A wavelet characterization for weighted Hardy Spaces

Sijue Wu

Abstract. In this paper, we give a wavelet area integral characterization for weighted Hardy spaces $H^p(\omega)$, $0 , with <math>\omega \in A_\infty$. Our wavelet characterization establishes the identification between $H^p(\omega)$ and $T_2^p(\omega)$, the weighted discrete tent space, for $0 and <math>\omega \in A_\infty$. This allows us to use all the results of tent spaces for weighted Hardy spaces. In particular, we obtain the isomorphism between $H^p(\omega)$ and the dual space of $H^{p'}(\omega)$, where 1 and <math>1/p + 1/p' = 1, and the wavelet and the Carleson measure characterizations of BMO $_\omega$. Moreover, we obtain interpolation between A_∞ -weighted Hardy spaces $H^{p_1}(\omega)$ and $H^{p_2}(\omega)$, $1 \le p_1 < p_2 < \infty$.

1. Introduction.

In this paper, we give a wavelet area integral characterization for weighted Hardy spaces $H^p(\omega)$, $0 , with <math>\omega \in A_\infty$. Coifman and Meyer had earlier given a wavelet characterization for H^1 , [9]. Our proof differs from [9], in that it follows from two good- λ inequalities between the non-tangential maximal function and the area integral function with respect to some wavelets. At the same time, our wavelet characterization establishes the identification between $H^p(\omega)$ and $H^p_0(\omega)$, the weighted discrete tent space, for $0 and <math>\omega \in A_\infty$. This allows us to use all the results of tent spaces for weighted Hardy spaces. In particular, we obtain the isomorphism between $H^p(\omega)$ and the dual

space of $H^{p'}(\omega)$, where 1 and <math>1/p + 1/p' = 1, and the wavelet and the Carleson measure characterizations of BMO $_{\omega}$. Moreover, we obtain interpolation between A_{∞} -weighted Hardy spaces $H^{p_1}(\omega)$ and $H^{p_2}(\omega), 1 \leq p_1 < p_2 < \infty.$

In Section 2, we will give the two good- λ inequalities and their proofs. In Section 3, we will give the wavelet characterization of weighted Hardy spaces and its corollaries.

2. Good- λ Inequalities.

A dyadic multiscale analysis of $L^2(\mathbb{R}^d)$ with respect to lattice $\mathbb{Z}^d \subset$ \mathbb{R}^d is defined as an increasing sequence V_i of closed subspaces of $L^2(\mathbb{R}^d)$ with the following four properties [7]:

- (1) $\bigcap V_j = \{0\}, \bigcup V_j \text{ is dense in } L^2(\mathbb{R}^d),$

- (2) $f(x) \in V_j$ if and only if $f(2x) \in V_{j+1}$, (3) for every $f \in V_0$ and every $\gamma \in \mathbb{Z}^d$, we have $f(x \gamma) \in V_0$, (4) there exist two constants $C_2 > C_1 > 0$ and a function $g \in V_0$ such that V_0 is the closed linear span of $g(x-\gamma)$, $\gamma \in \mathbb{Z}^d$ and

$$C_1 \left(\sum_{\gamma \in \mathbb{Z}^d} |\alpha_{\gamma}|^2 \right)^{1/2} \le \left\| \sum_{\gamma \in \mathbb{Z}^d} \alpha_{\gamma} g(x - \gamma) \right\|_2 \le C_2 \left(\sum_{\gamma \in \mathbb{Z}^d} |\alpha_{\gamma}|^2 \right)^{1/2}.$$

Denoting by W_j the orthogonal complement of V_j in V_{j+1} . There are 2^d-1 functions ψ_m , $1 \leq m < 2^d$, such that $\psi_m(x-\gamma)$, $\gamma \in$ \mathbb{Z}^d , $1 \leq m < 2^d$ form an orthonormal basis of W_0 , [7]. These functions ψ_m , $1 \leq m < 2^d$ are called analyzing wavelets if they satisfy certain decay and moment vanishing conditions.

I. Daubechies discussed the existence of compactly supported wavelets in [4]. In fact, she showed that for any $n \in \mathbb{Z}^+$, there is a collection of functions $\{\psi^{\varepsilon}, \ \phi: \ \varepsilon = 1, 2, \dots, 2^d - 1\}$ on \mathbb{R}^d such that for some dyadic multiscale analysis $\{V_j\}, \ \phi \in V_0$ satisfies the property (4) and ψ^{ε} , $\varepsilon = 1, 2, \dots, 2^d - 1$, $\in W_0$ are the wavelets corresponding to $\{V_i\}$. Moreover, they have the following properties

- a) $\psi^{\varepsilon} \in C^1$,
- b) ψ^{ε} is compactly supported, say, for some integer $m \geq 1$, supp $\psi^{\varepsilon} \subset$ $[-m,m]^d$

d)
$$\int \psi^{\varepsilon}(x)x^k dx = 0, \text{ for } k = 0, 1, \dots, n,$$

e) ϕ is continuous and compactly supported, say, supp $\phi \subset [0, l]^d$ for some integer l,

f) For every $1 \leq \varepsilon < 2^d$, $\psi^{\varepsilon}(x)$ is a finite linear combination of $\{\phi(x - \gamma), \ \gamma \in \mathbb{Z}^d\}$, i.e. there exist $m_{\varepsilon} \in \mathbb{Z}$ and $b_{\gamma}^{\varepsilon} \in \mathbb{R}, \ -m_{\varepsilon} \leq \gamma \leq m_{\varepsilon}$, such that

$$\psi^{\varepsilon}(x) = \sum_{\gamma = -m_{\varepsilon}}^{m_{\varepsilon}} b_{\gamma}^{\varepsilon} \phi(x - \gamma),$$

g)
$$\int \phi \, dx \neq 0.$$

In this paper, we work with this collection of functions.

Let
$$B = \prod_{i=1}^d \left(\frac{\alpha_i}{2^{\nu}}, \frac{\alpha_i + 1}{2^{\nu}}\right)$$
 be a dyadic cube in \mathbb{R}^d . We write

$$\psi_B(x) = 2^{\nu d/2} \psi(2^{\nu} x - \alpha), \quad \text{where } \alpha = (\alpha_1, \alpha_2, \dots, \alpha_d) \in \mathbb{Z}^d$$

and

$$2kB = \prod_{i=1}^{d} \left(\frac{\alpha_i - k}{2^{\nu}}, \frac{\alpha_i + k}{2^{\nu}}\right).$$

By property c), any testing function f can be written as

$$f(x) = \sum_{\varepsilon} \sum_{B \text{ dyadic}} a_B^{\varepsilon} \psi_B^{\varepsilon}(x) \,,$$

where $a_B^{\varepsilon} = \langle f, \psi_B^{\varepsilon} \rangle$. Setting

$$\begin{split} N_{2k}f(x) &= \sup_{\substack{Q \text{ dyadic} \\ 2kQ \ni x}} |\langle f, \phi_Q \rangle| \, |Q|^{-1/2} \\ Nf(x) &= \sup_{\substack{Q \text{ dyadic} \\ Q \ni x}} |\langle f, \phi_Q \rangle| \, |Q|^{-1/2} \\ S_{2k}f(x) &= \Big(\sum_{\substack{\varepsilon \in B \text{ dyadic} \\ Q \ni x}} |a_B^{\varepsilon}|^2 |B|^{-1}\Big)^{1/2} \end{split}$$

$$\begin{split} D_{2k}f(x) &= \sup_{\varepsilon} \sup_{2kB\ni x} |\langle f, \psi_B^{\varepsilon} \rangle |B|^{-1/2}| \\ &= \sup_{\varepsilon} \sup_{2kB\ni x} |a_B^{\varepsilon}|B|^{-1/2}| \,. \end{split}$$

We have

Theorem 2.1. There exist constants $r_0 > 0$, and $k \in \mathbb{Z}^+$, such that for any test function f, which is a finite linear combination of $\{\psi_B^{\varepsilon}: B \text{ dyadic}, \ \varepsilon = 1, 2, \dots, 2^d - 1\}$, for any $\lambda > 0$, and $0 < r < r_0$,

$$|\{x: Nf(x) > 3\lambda, g_x^*(x) \le 1/2\}| \le Cr^2 |\{x: Nf(x) > \lambda\}|,$$

where $g_r = \chi_{\{S_{2k}f > r\lambda\}}$ and g_r^* is the Hardy-Littlewood maximal function of g_r , C is a constant.

Theorem 2.2. There exist constants C > 0, $\delta_0 > 0$, and $k \in \mathbb{Z}^+$, such that for any $0 < \delta < \delta_0$, for any $\lambda > 0$, and for any test function f which is a finite linear combination of $\{\psi_B^{\varepsilon}: B \text{ dyadic}, \varepsilon = 1, 2, \dots, 2^d - 1\}$,

$$\begin{aligned} |\{x : S_k f(x) > 2\lambda, \, N_4 f(x) &\leq \delta \lambda, \, D_{2k} f(x) \leq \delta \lambda\}| \\ &\leq C \, \delta^2 |\{x : S_{2k} f(x) > \lambda\}| \, . \end{aligned}$$

For simplicity, we only prove it for the one-dimensional case. The argument can be extended directly to higher dimensions.

In the following, we denote ψ^1 by ψ . All cubes Q, Q_1 , B, etc. are dyadic cubes. All C's are constants, they need not to be equal in each appearance.

Lemma 2.3. If
$$|B| \leq |Q|$$
 or $2lQ \cap 2mB = \emptyset$, $\langle \psi_B, \phi_Q \rangle = 0$.

The proof is trivial. $|B|=2^{-i},\ |Q|=2^{-j},\ \text{for some }i,j\in\mathbb{Z}.$ We have $\psi_B\in W_i,\ \phi_Q\in V_j.$ When $|B|\leq |Q|,\ i.e.\ j\leq i,\ V_j\subseteq V_i.$ By definition, $W_i\subset V_{i+1}$ is the orthogonal complement of V_i in $V_{i+1}.$ Therefore, $V_j\perp W_i$, which implies $\langle \psi_B,\phi_Q\rangle=0.$ On the other hand, because supp $\psi_B\subset 2\,m\,B,\ \text{supp}\ \phi_Q\subset 2\,l\,Q,$ the condition $2\,l\,Q\cap 2\,m\,B=\emptyset$ implies supp $\psi_B\cap \text{supp}\ \phi_Q=\emptyset.$ This proves Lemma 2.3.

We first prove Theorem 2.1. Taking

$$f = \sum a_B \psi_B \,,$$

where only finite number of a_B is nonvanishing. For any $x \in \{x : Nf(x) > \lambda\}$, there is a dyadic cube $Q \ni x$, such that

$$|\langle f, \phi_Q \rangle| |Q|^{-1/2} > \lambda$$
.

This implies $Q \subset \{x : Nf(x) > \lambda\}$. Therefore $\{Nf > \lambda\}$ is a union of a collection Q_1 of dyadic cubes. Meanwhile,

$$\begin{split} |\langle f, \phi_Q \rangle |Q|^{-1/2}| &\leq \sum |a_B| \, |\langle \psi_B, \phi_Q \rangle| \, |Q|^{-1/2} \\ &\leq C \, \sum |a_B| \, |Q|^{-1/2} \longrightarrow 0 \,, \quad \text{when } |Q| \longrightarrow +\infty \,. \end{split}$$

So we can pick up a collection Q of maximal dyadic cubes out of Q_1 , and

$$\{Nf>\lambda\}=\bigcup_{Q\in\mathcal{Q}}Q$$

is a disjoint union. Theorem 2.1 follows from the following Lemma. Taking $k=m+2\,l$ in the definition of g_r ,

Lemma 2.4. There exists a constant $r_0 > 0$, such that for any $0 < r < r_0$, and any $Q \in \mathcal{Q}$,

$$|\{x \in Q: Nf(x) > 3\lambda, g_r^*(x) \le 1/2\}| \le C r^2 |Q|.$$

Setting

$$E = \{Nf > 3\lambda, g_r^* \le 1/2\} \cap Q$$

without loss of generality, we suppose $|E| \neq 0$. Otherwise the proof of Lemma 2.4 will be done. Taking $Q \in \mathcal{Q}$, we have

$$|\langle f, \phi_Q \rangle|Q|^{-1/2}| > \lambda$$

and for any $Q_1 \supseteq Q^*$, where Q^* is the father dyadic cube of Q,

$$|\langle f, \phi_{Q_1} \rangle |Q_1|^{-1/2}| \le \lambda .$$

Then for any $x \in E$,

(2.5)
$$Nf(x) = \sup_{\substack{Q_1 \ni x}} |\langle f, \phi_{Q_1} \rangle | Q_1|^{-1/2} |$$
$$= \sup_{\substack{Q_1 \subseteq Q \\ Q_1 \ni x}} |\langle f, \phi_{Q_1} \rangle | Q_1|^{-1/2} |.$$

334 S. Wu

Now for

$$f_Q = \sum_{Q \subset 2kB} a_B \psi_B \,,$$

we estimate

$$|\langle f_Q, \phi_{Q_1} \rangle |Q_1|^{-1/2}|, \quad \text{for } Q_1 \subseteq Q.$$

Lemma 2.6. For $Q_1 \subseteq Q$,

$$|\langle f_Q, \phi_{Q_1} \rangle |Q_1|^{-1/2}| \le \lambda + C \inf_{x \in Q} S_{2k} f(x).$$

PROOF.

$$\begin{split} \langle f_Q, \phi_{Q_1} | Q_1 |^{-1/2} - \phi_{Q^*} | Q^* |^{-1/2} \rangle \\ &= \sum_{Q \subset 2kB} a_B \langle \psi_B, \phi_{Q_1} | Q_1 |^{-1/2} - \phi_{Q^*} | Q^* |^{-1/2} \rangle. \end{split}$$

Suppose

$$Q_1 = \left(rac{lpha}{2^{
u}}, rac{lpha+1}{2^{
u}}
ight), \; B = \left(rac{eta}{2^{\mu}}, rac{eta+1}{2^{\mu}}
ight), \; ext{and} \; \; Q^* = \left(rac{\gamma}{2^{\iota}}, rac{\gamma+1}{2^{\iota}}
ight) \,.$$

Then $Q_1 \subset Q^*$ implies $\iota < \nu$ and $\left| \frac{\gamma}{2^{\iota}} - \frac{\alpha}{2^{\nu}} \right| \leq \frac{1}{2^{\iota}}$, $Q \subset 2kB$ implies $|Q| \leq 2k|B|$, then $2^{-\iota} \leq 4 k 2^{-\mu}$, i.e. $\mu \leq \iota + \log_2 4k$. Because $\psi \in C^1$, and ψ is compactly supported,

$$\begin{split} |B|^{1/2} |\langle \psi_B, \phi_{Q_1} | Q_1 |^{-1/2} - \phi_{Q^*} | Q^* |^{-1/2} \rangle | \\ &= |\int_{\cdot} \psi(2^{\mu}x - \beta)(2^{\nu}\phi(2^{\nu}x - \alpha) - 2^{\iota}\phi(2^{\iota}x - \gamma)) \, dx | \\ &= |\int_{\cdot} \psi(2^{\mu}x - \beta)\phi(2^{\nu}x - \alpha) \, d(2^{\nu}x - \alpha) \\ &- \int_{\cdot} \psi(2^{\mu}x - \beta)\phi(2^{\iota}x - \gamma) \, d(2^{\iota}x - \gamma) | \\ &= |\int_{\cdot} (\psi(2^{\mu-\nu}x + 2^{\mu-\nu}\alpha - \beta) \\ &- \psi(2^{\mu-\iota}x + 2^{\mu-\iota}\gamma - \beta))\phi(x) \, dx | \\ &\leq \int_{0}^{l} \|\phi\|_{\infty} \|\psi'\|_{\infty} |2^{\mu-\nu}x + 2^{\mu-\nu}\alpha - 2^{\mu-\iota}x - 2^{\mu-\iota}\gamma | \, dx \end{split}$$

$$\leq C 2^{\mu-\iota}$$
.

Therefore,

$$\begin{aligned} |\langle f_Q, \phi_{Q_1} | Q_1 |^{-1/2} - \phi_{Q^*} | Q^* |^{-1/2} \rangle| &\leq \sum_{Q \subset 2kB} |a_B| |B|^{-1/2} C 2^{\mu - \iota} \\ &\leq C \inf_{x \in Q} S_{2k} f(x) \bigg(\sum_{\mu = -\infty}^{\iota + \log_2 4k} (2^{\mu - \iota})^2 \bigg)^{1/2} \\ &\leq C \inf_{x \in Q} S_{2k} f(x) \,. \end{aligned}$$

Because $|E| \neq 0$, there exists $x \in E \subset Q$, such that $g_r^*(x) \leq 1/2$, which implies $S_{2k}f(x) \leq r\lambda$. Taking $r_0 = 1/C$, where C is the constant appeared in the last inequality, by Lemma 2.3, we have

(2.7)
$$|\langle f_Q, \phi_{Q_1} \rangle| |Q_1|^{-1/2}| \le \lambda + Cr\lambda \le 2\lambda$$
, for all $0 < r \le r_0$.

Now setting

$$E_1 = \{x: g_r^*(x) \le 1/2\} \cap 2 kQ,$$

$$E_2 = \{x: S_{2k} f(x) \le r\lambda\} \cap 10 kQ,$$

and

$$U_i = V \cap \cup_{x \in E_i} \{B : 2kB \ni x\},\$$

where i = 1, 2,

$$V = \{B: B \subset 2kQ, |B| < |Q| \text{ and } Q \not\subset 2kB\}.$$

Setting

$$f_1 = \sum_{B \in U_1} a_B \psi_B \,,$$

we prove

Lemma 2.8. For any $x \in E$, $Nf_1(x) \ge \lambda$.

PROOF. Setting

$$V_{Q_1} = \{B : |Q_1| < |B|, \text{ and } 2 l Q_1 \cap 2 mB \neq \emptyset\},$$

we have $V_{Q_1} \subset \{B: Q_1 \subset 2kB\}$. Taking $x \in Q_1 \subset Q$, by Lemma 2.3,

$$\begin{split} \langle f, \phi_{Q_1} \rangle |Q_1|^{-1/2} &= \sum_{\substack{x \in 2kB \\ B \in V_{Q_1}}} a_B \langle \psi_B, \phi_{Q_1} \rangle |Q_1|^{-1/2} \\ &= \sum_{\substack{x \in 2kB \\ B \in V_{Q_1} \backslash \{B: \ Q \subset 2kB\}}} a_B \langle \psi_B, \phi_{Q_1} \rangle |Q_1|^{-1/2} \\ &+ \sum_{\substack{x \in 2kB \\ Q \subset 2kB}} a_B \langle \psi_B, \phi_{Q_1} \rangle |Q_1|^{-1/2}. \end{split}$$

It is easy to check that

$$V_{Q_1} \setminus \{B: Q \subset 2kB\} \subset V$$
.

Therefore,

$$\begin{split} \langle f, \phi_{Q_1} \rangle |Q_1|^{-1/2} &= \sum_{\substack{x \in 2kB \\ B \in V}} a_B \langle \psi_B, \phi_{Q_1} \rangle |Q_1|^{-1/2} \\ &+ \sum_{\substack{x \in 2kB \\ O \subset 2kB}} a_B \langle \psi_B, \phi_{Q_1} \rangle |Q_1|^{-1/2}. \end{split}$$

By (2.5) and (2.7),

$$\sup_{x \in Q_1 \subset Q} |\sum_{\substack{x \in 2kB \\ B \in V}} a_B \langle \psi_B, \phi_{Q_1} \rangle |Q_1|^{-1/2}| \ge \lambda,$$

for any $x \in E$. Because

$$\langle f_1, \phi_{Q_1} \rangle |Q_1|^{-1/2} = \sum_{\substack{x \in 2kB \ B \in U_*}} a_B \langle \psi_B, \phi_{Q_1} \rangle |Q_1|^{-1/2},$$

and for any $x \in E \subset E_1$,

$$\{B: B \in U_1, x \in 2kB\} = \{B: B \in V, x \in 2kB\},\$$

we have

$$Nf_1(x) = \sup_{Q_1 \ni x} |\langle f_1, \phi_{Q_1} \rangle |Q_1|^{-1/2}| \geq \lambda \,, \qquad \text{for all } x \in E \,.$$

Now we can start to prove Lemma 2.4. Because

$$f_1 = \sum_{B \in U_1} a_B \psi_B ,$$

$$S_{2k}f_1(x) \leq S_{2k}f(x)$$
, for all $x \in \mathbb{R}$.

So

$$\int_{E_2} (S_{2k} f_1(x))^2 dx \le \int_{E_2} (S_{2k} f(x))^2 dx \le C r^2 \lambda^2 |Q|,$$

and

$$\int_{E_2} (S_{2k} f_1(x))^2 dx = \int_{E_2} \sum_{\substack{x \in 2kB \\ B \in U_1}} |a_B|^2 |B|^{-1} dx$$
$$= \sum_{B \in U_1} |a_B|^2 |B|^{-1} |2kB \cap E_2|.$$

For any $B \in U_1$, there exists $x \in E_1$, such that $B \in V$ and $2kB \ni x$, therefore $2kB \subset 10 \ kQ$, so,

$$2kB \cap \{x: S_{2k}f(x) \le r\lambda\} = 2kB \cap E_2.$$

The fact $x \in E_1$ implies $g_r^*(x) \le 1/2$, then

$$|2kB, S_{2k}f > r\lambda| \le \frac{1}{2} |2kB|.$$

Therefore we have

$$|2kB, S_{2k}f(x) \le r\lambda| = |2kB \cap E_2| \ge \frac{1}{2} |2kB|.$$

Consequently,

$$\int (S_{2k}f_1(x))^2 dx = \sum_{B \in U_1} |a_B|^2 |B|^{-1} |2kB|$$

$$\leq 2 \int_{E_2} (S_{2k}f_1(x))^2 dx$$

$$\leq C r^2 \lambda^2 |Q|.$$

On the other hand, for any $g = \sum c_B \psi_B$, we have

$$\int (S_{2k}g)^2 dx = \int \sum_{x \in 2kB} |c_B|^2 |B|^{-1} dx$$
$$= C \sum |c_B|^2 = C \int |g|^2 dx.$$

Because $Nf \leq f^*$, where f^* is the Hardy-Littlewood maximal function of f, we have

$$\begin{split} \lambda^2 |E| &\leq \int_E (N f_1(x))^2 \, dx \leq C \int_{\cdot} f_1^2(x) \, dx \\ &= C \int (S_{2k} f_1(x))^2 \, dx \leq C \, r^2 \, \lambda^2 |Q| \, . \end{split}$$

So

$$|E| \le C r^2 |Q|$$
 for $0 < r < r_0$.

This completes the proof of Lemma 2.4 and then Theorem 2.1.

To prove Theorem 2.2, we rewrite $S_{2k}f$ as

$$S_{2k}f(x) = \sup_{\substack{Q \ni x \ \text{dyadic}}} \left(\sum_{Q \subset 2kB} |a_B|^2 |B|^{-1} \right)^{1/2}.$$

This equality holds for a.e. $x \in \mathbb{R}$. Therefore

$$\{x:\ S_{2k}f(x)>\lambda\}=\bigcup_{Q\in\Re_1}Q,$$

where

$$\Re_1 = \{Q : Q \text{ dyadic}, \left(\sum_{Q \subset 2kB} |a_B|^2 |B|^{-1}\right)^{1/2} > \lambda\}.$$

Because $\sum_{Q\subset 2kB}|a_B|^2|B|^{-1}\longrightarrow 0$, as $|Q|\longrightarrow +\infty$, we can pick up a set \Re of maximal dyadic cubes out of \Re_1 , and

$$\{x: S_{2k}f(x) > \lambda\} = \bigcup_{Q \in \Re} Q.$$

Theorem 2.2 follows whenever we prove the following lemma. Taking k = 8m + 8l,

Lemma 2.9. For any $Q \in \Re$,

$$\left|\left\{x\in Q\ :\ S_kf(x)>2\lambda,\,N_4f(x)\leq\delta\lambda,\,D_{2k}f(x)\leq\delta\lambda\right\}\right|\leq C\,\delta^2\left|Q\right|.$$

For any $Q \in \Re$, we have

(2.10)
$$\left(\sum_{Q \subset 2kB} |a_B|^2 |B|^{-1} \right)^{1/2} > \lambda , \quad \text{and}$$

$$\left(\sum_{Q^* \subset 2kB} |a_B|^2 |B|^{-1} \right)^{1/2} \le \lambda ,$$

where Q^* is the father dyadic cube of Q. Setting

$$V = \{B : B \text{ dyadic}, B \subset 2kQ^*, |B| < |Q^*| \text{ and } Q^* \not\subset 2kB\}$$

and

$$f_V = \sum_{B \in V} a_B \psi_B \,,$$

and setting

$$E = \{x \in Q : S_k f(x) > 2\lambda, N_4 f(x) \le \delta \lambda, D_{2k} f(x) \le \delta \lambda\},\$$

we have

Lemma 2.11. For any $x \in E$, $S_k f_V(x) > \lambda$.

PROOF. Taking $x \in E$, it is easy to check that for any $Q_1 \ni x$,

$$\{B:kB\supset Q_1,\,B\in V\}\cup\{B:2kB\supset Q^*,kB\supset Q_1\}\supset\{B:kB\supset Q_1\}.$$

Therefore we have

$$\sum_{\substack{kB\supset Q_1\\B\in V}}|a_B|^2|B|^{-1}+\sum_{\substack{2kB\supset Q^*\\kB\supset Q_1}}|a_B|^2|B|^{-1}\geq \sum_{kB\supset Q_1}|a_B|^2|B|^{-1}.$$

Because $S_k f(x) > 2\lambda$, i.e.

$$\sup_{Q_1 \ni x} \sum_{kB \supset Q_1} |a_B|^2 |B|^{-1} > 4\lambda^2,$$

there exists $Q_1 \ni x$, such that

$$\sum_{kB\supset Q_1} |a_B|^2 |B|^{-1} > 4\lambda^2.$$

By (2.10),

$$\begin{split} 4 \, \lambda^2 &< \sum_{\substack{kB \supset Q_1 \\ B \in V}} |a_B|^2 |B|^{-1} \\ &\leq \sum_{\substack{kB \supset Q_1 \\ B \in V}} |a_B|^2 |B|^{-1} + \sum_{\substack{2kB \supset Q^* \\ kB \supset Q_1}} |a_B|^2 |B|^{-1} \\ &\leq \sum_{\substack{kB \supset Q_1 \\ B \in V}} |a_B|^2 |B|^{-1} + \lambda^2. \end{split}$$

Consequently,

$$\sum_{\substack{kB \supset Q_1 \\ B \in V}} |a_B|^2 |B|^{-1} \ge 3\lambda^2,$$

and then

$$\sup_{Q_1 \ni x} \sum_{\substack{kB \supset Q_1 \\ B \in V}} |a_B|^2 |B|^{-1} > \lambda^2,$$

i.e.

$$S_k f_V(x) > \lambda$$
.

Lemma 2.12. There exists a constant C > 0, such that for any $x \in E$, $N_4 f_V(x) < C \delta \lambda$.

PROOF. Taking $x \in E$. Because $N_4 f(x) \leq \delta \lambda$,

$$|\langle f, \phi_{Q^*} \rangle |Q^*|^{-1/2}| = |\sum_{2kB \supset Q^*} a_B \langle \psi_B, \phi_{Q^*} \rangle |Q^*|^{-1/2}| \le \delta \lambda.$$

Now for any Q_1 , such that $4Q_1 \ni x$, and $|Q_1| \le |Q^*|$, checking as for the case in Lemma 2.8, we have

(2.13)
$$\langle f, \phi_{Q_1} \rangle |Q_1|^{-1/2} = \sum_{B \in V} a_B \langle \psi_B, \phi_{Q_1} \rangle |Q_1|^{-1/2} + \sum_{2kB \supset Q^*} a_B \langle \psi_B, \phi_{Q_1} \rangle |Q_1|^{-1/2},$$

and by a same argument as that for Lemma 2.6,

$$\begin{split} &|\sum_{2kB\supset Q^*} a_B \langle \psi_B, \phi_{Q_1} \rangle |Q_1|^{-1/2} - \sum_{2kB\supset Q^*} a_B \langle \psi_B, \phi_{Q^*} \rangle |Q^*|^{-1/2}| \\ &\leq \sum_{2kB\supset Q^*} |a_B| \, |B|^{-1/2} |B|^{1/2} |\langle \psi_B, \phi_{Q_1} |Q_1|^{-1/2} - \phi_{Q^*} |Q^*|^{-1/2} \rangle | \\ &\leq C \sum_{2kB\supset Q^*} |a_B| \, |B|^{-1/2} \\ &\leq C \, D_{2k} f(x) \leq C \delta \lambda \, . \end{split}$$

Therefore,

$$\left|\sum_{2kB\supset Q^*} a_B \langle \psi_B, \phi_{Q_1} \rangle |Q_1|^{-1/2} \right| \le \delta\lambda + C\delta\lambda.$$

From (2.13)

$$|\sum_{B \in V} a_B \langle \psi_B, \phi_{Q_1} \rangle |Q_1|^{-1/2}| \le 2\delta\lambda + C\delta\lambda.$$

For Q_1 such that $4Q_1 \ni x$ and $|Q_1| > |Q^*|$, because $x \in 4Q_1 \cap Q^*$, $Q^* \subset 4Q_1$. Therefore $Q_1 \subset 2kB/4$ implies that $Q^* \subset 2kB$. Meanwhile,

$$\begin{split} \langle f_V, \phi_{Q_1} \rangle |Q_1|^{-1/2} &= \sum_{\substack{B \in V \\ Q_1 \subset 2kB/4}} a_B \langle \psi_B, \phi_{Q_1} \rangle |Q_1|^{-1/2} \\ &= \sum_{\substack{B \in V \\ Q^* \subset 2kB}} a_B \langle \psi_B, \phi_{Q_1} \rangle |Q_1|^{-1/2}. \end{split}$$

Then the definition of V gives

$$\langle f_V, \phi_{Q_1} \rangle |Q_1|^{-1/2} = 0.$$

This proves that $N_4 f_V(x) < (2+C) \delta \lambda$, for $x \in E$.

From Lemma 2.11 and Lemma 2.12,

$$E \subset \{x \in Q : N_4 f_V(x) \le C\delta\lambda, S_k f_V(x) > \lambda, D_{2k} f(x) \le \delta\lambda\}.$$

Obviously we have supp $Nf_V \subset \alpha Q$, for some large constant α . Setting

$$E_1 = \alpha Q \cap \{N_4 f_V \leq C \delta \lambda, D_{2k} f \leq \delta \lambda\}$$

and

$$W = V \cap \bigcup_{x \in E_1} \{B : 2kB \ni x\},\$$

defining

$$f_W = \sum_{B \in W} a_B \psi_B,$$

we have $E_1 \supset E$, and for any $x \in E$,

$$S_k f_W(x) = \left(\sum_{\substack{kB\ni x\\B\in W}} |a_B|^2 |B|^{-1}\right)^{1/2}$$
$$= \left(\sum_{\substack{kB\ni x\\B\in V}} |a_B|^2 |B|^{-1}\right)^{1/2} = S_k f_V(x_k) > \lambda.$$

For any $x \in E_1$,

$$N_4 f_W(x) = \sup_{\substack{4Q_1 \ni x \\ 2kB \ni x}} |\sum_{\substack{B \in W \\ 2kB \ni x}} a_B \langle \psi_B, \phi_{Q_1} \rangle |Q_1|^{-1/2}|$$

$$= \sup_{\substack{4Q_1 \ni x \\ 2kB \ni x}} |\sum_{\substack{B \in V \\ 2kB \ni x}} a_B \langle \psi_B, \phi_{Q_1} \rangle |Q_1|^{-1/2}|$$

$$= N_4 f_V(x) \le C\delta\lambda.$$

And also for $x \notin \alpha Q$, we have

$$N f_W(x) = 0$$
.

Lemma 2.14. There exists a constant C > 0, such that for any $x \in \mathbb{R}$, $Nf_W(x) \leq C\delta\lambda$.

PROOF. We need only prove for $x \in \alpha Q \cap E_1^c$. Setting

$$\begin{split} \Omega &= \alpha \: Q \cap E_1^c \\ &= \alpha \: Q \cap \left(\left\{ x \: : \: N_4 f_V(x) > C \delta \lambda \right\} \cup \left\{ x \: : \: D_{2k} f(x) > \delta \lambda \right\} \right). \end{split}$$

Then Ω is an open set. Therefore Ω is a union of a collection \Im of disjoint open intervals. (In higher dimensional case, we use Whitney decomposition.) Taking $I \in \Im$, there exist at most two dyadic cubes C_1 and C_2 , such that $|C_1| = |C_2| \sim |I|$ and $I \subset \overline{C_1} \cup \overline{C_2} \subset 4C_1$, $4C_1 \cap E_1 \neq \emptyset$. Now for any $x \in I$, setting

$$\mathcal{B} = \{B : B \in W, 2kB \ni x\},\$$

if $\mathcal{B} = \emptyset$,

$$\begin{split} Nf_W(x) &= \sup_{Q_1 \ni x} \langle f_W, \phi_{Q_1} \rangle |Q_1|^{-1/2} \\ &= \sup_{Q_1 \ni x} \sum_{\substack{2kB \ni x \\ B \in W}} a_B \langle \psi_B, \phi_{Q_1} \rangle |Q_1|^{-1/2} = 0 \,. \end{split}$$

In case $\mathcal{B} \neq \emptyset$, taking $B_1 \in \mathcal{B}$ such that

$$|B_1| \leq 2\inf_{\mathcal{B}} |B|,$$

then for any $B \in \mathcal{B}$, the fact that $x \in 2kB_1 \cap 2kB$ implies that

$$2kB_1 \subset 12 kB$$
.

By the definition of W, there is a $y \in E_1$, such that $2kB_1 \ni y$. Therefore we have $2kB_1 \cap \partial I \neq \emptyset$. And taking a dyadic cube \mathbf{B} out of 2kB, which has the same size as B_1 , $\mathbf{B} \subset 2kB_1$, such that $\overline{\mathbf{B}} \cap \partial I \neq \emptyset$. Then $\mathbf{B} \subset 12kB$ for any $B \in \mathcal{B}$, *i.e.*

$$\mathcal{B} = \{ B \in \mathcal{B} : \mathbf{B} \subset 12 \, kB \}$$

and also $E_1 \cap 4\mathbf{B} \neq \emptyset$. Now for $Q_1 \ni x$, consider

$$\sum_{B\in W} a_B \langle \psi_B, \phi_{Q_1} \rangle |Q_1|^{-1/2}.$$

1) If $4Q_1 \cap E_1 \neq \emptyset$, from $N_4 f_W(x_0) < C\delta\lambda$ for any $x_0 \in E_1$,

$$|\sum_{B \in W} a_B \langle \psi_B, \phi_{Q_1} \rangle |Q_1|^{-1/2}| < C \delta \lambda.$$

2) If $4Q_1 \cap E_1 = \emptyset$, $\operatorname{dist}\{x, E_1\} \geq |Q_1|$. Because $4k\mathbf{B} \ni x$ and $4k\mathbf{B} \ni y, y \in E_1$, we have $4k|B_1| \geq |Q_1|$. And $4k\mathbf{B} \cap Q_1 \neq \emptyset$ implies $Q_1 \subset 12k\mathbf{B}$. Therefore, by 1) and by a same argument as that for Lemma 2.6,

$$\begin{split} |\sum_{\substack{B \in W \\ 2kB \ni x}} a_{B} \langle \psi_{B}, \phi_{Q_{1}} \rangle |Q_{1}|^{-1/2}| &\leq |\sum_{\substack{B \in W \\ 12kB \supset \mathbf{B}}} a_{B} \langle \psi_{B}, \phi_{\mathbf{B}} \rangle |\mathbf{B}|^{-1/2}| \\ &+ |\sum_{\substack{B \in W \\ 12kB \supset \mathbf{B}}} a_{B} \langle \psi_{B}, \phi_{Q_{1}} |Q_{1}|^{-1/2} - \phi_{\mathbf{B}} |\mathbf{B}|^{-1/2} \rangle | \\ &\leq C\delta\lambda + C\sum_{B \in W} |a_{B}| \, |B|^{-1/2} \\ &\leq C\delta\lambda \, . \end{split}$$

This proves Lemma 2.14.

Now we can prove Lemma 2.9. Because $S_k f_W(x) > \lambda$ for $x \in E$, $N f_W(x) < C \delta \lambda$ for $x \in \alpha Q$ and supp $N f_W \subset \alpha Q$, we have

$$\lambda^2 m(E) \le \int_E (S_k f_W(x))^2 dx \le C \int (N f_W)^2 dx \le C \delta^2 \lambda^2 m(Q).$$

So,

$$m(E) \le C\delta^2 m(Q)$$
.

This proves Lemma 2.9 and then Theorem 2.2.

By the property f) it is easy to check that

$$D_{2k}f(x) \leq CN_{4k}f(x)$$
 a.e. x ,

where k = 8m + 8l. And by a similar argument as that in [3], we can prove that

$$||S_{2k}f||_{L^p(\omega)} \approx ||S_{2l}f||_{L^p(\omega)}$$
,

for $0 , <math>\omega \in A_{\infty}$ and $k, l \in \mathbb{Z}^+$. Also

$$|\{N_{2k}f > \lambda\}| \le C |\{N_2f > \lambda\}|.$$

Then, as a direct consequence of Theorem 2.1 and Theorem 2.2, we have

Corollary 2.15. For any $\omega \in A_{\infty}$ and $0 , there exist constants <math>C_1$ and C_2 , such that for any test function f, which is a linear combination of $\{\psi_B^{\varepsilon}, B \text{ dyadic}, \varepsilon = 1, 2, \dots, 2^d - 1\}$,

$$C_1 \|N_2 f\|_{L^p(\omega)} \le \|S_2 f\|_{L^p(\omega)} \le C_2 \|N_2 f\|_{L^p(\omega)}$$
.

REMARK. Because of property c), Corollary 2.15 is true for any f with $\|S_2 f\|_{L^p(\omega)} < \infty$.

The Main Results.

In this section, we will give the wavelet area integral characterization of the weighted Hardy spaces $H^p(\omega)$, $0 , with <math>\omega \in A_{\infty}$, which establishes the identification between $H^p(\omega)$ and $H^p_0(\omega)$, the weighted discrete tent space. Therefore, a series of corollaries parallel to those of tent spaces follows [3]. Because most of the proofs are almost the same as those in [3], we omit them. For simplicity, we only discuss the one-dimensional case.

In Section 2, we proved that for $0 , <math>\omega \in A_{\infty}$,

$$||N_2 f||_{L^p(\omega)} \approx ||S_2 f||_{L^p(\omega)}$$
.

Define

$$H_0^p(\omega) = \{f : N_2 f \in L^p(\omega)\} = \{f : S_2 f \in L^p(\omega)\},\$$

with

$$||f||_{H_0^p(\omega)} = ||N_2 f||_{L^p(\omega)}.$$

And for $H_0^p(\omega)$, $0 , we define an atom of <math>H_0^p(\omega)$ to be a function a which satisfies that for some cube R,

(A1)
$$a = \sum_{\substack{I \subset R \\ I \text{ dyadic}}} a_I \psi_I$$

(A2)
$$\sum_{I \subset R} |a_I|^2 \frac{\omega(I)}{|I|} \le \omega(R)^{1-2/p}.$$

Because for a an atom of $H_0^p(\omega)$,

$$\int |a(x)|^2 \omega(x) dx \le \int |N_2 a(x)|^2 \omega(x) dx$$

$$\le C \int |S_2 a(x)|^2 \omega(x) dx$$

$$\le C \sum_{I \subset R} |a_I|^2 \frac{\omega(I)}{|I|}$$

$$\le C \omega(R)^{1-2/p},$$

an atom of $H_0^p(\omega)$ is also an atom of $H^p(\omega)$. The space $H_0^p(\omega)$ can be viewed as a weighted discrete tent space. Therefore, using the same argument as in [3], we can get the following lemma.

Lemma 3.1. Suppose $f \in H_0^p(\omega)$, with $0 and <math>\omega \in A_{\infty}$. Then $f = \sum_{j=1}^{\infty} \lambda_j a_j$, with $a_j \ H_0^p(\omega)$ -atoms, $\lambda_j \in \mathbb{C}$ and

$$\sum |\lambda_j|^p \le C \, \|f\|_{H_0^p(\omega)}^p \, .$$

Now for any $f \in H_0^p(\omega)$, $0 , with <math>f = \sum \lambda_j a_j$ being its atomic decomposition,

$$||f||_{H^{p}(\omega)}^{p} = ||\sum_{j} \lambda_{j} a_{j}||_{H^{p}(\omega)}^{p} \leq \sum_{j} |\lambda_{j}|^{p} ||a_{j}||_{H^{p}(\omega)}^{p}$$

$$\leq C \sum_{j} |\lambda_{j}|^{p} \leq C ||f||_{H^{p}_{D}(\omega)}^{p}.$$

Therefore, $H_0^p(\omega) \subset H^p(\omega)$ and $\|f\|_{H^p(\omega)} \leq C \|f\|_{H_0^p(\omega)}$. We want to prove that for $f \in H_0^p(\omega)$, with $0 , <math>\omega \in A_\infty$, there exists a constant C > 0, such that $\|f\|_{H^p(\omega)} \leq C \|f\|_{H_0^p(\omega)}$. Setting

$$Mf(x) = \sup_{\Gamma(x)} |f * \phi_t(y)|,$$

where $\Gamma(x) = \{(y,t) : |y-x| < t\}$. And suppose $\omega \in A_{p_0}$ for some $p_0 > 1$, then we have

$$||Mf||_{L^{p_0}(\omega)} \le C \, ||f||_{L^{p_0}(\omega)} \le C \, ||f||_{H^{p_0}_0(\omega)}$$

and also

$$||Mf||_{L^1(\omega)} = ||f||_{H^1(\omega)} \le C \, ||f||_{H^1_0(\omega)}.$$

By interpolation, we obtain

$$||Mf||_{L^p(\omega)} = ||f||_{H^p(\omega)} \le C ||f||_{H^p_0(\omega)}, \quad \text{for } 1 \le p \le p_0.$$

Because $A_{p_0} \subset A_q$ for $p_0 < q$, $\omega \in A_q$ for any $q > p_0$. Thus

$$||f||_{H^p(\omega)} \le C ||f||_{H^p_0(\omega)}, \quad \text{for } 1 \le p < \infty,$$

and then $H_0^p(\omega) \subset H^p(\omega)$ for 0 . On the other hand,

$$N_2 f(x) = \sup_{\substack{Q:Q\ni x\\Q \text{ dyadic}}} \left| \langle f, \phi_Q \rangle \right| \left| Q \right|^{-1/2} \le \sup_{\Gamma(x)} \left| f * \phi_t(y) \right| = M f(x).$$

Therefore,

$$||f||_{H_0^p(\omega)} = ||N_2 f||_{L^p(\omega)} \le ||Mf||_{L^p(\omega)} = ||f||_{H^p(\omega)},$$

for $0 , <math>\omega \in A_{\infty}$. Then we have proved

Theorem 3.2. For $0 , <math>\omega \in A_{\infty}$, $H^p(\omega) = H_0^p(\omega) = \{f : S_2 f \in L^p(\omega)\}$, with

$$||f||_{H^p(\omega)} \approx ||S_2 f||_{L^p(\omega)}$$
.

Theorem 3.2 establishes the identification between $H^p(\omega)$ and $H_0^p(\omega)$, a discrete tent space. Therefore, all the properties of tent spaces can be applied to the weighted Hardy spaces $H^p(\omega)$. Especially, we have the following consequences.

Corollary 3.3. $[H^{p_0}(\omega), H^{p_1}(\omega)]_{\theta} = H^p(\omega)$, where $1 \leq p_0 with <math>1/p = (1-\theta)1/p_0 + \theta/p_1$ and $[\cdot, \cdot]_{\theta}$ is the complex method of interpolation described in [2].

For $f = \sum f_I \psi_I$, where $f_I = \int f \psi_I dx$, define

$$c(f)(x) = \sup_{B \ni x} \left(\frac{1}{\omega(B)} \sum_{I \subseteq B} |a_I|^2 \frac{\omega(I)}{|I|} \right)^{1/2}$$

and

$$H_0^{\infty}(\omega) = \{ f : c(f) \in L^{\infty} \}.$$

We have the following duality result.

Corollary 3.4.

1. The following inequality holds, whenever $f \in H^1(\omega)$ and $g \in H_0^{\infty}(\omega)$

$$\sum_{I \text{ dyadic}} |f_I g_I| \frac{\omega(I)}{|I|} \leq C \int S_2 f(x) \, c(g)(x) \, \omega(x) \, dx \,,$$

where $f = \sum f_I \psi_I$, $g = \sum g_I \psi_I$.

2. The pairing

$$\langle f, g \rangle_{\omega} \longmapsto \sum f_I g_I \frac{\omega(I)}{|I|}$$

realizes $H_0^{\infty}(\omega)$ as equivalent to the Banach space dual of $H^1(\omega)$.

3. Suppose $1 , then the dual space of <math>H^p(\omega)$ is $H^{p'}(\omega)$, with 1/p + 1/p' = 1. More precisely, the pairing

$$\langle f, g \rangle_{\omega} = \sum f_I g_I \frac{\omega(I)}{|I|}$$

realizes $H^{p'}(\omega)$ as equivalent with the dual space of $H^p(\omega)$.

We have known that ${\rm BMO}_{\omega}=(H^1(\omega))^*$ realized by the pairing

$$(f,g) = \int fg \, dx = \sum f_I g_I \, .$$

Therefore, we can get as a consequence of the last corollary the following wavelet and also Carleson measure characterization of BMO_{ω} .

Theorem 3.5.

$$\mathrm{BMO}_{\omega} = \{ f : \ f = \sum_{I} f_I \psi_I \,, \ \sup_{B \ \mathrm{ball}} \frac{1}{\omega(B)} \sum_{\substack{I \subset B \\ I \ \mathrm{dyadic}}} |a_I|^2 \frac{|I|}{\omega(I)} < \infty \} \,.$$

Acknowledgements. This paper is part of my thesis. I would like to express my deep gratitude to my advisor, Prof. Ronald R. Coifman, for proposing the problem and for his advise. I would also like to thank Prof. Peter Jones and Prof. Stephen Semmes for the very helpful discussions.

References.

- [1] Burkholder, D. L., Martingale theory and harmonic analysis in euclidean spaces. *Proc. Symp. Pure Math.* 35 (1979), 283-301.
- [2] Calderón, A. P., Intermediate spaces and interpolation, the complex method. Studia Math. 24 (1964), 113-190.
- [3] Coifman, R., Meyer, Y. and Stein, E. M., Some new function spaces and their applications to harmonic analysis. *J. Funct. Anal.* **62** (1985), 304-335.
- [4] Daubechies, I., Orthonormal bases of compactly supported wavelets. Comm. Pure Appl. Math. 41 (1988), 909-996.
- [5] García-Cuerva, J., Weighted H^p -Spaces. Dissertationes Mathematicae 162 (1979).
- [6] García-Cuerva, J. and Rubio de Francia J. L., Weighted norm inequalities and related topics. North-Holland, 1985.
- [7] Jaffard, S., Lemarie, P., Mallat S. and Meyer, Y., Multiscale analysis. Preprint.
- [8] Meyer, Y., Wavelets with compact supports. Preprint.
- [9] Meyer, Y., Ondelettes et Opérateurs I. Hermann, 1990.
- [10] Muckenhoupt, M., Weighted norm inequalities for the Hardy maximal functions. Trans. Amer. Math. Soc. 165 (1972), 207-226.
- [11] Strömberg, J. O. and Torchinsky, A., Weights, Sharp maximal functions and Hardy Spaces. Bull. Amer. Math. Soc. 3 (1980), 1053-1056.

Recibido: 5 de abril de 1.991

Sijue Wu Courant Institute of Mathematical Sciences 251 Mercer Street New York 10012, USA