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A wavelet characterization
for weighted Hardy Spaces

Sijue Wu

Abstract. In this paper, we give a wavelet area integral characteriza-
tion for weighted Hardy spaces HP(w), 0 < p < oo, withw € As. Our
wavelet characterization establishes the identification between HP(w)
and T} (w), the weighted discrete tent space, for 0 < p < oo and
w € Ac. This allows us to use all the results of tent spaces for weighted
Hardy spaces. In particular, we obtain the isomorphism between HP(w)
and the dual space of HP (w), where 1 < p < oo and 1/p + 1/p' = 1,
and the wavelet and the Carleson measure characterizations of BMO,,.
Moreover, we obtain interpolation between A..-weighted Hardy spaces
H?'(w) and HP?(w), 1 < p; < py < oo.

1. Introduction.

In this paper, we give a wavelet area integral characterization for
weighted Hardy spaces HP(w), 0 < p < oo, withw € A,. Coifman
and Meyer had earlier given a wavelet characterization for H!, [9]. Our
proof differs from [9], in that it follows from two good-A inequalities be-
tween the non-tangential maximal function and the area integral func-
tion with respect to some wavelets. At the same time, our wavelet char-
acterization establishes the identification between H?(w) and Hf(w),
the weighted discrete tent space, for 0 < p < oo and w € A,. This
allows us to use all the results of tent spaces for weighted Hardy spaces.
In particular, we obtain the isomorphism between H?(w) and the dual
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space of HP’(w), where 1 < p < oo and 1/p+1/p' = 1, and the wavelet
and the Carleson measure characterizations of BMO,. Moreover, we
obtain interpolation between A.,-weighted Hardy spaces HP!(w) and
H??(w), 1 < p; < p2 < oo.

In Section 2, we will give the two good-A inequalities and their
proofs. In Section 3, we will give the wavelet characterization of weight-
ed Hardy spaces and its corollaries.

2. Good-) Inequalities.

A dyadic multiscale analysis of L2(R?) with respect to lattice Z¢ C
R? is defined as an increasing sequence V; of closed subspaces of L?(R%)
with the following four properties [7]:

(1) NV; = {0}, UV; is dense in L?(R?),

(2) f(x) € V;if and only if f(2z) € Vj41,

(3) for every f € Vp and every v € Z¢, we have f(z — ) € 1,

(4) there exist two constants C; > C; > 0 and a function g € V; such
that V; is the closed linear span of g(z — ), v € Z¢ and

(Y 1) < | S arste =) < Ca(3 faol?)

v€Z? v€Z? v€Z?

Denoting by W; the orthogonal complement of V; in Vj;;. There
are 2¢ — 1 functions %,, 1 < m < 2%, such that ¥m(z —7), v €
Z%, 1 < m < 2¢ form an orthonormal basis of Wy, [7]. These functions
Ym, 1 < m < 2% are called analyzing wavelets if they satisfy certain
decay and moment vanishing conditions.

1. Daubechies discussed the existence of compactly supported wave-
lets in [4]. In fact, she showed that for any n € Z, there is a collection
of functions {¢¢, ¢ : € =1,2,...,2¢ — 1} on R? such that for some
dyadic multiscale analysis {V;}, ¢ € V, satisfies the property (4) and
¥, e=1,2,...,2¢ — 1, € W, are the wavelets corresponding to {V;}.
Moreover, they have the following properties

a) ¥¢ € C,
b) ¢°¢ is compactly supported, say, for some integer m > 1, supp %€ C

['—m’ m]d7
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¢) The collection {2/%/2¢*(2/z—v): j €Z, v € Z% and e = 1,2,;..,
2¢ — 1} form an orthonormal basis of L?(R?),

d) /¢€(x)xkda: =0, for k=0,1,...,n
e) ¢ is continuous and compactly supported, say, supp ¢ C [0, ]¢ for

some integer [,

f) Forevery 1 < ¢ < 2%, 4°(z) is a finite linear combination of {¢(z —
v), v € Zd}, 1.e. there exist m, € Z and bf, eR, —m. <y <m,,
such that

po)= 3 Bz —n),

Y=—me
§ [ods20.
In this paper, we work with this collection of functions.
d a; a, +1 : . od .
Let B = H ( ) be a dyadic cube in R%. We write

2v’

Pp(z) =2"4%p(2"z — a), where a = (a1,0z,...,aq) € Z*

and
+k

=)

z=1

By property c), any testing function f can be written as

flm)y=Y" > as¥5()

€ B dyadic

where ag = (f,%%). Setting

Norf(z) = sup |(f,¢q)l|QI7"/?

yadic
2kQ>z

Nf(z) = .2 I(f, $Q)| Q772
dyadic
Q3z

Sufz)= (3 . laglIBIT)""

€ B dyadic
2kB>z
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Daif(z) =sup sup |(f,p)|B|™"/?|
€ 2kB>z
—sup sup a%|B|"2].
e 2kB>z
We have

Theorem 2.1. There ezist constants ry > 0, and k € Z*, such that
for any test function f, which is a finite linear combination of {¥% :
B dyadic, ¢ =1,2,...,2% — 1}, for any A > 0, and 0 < r < ry,

{z: Nf(z)>3) g7(z) <1/2}| < Cr?[{z: Nf(z)> A},

where gr = X(s,, f>ra} and gy is the Hardy- Littlewood mazimal function
of gr, C 1s a constant.

Theorem 2.2. There ezist constants C > 0, & > 0, and k € Z*, such
that for any 0 < 6 < ég, for any A > 0, and for any test function f which
is a finite linear combination of {¢§ : B dyadic, e = 1,2,...,2% — 1},

{z : Skf(z) > 2\, Nif(z) < 6X, Daxf(z) < 6A}]
<C8{z : Suf(z) > A}|.

For simplicity, we only prove it for the one-dimensional case. The
argument can be extended directly to higher dimensions.

In the following, we denote ! by . All cubes Q, Q,, B, etc. are
dyadic cubes. All C’s are constants, they need not to be equal in each
appearance.

Lemma 2.3. If |B| < |Q| or21QN2m B =10, (¢p,¢g) =0.

The proof is trivial. |B| = 27, |Q| = 277, for some i,j € Z.
We have vp € W, ¢g € V;. When |B| < |Q|, te. 7 < ¢, Vj C
V;. By definition, W; C V;4; is the orthogonal complement of V; in
Vit1. Therefore, V; L W;, which implies (¢, ¢g) = 0. On the other
hand, because supp ¥p C 2m B, supp ¢g C 21Q, the condition 21 Q N
2m B = () implies supp ¥ p Nsupp ¢g = 0. This proves Lemma 2.3.

We first prove Theorem 2.1. Taking

f= ZCLBd)B,
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where only finite number of ap is nonvanishing. Forany z € {z : N f(z)
> A}, there is a dyadic cube @ > z, such that

(£, 8l 1QI7H/2 > A

This implies @ C {z : N f(z) > A}. Therefore {Nf > A} is a union of
a collection Q; of dyadic cubes. Meanwhile,

Kf,8)1QIT2 <> las| [(¥5, )| 1Q1 /2
< €Y lanlQI™? — 0, when |Q] — +oo.

So we can pick up a collection @ of maximal dyadic cubes out of Q;,

and
{NF>A = @

QEeQ

is a disjoint union. Theorem 2.1 follows from the following Lemma.
Taking £ = m + 2! in the definition of g, ,

Lemma 2.4. There exists a constant rqg > 0, such that for any 0 <
r <rg, and any Q € Q,

e €Q: Nf(z)>3) gi(z) <1/2}| < Cr*Q).
Setting
E={Nf>3)\ g:<1/2)nQ,

without loss of generality, we suppose |E| # 0. Otherwise the proof of
Lemma 2.4 will be done. Taking @ € Q, we have

I(f, #@) Q1712 > A

and for any @7 O Q*, where Q* is the father dyadic cube of @,

(f,8@.)1Q:1 72 < A

Then for any = € E,
Nf(z) = sup [(f,60,)|Q:"/?|
Q132

(2:5) (f, b )|@: |72

sup |
Q:1CQ
Q193¢
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Now for

fo= Z ap¥p,

QC2kB

we estimate

I(va¢Q1>|Ql|_l/2|a for Q] - Q

Lemma 2.6. For Q; C Q,

(f@,$@) @17 /2 < A+ C inf Saf(z).

PROOF.

(o, 0, 1Q1171% — ¢o-1Q*|71/2)
= D an(¥n,60,(Qu7 — 60- Q7).

QC2kB

Suppose

(o a+l (B B+1 « (7 7+1
Ql—(Q,,a v )aB""<2#> owm >aandQ _(2La 20 .

v o«

1
Then @Q; C Q* implies « < v and 5 ~ o < 50 Q@ C 2kB implies

|Q| < 2k|B|, then 27 < 4k27# ie. p <+ log, 4k. Because y € C?,
and 1 is compactly supported,

IBIM2(65, 60, Q1172 — do- Q" |7/
= | [ w(ra = B2 e(2'e — @) - 2'¢(2'a — 7)) dal

= |/¢(2"$ - B)¢(2"z — a)d(2"z — a)
- [wra — Brae -y d(ze =)

—| [ a2 va-p)
P2+ 25y — ) g() da

l
: / [Bllooll®s’ lloo]2# ™"z + 2K 7 a — 2¢ 72 — 2479 dz
0
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<C2#7
Therefore,

[(fa 6@: @117 = 6o-1Q°I /%) < > lagl|BITH?C 247

. QC2kB

t+log, 4k 1/2
< . p—1t\2
scigswe( 3, o)

<Ci .
< Cz"elfg Sakf(z)

Because |E| # 0, there exists ¢ € E C @, such that g7(z) < 1/2,
which implies Sy f(z) < rA. Taking ro = 1/C, where C is the constant
appeared in the last inequality, by Lemma 2.3, we have

(2.7) |(fo, 9@ )|Q@1]17 2 < A4+ Cra < 2), forall0 <r <rg.
Now setting

Ey = {z: gi(z) <1/2}N2kQ,
E; ={z: Suf(z) <rA}N10kQ,

and
Ui=VNUgeg,{B: 2kB > z},

where 1 = 1,2,
V={B: BC2kQ, |B|<|Q|and Q ¢ 2kB}.
Setting

h= Z apyB,

BeU,

we prove
Lemma 2.8. For anyz € E, Nfi(z) > A.
PROOF. Setting

Vo, = {B: |Q1]| < |B|, and 21Q, N2mB # 0},
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we have Vo, C {B: Q1 C 2kB}. Taking z € @, C @, by Lemma 2.3,

(fr3Q)I@1|72 = > an(¥B,60,)|Q 7/

z€2kB
BGVQ1
= > ap($B,60,)|Q:| 7/

z€2kB

BeVq, \{B: QC2kB}

+ Y ap(¥B,$q.)Q:/%
z€2kB
QC2kB

It is easy to check that

Vo, \{B: QC2kB} C V.

Therefore,
<fa¢Q1>lQl|_l/2: Z aB<d)Ba¢Q1)|Q1(—1/2
z€2kB
BeV
+ Y an(¥5,40,)1Q: 7%
z€2kB
QC2kB

By (2.5) and (2.7),

sup I Z aB(d)B, ¢Q1)IQ1|—1/2| 2 /\,
T€CQ . okB
BeV

for any = € E. Because

(f1,¢Q1>|Q1|_1/2= Z aB(¢Ba¢Q1)|Q1I_1/2v

z€2kB
BeU;

and for any = € E C E;,
{B: BeUy, z€2kB}={B: BeV, z € 2kB},
we have

N fi(z) = sup |<f17¢Q1>|Q1|—1/2|2/\, forallz € E.
Q13z
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Now we can start to prove Lemma 2.4. Because

f= Z ap¥p

BeU,

Sarf1(z) < Sarf(z), forall z € R.

[ Sun@yds< [ (Suse)ds <oyl
E, E,

and

Lz(S’gkfl(:v))zdz:/ > lasl*|B| ™" dz

E, z€2kB
BeU,

= Y lap[’|B|7'|2kB N Ey|.
BeU;

For any B € U, there exists ¢ € Eq, such that B € V and 2kB > «z,
therefore 2kB C 10 kQ, so,

2%kBN{z: Suf(z) <rA}=2kBNE,.

The fact z € E; implies g;(z) < 1/2, then
2kB, Sy f > T < % 2kB.
Therefore we have
12kB, Sy f(z) < rA| = [2kB N Ey| > % 2k B|.
Consequently,

[Susi@)de= 3 lanl*|BI kB

BeU,

<2 /I52(52kf1 (z))? dz
<Cria%Q|.
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On the other hand, for any g = 3 ¢ty s, we have

[suade= [ 3 ol Bl do

z€2kB
=C Y lesl =C [ lgf da.

Because N f < f*, where f* is the Hardy-Littlewood maximal function
of f, we have

e < [ (V)P de < C [ fieyde
_ C/(S’zkfl(:c))z de < Cr2)2|Q].

So
|E| < Cr?|Q| forO0<r<rg.

This completes the proof of Lemma 2.4 and then Theorem 2.1.
To prove Theorem 2.2, we rewrite Sy f as
1/2
suf@= sw (3 lasli)
Qgg?:dic QC2kB

This equality holds for a.e. z € R. Therefore

{z: Saf(z)>A} = U Q,

QeER,

where

1/2
R, ={Q : Q dyadic, ( Z |a3|2|B]_1) > A}.

QC2kB

Because 3 5corp lag|?|B|™! — 0, as |@| — +o0, we can pick up a
set ® of maximal dyadic cubes out of R, and

{z: Suf(z)>A}= ] Q.

QeER
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Theorem 2.2 follows whenever we prove the following lemma. Taking
k=8m+ 81,

Lemma 2.9. For any Q € R,

Hz € Q : Sif(z)> 2\ Nyf(z) < 86X, Darf(z) < 60} < C82|Q|.

For any @ € R, we have

1/2
(5 tasfiB) " 52, and

QC2kB

(% |aBmB|-1)l/2 <x,

Q*C2kB

(2.10)

where Q* is the father dyadic cube of Q). Setting
V ={B : B dyadic, B C 2kQ*, |B| < |Q*| and Q* ¢ 2kB}
and

fv= Z apyB,

BeV

and setting
E={z€Q: Sif(z)>2) Nuf(z) <) Darf(z) < 6A},
we have
Lemma 2.11. For any z € E, Sifv(z) > .
PRrooF. Taking z € E, it is easy to check that for any @, > z,
{B:kB>Q,,B€V}U{B:2kB>Q*kBD>Q:} D{B:kB > @1}

Therefore we have

> laslBI + > laslIBIT' > ) las’BITh

kBDQ: 2kBDQ* kB>Q,
BeV kBDQ,
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Because Si f(z) > 2A, i.e.

sup 3 Jap?|B|t > 437,
QlaszDQl

there exists J; 3 z, such that

> lasl’|B|™t > 42

kBDQ,
By (2.10),
4X < > |ap’|B|™?
kBDQ;
< Y laslIBITM+ ) las*BIT
kBDQ; 2kBDQ*
BeV kBDOQ:
< ) lesPIBIT A
kBDQ:
BeVv
Consequently,
> las*BI™ 2 3)%,
EBDQ:
BeV
and then
sip S lapPBIt > A7,
Ql Sz kBDQl
BeV
i.e.
Skfv(l') > A

Lemma 2.12. There ezists a constant C > 0, such that for any z € E,
Nyfv(z)<CéA.

PROOF. Taking = € E. Because Nyf(z) <6 A,

Q*I7/? < 6.

(f,6Q)Q° 172 =) aB(¥s, o)

2kBD>Q*
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Now for any @, such that 4Q; 3 z, and |@1| < |Q*|, checking as for

the case in Lemma 2.8, we have

(fQ) @™ =" ap(¥B,60.,)1Q1| 7

BeVv
2.13
( ) . + Z aB<¢Ba ¢Q1>|Q1|—1/27

2kBD>Q*

and by a same argument as that for Lemma 2.6,

| Z aB(¢B’¢Q1>|Q1|_1/2— z aB(‘/’B,¢Q-)Q*|‘1/2|
2kB>Q* 2kBDQ*
< D lasl|BI72 Bl (45, 60,1Q: 17 — $0-1Q7| %)
2kBDQ*
<C Y lesl|BI7V?
2kBDQ*

< CDaf(z) S CéA.

Therefore,

| Y aB(¥s,$,)|@:7*| < 6A + Céx.
2kBOQ*

From (2.13)

1Y ap(¥s, $0.)|@117 2| < 28X+ C8X.
BeV

For @, such that 4Q; > z and |@,| > |@Q*|, because = € 4Q; N Q*,
Q* C 4Q;. Therefore Q; C 2kB/4 implies that Q* C 2kB. Meanwhile,

Z aB(¢B,¢Ql)|Q1|_1/2

BeV
Q1C2kB/4

= Y an(¥s de)lQi V2.

BeV
Q" C2kB

(fv,60.)|1Q17"* =

Then the definition of V gives
(fv,60.)|Q1 1-1/2 =0.
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This proves that Nyfy(z) < (2+ C)6 A, forz € E.

From Lemma 2.11 and Lemma 2.12,

EC{zeQ : Nyfv(z) S C8A, Skfv(z) > A, Darf(z) < 6A}.
Obviously we have supp N fy C a@Q, for some large constant a. Setting

Ey =aQ N {Nyfy < CéX, Dy f < 6)}

and
W =V NUzekg, {B : 2kB 3 z},
defining
fw = Z ap¥B,
Bew

we have E; D E, and for any z € E,

Suwia) = (X |aB|2|B|-l)l/2

kB3z
Bew

- ( > ]aBlle}_1>l/2 = Sefv(z) > A,

kB>«z
BeV

For any = € F,,

Nifw(z)= sup | Y an(¥p,$0.)IQ:]7"/

4Q;3z Bew

2kB>z

= sup | Y ap(¥B,$q,)|Q:
413z pey
2kB>z

= Nyfv(z) < CéA.
And also for z ¢ aQ, we have

Nfw(z)=0.

Lemma 2.14. There ezists a constant C > 0, such that for any z € R,
Nfw(z) < CéX.
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PROOF. We need only prove for z € a@Q N Ef. Setting

Q=aQNE;
=aQN({z : Nyfy(z)>CéA}U{z : Daf(z)> 6A}).

Then 2 is an open set. Therefore {2 is a union of a collection & of
disjoint open intervals. (In higher dimensional case, we use Whitney
decomposition.) Taking I € S, there exist at most two dyadic cubes
Cl and Cz, such that |C]l = |Cg| ~ |I| and I C Cl UCz C 401,
4Cy N E; # 0. Now for any z € I, setting
B={B: BeW,2kB> z},
if B=40,
Nfw(z) = Sup (fw,$Q.)|@i| 71/
12T

—sup 3 an(s, ée.)l@[ T =0.

Q137 5 B>z
Bew

In case B # 0, taking B; € B such that

1B:| < 2inf|B,
then for any B € B, the fact that 2 € 2kB; N 2kB implies that

2kB, C 12kB.
By the definition of W, there isa y € Ej, such that 2kB; 3 y. Therefore
we have 2kB; N9I # 0. And taking a dyadic cube B out of 2kB, which
has the same size as B;, BC 2kBj, such that BN 0I # (. Then
B C 12k B for any B € B, i.e.

B={BeB: BCI12kB}

and also E; N 4B # §. Now for @1 3 z, consider

Z aB('lvbB? ¢Q1>|Ql |—l/2-

Bew
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)If 4Q: N Ey # 0, from Nyfw(zo) < CéA for any z € E,,

| > aB(¥s, 60.)1@117" /%] < CéA.

Bew

2)If 4Q, N E; = 0, dist{z, E1} > |Q1].- Because 4kB > z and
4kB > y, y € Ey, we have 4k|B;| > |Q1|. And 4kB N Q; # 0 implies
@1 C 12kB. Therefore, by 1) and by a same argument as that for
Lemma, 2.6,

| Y an@e,¢@)@i1<| Y ap<¢m, ¢8> BT/

Bew Bew

2kB>z 12kBD>B
+1 ) aB(¥s,9¢,1@1|7* - ¢B[B|7/?)]
Bew
12kBDB
<CéA+C Y lap||B|7/?
Bew
< CéA.

This proves Lemma 2.14.

Now we can prove Lemma 2.9. Because S fw(z) > A for z € E,
Nfw(z) < Cé) for z € a@) and supp N fw C aQ, we have

A2m(E) < [E(skfw(z))2 dz < C/(wa)2 dz < C6*X2m(Q).

So,
m(E) < C6*m(Q).

This proves Lemma 2.9 and then Theorem 2.2.
By the property f) it is easy to check that

Dy f(z) < CNyrf(z) a.e. r,

where k = 8 m + 81. And by a similar argument as that in [3], we can
prove that
152k fll 2o () 2 152 fllzo(w)

for 0 < p< oo, w € A and k,l € ZT. Also

{Nanf > A} < C[{Naf > A}
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Then, as a direct consequence of Theorem 2.1 and Theorem 2.2, we
have

Corollary 2.15. For anyw € Ay and 0 < p < oo, there ezist con-
stants C1 and Cy, such that for any test function f, which is a linear
combination of {¢%, B dyadic, ¢ =1,2,...,2¢ — 1},

Ci||INafllze(w) S 1S2flLr(w) < Co||Naf||Le(w) -

REMARK. Because of property c), Corollary 2.15 is true for any f with
152 fllzew) < oo

The Main Results.

In this section, we will give the wavelet area integral characteriza-
tion of the weighted Hardy spaces HP(w), 0 < p < oo, with w € A,
which establishes the identification between HP(w) and HJ(w), the
weighted discrete tent space. Therefore, a series of corollaries parallel
to those of tent spaces follows [3]. Because most of the proofs are al-
most the same as those in [3], we omit them. For simplicity, we only
discuss the one-dimensional case.

In Section 2, we proved that for 0 < p < 00, w € Ao,
N2 fllzr @) = 1S2f |7 () -
Define
HY(w)={f: Nof e L (w)} ={f : Sof € LP(w)},

with
I f 1z ) = IN2fllLe ) -

And for H}(w), 0 < p <1, we define an atom of Hf(w) to be a function
a which satisfies that for some cube R,

(A1) a= Y apyr

ICR
I dyadic
I
(42) > a5 <Ry o,

ICR
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Because for a an atom of H}(w),

/|a(:c)|2w(.z')dx < /|N2a(:c)|2w(:l:)dz
< C/]Sga(m)|2w(a:)da:
<Ccy’ jay 22D

ice M
< Cw(R)?,

an atom of H}(w) is also an atom of H?(w). The space Hf(w) can be
viewed as a weighted discrete tent space. Therefore, using the same
argument as in [3], we can get the following lemma.

Lemma 3.1. Suppose f € HY(w), with0 <p <1 and w € A. Then
f= E;’f__l Ajaj, with a; Hf(w)-atoms, Aj € C and

>l < Cllflg ., -

Now for any f € Hf(w), 0 < p < 1, with f = 3 Aja; being its
atomic decomposition,

1A s oy = 11D 205 m iy < D AP N5 sy
<CT NP < ClflEg e, -

Therefore, Hf(w) C H?(w) and ||f]lar(w) < ClIfllHz(w)- We want to
prove that for f € H}(w), with 0 < p < 00, w € A, there exists a
constant C > 0, such that || f||gr(w) < C||fllaz(w)- Setting

Mf(z)= 311; |f * e(y)l,

where I'(z) = {(y,t) : |y — z| < t}. And suppose w € A,, for some
po > 1, then we have

1M fllzrow) < ClifllLrow) < Cllfllazo(w)

and also
IMfllerw) = Ifllarw) < Cllifllmw) -



A WAVELET CHARACTERIZATION FOR WEIGHTED HARDY SPACEs 347
By interpolation, we obtain
IMflieew) = Iflloew) < Clifllazw), for1<p<po.
Because A,, C A, for py < ¢, w € A, for any ¢ > py. Thus
I fllzr ) SC N fllgzwy, forl<p<oo,

and then H}(w) C H?(w) for 0 < p < co. On the other hand,
Naf(e) = sup |(f,#Q)lIQI"/* < sup|f * 4u(y)| = M f(a).
Q' Syadic re

Therefore,

Iz ) = IN2fllzew) S 1M Fllzrw) = Ifllaew) »
for 0 < p < 00, w € As. Then we have proved

Theorem 3.2. For 0 < p < 00, w € Ago, HP(w) = Hf(w) = {f : S2f
€ LP(w)}, with
[l ey = 1152 fll o (@) -

Theorem 3.2 establishes the identification between H?(w) and
H?(w), a discrete tent space. Therefore, all the properties of tent spaces
can be applied to the weighted Hardy spaces HP(w). Especially, we have
the following consequences.

Corollary 3.3. [HP°(w), HP'(w)]p = HP(w), where 1 <py < p < p; <

oo with 1/p = (1 —0)1/po + 0/p1 and [-,-]g is the complez method of
interpolation described in [2].

For f =Y fry1, where fr = [ fvr dz, define

1/2
= su —-1 E a Z—w(I)

ICB

He(w) ={f : «(f) € L7},
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We have the following duality result.

Corollary 3.4.

1. The following inequality holds, whenever f € H'(w) and g €
Hg®(w)

> Il < ¢ [sif@) do@)e)ds,

I dyadic

where f =3 frbr, g=3 g91vr .

2. The pairing
w(T)
— > fror I(I|

realizes H§°(w) as equivalent to the Banach space dual of H'(w).

3. Suppose 1 < p < oo, then the dual space of HP(w) 1s H”'(w), with
1/p+1/p' =1. More precisely, the pairing

Zf[gl |I|

realizes HP (w) as equivalent with the dual space of HP(w).

We have known that BMO,, = (H!(w))* realized by the pairing

(F,9)= [ f9de = fior.

Therefore, we can get as a consequence of the last corollary the following
wavelet and also Carleson measure characterization of BMO,,.

Theorem 3.5.
. 1 1]
BMO, = D f= , sup ——— ar|* = < }.
{F: f=> fror Sup —TE 1;9 |ar| oD }
I dyadic
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