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Boundary value problems
in Lipschitz cylinders
for three-dimensional

parabolic systems

Russell M. Brown and Zhongwei Shen

Abstract. We consider initial-boundary value problems for a parabo-
lic system in a Lipschitz cylinder. When the space dimension is three,
we obtain estimates for the solutions when the lateral data taken from
the best possible range of LP-spaces.

Introduction.

Let © be a bounded Lipschitz domain in R® and for 0 < T < oo,
let Qr = Q@ x (0,T) be a Lipschitz cylinder. Consider the parabolic
system

ou - c
(0.1) i p AU+ (A4 p)V(div &) in Qp
where @ = (u!,u?,u3) and p > 0,\ > —2u/3 are constants. In this
paper, we study the solvability of the initial-Dirichlet problem for (0.1)

27|:>:T =g € LP(Zr), LY(Z7) or A(ZT),
(IDP)
ﬂlt:o =0.
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272 R.M. BROWN AND Z. SHEN

where X7 = 0Q x (0,T) denotes the lateral boundary of Qr, LY(Zr)
denotes the space of functions on L1 having one spatial and half of a
time derivative in L? and A§(Xr) denotes the space of Holder continu-
ous functions of order «a (in parabolic sense) which vanish on 0Q x {t =
0}. We also consider the initial traction problem for (0.1)

{ Ndiv @)N + p((VD) + (V@)")N|y,_ =g € I’(S1),
(ITP) )

il

Il

t=0 0 2

where N = (N;, N2, N3) denotes the outward unit normal to 952 and
(-)'" denotes the transpose of a matrix.
Our estimates for solutions of (0.1) will be given in terms of the

parabolic maximal function denoted by (-)*. We will use a,‘ /% to denote
half of a time derivative. Throughout this paper C will denote constants
depending at most on the Lipschitz character of 02, T, A, 4 and p.

We now state our main results (see Section 1 below for the defini-
tion of function spaces appearing in these results).

Theorem A. (Dirichlet Problem with L? data). There ezists € > 0,
such that, giwen any § € LP(X7), 2 — ¢ < p < oo, there exists a
unique U in Qo satisfying (0.1), (IDP) and (@)* € LP(XT). Moreover,
(@) Nzr(zr) < CllglLe sy -

Theorem B. (Dirichlet Problem with A§ data). There exists ag > 0,
such that, given any § € A§(ET), 0 < a < ag, there ezists a unique U
in Qr satisfying (0.1), (IDP) and @ € A§(Q2 x [0,T]). In fact, we have
Il e @xo,rp < Cl9llagzr) -

Theorem C. (Dirichlet Problem with L? data). There ezists ¢ > 0,
such that, given any § € LY(Zr), 1 < p < 2+ ¢, there ezists a
unique U in Qr satisfying (0.1), (IDP) and (Vi)* € LP(X1). Moreover,

- 1/2. 4 -
I(Va) lermn + 1@ @) @ < Clldllzen) -
Theorem D. (Traction Problem with L? data) There ezists ¢ > 0,

such that, given any § € LP(Z71),1 < p < 2+¢, there exists a unique ¥
satisfying (0.1), (ITP) and (V@)* € LP(Xr). In fact, we have

=\ * 1/2 % —
(VD) oy + 102D s (2a) < ClFlLr(2a) -
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The results above were announced in [BS2]. The boundary value
problems for (0.1) in Lipschitz cylinders were studied in [S], where
the solvability of (IDP) and (ITP) was obtained for p = 2 on £ x
(0,T) where Q is any bounded Lipschitz domain in R", n > 3.

For the system of elastostatics,

pAT + (A + p)V(div@)=0

in Lipschitz domains, the corresponding results were obtained for p =
2, n > 3 in [DKV?2] and for p optimal, n = 3 in [DK2].

Our argument follows closely that for elliptic systems in three
dimensions in [DK2]. In the parabolic case, the dimension of the time
variable ¢ should be counted twice. Hence, we are working in a space
of (homogeneous) dimension five. This is where the difficulty lies when
we try to apply the argument from [DK2]. However, since our domains
are cylindrical, we are able to overcome this difficulty. This is done by
using Fourier analysis in the time variable to show that we may solve
the initial-Dirichlet problem with data in mixed norm LP spaces

LP4(Sr) = LI((0,T); LP(0%))

where p is close to 2 and ¢ € (1,2]. Since the time index may be arbitar-
ily close to one, the extra dimensions do not introduce any additional
difficulties.

We remark that the techniques we use in this paper also yield some
interesting new results for the heat equation in Lipschitz cylinders in
all dimensions. Indeed, using the L?(0(Q)-valued multiplier argument
in Section 2, the L? estimates in [B] and interpolation, it is not very
hard to establish the solvability of the initial-Dirichlet problem for the
heat equation with boundary data in LP9(Zr) for 2 < p < oo and
p/2 < g < oo and the initial-Neumann problem with boundary data in
LP9(Ep)for 1 <p<2and1<q<p/(2—p). Weleave the details to
interested readers.

The outline of this paper is as follows. Section 1 contains notations
and definitions that will be used throughout the paper. In Section 2,
we study the boundary potential operators on mixed norm spaces. In
Section 3, we study the initial traction problem with atomic data. Our
main results are proved in Section 4.

Finally, the first author would like to thank Professor Carlos E.
Kenig and the second author would like to thank Professor Andreas
Seeger for several helpful conversations.
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1. Notations and definitions.

We retain the notations used in the Introduction. In particular, Q
will be a bounded Lipschitz domain in R?, Q7 =Q x (0,7) and 1 =
00 x (0,T). We will use P and Q for points on 952, X and Y for points
in  and t and s will be the time variables.

For v defined on Qr, the nontangential maximal function of v is
defined by

(11) (P t)= sup  [o(Y;s)]
(Y,s)e~(P,t)

where (P, t) is the parabolic nontangential approach region defined by

(1.2) v(P,t) = {(¥,s): |Y —P| + [t—s|'/? < 2dist{Y,09}} N Qr.

We will use @ and f to denote functions taking their values in R®. In
the initial Dirichlet problem, the statement o |ET = ¢ is interpreted in
the sense of nontangential limit

lim 4(Y,s) = g(P,t) a.e. on Xr

(Y,3)—~(P,t)
(Y,5)€~x(P,t)

with respect to the surface measure on X7.
Similarly, for the initial traction problem, by

Mdiv N + u((VE) + (VO)")N |y =37,
we mean that
A(div {[)IETN +y((Vﬁ‘) + (V'&’)")IET N=g.

We say # has initial value 0, write U|t=0 =0, if u(X,t) — 0 uniformly
on every compact subset of Q as t — 0F.

For a smooth function f which decays rapidly at —oo, we define
the fractional integral of order o by

(1.3)  L(f)t) = F(la) /_oo T _f(:))l_ads, 0<o<1,

and fractional derivative of order o by

(14 (N0 = gholDE),  0<o <1,
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where T is the gamma function.
For u defined in a neighborhood of Jf2, we define the tangential
gradient of u on OS2 by

(1.5) Viant = Vu — (Vu, N)N.

We now give the definition of the spaces LP9(Z7),Ag(Zr), AG(Q x
[0,T)), LY (£7) and LY*(Z7) .

Definition 1.6. For 1 < p,q < oo, we define the mized norm space

LP4(S1) = L9((0,T), L7 (99))
T
={ﬁ wmmmﬂ=(A<Lanmf”<+w}

Definition 1.7. For 0 < a < 1, we let

- - If(P,t) — £(Q,s)|
Flaezny =suplfl +  sup
I laecer) = suplfl+ sup  ap Q1+t = o7

and we define the space A§(XT) by
AY(E7) ={F: f(P,0) =0 for P € 0 and | fllae(zy) < +00}.
The space A(Q x [0,T)) is defined in a similar fashion.

Definition 1.8. For 1 < p < oo, L{(9€ x R) denotes the closure of

the space

{(T:5=,,, #€CPR xR)}

with respect to the norm,

9]l 2 (@ x®) = | Vian?]| Lo (20 xR) + 18;25)| Lr (o x By + |71 Lr (201 xR) -

We then define
L} (27) = {f f= §|2T , G € L2002 x R) and §(P,t) =0 fort < 0}.
The norm i3 given by

||ﬂlL{(2T) = inf {HillL{(anxm): ds, = f and §(P,t) =0fort < 0}-
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We may define LY'?(02 x R) and LYY(Zr) similarly, using the norm

) —) 2 o —
191|220 xm) = IV an®]| 1.4 (008 +110L 2 F)| Lo.9 (062 x) + 1| 7]] Lr- 9 (0% x) -

We close this section with the following perturbation theorem
which will be very useful to us.

Theorem 1.9. Let M be a measure space with a positive measure v.
Let 0 < 09 < 1/2 and S: LP(M,v) — LP(M,v) be a bounded linear
operator, with norm bounded by B, for |1/2 —1/p| < 0g. Also assume
that S:L? — L? in invertible and ||S7!||(22) < A. Then, there ezist
6 >0, C > 0 depending only on o9, A and B, such that, S: LP — LP
is invertible and ||S7Y)|(, ) < C for [1/2—1/p| < §.

We remark that Theorem 1.9 is a consequence of more general
results of G. David and S. Semmes (unpublished). Similar results also
have been given by A. P. Calderén [C]. Theorem 1.9 may be proven by
applying Calderdn’s result to the positive operators S*S and SS*. See
also W. Cao and Y. Sagher [CS] for a more general result.

2. Layer Potentials.

In this section we study the boundary layer potentials on mixed
norm spaces. In particular, we show that the double layer potential
on the lateral boundary is bounded on LP¢(Er) for 1 < p,q < oo and
is invertible on LP9(¥Xr) for p € (2 — €9,2], ¢ € (1,2] where o > 0.
These results are used to solve the initial-Dirichlet problem with data
in LP9(Xr) for p € (2 —€0,2) and ¢ € (1,2].

We begin by introducing a matrix of fundamental solutions for the

system (0.1), I'(X,t) = (ij(X,t))3x3 where

ij(X,t) = 6jk ds

e—1X1%/(4mpt) 92 /(*+2u)t e—1X1%/(4ms)

(@rpt)? 2 " Bz;00r ), ()3

when t > 0 and I'j3(X,t) = 0 for ¢ < 0. We have the following estimate

glel+eo C
(21) laXaatao F(X’t)| < (le + |t|1/2)3+)a|+2ag :
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Given fe Lq(R, LP(BQ)), 1< p<oo, 1< gq< oo, define the single
layer potential

(2 a=sAxH= [ [ T0x-Qt-97(Qiqas.

Let

QD
I3

(2.3) = XNdiv ©)N + u((VE) +(V@)")N

v
be the traction operator on the lateral boundary. If @ = &( F ), then

Oty
Ov

—_—(i%I+K,,)f on O x R,

where the subscripts + and — indicate nontangential limits taken from
Q x R and from 2 x R respectively, I denotes the identity operator and

Kfp=p [ [ %(P — Q,t - $)f(Q, 5)iQds

is a singular integral (see [S]).
Lemma 2.4. K, is bounded on L1(R, L?(8Q)) for any 1 < p,q < oo.

PROOF. First,if p = ¢, 1 < p < oo, the lemma follows from the theorem
of R. Coifman, A. McIntosh and Y. Meyer [CMM] on the boundedness
of the Cauchy integral on Lipschitz curves and the argument of E. Fabes
and N. Riviére [FR, Theorem 1.1].

Next, consider the case of 1 < ¢ < p. Let B = LP(02). We may
view K, as a singular integral operator on B-valued functions on R!.

Write
K, f(t) = p.v./oo K,(t—s)f(s)ds, feLi(R,B).

Using estimate (2.1), it is not difficult to see that, for § € B,
— C —
(K (t)dls <  [Moa(9)ls

and
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2 K015 < % [Mon ()]s

where Maq denotes the Hardy-Littlewood maximal function on 1.
Thus,
d c
- g< =.
I Eo (05— < 5
Therefore, K,(t) is a standard Calderén-Zygmund kernel. Since K, :
L*(R,B) — L*(R, B) is bounded, we have K, : LY(R,B) — LY(R, B) is
bounded for 1 < ¢ < p, by the standard Calderén-Zygmund argument.
Finally, note that the same argument as above also shows that K,
the adjoint of K, is bounded on L!(R, L?(99)) for 1 < ¢ < p. Thus,
by duality, we obtain the boundedness of K, on LI(R, LP(92)) when

q>p-

. C
IK,(Dlls—5 < 5 and

For f € LI(R, L?(0N)), define the double layer potential

(X, ) = K(F)(X,1)

/ /an{auQF(X Q,t—s)} " F(Qys) dqs.

Then ¥y = (F41 + K,)f on 02 x R where K, = RK*R and R is the
reflection defined by R(f)(P,t) = f(P, —t).

(2.5)

Lemma 2.6. Let 1 < p,q < oo and f € L1(R, L?(99)) .
(i) Let @ = S(f), then

(V@) llp.g + 182 @) lp.g < C I Fllpuq

where || - ||, , denotes the norm in L(R, LP(0%)).
(ii) Let ¥ = K(f), then

1) llp.g < C 11 llp.g -

PROOF. Using the argument of Fabes-Riviere [FR, Theorem 1.11], we
can show that for any ¢q > 1,

(Va@)*(P,t) < Cyy | My (Mo (K £))(P,t) + My (Maa(1£1%)) "/ (P,1)
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where K is a singular integral operator of the same type as K, and M,
is the Hardy-Littlewood maximal function on R!. It follows from the
argument in the proof of Lemma 2.4 that K is bounded on LI(R,
Ly (39)) for 1 < p,q¢ < oo. Also, note that an easy modification of
the argument in [FSt] by C. Fefferman and E. M. Stein yields that
M is bounded on LY(R, L?(9R)) for 1 < p,q < co. The estimate for

(V@)* then follows easily. The estimates for (9; / 2%)* and (7)* follow
in a similar manner. We omit the details.

Given f € L?:9(3r), let g denote the extension of fby zero to
00 x R. We define K,,f = K,g. Clearly, :i:%I + K, is bounded on
L?P9(¥7) for 1 < p,q < oo. From [S, Theorem 4.3.1], we know that
+1I + K, is also invertible on L?(£r). Using Theorem 1.9 and an
L?P(9)-valued multiplier argument, we are able to extend this result.

Theorem 2.7. There exists ¢ > 0 such that :E%I—f— K, 13 invertible
on LP9(Z) for p € (2,2 + &) and g € [2,00).

PROOF. We give the proof for % I+ K,. The invertibility of —-é— I+ K,
follows in the same manner.
Let a > 0, consider the parabolic system

(2.8) % +ati = p Au + (A + p)V(div @).
Note that I'x(X,t) = e *'T'(X,t) is a matrix of fundamental solutions

for (2.8). For f € L1(R,L?(8Q)), let

s A= [ [ Tux-at-9fQ.5)qds.

Clearly,

. 1 -
aESi(f) =(+ §I+K,‘,')(f) a.e. on 0 X R,
v

where K,‘}(f) = e‘atKVe“t(f). Thus, to show 3 I + K, is invertible on
LP9(Zr), it suffices to show 2 I + K¢ is invertible on LP7(Z7).

First, we shall show that if a is large, then %I + K is invertible
on L1(R, L?(0R)) for p near 2 and g € (1,00). Let S, = $ I + K and

or

K,(P,Q,t—s) =W(P—Q,t—s).
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Then
S.f(P,1)

f(Pt) +pov. / /a TIR(PLQ,t — 9)f(Q,9)dQds.

mlr—'

Taking the partial Fourier transform in the ¢ variable, we obtain

(Sa YNP,iT)
=-;-(}?)A(P,z'r)+p.v./ (K,)NP,Q,—a +ir)()" (Q,ir)dQ
N

where

—

(NP, ir) = /m &7 f(Pt)dt, TER

and
(K)NP,Q,—a+11) = / e~ K, (P,Q,t)dt, T€R.
R
For z € C,Rez <0, let m(2) : LP(02) — LP(0Q) be defined by

(P)+p.v. /a E)NP.Q.)H(Q)Q

[\Dll—‘

m(z)(R)(P) =

for h € L?(dQ). Then

—

(Sa NP, it) = m(—a + i) (i) (P).

It follows from the theorem of R. Coifman, A. McIntosh and Y. Meyer
[CMM] that m(—a + ¢7) is bounded on LP(0Q) for 1 < p < oo and
lm(—a +i7)||Lr(80)—Lr(80) < Co with constant C, independent of 7.
Moreover, using estimate (2.1), it is not difficult to see that

|Fm a+ z'r)hl Saxre Msa(h)
for integer @ > 1. Hence,
29  lm(—a+tin)|
. m ZT _—_—
dre a LP(BQ)ﬁLP(aQ) — (1 n ]T!)a
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for integer @ > 0. On the other hand, it follows from the Rellich identity
(see [S, Lemma 4.3.13], also [BS1, Proposition 2.2]) that, if a > Cy > 0,
then

(2.10) II’;lILz(an) < C[lm(—a + i)k 2(aq) -

Now, since m(0) is a Fredholm operator on L%(df) with index zero
[DKV2, Theorem 2.7] and m(—a + i7) — m(0) is compact on L?(9Q)
by (2.1), we see that m(—a + i7) is also a Fredholm operator with
index zero. Thus, by (2.10), m(—a + i7) is invertible on L%(99) and
Hm_l(—a + iT)”L’(BQ)—bLz(BQ) S C for a > Co. This 1rnphes that Sa
is invertible on L?(92 x R), hence on LP(9S x R) for |p — 2| < ey,
by Theorem 1.9. It also follow from Theorem 1.9 that, m(—a + i7)
is invertible on LP(9Q) and ||m~!(—a + iT)| e (8@)—Lr(90) < Ca for
|[p — 2| < g2 where C, > 0 and €2 > 0 are independent of 7. Moreover,
by (2.9) and (2.10), we have

d“ C
2.11 —m N (—a+1 - <2
(2.11) Ig=m™ (zet il ea)—rrom) < e
for |p — 2| < 2 and integer a > 0.
To proceed, we let B = LP(0R2), |p — 2| < €0 = min{e1,e2}. Since

(ST NP it) = mT (—a +ir)((F"(, i) (P)

for f € L?(89 x R), it follows from a standard argument and (2.11)
that S;! is associated with an L(B)-valued Calderén-Zygmund ker-
nel where L(B) denotes the bounded linear operators on B. Since
S;1: L?(R, B) — LP(R, B) is bounded, a standard Calderén-Zygmund
argument yields that S;' : LI(R,B) — LI(R, B) is bounded for 1 <
g <p,ie $I+Kg: L (RLP(OQ)) — LI(R, LP(0Q)) is invertible
for |p— 2| < g and 1 < ¢ < p. The case where p < ¢ < oo follows by
duality.

Finally, to see that 1 I+ K is invertible on LP9(S7) for p € [2,2+
€o) and g € [2,00), let § € LP9(ZT), and G be the extension of g by zero
to (99 x R). Since G € LI(R, L?(89)), there exists f € L1(R, L?(3Q))
such that (3 I + K,‘,‘)f = Gon (80 x R). We wish to show that Fe
vanishes when ¢ < 0.
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To proceed, we let @ = §%( f ). It follows from (2.8) and integration
by parts that

t
[ [ et + 5 [ o - e T pax
T, Jo; Q;

t
1 . _,
(2.12) +/ / Aldivi)® + §|Vu + (Va)'|?
To

u
/To aQ; 31/

where Ty <t < 0and Q; C Q C -+ C Q is a sequence of smooth
domains approximating 2, [V]. Let j — oo in (2.12), since ||(@)*]|2 +
I(V@)*llz < C Iflle < Cr, [ fllpgy we obtain

/|11’(X,t)|2dX§/ |@(X, To)|2dX .
Q Q

Integrating in Tp, we have

/|a‘(X )] dX</T0_1/ (X, s)2dX ds

< C|l(a)* ||Lp.q(anx(To—1,To))

<C “f“Lp,q(an(—oo,To))

which goes to zero as To — —oo. Hence, 4 = 0in Q x (—00,0). Thus,
@ =0a.e. on O x (—00,0). This, together with a similar argument in
the complement, implies that @ = 0 in Q0 x (—00,0). It then follows
that

ou_

5 =0 ondQ x(—00,0).

1 L=
(—EI +K,)f =
Therefore,

-

f:(%j+[{u)_(_%I+K,,)f=6 on 89 x (—00,0).

From Theorem 2.7 and its proof, we draw three corollaries.



BOUNDARY VALUE PROBLEMS IN LIPSCHITZ CYLINDERS 283

Corollary 2.13. There ezists ¢g > 0, such that, given any g €
LP9(27), p € [2,2+ €9), g € [2,00), there ezists a unique U satisfying
(0.1), (ITP) and ||(VE)*|| Lr.e(zy) < 00. Moreover, we have

— 1/2 - * -
(V@) imazey + 10270 oa(zry < CllFllLoe(sy) -

PROOF. The existence follows from the invertibility of -%I + K, on
LP9(Zr) for p € [2,2 + €¢) and g € [2,00).

To see the uniqueness, let @ be a solution of (0.1) in {27 such that,
di/dv = 0 on T and (V&)*||Lr.a(zq) < 00. Let {Q2;} be a sequence
of smooth domain approximating . Since @ is smooth on Q; x [0, T],
by the existence and uniqueness results for the traction problem with

L? data [S], there exists f; € L2 (0% x (0,T)), such that

1) @x0= [ [ TX-Qt-97i@s)dQds

for (X,t) € Q; x (0,T). Thus,

ou

5 o0; x (0,T),

1 =

(5 I+ Ky;)f;=

where K, ; is the corresponding operator on 9§2; x (0,T). Hence, by
Theorem 2.7,

ou

ov —0

| fillr.a(a0; x(0,1)) < C‘
LP.?(BQ,‘ x(0,T))

as j — oo where we used the assumption

6_' ~ —\ %
Ezj— =0 onZXp and N(VE)* || Lera(zp) < 00

It then follows from (2.14) that @ = 0 on Qr and the uniqueness is
proved.

Corollary 2.15. There ezists €7 > 0, such that, given any § €
LP1(Zr), p € (2 —¢€1,2] and q¢ € (1,2], there exists a unique U sat-
isfying (0.1), (IDP) and ||(%)*||Lr.e(zp) < 00. Moreover,

@) lz.a(sr) < CllglLra(sy) -
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PROOF. Note that, restricting K, to functions supported on Y, we
have (——-I + K, )f Rp(—3I+ K*)RT(f) where f € L?: "(ET) and
RT(f)(P, t) = f(P, T —t). Hence, by Theorem 2.7 and duality, —1 I +
K, is invertible on Lr9(Er), p € (2—¢1,2], q € (1,2] for some g; > 0.
The existence follows. The uniqueness follows from an approximation
argument, similar to that in the proof of Corollary 2.13.

—

Corollary 2.16. There ezists €9 > 0, such that, given any § €
LPY(ET), p € [2,2+¢€2), q € [2,00), there ezists a unique U satisfying
(0.1), (IDP) and ||(%)*||r.e(zq) + I(VE)*||Lr.a(s7) < 00. Moreover,

1/2 x

1@ Nzrazr) FNVE) Lramr) + 18 ") Loz < CllgllLrasy)-

PrOOF. Clearly, the uniqueness follows from the uniqueness for the
initial Dirichlet problem with L?(Z7) data. To see the existence, we
shall show that 8'2 : LP9(Xp) — LYY (E7) is invertible for p € {2 2+

€), q € [2,00) where e; > 0.
Let

(2.17) V() = (VuanS(f), 8,28, S(f))-
Then V : L9(R,LP(0Q)) — [LI(R, L”(@Q))]s is bounded for 1 <

p,q < oo. Taking the partial Fourier transform in the t variable in
(2.17), as in the proof of Theorem 2.7, we obtain

(VANP,it) =
(vtanSiT«f)A(-,z'r))(P), () 285 (N, i7)), Sir (- g-,gg)<P>)

where Sir is defined by

$ir(ﬁ)(P)=/69(1‘)’\(P,Q,z'r)l_{(Q)dQ, for he '(09).

= g
Let
mir(B)(P) = (VeanSir (B)(P), (i)' /2Sir (BY(P), ¢ 5}P(>) -
Then, "

(V(H) (P,ir) = mir (H"(,im)) (P
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From [S], we know that
i) Uy oy < Clllisomy s 1<p <o,

and . -
lhl|z2(00) < Cllmir(h)||L2(a0)

with constant C' independent of 7. Moreover, using estimate (2.1), we
have

il ; < ¢ for int >0
”Fm”-“l,p(ag)_,LP(BQ) < W'; or integer & > 0.
Now, consider the operator V*V. The same argument as in the proof
of Theorem 2.7, implies that there exists e > 0, such that, V*V :
L1(R,LP(8Q)) — L7(R,L?(89)) is invertible for p € (2 — 3,2 + €3)
and 1 < g < oo. It follows that

£ 1 zecm,zr(o0)) < CHV*V(F)Le(w, Lo 00y
<C IIV(f)H[

—

S ClS(H)llLzeaaxm) -

5
Lo(B,L? (52)) ]

By the definition of L{"*(X1) norm, we have

I zrezry < CUSHllrracss) -

This implies that SIET: LP9(E7) — L¥¥(Z7) is injective and has closed
range. An approximation argument shows that the range is dense (see
[S] for the case p = ¢ = 2). Hence, we are done.
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3. Main Lemma.

In this section, we will consider solutions to the initial-traction
problem with atomic data on the lateral boundary. Our main result is
Lemma 3.6 where we show that the nontangential maximal function of
the gradient of such a solution is in L*.

We begin with some notations. For P € 02, t € Rand R > 0
small, let

Jr(P)={Q€dQ: |Q—-P|<R},
Ag(P,t) = Jr(P) x (t — R*,t + R?),

Dp(P)={X €Q:|X - P|< R},
Zr(P,t) = Dg(P) x (t — R*,t + R?).

For a function @ on Qp, we define

(@)p(Pit)= sup [|d(Y,s)]
(Y,9)€x(P,t)
|Y~P|<R

and
(@) F(Pt)= sup [d(Y,s)].
(Y,8)ex(P,1)
IY-P|2R

Clearly, (2)*(P,t) <(@)5(P,t) + (@)*R(P,t).
Lemma 3.1. (Cacciopoli Inequalities) Suppose u is a solution of (0.1)
in Zar = Zar(Po,to). Assume 0u/Ov = 0 on Aqrp = Asr(Po,to) and
I(@)kllz2(a20) < 00 Then

) // Vi + (Vi) << // jap
Z3R/2 R Z2r

and

() J[ e g ff

where 7 = n(t) € C(R),n = 1 on (to — R%,to + R?), suppn C (to —
2R? ty + 2R?) and |n'(t)] < C/R2.
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PROOF. By a parabolic rescaling, we may assume that R = 1. We
write

%!
kl
p AT+ (A + p)V(divd) = ajj 32:0%;
where a“ = aﬁ are constants such that
ou' 0\ k
okl
Gij oz, 5N = (E)

(see [DKV2, p. 800]). Let 1/) € C5°(R™), ¥ =1 on D3j,, suppyp NQ C
D, and [Vy| < C. It follows from equation (0.1), the vanishing of
0u/0v on A, and integration by parts that

Ju* ot ou!
2 ki 2 Kl
o [, o G g = [ etz

Integrating in t, we obtain

[ 19+ (i pecff a oty 20 20 5 (o)’

<c / /Z 2 |va+<va')"| @l [¥nl Vo] [n]

+C / / |i|?.
Z>
From this, (i) follows easily.

To see part (ii), we integrate by parts and obtain
0 0
kl k 3/4,. 1 2
1 — 0
/Az a;; 6-7),‘ 1/4(u 77) 8.73] t (u 77) ¢

L ou! 53/
N //z hus ( ar MO (W) ¥
g
N //22 alj 8—351 (Bja(u*n)) 3 (u'n) Oz -

6¢2

Note that

// at| 8 Il/4(“ 77) 63/4(“ n) ¥*

// at( I1/4(u n) -82— Iy (u ,7)>1/)2 >0
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and

15)]
[ Gnatin v = [[ @ anre
—//;2 I1/4(u'%)63/4(u177) ¢2-
We have
/ / 1034 () [P
1/2 1/2
— —\t1)2 3/4, - 12,2
SC(/ZZIVH(W) 1) (//Z 5 (un)lv,b)
1/2 1/2
+c( I W) ( /[ |6f’“<ﬁn>|2¢2) .
Thus,

//22 185 /2 (i) P < C//22 103 (i) 292 < C//zz 2.

Part (ii) then follows.

Lemma 3.2. Under the same assumptions a3 in Lemma 3.1, we have

o [ warsg [
(ii) sup (/ la( X, t)]5/2dX> SR13/1°(// |u|2>

le—tol<R2

(iii) //AR( @) +//AR o (i <CR1/2<//22R |u|2>

where n € C§°(R),n =1 on [to — R?, 1o + R?], supp n C [to — $R?,to +
$R?] and |1/ ()] < C/R?.

PROOF. By translation and rescaling, we may assume that (Pp,t) =
(0,0) and R =1. Fix 7 € [1, 3/2], let D, = D,(0) and then set

i (X,t) = /_4 /;_) (X -Y,t—s)u(Y,s)n'(s)dYds
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and ¥ = @, — un. Then

{ % = p AT+ (A4 p)V(div D) in Dy x (—4,4),
6|t=—4 =0,

and ||(V@)*||L2(aD, x(~4,4)) < 00. Hence, by the L2-theory for the trac-
tion problem in [S], there exists §, € L?(0D, x (—4,4)), such that

F(X, 1) = / 4 /a | T(X = Q,t=5)3:(Q,) dQis

and .
- oo
grllL2(6D, x(~4,4)) < C IIg;IIL?(aD,x(—4,4))

with C independent of 7.
Now, to see part (i), we use estimates (2.1) for I'(X, ¢) and obtain

4 4
//vvaﬁsc// 5. 2
—4+Jp, -4 Jap,
4 2
cof ],
—4 JOD,

v

4 4
<cC / / Vi, P + C / /
—4 a1)'7' —4 DzﬂaDr

where we used that 8%/0v = 0 on A,. Therefore,
1 4 4
/ / |Vi|? SC’/ / Vi ® + C/ / |V
-1JD, -4JD, -4JD,
4 4 2
IV ALY
—4 r —4 D,néD,

Integrating in 7, we obtain

1 4 4
/ / |va|2gc/ / @2+ c/ / Vi + (Vi)
-1Jp, -4Jp, -4Jp,,,
4
e
—4 J D,

2
ou

ov

@
Ov
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where we used part (i) of Lemma 3.1. Part (i) is then proved.
To see part (ii), fix t € [-1,1]. Since @ = @, — ¥ on Dy x [-1,1],
we have

lE(, llLsr2(pyy < War( OllLsrzp,y + 19, Dllsi2(p, ) -

Using estimates (2.1) on I'(X,t), Minkowski’s inequality and Young’s
inequality, it is not hard to see that

N10C, )llzsr2(p,y < CllgrllL2aD, x(~4,4))

and

@z (-, )llzsr2(p,y < Cll¥llLz(D, x(-4,4) -

Thus,

lE(-, )l Lsr2(pyy < CllgrllL2aD, x(~4,4)) + Cll€llL2(D, x(~4,4))
< C || L2 (D2 x[~4,4]) -

Finally, part (iii) follows from the L2-theory and part (i) in a similar
fashion.

REMARK 3.3. The conclusions o_f lemmas 3.1 and 3.2 algo hold if we
replace the assumption 8%/0v = 0 on Aqr(Py,to) by @ = 0 on Azr(Po,
to). The proof is similar.

Lemma 3.4. Suppose U is a solution of (0.1) in Qr, with ||(@)*||L2(z 1)
+ (VE)*||L2(sg) < oo. Assume that ,d@|,_, = 0 and 0i/dv = @ where
d 1s a parabolic atom, i.e., suppd C Ap(Po,to) for some (Po,ty) €
Lr, |dllrase) < 1/r? and [fs,@=0. Then, there ezists € > 0,
such that

I(@)* |l razr) £ C r2/pt+2/q—3

where p € (2 —¢€,2] and ¢ € (1,2].
PROOF. By the divergence theorem, we have, for (X,t) € Qr,

ou

(3.5) i(X,t) = S(5;

)(X,8) — K(dly, )(X.0)
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where § and K are the single and double-layer potentials. Letting
X — P € 09 nontangentially in (3.5), we obtain

1 ~ . ou o
GI+ E)(dy,) = S, = 5@y,

Recall that %I + K’,, = RT(% I+ K,)*Rr. Thus by Theorem 2.7 and

duality, there exists € > 0, such that % I+ K, is invertible on Lr9(3r)
for p € (2 —¢,2] and ¢ € (1,2]. This, together with Corollary 2.15,
implies that

1(@)*NLrazr) < ClldllLracsr)
SCNGI+EK)d|rasr
< ClIS(@)|g, llzraer) -

To estimate ||S(6)[ET lLr.a(x1), first note that

18(@) |5 1Lr 0 (a10r) < CT2PFHI72S(@)| 5 IlL2(810m)
< C r¥/P¥2a NG s
<C r2/p+2/q-3

Next, using estimate (2.1) and ffET di=0, we get

|S(@)(P,1)|

(_C if [P — Py| > 107 and |t — ¢o] < 10072

|P—P0|3’ o = 0 )

C ) 2

S{ m, 1f|P—P0[S10ra,nd|t—t0|21007' )
Cr . 2
7> if |P— Py| > 107 and [t —to| > 1007 .

[ (P — Po| + [t —t0]'/2)

An easy computation then gives the desired estimate.

We are now in a position to state and prove our main lemma which
gives L!-estimates for the nontangential maximal functions of solutions
with atomic data.
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Lemma 3.6. (Main Lemma) Under the same assumptions as in Lem-

ma 3.4, we have
JL 0+ [[ @ se.
Er zr

PROOF. By L?-theory [S, Theorem 4.1.2]

1/2
/ / (Vi) < Cr’ / / (VD)
Ajoor(Po,to) Ajo0r(Po,to)

< C r? a2z < C-

Thus, it is easy to see that the estimate for (VZ)* in the lemma will
follow if we can prove that

(3.9) // (Vu)* < C(l)ao for some ag > 0
A(R) R

where A(R) = Agr(P1,t) for some (Py,t,) € ¥, R > 5r and 0u/0v =
0 on A(10 R).

First, we estimate (V@)*® on A(R). Let (Y,s) € 4(P,t), Y —P| >
R, (P,t) € A(R). By interior estimates,

C C )
V(Y s)] < = / / eor? (2, 0)ldZd( < = / / (@)".
RS ||CZ——')I’|<§CR R® JJrm)

Thus, if (P,t) € A(R),

(V@)*R(P,t) < % //A(m)(g)*.

Consequently,

/f (viyrs g /f (i) < CRHIZ2P| ()" || q -
A(R) R A(2R)

We have applied Holder inequality for the last inequality. Choose p €
(2 —¢€,2), € as in Lemma 3.4 and ¢ close to 1 such that
3 - =—a; <0.

|
N
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It then follows from Lemma 3.4 that

/y vaiyR<c(=) , a>0.
A(R) R

Next, we estimate (Vi); on A(R). By Lemma 3.2,

1/2
sssser (L, m)"
A(R) Zyr(P1,t1)

293

We use Holder’s inequality, then Lemma 3.4 and Lemma 3.2 (ii) and

then Holder’s inequality again to obtain

i af*
Z2r(P1,t1)

“® [ e (& Sy 1)
[t—t1|<4R? R? Dar(P1) il
1 1/l’
com o (o )
lt—t]<4r2 \B° Jpor(P)
2/5
(% fyy )
R? D2r(P1)
1/p
<cm | ([ @)
|t—t1|<4R? Jar(P1)
1/2
e 1)
Z3zr(P1,t1)

< CROPHP=20 |[(@)*| ova(sg)

1/2
/e
Z3r(Py1,t1)

As before, choose p € (2 —¢,2) and ¢ close to 1 such that

Let

2 2
G ==-+-3>0.
P 4

1/2
(], )
Zyr(P1,t1)

and observe that

(3.10)

r\*
a%z < C(T‘Z) aspg -
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By Lemma 3.4,

=
- T
or < CRI@ lem <€) -

It follows from (3.10) that

r\ (= 1)/2
n=C(7)

In general, if ap < C(T/R)B", then, by (3.10) we obtain the improved
estimate

r (al+ﬂn)/2
n6(5)
Consider the sequence {f.},00 = (a1 — 1)/2, Bny1 = (a1 + Br)/2.
Then
/Bn-H",Bn:al;ﬂnZ% if ﬂnSO-

Therefore, there exists N such that Sy > a;/4. Hence,
T\ o /4
<C(%)"
IR = (R)

Let ap = a1/4. The proof for (3.9) is complete.
We now give the proof that

J[,, () <e.

Again, we wish to show that

[ @) < (3)

Note that we may only consider those A(R) = Agr(P,t;) where |t; —
t0| < CR?.

To proceed we let n € C§°(R),n = 1 on [t;— L R% ¢;+ I R?], suppn
C [t1 — $R%,t; + $R?] and |¢'(t)| < C/R?. Then, by Lemma 3.2,

//A(m (étl/z(in))* = CRl/z(//Zm |ﬁ|2>1/2 + % //A(m) (@)
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The estimate for (63/2 (@(1 - 77)))* is easy. In fact, if (P,t) € A(R),

o @a-n)] Po| < 5 [ @ s

to—R?

where we used 4(Q, s) = 0if s < to — R?. Thus,

1/2 /- c [uF -
J[ wraa-ai<z [T @
A(R) to—R? JIr(Py)

< CRZ2P22 il gy sy

r 2/p+2/q-3
< -
=¢ (R)

where 2/p +2/q — 3 > 0. The estimate for (0:/217)* then follows. This
completes the proof of the main lemma.

We omit the proof of the following lemma which may be carried
out using an argument similar to that of Lemma 3.6.

Lemma 3.11. Suppose 4 1s a solution of (0.1) in Qp with ||(@)*||12(zy)
+ [(V@)*|lz2gry < o0 and @|,_, = 0. Assume that supp ﬁlET C
A, (Po,ty) for some (Py,tg) € L, r small and “‘IHLf():T) < 1/r%.
Then, there exists ag > 0 such that for 0 < a < ay,

//ET ((Vﬁ)*(P,t) + (‘93/26)*(P,t))

(r+1P = Po| 4t —t0|1/2)a dPdt < Cre.

4. Boundary Value Problems.

In this section we give the proofs for Theorem A, B, C, and D
which were stated in the Introduction. We begin by introducing the
matrix Green’s function for (0.1) in Q7. Fix X € Q, let vX(Y,s) be
the matrix valued solution of (0.1) in 7, which satisfies the boundary

conditions

UX‘ET = F(X - ".)|ET

I
o

v¥|

=0
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By the L%-theory for the Dirichlet problem with data in L?(Z7), such
a solution exists and satisfies ||[(vX)*||L2zp) + (Vo X)*|IL2(5p) < o0
Let

G(X,Y,t,s) = G(X,Y,t —s)=T(X = Y,t —s) —vX(Y,t —s)
be the matrix Green’s function.

Lemma 4.1. Let X € 2, P € 0Q and | X —P| < 2dlst{X 01}, Then,
there exists ag > 0, such that

// IVoG(X,Q,1)|(r + |Q — P| + #1/2)2dQds < C r®
Zr

where 7 =|X —P|, 0<a<ag.

PROOF. We may assume that r is small. Let X* € Q€ such that
|X* — P| = r and |X* — P| < 2dist{X*,8Q}. Let #%(Y,s) be the
matrix valued solution of (0.1) in Qr such that

%5, =T(X =) =T(X* =),
6xls=0 =0

given by L%-theory. We claim that there exist ay > 0 such that
(42) // [VoiX(Q,s)|(r +|Q — P| + s'/*)*dQds < C ™,
Zr

for 0 < a < ay.

Assume (4.2) for a moment. We give the proof of the lemma. By
the uniqueness for the initial-Dirichlet problem with L2-data, it is easy
to see that

G(X,Y,s)=T(X —Y,s) - T(X* = Y,s) — (Y, s).
By estimate (2.1) for I'(X,t), we have, for |Y — P| > 10,

Cr
<
Y,S))} = (Y = P| +31/2)5
0 Cr

|5; (T(X = Y,8) —T(X" —Y,s))| < (Y — P|+ s1/2)6

|[Vy(T(X - Y,s) —-I(X* —
(4.3)
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The lemma then follows easily from (4.2) and (4.3).
To prove (4.2), let

B(Qat) ZBX(Q’t) ZF(X_Qat)_F(X* —Qat)’ (Qat) € ET

We may choose a partition of unity, 1 = Zkzo,j=1,2,...,N Yk, ; which
satisfies
1) supp¥k,; C Dorr(Prjstr5) , Poj =P,
2) 26r < P — P+t < C2r,
3) I¥k,;| <1 and |Vipy ;| +25r|0yy,; /0t < C (28 r)~1.
Then
B(Q,t) =) x;B(@,1) = > 2 *ar;(Q,1)

where a; j(Q,t) = 2¥¢ ;(Q,t)B(Q,t). It follows from (4.3) and an
argument in [B, Proposition 1.9] that

lak,jllzzzr) < @2
Now, let o ; be the solution to the initial-Dirichlet problem for (0.1)

with ﬁk,iIET = ag ;. Clearly, 3% = Y 27%%; ;. By Lemma 3.11, we
have, for 0 < a < ay,

//E I VQ"jk,J'(Q»S)‘@kT +1Q — Prj| + |s — tk,jll/z)a <c(2kr)”.

Since

1Q — P+ 5|2 <|Q — Prjl + Pr,j — P |+ |s — ta j|"* + |te ;|
<C2%r +1Q — Prjl +|s — te /?

it follows that
J[[ 1Vetes@a)l (r+1@ =PI+ dqds < € 2ty
Zr
Thus

//; Vau(Q,s)| (r+1Q—P|+ s|1/2)ades
<Cy k@b <ore.
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The claim (4.2) is proved and the proof is finished.
We are now in a position to prove Theorem A and B.

PrOOF OF THEOREM A. The case 2 — ¢ < p < 2 is contained in
Corollary 2.15. Consider the case 2 < p < co. The uniqueness follows
the uniqueness for L?-solutions [S]. To see the existence, note that, by
Lemma 4.1,

// VoG(X,Q,1)dQdt < C.
Zr
Hence
t 0
@x0l=1 [ [ 5-0060.t- 2)i(@.)dqds
< Cld|lpe(zy) -

Thus, ||@]||pe () < C||E]|Le(zy)- The existence then follows by inter-
polation.

PROOF OF THEOREM B. Given § € A§(Z7), 0 < a < ag , ag as in
Lemma 4.1. Let @ be the solution of (0.1), u|2 = g and u]t 0 = =0. To

show ||ullaz(r) < CllGllag(sr), it is enough to prove

(4.4) [@(X1,t) — u(X2,t)] S C X1 — Xa|* ||gllag(zr)
and
(4.5) (X, t1) — @(X, 1) < Clts — 2|/ ||gllaz(er) -

The estimate (4.5) is easy. In fact, write

0= [ [ 52 60x,0,t-5)7(@ S)dads

/ 2 G(X,Q,9)7(Qt —5)dQds
aq ovQ

where we have put §(Q,t) = 0 for ¢ < 0. From this, (4.5) follows easily.
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- To see (4.4), it suffices to show

Clgllagzr)
St{X, 001 -

(4.6) Vxid(X,t)| < T
We write
T )
(X, t) = / / —G(X,Q,s)u(Q,t — s)dQds
o Jaq Ovg

T
=/ / —aa—G(X,Q,s) (@(Q, t — 5) — @(P,1))dQds
o Jaq OVQ

T
+ / —a—G(X, Q, s)u(P,t)dQds
0o Joq aVQ

= I(X,t)+ 1(X,1),

where P € 0§ and |X — P| < 2dist{X, 02}. By interior estimates and
Lemma 4.1, we have

Cllgllag(sr)
X < 0 .
IVxI(X,t)] < dist{X,00}1-«

To estimate Vx II (X,1t), let

¢ 5}
'U(X,t) = A AQ %G(X,Q,t - S)deS .

We wish to show that
C

7,.1—(:1

(4.7) |[Vo(X,T)| <

where r = dist{X,0Q}. Clearly, (4.7), together with the estimate for
VxI(X,t) yields (4.6).
To show (4.7), note that, v is a solution of (0.1) in 7, v|zT is the

identity matrix and v|t=0 = 0. Hence, by Theorem A, |v(X,t)| < C.
Let

w(X,t) = /0 /Q T(X —Y,t — s)u(Y, s)n'(s)dY ds

where 9(0) = 0, n(t) = 1for t > T/2 and |n'(t)| < C. Then, |Vw| +
|6:/2w] < C. Let vy = w — vp. Then, v; is a solution of (0.1) in
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Qr, v1|t=0 = 0. Note that ”"IHL{"(ET) < Cfor p > 2,q > 2. Choose
P €(2,2+¢€3), €2 as in Corollary 2.16 and ¢ > 2 large such that 2/p +
2/q < 1. It then follows from interior estimates, Holder’s inequality
and Corollary 2.16 that

¢ .
~przrg (Vo) lleseczr)

C
vy llzze(sy)

C

- p2/p+2/q

[Vxvi(X,1)]

Thus,

IVX’U(X, T)l

IA

IVX’UI(X,T)l + IVX'LU(X,T)|
C
r2/p+2/q +C
C

rl—a

IN

IN

where we assumed ag <1 —2/p —2/q. Thus, (4.7) is then proved.
We now turn to the proof of Theorem D.

PrOOF OF THEOREM D. The case 2 < p < 2 + ¢ is contained in

Corollary 2.15.
For 1 < p < 2. the existence follows from Lemma 3.6 and in-

terpolation. To show the uniqueness, let @ be a solution of (0.1) in
Qr, 94/dv =0, @|,_, = 0 and ||(V#)*||, < co. First, we assume that
Q is a smooth domain. Given F € C¢°(Qr). It is well known that,
there exists 7 € C*°({lr), such that

oil ) N
S HHATH(A+p)V(dive) = F,
o7, =
Elszov
t|,_p=0.

It then follows from integration by parts that

[lerefl =% Jf %
0 Q Sr 81/ Sr 61/

Il
(=}



BOUNDARY VALUE PROBLEMS IN LIPSCHITZ CYLINDERS 301

Since F is arbitary, we have @ = 0 on Q7.

Next, if Q2 is a general Lipschitz domain, let {2;} be a sequence
of smooth domains approximating © such that ; C 2, C ... C Q
([V], Theorem 1.12). Let ©J. = 99, x (0,T). By the existence and
uniqueness results on ; x (0,T), we have

- ou
”(vu) HLP(Ej C ”a ”Lp(z.l — 0 as ] — 0.
Hence @ = 0 on Q7. The proof is complete.

To establish Theorem C, we need the following lemma.

Lemma 4.8. Let 4 be a solution of (0.1) in Qr. Assume that
(V@)*||Lea(zp) <00 for some 1< p,q<oo.

Then
(@)l Lra(zp) < 0

where 1 < p,§ < 00, 1+2/p+2/3=2/p+2/qand0<1/p—-1/p<1/2,
0<1/q—1/q<1/2.

PROOF. By interior estimates, we have

, (Va)* (Q,s
(@)*(P,t) < C(u) +C// = P[)—{—l(tQ s)|1/2)3deS

where C(%) < oo is a constant depending on %. From this, the lemma
follows from Minkowski’s inequality and the theorem on fractional in-
tegrals in one dimension.

We are now ready to prove Theorem C.

PrOOF OF THEOREM C. The case 2 < p < 2 + ¢ is contained in
Corollary 2.16. For 1 < p < 2, as before, the existence follows from
Lemma 3.11 and interpolation. To see uniqueness, let @ be a solution
of (0.1) in Qr, @y =0, @]_, = 0 and ||(V@)*|lLs(zs) < co. Let
Jge C°°(R3 xR). By Corollary 2.16, there exists v satisfying (0.1) in 7.

|2T =g £p "|t _o = Oand (V)| Lo*.a* (54) < 00 for p* € 2,2 +
€2),¢* € [2,00). Choose p*, ¢*, such that 2/p*+2/¢* = 5—4/p (we may
assume that p close to 1). Then, by Lemma 4.8, [[(©)*||Lt*y.(e*) (n5) <
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oo where 1/p* +1/(p*)’ = 1and 1/¢* + 1/(¢*)' = 1. It then follows
from integration by parts and a limiting argument that

//a(Qt)gQT—-tdet //__(Qt)g(QT_t)det
=/0 /BQ ﬁ(Q,t)a—Z(Q,T—t)detzﬁ.

So 0u/0v = 0 on S7. Therefore, by the uniqueness for traction prob-
lem (Theorem D), @ = 0 in Xp. The proof is finished.

References.

[B] Brown, R., The initial-Neumann problem for the heat-equation in Lip-
schitz cylinders. Trans. Amer. Math. Soc. 320 (1990), 1-52
[BS1]} Brown, R. and Shen, Z., The initial-Dirichlet problem for a fourth-order
parabolic equation in Lipschitz cylinders. Indiana Univ. J. Math. 39
(1990), 1313-1353.
[BS2] Brown, R. and Shen, Z., A note on L? estimates of parabolic systems
in Lipschitz cylinders. preprint (1990).
[C] Calderén, A., Boundary value problems in lipschitzian domains. Recent
Progress in Fourier Analysis, 33-40. Elsevier Science Pub., 1985.
[CMM] Coifman, R., McIntosh, A. and Meyer, Y., L’intégrale de Cauchy définit
un opérateur borné sur L? pour les courbes Lipschitziennes. Ann. of
Math. 116 (1982), 361-387.
[CS] Cao, W. and Sagher, Y., Stability in interpolation of families of Banach
spaces. Proc. Amer. Math. Soc. 112 (1991), 91-100.

[DK1] Dahlberg, B. and Kenig, C., Hardy spaces and the Neumann problem
in LP for Laplace’s equation in Lipschitz domains. Ann. of Math. 125
(1987), 437-465.

[DK2] Dahlberg, B. and Kenig, C., LP estimates for the three-dimension system
of elastostatics on Lipschitz domains, in Analysis and partial differential
equations. Lecture Notes in Appl. Math. 122, 621-634. Dekker, 1990.

[DKV1] Dahlberg, B., Kenig, C. and Verchota, G., The Dirichlet problem for
the biharmonic equation in a Lipschitz domain. Ann. Inst. Fourier
(Grenoble) 36 (1986), 109-135.

[DKV2] Dahlberg, B., Kenig, C. and Verchota, G., Boundary value problems for
the systems of elastostatics in Lipschitz domains. Duke Math. J. 57
(1988) , 795-818.



BOUNDARY VALUE PROBLEMS IN LIPSCHITZ CYLINDERS 303

[FR] Fabes, E. and Riviere, N., Dirichlet and Neumann problems for the heat
equation in C'-cylinders. Proc. Symp. Pure Math. 35 (1979), 179-196.

[FSt] Fefferman, C. and Stein, E. Some maximal inequalities. Amer J. Math.
93 (1971), 107-115.

[NSt] Nagel, A. and Stein, E., Lectures on pseudo—differential operators. Prin-
ceton University Press, 1979

[PV1] Pipher, J. and Verchota, G., The Dirichlet problem in L? for biharmonic
functions on Lipschitz domains. Amer. J. Math. 114 (1992), 923-972.

[PV2] Pipher, J. and Verchota, G., The maximum principle for biharmonic
function. In preparation.

[S] Shen, Z., Boundary value problems for parabolic Lamé systems and a
nonstationary linearized systems of Navier—Stokes equations in Lipschitz
cylinders. Amer. J. Math. 113 (1991), 293-373.

[St] Stein, E., Singular integrals and differentiability properties of functions.
Princeton University Press, 1970.

[V] Verchota, G., Layer potential and regularity for the Dirichlet problem
for Laplace’s equation in Lipschitz domains. J. Funct. Anal. 59 (1984),
572-611.

Recibido: 18 de enero de 1.991

Russell M. Brown*
Department of Mathematics

University of Kentucky
Lexington, KY 40506, U.S.A.-

Zhongwei Shen'
Department of Mathematics
Princeton University

Princeton, NJ 08544, U.S.A.

* Partially supported by the NSF
t Partially suported by the NSF



