequence
of Theorem 1 we get that if (1.1) holds for some € > 0, then €2 is regular
and for all € > 0,

(1+¢) /000 t°6,,(t)dt = Z G(zj,20)'7¢ < c(€), 2z € Q.

VG(zj,20)=0

PrOOF OF THEOREM 1: We start by proving sufficiency. Suppose
2 C C is a domain whose boundary 0f2 is a uniformly perfect set, that
is

(1.3) cap(OQN{z: |z—€| <r}) 2> nr, for€ € 00, 0 < r < diam(0Q),

for some constant n > 0.

First, we want to make an observation which will give us the uni-
form bound in (1.2). If ¢ is a Moebius transformation and K is a set
satisfying (1.3), then ¢(K) satisfies (1.3) for some constant n* depend-
ing only on 7 (see Proposition 1 in [9]). Thus, it is enough to prove
the theorem in the case O has diameter 1 and the pole 2y for Green’s
function is co. We will define G(z) = G(z, ).

We now need an estimate on harmonic measure. Let wg be a point
in © such that 6(we) = dist{we,00Q} < 1 and let & be the closest
point on 9 to wy. Consider the ball B(wy,rg) of radius ro = 56(wy)
centered at wy. We will prove

(1.4) w(o0, B(wg,r9) N 0N, Q) > ¢ G(wp)



UNIFORMLY PERFECT SETS 243

for some ¢ = ¢(n).

Since (1.4) is invariant under conformal mappings we can assume
8(wo) = 1/3. By (1.3), there exists a probability measure y supported
on

1
E=6Qﬂ{5=|€—foi§§}
such that the logarithmic potential

B(z) = o} L
() = [ log —du(e)

satisfies

UM(z) < co(n) forallz€ C,
UF(z) <0 if z ¢ B(wy,ro) -

(Note that if z ¢ B(wg, 7o), then |z — | > 1, for all £ € E). Thus, by

the maximum principle,

1 o o log3/2
00(77)” (o) 2 co(n) ’

w(’ll)o, B(’wo, 7‘0) N GQ, Q) 2
and by Harnack’s inequality,
(1.5) w(z,B(wq,ro) N ON, Q) > c1(n) if |z —wo| = % .

We consider now the function

F(z) =log

—UM(z) .

|z — wol

F(z) is harmonic in Q\{w¢}, bounded at co and |F(z)| < c2(n) on 0.
Writing
G(z,wg) = F(z) + (G(z,wp) — F(2))

and applying the maximum principle to the harmonic function in 2,
G(z,wg) — F(z), we get

1
G(z,wo) < can) if |2 = wo| = & .
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If we combine this result with (1.5) and we apply again the maximum
principle to the functions w(z, B(wg,r) N 052, §2) and G(z,wp) in the
domain Q\{z : |z — wo| < 1/6} we have

w(oo, B(wg,m9) N 0N, Q) > ¢(n) G(oco0,wp).

Since G(oo0,wg) = G(wg,0), we obtain (1.4) as required.

Define now S to be the set of critical points of G(z). Since S
lies in the convex hull of 0Q, ¢f. [11], which in this case is contained
in |z| < 1, it is easy to see that if z; € S then G(z;) < to for some
constant ty = to(n).

Next, consider the set of level curves {G(z) = t}, for all t < t,.
For each t < tg fixed, let N; be the number of connected components
of {G(z) = t} and let C} be the j-th component. Denote by K} the
subset of 9 contained inside the curve C'Jt-. To simplify the notation
we set

w(E) =w(co0,E,Q) forall EC 0N .
We will prove that there exists a constant ¢ = ¢(n) > 0 such that
(1.6) w(Kj)>ct, j=1,...,Ny,

but we will first show why sufficiency follows from this result.
Since 02 is uniformly perfect and in particular regular we have

N
N = U K}, forevery t <t .
=1

Thus, by (1.6)

N,
1=w(0Q) = > w(K}) > Nct
Jj=1

and therefore N, < 1/ct for all ¢t < tq.

Now let G(z) be Green’s function for the domain Q; = {z : G(2) >
t} with pole at oco. The number of critical points of G¢(z) is Ny — 1, ¢f.
[3], which is exactly the first Betti number of Q,, B(t). On the other
hand, note that
Gt(z) = G(Z) - ta
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therefore the number of critical points of G(2) contained in €, is equal
to the number of critical points of G¢(z), that is Ny — 1. So, for all
t < tq,

1
#{zj:z; €S, G(Zj)>t}<-c7 .

Suppose F' is an increasing function such that F(0) = 0 and

to
/ F—(;—)dz < A< +oo.
0 z

Then, if to = 2Fo,

oo

Y F(G(z)= Y > F(G(z;))
z; €S k=—ko 7 €S
27F-1<G(z5)<27F
g% > 2MFeH<ce,
k=—kgo

where C is a constant depending on n and A. In particular, taking
F(z) = z'*¢ we get

3 G(z)* < e(n,e).

z; €S
Also, as we pointed out before
#{z; 1 z; € §,G(z;) > t} = B(¢).

Integration by parts gives

c(ne) > > Gz)*t =1 +e)/0°°t€ﬁ(t)dt, e>0.

z; €S

We now turn to the proof of (1.6). Let t < t; and let wy € 2 be a
point inside the curve C} such that if d = dist{C}, K},

5d

dist{wo, C;} = 5 dist{wo, K} = e
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Consider the ball B(wg,ro) of radius rp = 5d/6 centered at wy.
Then B(wo, 7o) is inside the curve C} and by (1.4)

w(B(wo,r9) N ON) > c¢G(wp).
Thus
(1.7) w(K$) > w(B(wo,r0) NON) > cG(wo) > c't.

To prove the last inequality we consider the point w; € Q which is
at distance d/3 from C} and 2d/3 from K}. Let r; = 2d/3 and let D be
the subset of the ball B(wi,r;) contained inside the curve C}. Denote

by D the connected component of D which contains w;. Then
w(w, C]t- N D,D) > co

for some universal constant ¢g > 0.

By the maximum principle applied to the function w(z, CJt- nD, D)
and G(z) on the domain D, we get G(wy) > ¢o t. Hence, by Harnack’s
principle G(wg) > ct, for some universal constant c¢. Thus (1.7) holds
and this ends the proof of the sufficiency.

To prove necessity suppose fooo t¢ B, (t) < c for some ¢ > 0 and for
all zo € Q. Then, there exists M > 0 such that §,,(t) = 0if t > M,
i.e. the domain

OM,z ={z€R:G(2,20) > M}

is simply connected. This is equivalent to saying that there is a ball of
radius r = r(M) which does not contain equivalent points, (to see this,
write G(7(£),z0) = log(1/|B(€)|) where B(£) is the Blaschke product
with zeros at {y(0)}er and 7 : D +— Q is the universal covering map
with with 7(0) = z, [7]). Therefore, § is a domain whose boundary is
a uniformly perfect set.

2. Uniformly Perfect Sets and Fundamental Domains.

Theorem 2. Suppose @ = D/T 13 a domain on the Riemann sphere
C. Then OQ is a uniformly perfect set if and only if there ezists a
fundamental domain whose boundary 1s a quasicircle.
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Furthermore, in this case, we can construct a fundamental domain

F, such that

(i) OF is chord arc,
(i1) 0FNT is a uniformly perfect set.

PrROOF OF THEOREM 2: To prove sufficiency we construct a simply
connected domain Q¢ C (2 satisfying certain metric properties. To be
more precise:

Lemma 1. Suppose Q C C is an unbounded domain whose boundary
K is a uniformly perfect set. Then, there are crosscuts {L;} on Q such
that g = Q\{L;} is a simply connected domain and

(2.1) L; s a chord arc curve, for every j,

(2.2) dist{L;, Ly} > c¢; min{diam(L;),diam(Lx)}, forj # k,

(2.3) For any L € {L;}, if z1,2, denote the endpoints of L and z € L,
we have

dist{z, K} > c2 min{|z — z1],|z — 22]|}.

The chord arc constant M as well as ¢; and cy only depend on the
uniformly perfect constant of K, n.

PRrROOF OF LEMMA 1: Without loss of generality we can assume K C
[0,1] x [0,1]. Let ko € Z* be a large number which will be fixed later.
For each n € Z*, let (Q), be the set of closed dyadic cubes of side
length £, = 2 %", (A dyadic cube @ C [0,1] x [0,1] is a cube of the
form Q = [277k,277(k+1)] x [27%¢,27(£ + 1)) for some j, k,%,£ € Z7).
Define
K,={Q€(Q)n:QNK #0}.

Note that K, D K,4; and K = N{°K,.

To prove the lemma we will use an induction argument. At each
stage n, we will construct a family of curves (L), satisfying (L)n, C
(L) n+1 and such that

(2.4) K,U (L), is a connected set. The endpoints of the curves in (L),
are either vertices or middle points of edges of cubes in K,

(2.5) Any L € (L), is a chord arc curve with chord arc constant de-
pending on ko,
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(2.6) If Lj, Ly € (L),
dist{Lj, Ly} > ¢; min{diam(L;),diam(Lg)},
(2.7) If 21,2, are the endpoints of L € (L),, for all z € L, we have

dist{z, K} > ¢; min{|z — 21|, |z — 22|}

The constants ¢, ¢z only depend on k.
At the limit we will get the required crosscuts {L;}.

Fig. 1.

We start the proof by giving a lemma. We will consider simply
connected domains P which are unions of dyadic cubes of the same
side length and such that OP is a Jordan curve.

Lemma 2. Fiz ng € Z%. Let P be a domain as above composed by
no more than ng cubes of side length £. Choose any collection of such
cubes and call 1ts connected components {C;}. Then, we can construct
chord arc curves {L;}, contained in the interior of P, such that
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(i) {C;} U {L;} is a connected set and the endpoints of each curve
in {L;} are either vertices or middle points of edges of cu-

bes in {C;},
(i1) There are constants ¢c; > 0, 1 =1,2,3 such that

c1f < diam(Lj) < cof , for ally
dist(Lj, L) > c3l , forj # k.

The chord arc constant, c1,cy and c3 only depend on nyg.

PROOF OF LEMMA 2: Suppose P is the unit cube. Choose k € Z*
so that 272F < ny. In particular, P is the union of 2-2k cubes of side
length 27%. If all the components {C;} are cubes in the grid of size 27*
either touching AP or at distance 2% from P, the statement in the
lemma is obvious (Figure 1). The idea is to reduce the general case to
this one by using the fact that OP is a chord arc curve with chord arc
constant only depending on n,.

Normalize so that diam(P) = 1, and suppose first that P minus
the collection of cubes we choose inside P is still a connected set. Let
Ci,...,Cn be the connected components of this set of cubes. In fact,
we can assume they are simply connected. In general, 0C; may have self
intersections, so, what we do is to replace C; by C}, where C; is obtained
by adding two small cubes of side length £/8 at the vertices where 9C;
intersects itself, in case there are any. If not, let C; = C;. Then 9C} is
also a chord arc curve with chord arc constant only depending on ng.

Let f be a bilipschitz map in C which sends P onto the unit cube
Qo, see [10]. Since we have normalized so that diam P = 1, the bilips-
chitz constant of f only depends on the chord arc constant of 9P. The
images f(0C}), j =1,...,N are chord arc and for j # k,

dist{f(C}), f(C})} > c dist{C},C}} > c£

for some ¢ depending on the bilipschitz constant. Now draw disjoint
neighborhoods U; around each f(C%) with dist{U;,Ux} > c£€/2, j # k
(Figure 2). Take a grid of small size in Q. Again, there exist bilipschitz
maps f; : Qo+ Qo, j =1,..., N, such that

(1) fj(f(Cj)) C S; where S; is a cube on the grid in Qy ,
(2) fi(z) = 2, for every z € Qo\Uj.
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The composition F = f; 0---0 fy o f is a bilipschitz map in C
which sends P onto the unit cube Qo and each component C; into a
cube S; of the grid (Figure 3). If the size of the grid is small enough we
can find bilipschitz maps {g;} which will push the cubes S;’s towards
the boundary reducing the general case to the one considered at the
beginning of the proof. Let G = gnyo---0giofnvo---0fiof. Itis
important to note that the size of the grid depends on N = N(n,), the
chord arc constant of each §(f(C})) depends as well on nq and therefore
the bilipschitz constant of G will only depend on ny.

Next, let {7;} be the set of lines contained in Q¢ which connect the
disjoint cubes S;, j = 1,...,N. Choose {v;} so that their endpoints
are either vertices or middle points of edges of the S;’s. Call these
endpoints {v;}. Without loss of generality we can assume that F~!(v;)
is either a vertex or a middle point of an edge of a cube of some C;.
Let Lj = F~!(«;). Then {L;} are chord arc curves satisfying (i) and
(ii) in Lemma 2.

Suppose now that P minus the collection of cubes we choose inside
P is a disconnected set. Then we decompose P into polygons {Px} and
apply the argument above to the connected components {C;} contained
inside each Py. By adding some extra lines connecting the different Py’s,
we get the required {L;}.

We now turn to the proof of Lemma 1. The situation is the
following: we approach K by a sequence K,, n >0, K, D K,4; and
K = N{°K,. Each K, is in general a disconnected union of dyadic
cubes of side length ¢, with £,4,/¢, = 2=k At each stage n, we will
construct a family of chord arc curves (L), which connect the disjoint
components of K, and satisfy (2.4)-(2.7). By perturbing the curves
slightly in (L),_; we will get that each curve in (L),_; is contained in
a curve in (L),. The limit will be the required {L;}.

Clearly, if n =0, K is the unit cube Qq, and (L) = 0.

For n = 1, take the grid of size 27% in @Q,. K, is the set of
cubes in the grid which contain points of K. By applying Lemma 2
to P = Qo and the collection of cubes K;, we get the set of curves
(L); which connect the disjoint components of K; and satisfy (i) and
(i1) with constants only depending on ky. Thus, (L); obviously satisfy
(2.4)-(2.6). It is also clear by the construction of (L); that (2.7) holds
too. We can choose (L); to be minimal in the following sense: K;U(L),
is connected, but for every L € (L);, K; U (L1)\L) is disconnected.

Now, given (L),_; satisfying (2.4)-(2.7), we will construct (L),.

The set K, is obtained by partitioning K,_; into smaller cubes of
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7

Fig. 4.

side length 27%o™ and by choosing those which contain points of K. The
curves in (L),_; connect the different components of K,,_, thus we just
have to extend these curves so they hit K, and then apply Lemma 2
inside each component of K,,_; to connect the subset of K,, contained
in it (Figure 4). The main problem is that as n grows, the number
of cubes inside the components may get arbitrarily big and we would
loose control of the constants. To avoid this, we will decompose each
component of K, _; into “disjoint” pieces and then apply the lemma to
each of them. So, let C be a connected component of K,,_;. It is very
easy to get a family of cubes {Q;} and connected sets {P;} in C such
that C = UP;,P; C 3Q; and (P;)° N (P)° = 6,5 # k ((P;)° denotes
the interior of P;).

For reasons which will be clear later we would like each P; to be
simply connected and satisfy:

(2.8) OP; has no self-intersections,
(2.9) The concentric cube (14 1/8)Q; is contained in (P;)° .

To get such P;’s we only have to modify slightly the ones in the
decomposition above.
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If (2.8) fails for some Pj, we add two small cubes of side length
£,_1/4 at each vertix where OP; intersects itself. If these cubes were
contained in some Py # P;, we remove them from P;.

If (2.9) fails, then we just add an e-neighborhood around Q i C P
with £ = £,_;/4. Note that since (2Q; N C) C P, the e-neighborhood
does not intersect any other Py # P;.

Thus, by adding some cubes we can assume that the P;’s in the
decomposition above are simply connected and satisfy (2.8) and (2.9).
So, we will replace any curve L in (L)n—; which hits C by a curve L
which travels along L and stops when L hits UP; for the first time. For
convenience of notation, we will set L equal to L and we will continue
referring to them as curves in (L)p_1.

Next, fix P; and look at all k’s such that 9P, N OP; # (). For each
such k, choose a point z;x € 0P; N 0Py which is not an endpoint of any
curve in (L),_;. We define the set V; as follows:

A point z € OP; is in Vj if z = zj; for some zj; as above or z is
the endpoint of a curve L C (L),—1 which hits OP;. In this last case if
the point z is also in 0P for some k # j, we include it either in V; or
Vi. The whole point of this is to extend L, whether we do it inside P;
or P it does not matter. The points zj;’s will be the link between the
different polygons P;’s. Note that all the points in V; can be chosen so
that they are vertices or middle points of edges of cubes.

We will drop the “j’s” in the notation until we need them again.

Let ng be the number of points in the set V' C 0P and consider
the cube @ attached to P. We have constructed P so that P° contains
the concentric cube Q' = (1 +1/8)Q, ¢f. (2.9). The following remark
is an immediate consequence of the definition of uniformly perfect sets.

REMARK. Suppose K is a (n) uniformly perfect set. Consider a cube
Q with @ N K # 0. Let £ be the side length of @ and let Q' denote
the concentric cube of side length (1+1/8)¢. Then, given any N € Z%,
there exists k = k(n,N) € Z* such that the grid of size 27%¢ in Q'
contains N cubes @)y, ..., Qn satisfying

1)Q;NK#0,5=1,...,N,
(ii) dist{Q;,Qx} > 10 27%¢  j # k.
Thus, there is kg = ko(n) such that the grid of size £, = 2=kog, 4

inside @' = (1+1/8)Q contains at least ng cubes satisfying (i) and (ii).
Call F to this family of cubes and note that they are cubes of the n-th



254 M.J. GONZALEZ

generation K,. Note also that ny is bounded by a universal constant,
so let us fix kg so that (i) and (ii) holds for this constant. Next, we will
build curves {L;},k =1,...,no connecting each point z € V to one of
the cubes in F'. These curves will be polygonal lines inside P with

(i) diam(Ly) < ¢g £, for some universal constant ¢ > 0,

(2.10)
(i1) dist{L;j, L} > 104, .

To do this, choose 21, @, such that
dist{z1,Q:1} < dist{z;,Qx} forall z; € V,Qx € F.

By distance here we mean the length of the shortest polygonal line
which joins z; to @; and it is contained in the grid of size ¢, in P. Let
L, be such a line.

Draw now a tube T} running parallel to L; U @, of radius 94,.
Note that T} does not contain any cube in F' except ;. Moreover,
since F' C P° if the size of the grid is small enough (and we can assume
it is), Ty does not disconnect P, so we can apply the same construction
to P\T; which has (no — 1) points on its boundary and (no — 1) cubes
of the family F in its interior. Choose z,Q2 as before, but now the
distance is measured with respect to the grid in P\T;. Get L, and
draw the tube T5. By continuing this process, we get polygonal lines
{Lk},k =1,...,ng such that each Ly joins Vi to Q inside P and (2.10)
holds.

We point out again that the size of the grid which allows us to
perform this last construction only depends on ng. Now, replace L by
Ty, where 'y is obtained by following L; until it first hits a cube of
K,. Obviously I'y also satisfies (2.10). For convenience of notation call
L; to T'x. Next, we repeat this construction inside each component of
K,_1. The polygonal lines we get either extend the curves in (L),—1 so
that the sets {(K,NC): C is a component of K,_;} remain connected
or they connect the sets {P;} inside each component C. Now all that
is left is to join the components of K, inside each of the P;’s. To do
this, fix P and consider the lines {L;} contained in P. For each k, we
draw an auxiliary line Ly running parallel to L at distance £, and with
endpoints on the same cube as Li. Call the thin tube in between Tk.
Apply now Lemma 2 to P' = P\ U T} and to the collection of cubes
Kn, N P'. Get new lines {L}} travelling inside P' satisfying (i)-(iii) in
Lemma 2. Note that these lines are at distance at least £,, from each of
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the Li’s. Finally, remove the extra lines {Lx}, and perform the same
construction inside each polygon P C C for all connected components
C of K,_y. The lines (L),_; U{Lx}U{L}} will be the lines of the n-th
generation (L),. Again, we can choose (L), to be minimal in the sense
described before.

Before returning to the proof of Theorem 2 we need the following
characterization of domains with uniformly perfect boundary. Let €2 be
a domain on C conformally equivalent to D/T and let 7 be the universal
covering map. The Poincaré metric on 2 is defined by

|d2|

Aw)du| = 55

w = 7(z).

Pommerenke shows in [9] that 0Q is uniformly perfect if and only if
there exists a constant ¢ > 0 such that

€ <Aw) < ——

211) d(w) = d(w)

where d(w) = dist{w, 0Q}.

To prove Theorem 2 we can assume again diam(9€) = 1.

Consider the simply connected domain €y and the crosscuts {L;}
constructed in Lemma 1. We start by showing that any such crosscut
L is chord arc in the Poincaré metric on §2.

Let z1, 25 be the endpoints of L and let z(s) denote the arc length
parametrization of L. Choose the point Z € L such that

U(L(z1,2)) = L(L(Z,22)).

Define L to be the arc of L from z; to 2. Let w;,wy be any two
points on L;, then

w; = z(s;) where si = U(L(z1,w;)), 1=1,2.

By (2.1) L is chord arc in the Euclidean metric, with chord arc constant
M = M(n). Thus, we have for all z € L,

1 1

2= 22l 2 7 6(L(z,22)) 2 32 UL(1,2)) > 2l — 2l
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On the other hand, by (2.3)
dist{z, K} > co min{|z — z1],|z — 22|}, forze€ L
for some c¢; = c3(n). Thus
dist{z, K} > ¢ (L(z, z))

where ¢ = ¢(n).

By convenience of notation we will use the letter ¢ = ¢(n) to denote
different constants, all of them depending only on 7.

We now estimate the length of the arc of L from w; to w, in the
Poincaré metric. By (2.11) and the inequalities above, we obtain

|dz|
Py S
A ( ! 2)) L(wy ,ws) dlSt{Z,I\.}

/ |dz|
<ec S b T
L(w;,ws) e(L(zl’z))

%2 ds
L[
31 S

=c logs—z-

$1
|21 — wa]

Sclog(l_*_.lil_;w_z')'

|21 — w1

Next, let o denote the geodesic from w; to ws in the Poincaré
metric. Parametrizing o by the arc length, z = z(s), that is s =
l(o(wy,2)), we get

P(wlaw2)20/ __]d_z'__’_ ZC/ Ile
o(wy,ws) dlSt{sz} o(w,w3) IZ - 21]

Ho(wy,ws)) —
C/ ____Cl.'s___zclog(l_i_M)
0

|21 —wi|+s |21 — wy|

I\

Therefore, there exists a constant C' = C(n) such that

p(L(wr,w2)) < Cp(wy,ws).
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Similar computations show that the same holds for any two points wj,
wq on L. Hence, L is chord arc in the Poincaré metric with chord arc
constant C = C(n).

Now, let 7 : D — § be the universal covering map of  with
7(0) = co. We can define a single valued analytic branch of 7~ in Q.
Set F = W‘I(Qo). Then F is a fundamental domain. We will prove
that OF is chord arc.

Since each crosscut L; is a Jordan curve, the conformal map 7~
extends homeomorphically to L;, for all j. So, if Lj' and L; denote
the two sides of L;, we can define the set of curves {v;} by

{7} = {=7" LN}V {=7 (L)}

Every v € {;} is a curve on D with endpoints on 0D. Note that
OF is the union of a set on 0D (may be empty) and the collection of
{7}

To prove OF is chord arc we will show that every 4, is chord arc
and then by using the metric properties of o we will prove that the
whole boundary 0F is chord arc.

1

Before continuing we need to introduce some notation.
Let &1,&; € OD. Consider the Mébius transformation ® : RZ — D
such that ®(0) = &; and ®(c0) = €. For any 6, 0 < 6 < /2, define

I'g=3{z:0< argz <m—06}.

We will refer to I'g as a cone in D with endpoints &3, &;.

It is a well known result that any curve v C D with endpoints
£1,€2 C OD which is chord arc in the hyperbolic metric with chord arc
constant M satisfies

(i) v C T'g for some § = 6(M),
(ii) v is chord arc in the Euclidean metric with chord arc constant

M' = M'(M) [4].

As we proved before, each L; is chord arc in the hyperbolic metric
with chord arc constant depending on 7, thus the same holds for ;. By
the result above we deduce that each v; is contained in a cone I'y for
some 6 = 6(n), and that ~; is chord arc in the Euclidean metric with
chord arc constant M = M(n).

Next, we will prove

p(v5,1e) > e(n) for every j, k, J#£k
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for some constant c¢(n) > 0.

If v; = ﬂ_l(L;) and v, = 7r‘1(Lj'), then this is just an easy
consequence of the fact that @ does not contain closed geodesics of
arbitrary small length in the hyperbolic metric.

If v; = 7 1(L;) and & = 7~ !(Lg), all we have to show is that
p(Lj, L) > c(n). For, let wy € L; and wy € Li. Denote by o the
geodesic in the hyperbolic geometry from w; to ws. Suppose that
diam(L;) < diam(L;) and that z; is the endpoint of L; closest to
w;. Parametrizing o by the arc length z = 2(s) we get

_lde|
>
plwr,w2) 2 € T’)/ dist{z, K'}

|dz|
> C(n)L =]

&) ds
> ¢(n) /0

s+ |z; — wy|

= c(n) log (1 + IzTE(—U)TII) '

¢(0) > dist{L;, L} > c1(n) diam (L;)

By (2.2),

and since L; is chord arc
21 — wi] < €(L;) < M(y) diam (L;).

Hence p(L;j, L) > c'(n) as required.
Summarizing, for all j, v; satisfies

(i) v; C Tg, for some 0<6<7m/2,
(2.12)

(i1) 7v; is chord arc with chord arc constant M,
(i) plyi,ve) 2e,  forgk j#k,

with constants only depending on 7.
It is now very easy to see that (i)-(ii1) imply OF is chord arc.

To prove (ii) in Theorem 2 we need to introduce some more nota-
tion.
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As we remarked before F = {v;} UE where E is a set on 0D = T.
For every 7;, let e; be the arc of T joining the endpoints of v; (Figure
5).

Fig. 5.
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Also, for every 7;, v« we denote by aj; the arc of OF of smaller diameter
between v; and 4 and by ;i the other arc. The arcs of T joining the
endpoints of a;; and B will be denoted by aj; and bj; respectively.
In particular,

T= eraijekUbjk.

The goal is to prove
(2.13) L(ajr) > c(n) min{f(e;),£(ex)}, for all 5,k
and

(2.14) %é(ej) <1-o(n), for all 7,

for some constants ¢(n) > 0, o(n) > 0.

If we think of OF N T as the set obtained by removing the arcs
{ej} successively (as we do with a Cantor set) it is clear that (2.13)
and (2.14) imply 0F N T is a uniformly perfect set.

The idea is to prove

(i) There exists a point £;; € F such that

(2.15) w(&ik, @ik, F) 2 co, for 5,k
(2.16) w(&k, Bjk, F) = co, for 5,k

for some ¢y = co(n) > 0.
(ii) There exists og = o¢(n) > 0 such that
(2.17) w(0,7;,F) <1 —0ao(n), for all ;.

The fact that every ~; is a chord arc curve contained in a “cone”,
(2.12), will allow us to show

(2.18) w(&jk, ajr, D) > c'(n)
(2.19) w(&jk, bk, D) > c'(n)
(2.20) w(0,e;,D) <1 —0'(n)

for all j, k, and as an easy consequence we will get (2.13) and (2.14).
We start by proving (2.15). For, we will show that the equivalent

estimate holds in the domain . Suppose first that v; = n~1(Lt)

and v = 7~ }(L™) for some crosscut L. Denote by A; and A, the two



UNIFORMLY PERFECT SETs 261

connected components of 3 \L. Note that by the construction of (2
given in Lemma 1, we have

diam(A4;) > é diam(L), 1 =1,2

for some 6 = 6(n) > 0. Also note that (2.15) and (2.16) are equivalent
to

w(27 Al’ QO) 2 CO(TI)

(2.21)
UJ(Z, Az,Qo) Z Co(n)

for some z € Q.

Without loss of generality we can assume diam(L) = 1. To prove
(2.21) we will use an extremal length argument.

Suppose L is the unit interval. Then (2.2) and (2.3) impy that the
set o\ L is outside the “diamond” D,

Dy={z:|arg z| <e}N{z:|arg(z — 1)| < ¢}

where € = ¢(n).

Fig. 6.

Denote by D the concentric “diamond” correspondent to the angle

/2 (Figure 6). We will show
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(i) For all z € 8D,

w(z,A; UA2,Q) 2> ci(n)

for some ¢; = ¢1(n) > 0.
(ii) There exists a point z; € dD and a constant c;(n) > 0 such
that

w(z1,A41,0) > c2(n)

and similarly, there exists zo € 9D such that

w(z2, A2, ) 2 c2(n).
Thus, by continuity there exists a point z € D, for which (2.21) holds.

Fig. 7.

We start by proving (ii). Suppose d = dist{A;, A2}. In particular,
A, is outside the ball |z| < d (Figure 7). Let r = min{d, ¢}, and let
zy =71/2 e'*/2. Denote by K the ball of radius y;/2 (21 = z; + iy;)
centered at z;. Consider the family of curves F; which join K to A; in
Qo, and denote by A(F}) the extremal length of F;. Then by Beurling’s
Theorem

(2.22) w(z1, A1, Qo) > ce ™ F)

for some universal constant c.
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Let £1,&2 be the two points where K intersects 0D, and define
the family of curves Fy = {v, : [&1] < r < |€|} where v.(6) = re®,
€/2 < 6 < 2r —¢/2. By the choice of r, each curve F, contains an
arc which is an element of Fj. Therefore, if p(z) > 0 is a measurable
function admissible for Fi,p € A(F1), i.e. f_y pds > 1 for all locally
rectifiable curves v € F; (ds denotes the arc length on v), then

/pdle for all 4, € F3.
By Holder’s inequality

1
2
p ds 2 _—
/7, €(yr)

where £(-,) denotes the length of v, . Thus

[€2]
// pldz dy > / / pids dr
l&ll r
€21 [€2]
_>_/ 1 er/ id7"=ilog@.
e L) 6] 27T 2r 7 ||

Since |€2]|/|€é1] = ¢ where ¢ = c(e), we get A(F}) < c(¢). Hence, by
(2.22) we obtain

w(z1,A41,Q) > ce ™ = co(e) -

The same argument gives the correspondent result for z;. So (ii) is
proved.

Note now that it is enough to show (i) for any point z9 = zo+iyo €
0D with 0 < zg < 1/2,y > 0. For, let A; = A; N {z:|z| < 6}. Then
by the maximum principle we get

w(zo, A1 U A, Q) > w(z, A1, C\{L U A;}).
Thus if Q; = C\{L U 4,}, all we have to prove is
(2.23) w(z0, A1, Q1) > e1(n).

For, let §, = 6/2 e'€9/2 and let B be the ball of radius v9/2, ({0 =
ug + 2vg) centered at £ (Figure 8).
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Fig. 8.

By Harnack’s inequality,
w(f,z‘il,Ql) > kw(fo,fil,Ql)

for all £ € B and some universal constant k. Thus, by the maximum
principle, for all z € Q;\B, in particular for zo, we get

(2.24) w(z, A1, Q1) > kw(z, 0B, \B)w(o, A1, Q).
Using a similar argument to the one in the proof of (ii) we get
(2.25) w(€o, A1, ) > c(e).
Next, we show
(2.26) w(z0,0B,2:\B) > ¢(n).
For, let K be the ball of radius yo/2 centered at z, and let F} be the
family of curves joining K to 0B in the domain Q;\B.
Consider now the region R shown in Figure 8 and the rays {v4}

from OB to K with 8; <0 < 6,

vo(r) = {reie iry <71 <rp}
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where rg ™ |20] and r; ~ |€o| = 6/2. Since vg € F, for all p € A(F) we

have
/ pds>1.
2]

By Hélder’s inequality, we get

T2 . 1
/ p2(reyr dr > ————
1

~ log ro/ri’

Thus

92 ‘1’2
//p2dzdy2/ / p’r dr df
6 Jm
1

> (62 —61) > c(g,6).

log ro/71

Since € = ¢(n) and ¢ = é(n) we get (2.26) which with (2.24) and (2.25)

give us the required estimate (2.23). This concludes the proof of (i).
So, we have proved (2.21) in the case the line L is the unit interval.
For the general case, consider the bilipschitz map f on C which

sends the chord arc curve L of diameter 1 to the interval [0,1]. Then,

for all z,w € C, (2) = f(w)
1 f(z) — f(w
O R E R

where ¢ only depends on the chord arc constant of L, M = M(n).
Thus, the images of A; and A, under f are connected sets with
diam(f(A;)) > é(n), © = 1,2. Furthermore, f(A;), f(A2) will stay
outside a “diamond” of angle ¢ = ¢(n). Hence the results above apply
to f(A;) and f(A2) in the domain f(€g). This, together with the fact
that if F'is a family of curves and f is an M-bilipschitz map in C then

1
WA(F) S AF(F)) S k(M)XF),

give us (1) and (ii) in the general case.

As we remarked before, (i) and (ii) imply (2.21). So we have proved
(2.15) and (2,16) whenever v; = #~}(L*%) and v = #~}(L7).

Suppose now v; = n‘l(Lf) and v = 7 Y(LE) (whether it is
+ or — does not matter, the proof is practically the same). Assume
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diam(vy;) > diam(7x) and diam(yz) = 1. Denote by A;, Az, A5 the
three components of 92 \(y; U v&), and suppose A, is the one which
connects 7; to vyx. Again, we have

diam(4;) > 6(n), t=1,2,3.

A similar argumet using extremal length and bilipschitz maps can be
given to prove (2.15) and (2.16) in this case.
Next, we will prove (2.17). For, let 4; = #~1(Lt), then (2.17) is
equivalent to
w(oo, L1, Q) < 1 — ao(n).

By the maximum principle w(oo, Lt, Q) < w(oco, L1,C\L). Suppose
first L = [0,1]. Standard estimates show that for all z with |z| = 2,

w(z,L™,C\[0,1]) > ¢,

for some universal constant ¢y > 0. Thus, if |z| = 2, B(z) is the ball of
radius 1/2 centered at z, and F, is the family of curves joining B(z) to
L=, we get A(F;) < ¢; for some universal constant ¢; > 0.

We now turn to the general case. Assume diam(L) = 1, and let f
be a bilipschitz map in C which sends L to the unit interval. Consider
the curve I' = f~!(|z| = 2). For each £ € T, set K(¢) = f~!(B(z)) and
consider the family of curves joining K () to L™, that is Fy = f~}(F}).
Then

w(é,L~,C\L) > ce TN > oML > 4

where the constants c; and o9 depend on the chord arc constant of L,
M = M(n).

The next goal is to prove (2.18)-(2.20). It just says that (2.15)-
(2.17) hold if we remove the arcs {v;}. This will be an easy consequence
of the following result:

Let v be a curve from 0 to 1 in R3, which is contained in a “cone”
I'y. The boundary of I'y is the union of two arcs, C; and C;. Denote
by C' the biggest arc of the boundary of the “cone” I'4/2 and by D the
domain bounded by C and the interval [0, 1]. Then, for all z € ~,

(2.27) w(z,I,D) > ¢y

for some constant co only depending on 6.
It is easy to prove that for all z € C;

w(z,I,D) > cyp.
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Thus, by the maximum principle, (2.27) holds.

To prove (2.18), consider the domain F C D bounded by ~;, vk, B
and aj; . In particular FoF , and therefore any harmonic function in
F is also harmonic in F. Let u(z) = w(z,ajk,]:'), then

w(&jk, ajr, F) = /ar u(§) dwe;, (€)-

By (2.15) and (2.27), we get

/ u(ﬁ)dbdg,k(ﬁ) 2 C('I) .
oF
Thus, by the maximum principle

w(&jk,ajk, D) = c(n).

Similar arguments can be given to prove (2.19) and (2.20).

Note now that (2.14) is an immediate consequence of (2.20).

To prove (2.13), let us assume that it does not hold. Then it is
easy to show that (2.18) implies

w(&jk, bjx, D)= 0
i,k

which contradicts (2.19). This concludes the proof of (2.13) and (2.14)
and therefore the proof of sufficiency.

To prove necessity, first we need to prove a lemma on quasidisks,
that is, domains bounded by quasicircles.

Lemma 3. Suppose R C Ry = {y > 0} is o K-quasidisk. Let zo be
any point in R\R and let B be the hyperbolic ball of radius 1 centered
at zg. Then BN R contains a ball of hyperbolic radius € > 0, for some
¢ only depending on K. (R denotes the closure of R).

PROOF OF LEMMA 3: Suppose first 29 € 9R. Consider the K-quasicon-
: fgrmal map f:R% — R with f(0) = zo. Assume 2o = iyg,yo > 0. Let
B be the biggest Euclidean ball centered at zy contained in B, and let
po be its Euclidean radius. Then, it is easy to see that po = (1 — 1/¢) yo.
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Let B; C f~Y(B) be the ball centered at 0 and radius r; =
min, 55 |f'(z)|. Apply the distortion theorem in [6] to f(B;) to get
a ball contained in f(Bj) of radius

pr= min |f(2) 20| 2 «(K) po .

Now, let D C B; be the ball of radius rl/Q centered at { = ¢ ry/2.
Then f(D) is contained in R and it is tangential to zo and to f(9B).
Thus, by the distortion theorem, there is a ball By C f(D) of radius p,
with

p2 > o(K) diam(f(D)) = ex(K) po

Let B, be the ball concentric to B, and radius p,/2. Then B, C
R N B and since

ca(K .
% > %Po =co(K)yo ,

we get that the hyperbolic radius of B, ¢, satisfies € > ¢3(K).

A similar argument can be given in the case z; lies in the interior

of R.
We now turn to the proof of the theorem.

Let F be a fundamental domain for the domain © C C such that
OF is a K-quasicircle.

Suppose the theorem fails, that is for each § > 0, there is { €
and an element v in the Fuchsian group I' such that p(&o,7(&)) <
Then

F
d.

(2.28) pP(7"(£0),6o) <né <1 if n< % :

Consider the ball B of hyperbolic radius 1 centered at £. By Lemma
3 there is a ball B. C B N F of hyperbolic radius €. Since B, C
F, the balls Be,v(B.),...,Y"(Be) are disjoint. Furthermore, they all
have hyperbolic radius € and by (2.28) they are contained in the ball
of hyperbolic radius 2 centered at £;. Since this cannot happen for
arbitrarily big n’s, we get a contradiction. Thus, Theorem 2 is proved.
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