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0. The scope of the paper.

This is the second instalment of my previous paper with the same title,
[1]. This paper consist of two different parts. The first part is devoted
to improvements of the results developed in [1]. These improvements
are explained in Section 0.1 below and developed in sections 1 to 5,
and 9 to 10; they are in fact technically distinct from [1] and rely on a
systematic use of “microlocalisation” in the context of Hérmander-Weyl
calculus. These paragraphs can therefore be read quite independently
from [1].

The second part studies a different problem and is, in its aim, fairly
disjoint from [1]. This problem is explained in Section 0.2 below and
developed in sections 6 to 8. The techniques used however in sections
6 to 8 (and also in Section 10 which in its scope is attached to the first
part) are very close to the techniques of [1]. I feel that the reader would
find it very difficult to follow these sections without being familiar with

[1].
0.1. Pseudodifferential operators and the geometric problem.

The main technical estimate in [1] was the estimate (0.2) that asserted

1



2 N. TH. VAROPOULOS

that
(01) “[ o [Aua Sl]a 52], Tt ]a Sk] f”m <C ”Aa_k/2f”m+n1+"'+nk )

when f € Cg°.

Here [z,y] = zy — yz are as usual the commutators of two oper-
ators, || - || indicate the usual Sobolev norms in H, = {f : A“f €
LYR™)} (A = (1 = 5.8%/022)'/?), 0 € C, and A = a“(z, D) + Ao for
some large Ao > 0 and 0 < a(z,€) € S7, and finally S; = s%(z, D)
with s; € S1n,j0- It will turn out that a systematic use of Weyl calcu-
lus [10] (rather than ordinary ST, pseudodifferential calculus) will be
convenient in several places and will therefore be used interchangeably
with pseudodifferential calculus.

The estimate (0.1) was proved in [1] for sums of square (-Horman-
der) operators: A = 3 X' X; where X; are C fields. This estimate
was not even proved for a general second order self adjoined differential
operator of positive characteristic (¢f. [1], (0.1)). Indeed, as far as I can
tell the problem is as hard in this case as for a general pseudodifferential.
As a result the main geometric theorem in [1] (and all the rest for that
matter) was established only for Hérmander operators.

In this paper I shall give a complete proof of (0.1) for A = a*“(z, D)
+ Ao in full generality but only for £ = 1. This will be done in
sections 1 to 4 in the context of Hérmander’s-S(m,g) calculus with
A € S(1/h?,g). 1 shall also show that (0.1) holds (and this is easy be-
cause of previous work of R. Beals, ¢f. also the appendix at the end of
this paper) for arbitrary k£ but with an A that is polyhomogeneous and
subelliptic with a loss of one derivative (cf. Section 9 for the appropriate
definitions).

Using the above results we shall show in Section 10 that in the main
geometric theorem of [1] we can relax the sum of squares condition for

the “top operator” L; (the set-up was ||Lgf|| < C(IZSA+HN1FD),
which can therefore be an arbitrary self adjoint differential operator

Li = ajjm——+ -

The above estimate (0.1) for £ = 1 has a number of other more
“esoteric” consequences, e.g. the boundedness of the operators

. o ALl?
A et : Hy — Hyg; a,0 €R

’



SEMIGROUP COMMUTATORS UNDER DIFFERENCES, II 3

i.e. the imaginary powers of A and the corresponding wave operators.
These facts will be proved in sections 5 and 6.

0.2. The Beals characterisation and the ;’fa .

In Section 8, I will give the following characterisation of pseudodiffer-
ential operators (which is but a variant of the characterisations given

by R. Beals [3]).

Criterion. Let T be an arbitrary linear operator T : C°(R?) — £'(R?)
and let 1/2 < p <1 and m € R be such that

(02) |-~ [T En], B -+ Et] la—atkp-m < €, k20,0 €R

where E; € S are arbritary. Then 9T € OPS}, for allv € [1—p, p]
and all p € C§°.

Here we use of course the standard Hérmander notations for ST
(¢f. [2]) and || - ||a—p indicates the operator norm between the corre-
sponding Sobolev spaces Hy(R?). The C in (0.2) depends, of course,
on o and k as well as on the E;’s.

The Beals theorem that we refer to appeared for the first time in
(3] (¢f. also [2]). Essentially the same proof was given later in [5]. In [5]
the authors work in the context of classical pseudodifferential operators
and their assumption is

(03) ” [T7 X1, ,Xk] ”(l—p)k+m—>0 <C

with p = 1, or 1/2 and where X; are C* fields on R?. The proofs in
[3], [4] and [5] easily generalise and give (under the hypothesis (0.3))
the same conclusion

Te ()| OPSy, =By.

p
1-p<v<p

Incidentally, standard pseudodifferential calculus can be used and it
follows that conversely every T' € B]" satisfies the commutator estimates
(0.2) and (0.3). This implies in particular that B;" can be defined in a
coordinate free way (i.e. on a manifold). The reference [5] is perhaps
the easiest for the reader who is not familiar with (¢, ®) calculus.
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Using the above criterion we shall prove in Section 8 the following
Theorem. Let A = a¥(z,D) € OPS} , with symbol a(z,€) > 0, let
0 € C, Re 0 <0, and let us assume that A 13 subelliptic:

Ifll3_s < C(Af, f)+ Ca|If)?

with 0 < 6§ < 1/2. Then for all ¢ € Cg° and A > 0 large enough the
operator A% = (A + X)7 ¢, (this 1s just a banal modification to reduce
the problem to compact supports) satisfies

’t 2Re (o(1-6))
A% € B .

The proof of this theorem will be given in sections 7 and 8. It is
interesting to compare the above result with the final theorem in Beals
[3]. Beals theorem (if the proof is pushed to its limit) will give a better
conclusion since it will show that the correspondig parametrix belongs
to 52Re(a(1 %)) Beals theorem is also better in so far that it can deal
w1th operators of higher order ST, m > 2 and does not require that
the symbol is positive (but only that the principal symbol takes values
in an appropriate sector).

Our theorem above has however some advantages, the most signif-
icant of which is that it can deal with general symbols (and not only
polyhomogeneus ones as seems to be the case in Beals). The other ad-
vantage is an advantage of the method of the proof (which is different
from Beals’ method) rather than of the result. Indeed, in our consider-
ations, we can replace the Sobolev norms H,(R?) by the corresponding
LP-Sobolev norms

HY ={f: A®felLP}, l1<p<oo,
and the estimates are relatively insensitive to that change, provided,
that the original operator is a differential operator with positive char-
acteristic. In view of the fact that the Hormander classes 5’0 do not in
general stabilise LP, results of this kind are perharps of some interest.

Finally other funct1ons than the complex powers (with non positive
real part) of A can be treated with our methods. It easily follows, for
instance, that under the same conditions, and with the same notations
as in our Theorem, we have

(0.4) pe Ao e B 5, A <L, [Argz| < 5 —eo
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uniformly in z and any fixed €¢ > 0. And also that

(0.5) A e B Reo>0.

1. The Hormander metrics.

This section is purely technical and contains nothing new. I simply
collect a number of comments and elaborations on the S(m, g) calculus
as presented in L. Hérmander book [6]. All the notations will be (unless
otherwise stated) identical to those of [6]. The facts that I shall need
will be enumerated below. The proofs are just cross references in [6]
and will be briefly explained after each fact.

(A) In [6], Lemma 18.4.4 can be improved to (with the same no-
tations): given v then the number of balls B, that intersects B, is

bounded by N..

This slightly stronger local finiteness property will simplify several
of our arguments. When we examine the proof of the above lemma in
[6], which is to be found in [6], Lemma 1.4.9, we see that this stronger
property is in fact implicit in that proof.

(B) The choice of the balls U,,U,, defined in [6] just after relation
(18.4.13) can be refined in the following way: we can choose (for k =
1,2,... given in advance)

U, =UQ cu®Wc..UP, UD={z:g,(z—1z)<cj}

for j = 0,1,...,k%, in such a way that the balls U,Ek) have the local
finiteness property of (A). Furthermore the ¢ in Lemma 18.4.4 and
¢o > 0 the radius of U, can be chosen small enough, so as to guarantee
that

U, NUY # 0 implies U, cUYTY | VYo,u, j=1,2,...,k—1.

Observe that in the elaborations and proofs of [6], sections 18.4 and
18.5 the two balls U ¢ U,(,j+1), for any y = 0,1,...,k — 1, could be
used in the place of the paire U, C U, of [6]. The point to watch,
and which is vital for us, is what lies between relations (18.4.19) and
(18.4.21) in [6].
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All this is fairly automatic from [6] and the proof will be left to the
reader. Let me simply say that the reader whether he likes it or not
will have to really understand [6] sections 18.4 and 18.5 if he wishes to
follow what is happening. This applies especially here and in the next
few pages.

(C) Let a; € S(mi,g), (: = 1,2), be such that supp a; Nsupp a; =
0, let b € S(myma2,g) be such that ¥ = a¥ay, then we actually have
b € S(mlmghN,g), N Z 0.

This is contained in [6], Theorem 18.5.4.

(D) Let U,,U,, be as in [6] just after (18.4.13) and let a € S(m, g).
We shall say that a is strongly concentrated “at v in S(m,g)” if it
satisfies the condition

(1.1) lald(w) < Crs m(w) (1 +d, ()%, Vk,s,w.

We shall say that a is concentrated (without the adjective strongly)
“at v in S(m, g)” if the same estimate (1.1) holds but only for w ¢ U,
(Definition in [6] just after relation (18.4.13)).

The “subtlety” of the above notion lies in the fact that the balls
U, are defined by the metric ¢ while the distance d, is defined by the
metric g# (or g% in our case). In [4] Beals introduced an analogous
notion which he then exploited in the special case when g = ¢°.

Observe that the above definition depends on the particular choice
of U,, U,. The conclusions that this property of concentration will
allow us to draw will, on the other hand, be independent of that choice
(¢f. especially property (E) and Section 2 below). So, therefore, at the
end, it will be irrelevant with respect which particular U,, U, we are
making the definition. The above notion will prove itself to be useful
in the following properties.

(E) Let a, € S(m,g) (v € N) be a family of operators so that
a, is concentrated at v in S(m,g) for each v, and that furthermore
these conditions are verified uniformly in v. Then the family )" a, is
“absolutely summable” in the sense that we have

(1.2) Ylafjw) < Comw),  Vw.
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If we demand that (a,) should be strongly concentrated and con-
sider the case m = 1, then the above statement is an immediate con-
sequence of [6], Lemma 18.4.8. The modifications needed for the proof
when m is arbitrary are obvious. If we only impose the weaker prop-
erty of concentration (rather than strong concentration), then we have
to split the sum in (1.2) as follows

IIEDY

wel, w¢U]

(This is essentially the argument of [6] between the relations (18.4.19)-
(18.4.21)). The first of the two sums is bounded by C'm(w)sup, ||a,||
because of the local finiteness of our partition. To controle the second
sum we apply the same argument (c¢f. [6], Lemma 18.4.8) as before.

(F) Let a'? € S(m;,g), it = 1,2, and let a € S(myms,g) be such
that a¥ = a(M*“a(®“_ Let us suppose further that for some fixed v and
either 1 = 1, or © = 2 (or both) we have supp af,” C U,. Then a is
strongly concentrated at v in S(mima,g).

(F') We impose the same conditions on a1, a? a asin (F) (with
say supp a(!) C U,). In additions we demand that U, N supp a? =9.
Then a is concentrated at v in S(m;myh", g) for all N > 0. (Here
U, C U} are as in [6] just after relation (18.4.13)).

In other words we are in an “arbitrary small class” (with respect
to h) provided that we are prepared to sacrifice the property of strong
concentration. This property should be thought as an elaboration of
both (F) and (C).

For the proof of (F) the relevant passage in Hérmander is what lies
a dozen lines after relation (18.6.6) and goes on until Theorem 18.6.6.
In fact in that passage one essentially finds the proof of our statement
for m; = my = 1. Indeed let m; = my = 1 and supp V) C U, and
let us proceed as in Hérmander and decompose a® = 3~ a, so that (in
Hoérmander’s notations):

w Nw w
a=E Ayy au”—a()a#.
u

(We ignore the complex conjugation of Hérmander here). The estimate

(13)  Jawu(w)] < e [+ M(w)|™ = ci [1+ dy () + dy(w)| ™
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(when m; = my =1 and where M is as in [6] bottom of p. 167, vol.
III, 1985), then holds and if we use the uniform polynomial growth of
M, (notations of proof of 6], Lemma 18.4.8) established in [6], Lemma
18.4.8, we obtain that

Z |ayu(w)l < Ck 1 +d,,(w)|"k.

n

~ This is the required estimate (1.1) for s = 0. The modification for
arbitrary mj, ms is clear, we just have to insert the factor

|y, ()] < ek my(w) my(w) 1 + M(w)|~*

in the estimate (1.3). This can clearly be done by the definition of a,,
(¢f. the same passage of Hormander: bottom of p. 167, vol. III, 1985
edition, and also the estimate [6], (18.4.12)). To pass to the estimate for
the more general seminorms |a,,|?, (s > 1), we have to improve (1.3)
exactly the way Hérmander does in (18.6.7) and (18.6.8). We obtain

|avu(@)] < Ci (14 dy) ™" L+ M(w)|7Y

which is essentially [6], (18.6.9) except that we retain all the information
given by [6], (18.6.7) and [6], (18.6.8). We then reason exactly as in [6]
(the passage that follows relation [6], (18.6.8)) and we are done in the
case m; = my = 1. The general m;,m, are treated similarly.

To obtain the refinement that is presented in (F') we have to
combine the above argument with the passage in [6] between relations
(18.4.19) and (18.4.21) (z.e. p. 148-149, vol. III, 1985 edition) what
is shown there is that we can improve by an arbitrary power of A%
provided that we are away from the “support”. More specifically in the
relation that defines a,,(z,{) (bottom of [6], p. 167) if we know that
(z,€) ¢ U, we can obtain the following improvement to the estimate

(1.3)
(1.4) |ayu(@)] S CehV(w) (1+ M@W)™*,  wélU,.

This is explained in [6] in the passage between relations (18.4.19)-
(18.4.21). In that passage weset V=W @ W, the metricis G =¢gd g
(i.e. g1 =g2 =g)and A = 20(#,€,7,7) asin [6], p- 152. Observe that
since g1 = ¢, the metric G is now temperate everywhere on W @ W
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and not only on the diagonal. This makes the reasonning easier for it
implies that with w = (z,£), w' = (y,n), we have

|t (P=PeiPr D26 (w)ay (w')] < Ok HY (14 dy(w) + du(w') ™,

V(w,w') ¢ U, x U,. From this (1.4) follows immediately by setting
w = w' (since then H(w,w') ~ h(w) ~ h(w')). This outlines the proof
when m; = my = 1 and s = 0. The proof of the estimates in the
general case follows by the same modifications as before. Once the
estimate (1.4) has been proved (F') follows since (C) guarantees that
a € S(mymyh™N g), VN > 0.

2. The localisation of the commutator estimate.

Let U, c UV ¢ ... c U™ be as in (B) (k = 5 will in fact suffice).
Assume that A = a“(z, D), BY = bf,j)w(:zz,D) with a, b € S(m,g),
(7 =1,2,...,s). Let us also make the hypothesis that supp bf,j) C U,Ep)
for some 1 < p < k and let us denote

4,=3 {(am)“ . UNN UG £ 0}
(2.1) ) A

A, =Y {(ap) s UnnUP =0}
A

where Y px = 1 is a Hérmander partition of unity subordinated to the
covering {U,} as in [6], Lemma 18.4.4.

Then by (F'), A,BY is concentrated at v in S(m?hN; g) with
an N > 1 that can be given in advance; but then, by a succesive
application of (F), A,,B.(,I)B,(,z) (respectively, A,,B,(,l) . ,(,])) is strongly
concentrated at v in S(m3h"; g) (respectively, S(m/*1h¥; g)) with the
same N.

On the other hand the following two sums are absolutely summable
in the sense of (E):

A'=3"A,BMV...B{",
A=) A,B.. .B{.

This is because supp bf,s) C U,Sp ) and thus each term of the above sum-
mation is concentrated (even strongly) at v in S(m**1;g), and so (E)
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applies. But, by what we have said just above, A = ZA,,B,(,I) ...B®
is in fact absolutely summable in S(m*+1h"; g) for any N > 1 arbitrary
large. It follows in particular that

(22)  AY BM...BYY =A" mod-S(m*t'hN;g), N >0.

We shall apply these facts to localise a specific expression involving
commutators. Let A = a“ with a € S(m;g) and let us follow our -
notational convention of [1] and denote by E = e“ where e € S(1,¢) is
arbitrary. The various e’s and E’s that appear below are not necessarily
all the same. Let ¢, be a partition of unity as in (2.1) and let E €
OPS(1;9) and A, = (ap,). Let E, be defined from E the way A,
was defined from A in (2.1) with p = 0. We obtain therefore from (2.2)
that

EA=) EA,=) E,A, mod-S(h"m;g), N >0.

But then it follows that

EAE=) EAE=() E,A)E

(2.3)
=Y E,AE mod-S(h"m;g)

because multiplication is distributive over absolute summation. A sim-
ple application of (C) allows to conclude on the other hand that

AE, € S(mh";g) (N > 1, uniformly in v).
This together with (F) (we do not need to use (F') anymore !) implies
that E, A, E, is (strongly) concentrated at v in S(mh”™;g) and we can

therefore sum these terms in S(mh”;g) by Section 1. The conclusion
is that

> E,AE=) E,AE,+) E/ALE,
=Y E,AE,, mod-S(mh";g), (N2>1).
Combining this with (2.3) we conclude that

EAE =) E,A,E, mod-S(h"m;g), (N >0).
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We shall use this idea again to the two products of

> [E,AE,E|=) (E,A E,E—-EE, A,E,)

and we obtain
[EAE,E] =) [E, A,E,, E|
= Z[E,’, A, E! E!] mod-S(mh";g) (N >0)

where E) is constructed from E (the same way A! was constructed
from A) as in (2.1) with p = 3.
We shall carry this process one step further and finally deduce that

[EAE,E| = I[E, A, E, ,E}]I, mod-S(mh";g)

where I, =1¥: 1, = {Z‘P/\ : U,y ﬂUis) # (Z)}.
Let us now examine more closely the operators I, and A,. The
first observation is that

(2.4) YL <CIfIP,  VfeCy.

This is best seen by considering vector valued symbols (cf. [6] relation
18.6.24). Alternatively (and equivalently) the estimate (2.4) can be
obtained by taking the expectation on || }_ 1, f|| (as is done in Section
8). Consider next the operator

Z I,A,I,

where again, by that we have said, the summation is absolute. To
examine this operator we shall impose for the first time on a(z, ), the
symbol of A, our basic conditions. We shall assume that

(2.5) a(z,§) 20, a(z,€) € S(1/h%g).

Let = " 12. Under the conditions (2.5), we then have

(2.6) a—(ab)” =af + a3
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where a;(z, ) takes pure imaginary values and ay(z,£) € S(1,¢). Sim-
ilarly if we denote by O4; = (Hil/z)“’, then we have

(2.7) 0,40, — (ab)” = af + a3y
with similar conditions on aj, a;. Furthermore we have
(2.8) ©,-0_;;0_;-0; =I+1ib“(z,D) mod-S(h%yg),

where b € S(h,g) is real. The last two relations (2.7) and (2.8) are
obtained by S(m,g) calculus (in (2.8) we in fact have b = 0 ! One
can compare this with the argument in [6], p. 171 just before Theorem
16.6.8). The relation (2.6) is also obtained by symbolic calculus but the
presence of the infinite sum that is involved in the definition of @ makes
life slightly more complicated. There are many ways to deal with that
infinite sum, the most elegant is, in my opinion, the one presented in
[6] just after relation (18.6.24) where the author uses operator valued
symbols.

I shall now show how the above considerations can be used to
localise commutators. Qur problem [¢f. Section 0.1] is to show that for
operators A = a“(z, D) with symbols that satisfy (2.5) we have

I[AEIfI*? < CAfLH+CillfI?, feCs
or better still that
(2.9) I[EAE,EIf|* < C(Af,H)+CillfI*?,  feCg.

(+,-) indicates of course the scalar product in L? and || - || the corre-
sponding norm. The reason why we did all the work in this section was
because we wanted to show that the estimate (2.9) is “localisable”. Let
me be more specific and let us assume that we can find some Hérmander
covering (U,) of the (z,£) space as above for which the estimate (2.9)
holds “for each v separately”, i.e. such that

(2.10) I[E., Ay E., EJf|? < C(Af, )+ CiIf?
provided that A, = (ae,)*, E, = e¥ with e, € S(1,¢) uniformly in v

and supp e, C U,. Then we shall deduce that the estimate (2.9) itself
also holds.
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The first thing to observe is that we have

(2.11) I[EAE, E)f|| < || ) LIE, A, E,,, EJILf|| +C||f] -

We shall need the following

Lemma. Let J, = j¢(z,D) with real valued 5, € S(1;9g) (uniformly in
v) and supp j, C U, then there exzists a constant C such that

IS LAIP<CY ILIP, foeCs.
The proof of the lemma will be given presently. Let us draw the

conclusions: From (2.11), the lemma, and the local hypothesis (2.10),
we deduce inmmediately that ||[EAE, E]f||? can be estimated by

> IIE, Ay B, , ENLFI* + |I£1I?
)

(2.11)
<D (LALEH+CIAP+C Y ILSIP

(The local hypothesis (2.10) is applied to each I, f separately). And
this by (2.4), (2.6) and (2.7) can be estimated by

(461 £,0:1) + C|If]1*.
The upshot is that we have
(2.12)  |[[BAE,E]f|* < C1 (461 f,0:f) + C2|IfI*, feC5°,
for some C;,C2 > 0. If we apply (2.12) to f = ©_;¢ we obtain
(213)  |[BAE, E0 o] < Ci(Ap, ) + Callgl?

since ©_; € OPS(1; g). But now we almost have our required estimate.
Indeed set ¢ = [EAE, E]p, we have

(2.14) 1l < 1©10_1%|| + | RIEAE, E]e||
with R € S(h,g) by (2.8). On the other hand

(2.15) [©0-14]| < C([[EAE, E]O-19] + [I#ll)
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since [O_;1,[EAE, E]] € OPS(1;9).
So putting (2.13), (2.14) and (2.15) together we obtain the required
estimate

I[EAE, ElplP < C([0-1%]l + ll¢]l)? < Ci (Ap, ) + Callwl?

It remains to give the proof of the lemma which is standard. Indeed

1D T full® = > (Kuwfor £) S UEN Y £l

v,

where K, , = J,J, and || K|| is the operator norm of the “Hilbert space
matrix” (K, ,)y,, acting on L? ® £2. The boundedness of that norm is
a consequence of the estimate

(2.16) 1Ko ull < C(1+d,,)~N.

The proof of (2.16) can be found in [6], p. 168, just before relation
(18.6.10) and in the few lines that follow. Observe that any of the
standard proof that (2.16) implies the boundedness of the scalar valued
matrix operator (k,,) also works in the present vector valued case.

3. The Fefferman-Phong reduction of variables.

In this section, I shall give a proof of
(3.1) I[E(ea)“E, EIf||* < C1 (a*f, f) + C2 If|I*,  f€C5°,

where C;,Cy > 0, E, e are as in Section 2 and a(z,£) € S(1/h%;g)
with @ > 0. The main step of the proof is an inductive procedure (due
to Fefferman-Phong) on the “essential” number of variables z4,...,z,,
&1,...,&n that appear in a(-,-). To make this precise I shall say that
a(-) depends only on k variables 0 < k < 2n if there exists 2n — k linear
independent vectors Iy, 15, . .., l3n_k in the (z, ) space T(R?™) such that
da(l;) =0,7 =1,2,...,2n — k (u.e. ais constant along these vectors).

When a depends on 0 variables our estimate holds (the constants
C1,C; depend on a since (3.1) is not homogeneous in a !). Observe
incidentally that the e inside (ea)“ is imposed by technical reasons due
to the above inductive procedure. In reality e can be absorbed in the
E’s outside since E(ea)*E = FEa“FE mod-S(1/h;g) and the S(1/h;g)

disappears after the commutator is taken.
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Observe also that one situation in which our estimate (3.1) holds
trivially is when a = ¢ with ¢ € S(1/h;g) (real valued). Indeed, banal
symbolic calculus shows in that case that

[E(ea)*E,E]=Ec*+ E.

It follows therefore that the left hand side of (3.1) can be estimated by
llc“ f|I? + || f||*- On the other hand we have:

(€)* = (") = af +a5

with a; purely imaginary (in fact here we have a; = 0!) and a; €
S(1;9) (again by symbolic calculus). We can therefore estimate ||c¥ f||2
= ((¢“)2f, f) by (()“f, f) + O(]| f||*) which gives our assertion.

The next observation is that in proving (3.1) we can reduce
everything to the case when g = g is a constant metric, i.e. a positive
definite quadratic form on the 2n variables (z,¢) for which g/¢g7 < A2
where 0 < A(= h) < 1. This of course is the whole point of the
localisation explained in [6, Lemma 18.4.4]. Indeed by what we did in
the last section we see that our estimate (3.1) is “localisable” to each
U, where the metric can be considered as constant.

More can in fact be demanded form the constant metric g = go.
We can even ensure that g = Ae where e is the euclidian metric 3" (dz?+
dé?), and 0 < XA < 1 as before. To see this we argue as in [6] in the
first few lines of the proof of Lemma 18.6.10. Indeed we can, by a
linear symplectic transformation 7', reduce g(z,£) = Y A (2% + £2)
with A = sup A; and since our hypothesis on a, e is that |a|] < cxA™2,
le]f < ¢k, we can replace all the A;’s by A in the hypothesis. The
estimate we wish to prove is

lle“(ea) e, e“If||* < C1 (a®f, f) + C2IfII*,  feC5e.

The linear symplectic transformation has the following effect on the
symbols and the corresponding operators

(eoT) =U"'e“U , (aoT)*=U"'a"U
(cf. [6], Theorem 15.5.9) where U : L?(R") — L%(R™) is a unitary

transformation. It is then clear that the above conjugation operation
commutes with all the “elements” of our estimate and we are done.

From everything that we have done up to now we see that the
proof of (3.1) is reduced to the proof of the following inductive step for
k=1,2,...,2n.
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(Ix): All the metrics are of the form Xe for some 0 < A < 1.
We shall assume that the estimate (3.1) holds if a depends on k — 1
variables and we shall conclude that it holds for any a that depends on
k variables.

The proof is but a variant of the Fefferman-Phong argument. I
shall follow closely the presentation given in [6] in the proof of Lemma
18.6.10.

Our original metric is ¢ = Ae and our conditions on a and e are
(with apologies for the confusing notation!)

el < CeAM?, Jaff < G AK-912

(observe that all our estimates below have to be uniform in A).
The metric g will be replaced by

G:e=mg = H(z,{)e

where )

g = meLal) 2 lls()}
Since clearly by our hypothesis H > A we have m > 1 and clearly
also G/G° < H? < 1. It follows therefore that to show that G is o-
temperate it suffices to show that it is slowly varying and invoque [6],
Proposition 18.5.6 (or one can even give a direct proof, ¢f. [6]). The
fact that G is slowly varying is proved in Hérmander (although I feel
that the corresponding passage of the proof of Lemma 18.6.10 in [6]
is unclear. Indeed I had to work somewhat to convince myself that it
works | Maybe the reader can do better). Be it as it may, we now have
a o-temperate metric G, and since G > g we have S(1;9) C S(1;G),
but we also have a € S(1/H?; G). To see this, since m > 1, it is enough
to check that

lalf <CHGH/2 £ =0,1,2,3

(compare with [6, relations (18.6.13)-(18.6.13)"]). For k = 0,2 this
follows by the definition of H and for £ = 1,3 by the standard log-con-
vexity of the || - ||oo norm of the derivatives (||F'||2, < C || F|loo||F" ||loo)-
What really has been done up to now is simply to transform all the
data to a new metric G = He.

(3.2) ec€ S(1,G), a€S(1/H* G)
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and the A has disappeared.

Our next step consists in a new localisation that will allow us
to suppose that H is constant and so be able to use the inductive
hypothesis. We consider a convering of the phase space by balls U, C U,
as in (A) for the metric G. These balls are in fact euclidean balls
centered around the points w, of radius ¢ H, /2 Where H, = Hw,)
(for appropriate constants c).

Our strategy now is simple. We shall prove the estimate (3.1)
when the e’s (e € S(1; G)) are such that supp e € U, for some fized v
and when a only depends on k variables. This will be done under the
inductive hypothesis that Iy_; holds. It is of course impossible (since
incompatible with its constancy along certain directions) to assume that
a also has supp a € U, (hence the factor e in the (ea)“ of our estimate).

There is one case that can be delt with immediately, this case is
when H, = 1. Indeed we then have (ea) € S(1; H,e) and our estimate
follows. It suffices therefore to analyse the case

(3.3) 1 < max{HZa(w,), H,|a|5(w,)} < C.
The upper bound follows from (3.2). We consider then the function
f(z) = Ha(w, +z/H}/?)

that satisfies max{|f(0)|,|f|5(0)} ~ 1 (in the sense of (3.3)). We shall
apply to that function a slight variant (in the sense that the constants in
(18.6.14) and (18.6.15) are different) of [6], Lemma 18.6.9. This allows

us to decompose
(34) f(@) = fi(z) + g*(2), [|2[<C

with the appropriate bounds on the derivatives of f; and g, and f;
depending only on k — 1 variables. To see that we actually gain one
extra direction of constancy, we have to apply, in fact, the proof of the
lemma and not just the lemma itself.

Finally we shall go back to the original symbol a and cut it off
by a function ¢ € S(1; H,e) constant along the same directions as a.
This allows us to define @ = ap € S(1/HZ; H,e) globaly. The localised
estimate that we wish to show refers to (ea)“ and not to a“ itself, so
by properly choosing ¢, we can replace a by @ on the left hand side
of (3.1) without changing anything. Therefore, since

(3.5) e€ S(1;H,e), acS(H % Hye),
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we have succeeded in reducing everything a constant conformal metric
again.

The decomposition of f in (3.4) induces then, by scalling back, a
decomposition (cf. [6], p. 175)

(3.6) a=>b+c?

such that b € S(H; %, Hye), c € S(H;'; Hye) with b only depending on
k — 1 variables, we obtain therefore by the inductive hypothesis that

(3.7) [le” (ea)”e”, e*]f[|* = ||[e“(ea)e”, e*] f||?
<C@f,H)+CIfP, fecs.

To see (3.7), together with the induction hypothesis, we have to use the

case a = c¢Z, that has already been delt with, and the Fefferman-Phong

theorem (cf. [6], Theorem 18.6.8) that guarantees that

(SN sC@fLH+CIAP
(The other estimate: (b“f, f) < C(a“f, f) + C||f||? is clear).

The estimate (3.7) is unfortunately not quite the wanted localised
estimate. Indeed, we had to cut off the symbol a, and so we end up with
@ and not a on the right hand side. (That cutting off was necessary
to make (3.5), (3.6) work). It may well be that with a cleverer way
of building up the induction I could have avoided that “misfiring”. I
propose to save the day differently. Indeed observe that the localised
estimate is only used in Section 2 (¢f. (2.11) and (2.11)") for the special
functions f = I, f. To obtain our original symbol a on the right hand
side of our estimate (3.1) it suffices therefore to be able to prove

(3.8) 1> @a—-a)isf, HI<CIfI*, feCy

where @, is the function pra = @ for the index v that was fixed just
above. To see (3.8) we choose for each v the corresponding “cutting oft”
function ¢ to be equal to 1 on some neighbourhood of supp ¢,. This
choice makes the estimate (3.8) evident. Indeed by (C), (F), 2y (a—a, )y
is then concentrated at v in S(1/h%h%;g) for all v and N > 1 (¢f. also
the considerations at the beginning of Section 2), and if we apply (E)
we obtain (3.8). Observe incidentally that we do not have to prove
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>, (% (a—a,)*is f, )] = O(|| f]|*) and that we can put the modulus
sign outside the summation. This is just as well because this stronger
estimate would need a different proof.

4. The conjugation operators.

In this section, I shall only consider 0 < a(z,§) € Sf,o a nonnegative
“classical symbol” and A = a“(z, D). I shall show that

(4.1) IAC[AT, Alf|? < CL(AS, )+ C2|IfII*,  feC

for appropriate Cy,Cy > 0 and A = (1 + A)!/2. We shall see that this
follows easily from the results of sections 2 and 3.

The first step consists in a localisation of A at £ ~ 2% k=1,2,...
This is done as usual by a partition of unity of the form

L=yg5(6) + ) ¥°(277¢), EeR"

i1

where 9, 1¢ € C§° and

1
(4.2) supp ¥ C {E: 0 < €] < 10}
If we denote by wo = g, pr(-) = »(27*%.), Ax = (Apr)* we have
(4.3) A= ot Avyt = af +a

where a; € 511,0 takes pure imaginary values and a; € S?,o (cf. [6],
bottom of p. 174). Inserting (4.3) in our commutators we obtain

IACAT, AIFI* < D IACTA™®, @R AeRI I + C NI 12
k

= leR A AT, Akl FIP + CullfIIP . FeCEe.
k

It follows therefore that it suffices to prove (4.1) for the localised sym-
bols Ai. Indeed if that localised estimate is known to hold we obtain
that

IA“A= AJFI? < C S (Aref £08 )+ C S Nl 113 + ClIFIIS
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when f € C§°, which because of (4.3) gives the global result.
We shall suppose from now onwards that a is localised as above at
£ ~ 2k = ¢, for some fixed kg = 1,2,... Let us decompose then

A" =R+ Ra, A= (n(OQ+1ER)2)”

where ¥;(£) = ¥(27%0¢) and where 3 satisfies (4.2) and is such that
%y is equal to 1 on some neighbourhood of supp a (this last statement
should be clear but it is abusive since a depends on ¢ and on z).

We shall insert this decomposition in A*[A™% A]. This will give
rise to four different terms that have to be delt separately. For the first
term we observe that (in terms of S(m, ¢) notations) we have

AE* € OPS(6F% 90), a € S(€2;90)
(uniformly in ko) where go = dz? + €52de?, so it follows that
A[AT Al = (& *AY)[(EFA™), A]

where £Z*AF> € §(1, go). This reduces the estimate to the correspond-
ing result on [E, A] examined in Section 3.
The other terms are very easy to estimate. Indeed

supp a N supp (symb A,) =0,

it follows therefore that the operators Ay A, AA, € Sios (n 2 0) for
arbitrary n (by (C) among other things). Our estimate (4.1) is thus
established.

5. The imaginary powers and the holomorphicity.

The operator A that we shall consider in this section is A =
a“(z,D)+ Ao with 0 < a(z,§) € S'f,o and Ao some appropriately large
constant for A to be a positive Hilbert space operator. It follows from
Section 4 that

(5.1) I(4 = A= AA) fl| L2 < C | A2 f]

provided that ) is large enough to ensure that || f||z2 < C||AY2f]|:.
In fact in what follows I shall maintain the convention that was adopted
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in [1] and drop the A¢ > 0 altogether from all the formulas. (The con-
vention is that this A is tacitly always there, and that it is large enough
without necessarily appearing explicitely). An immediate consequence
of the above estimate is that

(5.2) le 4 — A=%e A |22 = O(t/2)  (ast — 0).

This was shown in [1] Section 3 and I shall not repeat the argument
here since anyway these type of estimates will be examined in details
in sections 6 and 7 below. I also wish to stress that from here onwards
all the O(t*) notations that will appear refer to t — 0 and that the
“t — 0” will usually be dropped. From (5.2) the boundedness of A*
on H, (s,a € R) follows as in [1, Section 3]. When A is a differential
operator we can deduce from this the boundedness of

(5.3) A*:H? — H?:; s€R, 1<p<oo,

H? = {f: A°f € L?}. This is proved by interpolating the information
between (a = 0, p = pg) and (a = ag, p = 2). Once we have (5.1) all
these facts extend to general A and the proofs of [1], Section 3 work
in this general setting. In [1], Section 3 I also gave two distinct proofs
of the holomorphicity of the action of e7*4 on the spaces H,. The
first works under very general conditions and does not use our basic
estimate (5.1). The second used the action (5.3) of A*® on H,. It turns
out that if we make essential use of (5.1) we can give a direct proof of
the fact that the operator (1 + i£)A, (£ € R) is semibounded on each
Hilbert space H,, or equivalently that

(5.4) Re (1+i€)(A™*AAf, f) > =C|fl|}- -
Indeed the left hand side of (5.4) can be rewritten
(Af,f) +Re (1 +£)((AT*AA® — A)f, f)
and because of (5.1) we can bound the second term by
Ci (L+IEN 1A AL
It is therefore only a matter of choosing the C' on the right hand side

of (5.4) large enough. In fact the first proof of the holomorphicity of
e~ " (the one that does not use at all our main estimate (5.1)) will also
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give the above semiboundedness. Indeed if we do that proof with care
it will show that

(5.5) le™ Al sramr, < M1, JArg 2| < 6

with any 0 < § < 7/2 and A > 0 (depending on « and #) and this is
equivalent to (5.4), (¢f. [7]). The fact that we have (5.5) rather that
the coarser estimate Me*I?| is of course not of great consequence. For
differential operators the corresponding estimate (i.e. M = 1) for the
H? — H? norm also holds. This is seen by standard interpolation since
it is well known that the semigroup e~*4 is symmetric submarkovian
and therefore He"tAHLp_.Lp <1,(1<p <o)

6. The square root A!/2,

In this section I shall draw the first consequences of the two esti-
mates that have been established in sections 1 to 4:

(6.1) [I[4,Elfllx <CIAYV?flx , ll(ex —c)Afllx < CIIAY2f|Ix

when f € C§°. Here A € 57, is as in Section 5, cx(T) = A*TA™ is
the conjugation operator applied to any operator T' and X = L%. We
shall also denote || - || = || - || x . This section relies very heavily on the
methods, ideas and even notations of [1] and it would be unrealistic for
the reader to try to read it without being familiar with [1].

The first consequence of (6.1) that I shall draw is

(62) A% Elflx <Clfllx , ll(ex—c)AY?fllx < Clifllx

when f € C§°. For the proof I shall use the scale X, = {f : A%/%2f ¢
X}, (e € R). The norms || - || and || - ||a—pg Will refer to that scale. To
prove (6.2) I shall start by proving

(63) ™ Ellla—s, ll(ex = ca)e™ Alams = O (#/2+@=912)

where a €]—1,1], 8 € [0,2[. Once we have established (6.3) the estimate
(6.2) will follow automatically by the machinery of [1]. Indeed it would
then follow from (6.3), by the real interpolation method of [1] Section
1, that

(6.4) 1A% Ellla—s < C,
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a—p

for @ €] —1,1[, B €]0,2[, —Reo + % +

estimate for (cx — ¢, )A% would also follow), so in particular we obtain

= 0 (the analogous

1
(6.4)" ||I[A7, E]l|la—as ll(cx = cu)A%||ama < C, Reo = 5 @ €]0,1].

By duality it follows that (6.4)" also holds for a €] — 1,0[ and thus, by
interpolation, (6.4)" also holds for a €] — 1,1[. Our required estimate
(6.2) is the case a = 0 of (6.4). What follows from the above is, in
fact, the stronger estimate where in (6.2) we replace A1/% by Al/2+is
(s €R).

The proof of the basic estimates (6.3) can in fact be found in sec-
tions 4 and 5 of [1]. One simply has to run through the proof and
observe that in the range o €] — 1,1], 8 € [0,2] the proof given there
works under the assumption (6.1). For the convenience of the reader I
shall recall the main points of the proof and I shall start with the eas-
iest of the two estimates (which already contains the main idea). For
a, B,7 € R we have

e Ellla—s

(6.5) PP .
S/O le™ DAy 1—glI[E, Allly—y—1lle™*[lamv ds

To be able to exploit the above factorization we must have
yE€la,a+2[, Bely—1,v+1].

For the middle term we will use the following estimate

(66) B, Allmy-1 SC, (1= cx)Allyye1 SC, 7€ [0,1].

Indeed the case v = 1 of (6.6) is our hypothesis, the case v = 0 is the
dual statement and the values in between are obtained by interpolation.
In fact in (6.5) we can just set 4 = 1 (which is our hypothesis) and a €
| —1,1},8 € [0,2[ the integral in (6.4) gives then the required estimate
as in Section 4 of [1]. The proof for ¢y — ¢, is more involved and is
essentially contained in [1], Section 5. First for all by taking differences
it is enough to consider the case y = 0. Let us then use the notations
of [1], Section 5 and set

pt)=(1—cr)e ™ =e A —R,.
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I shall ignore the refinements of Section 5 in [1] and simply show that
(6.7) le(®lla—a = OF7?), a€[0,1].
This will suffice to give us the estimate
(6.8) IRellama = llex(e ™) ]lama = O(1), @ €[0,1].
Once we have (6.8), we shall use the formula
t

(6.9) o(t) = [ eI - cr)A)R, ds

0
and the factorisation

t
le(®lla—p < A le™ "9 am1—ll(1 = ex)Alla—a—1|Rslla—a ds

which together with (6.8) and (6.6) establishes (6.3) for @ € [0,1],
B € [0,1]. From this by the same method as before we finish the proof

of (6.2). To establish (6.7) we use the same integral inequality as in
Section 5 of [1]. We rewrite (6.9)

t
(1) =/ e (mIA(L - ex)Ap(s)ds + I(t),
0
t
I(t) = / e~ (=941 — ¢))Ae™*4ds
0
and start by estimating

H(t)lama = O(?), a€0,1].

This is done ezactly as for [E,e~*4] (with @ = 3). The next step is to
fix some f € C§° in the unit ball of X, and set 1(t) = ||p(t)f||a- The
function (t) > 0 is such that %(t) — 0 (as t — 0) and satisfies the
integral inequality

t
b()y<ciyc / le™ 9ot —all(1 = ) Alla—a1%(s) ds
0

so that we have

i
Y(t) < Ct/? +C/ w(t—s)s'/?ds, ael0,1].
0



SEMIGROUP COMMUTATORS UNDER DIFFERENCES, 11 25

This clearly implies the required estimate (6.7) just as in Section 5 of
(1].

At this stage the scale X, will be abandoned for good and the only
information that will ve retained is at the level @ = 0, i.e. on the
Hilbert space X = L? itself. This is exactly what was done in Section 6
of [1]. The scale we shall use from now onwards is the classical Sobolev
scale

Ho={f: A“feL?}

and from here onwards right through the next section the norms || - ||«
and || - ||a—pg will refer to that scale. Let us use the same notation as
in Section 6 of [1] and set B = A® = (1 + A)*/2, (s € R). Then the
estimate (6.1) of [1]

(6.10)  C|lA7flix <|BA°B7 flx <C||A°flx, feC5,

holds for ¢ = 1 and Re ¢ = 1/2. The proof of this fact that we gave
in Section 6 of [1] works because of (6.1) and (6.2). From (6.10) we
deduce just as in Section 6 of [1] that

I[A, E]flla < C A2 £l

6.11
(®11 I(ex — cu)Aflla < C A2 £l

when f € C§°. We have thus generalised the estimate (6.1) to all the
classical Sobolev norms. More generally just as in Section 6 of [1] we
can deduce from (6.2), (6.10) and (6.11) that

15" A7S™ fllm < C A% fllp

(612) n o gn n o—
15™ (47, 572]S™ fllm < C | A77Y2 ],

with 0 = 1 or Re ¢ = 1/2 and p = m + }_n; and with $™ € OPST,
arbitrary pseudodifferential operators.

To illustrate (6.12) let us denote by Q; = eita’? (t € R which is
a group). We have then

Qi —ex(Q) = c / Quo(1 — cx)A2e5(Q,)dt

using then the same argument as in the beginning of this section and
the fact ||(1 — cA)AY/?||q—a < C (which is but a special case of (6.12))
we obtain that

1Q: — ex(Q¢)l|L2—~r2 = O([H])-
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This in particular proves our last assertion in Section 0.1.

7. Commutators with F.

I strongly urge the reader (to help him get the idea) to read first
the part of this paragraph that starts soon after relation (7.2) where
two special cases are considered.

All the norms || ||o and || - ||o—p refer to the classical Sobolev scale
Ho = {f: A®f € L?}. The operator A is as in Section 6 and will be
assumed subelliptic so that there exists é € [0, 1] such that

I flli-s < C||AM2f||, feCge.

The letter 6 will be reserved throughout to indicate that parameter.
We shall indicate multiple commutators throughout with the usual
notation

[X,Ey,....Ex] =[..[X,E\ Ea,...], E]

with E, Fy,... € OPS{’,0 and, as before, the same letter E will be
reserved to indicate arbitrary O PSY] , which are not necessarily identical
in different places. I shall also need the specific notation

p0)=0, (=3, p)=p@)==1.

The following assertions (Pj) will be proved in this section inductively
onk=0,1,2,....

Assertions (Py):

(P]{;) ||[e_ZA,E1,E2, o ,Ek]Ha—>ﬂ =0 (lzlk/2+(a—ﬂ)/2(l—6))
™ k O(—ﬂ

y — -4+ —— < (k).

where |Argz|<4, a,p €R, 2+2(1—6)_(P()

(Fg') 14" |la—a1 <C, @ €R.

(P NAY% E1, Ea, ... E]lla—atk-1y1-6) < C, k>1,a€R.
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Two more conditions will be considered in the induction (z always lies
in the sector |Arg z| < 7/4)

I[AY2e™*4, By, Es, ..., Ek]||a—p

(PIII
k -0 (lzlk/2+(a—ﬁ)/2(1—6)—1/2)
k a—f 1 k a—pf
- —F - o —" < )
where 2+2(1—6)<2’ 2+2(1—6)_('9(k)

(PIEiV)) I|A1/2[6_ZA,E],. - ,Ek]”a-—»ﬂ -0 (|z|k/2+(a—ﬂ)/2(1—6)—1/2)

k a—p 1 k a—f
Sy P o 2y S P ¢ .
where 2+2(1—6)<2’ 2+2(1—6)_('9(k)

A few more obvious remarks are in order. (Pj), (P,') are contained
in [1] and (8]. (P/') is just our estimate (6.2). Also for &k = 0 the
two statements (Py") and (_Pé'v)) are identical and are automatic con-
sequences of the holomorphicity of the action of e7*4 on the Sobolev
spaces H,. Furthermore observe that for any £ > 1 the statements

(P}') in conjunction with the statements (P;"), j < k, implies (P,Eiv)).
Graphically

(PY@® (P"), 0<j<k implies (P’").

This is only a matter of developping out the commutator in (P"’).
The next observation is less obvious and says that for £k = 2,3,...

(P,) implies (P}).

In fact something more general holds: for k¥ > 2 under the assumption
that (P;) holds (only needed for z =t > 0) we have

(71) “[Aa, E],Ez, s aEk]||a—>a+k(l—6)—2Re o(1-6) < C

for all @ € R and Re o < 1. This follows from our interpolation theorem
of Section 1 in [1] applied to the scale H, and

®(t)=[e ", E1,Ea,...,E) =[e""* —~I,E1,E,, ..., Ey].
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So that for Re 0 < 1, Re o # 0, we have
[A°,Ey,...,Ex] = c/ t=7719(t)dt.
0

Indeed for 8 = a + k(1 — 6) — 2Re (1 — §) we have k/2 + (a —
B)/2(1—6) = Reo < 1, and that last strict inequality gives us the
“room” that we need to play, for the interpolation of Section 1 in [1].
The case Re 0 = 0 of (7.1) has to be delt separately but it can be de-
duced from Re o # 0 by complex interpolation (applied to an analytic
family of operators).

I shall finally show that for £k =1,2,...

(Py) implies (P}").
The proof relies on the fact that the function
F(z)= [e—zA,El,Ez,...,Ek], |Arg z| < %

is an operator valued holomorphic fuction. It follows therefore from

Cauchy’s Theorem and (Py) that

-0 (Izlk/2+(a—ﬁ)/2(1—6)—l)

a—f

d
“ [ZZ_C_ZA,EI,. . ,Ek]

when k/2 + (a — 3)/2(1 — 6) < ¢(k). On the other hand we have

[A1/2€_ZA, El,. .. ,Ek] = / 5—1/2d_[6—(s+z)A’ El, ceey Ek]dS
0

ds
and therefore
J[A2e=A By ... Ei][lap
< C/oo sTU/2|s 4 z|F/2H(e=B)/201-6)-1 4
-0 (Tzlk/2+(a—ﬂ)/2(1—a)-l/z)
Provided that we have k/2+(a—f)/2(1 — é) < 1/2 (the strict inequal-

ity (less than 1/2) is needed to give uniform bounds at infinity. I do
not know if this inequality has to be strict or whether it can be relaxed
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to less than or equal to 1/2. But on the other hand this will be of no
consequence at this point).

The upshot of all the above considerations is that in the proof of
the inductive step of Py it suffices simply to prove the step

(7.2) (P_;) implies (Py)

and in the proof of that step (7.2) I am allowed to use all the information
contained in (P;)o<j<k—1-

To simplify notations from here onwards I shall drop the complex
variable z (|Arg z| < m/2—¢¢) and consider only z = ¢t > 0. The proofs
are identical for complex z. I also urge the reader at this point to study
Section 4 of [1] since otherwise he will find it difficult to understand the
considerations that follow. Let us first consider simple commutators.
We have

e, Ellla—g

t
S/O le™ =442 0 gl| A 2B, Allla—alle™*4[la—ads

t
+/ e =4 s gl|[E, A]A™2|| g p]| A 2e=CH) 4| _sds .
0

The two middle “factors” inside the integrals are adjoined of each other
and are bounded (c¢f. (6.11)). The other terms can be estimated by
the results of [8] and the holomorphicity of the semigroup e~*4 on H,.
Putting everything together we obtain

[, Bla—sp = O (#/24(=P1070) , f 2 a.

At this stage I could embark in the proof of the general inductive
step (7.2). What is involved there however hides the main idea of the
proof. To help the reader understand what is going on, I propose to
prove “ad hoc” (P;) (¢.e. k = 2), and then perform the general inductive
step. In fact if the reader is a “believer” he could skip in a fist reading
the proof of that general inductive step. Let us examine commutators
of order 2 where we shall expand [e~2!4) E, E] into six integrals as in
Section 4 of [1]

/: 6"A[A,E,E,]€”A , /[e"A,E][A,E]e"A ,

(7.3)
/e"A[A,E][e"A,E] .
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The “.” on e at the two ends of the integrals indicate the two
combinations —(2t —s) and —s or —(t—s) and —(s+t) and they will be
needed to perform the jump a — (3 at one end or the other. The above
integrals give corresponding “factorisations” of the ||[e™'4, E, E]||a—g
norm and will be delt one at a time. For the first we proceed as follows

t
/ e~ 4 arpll - lamalle ™**lama
0
t
—(t— —(t+s)A
/0 e 4 spll - ls—slle™ D4 amp

and since [A4,E,E,] € OPS},, its || - ||y~ norm is bounded and the

contribution of both of these two integrals is O (¢!F(2=A)/2(1=8)) for
B > a (the results of [8] have to be used again).
The second integral in (7.3) gives rise to the factorisation

/||[f"A,E]||~1~ﬂ||[A,E]A‘mI|v—w||A1/2e“A|la~v

where the v is either a or # depending on the combination that we have
adopted, {—(2t — s)A; —sA} or {—(t —s)A; —(t + s)A} of {..;..}. The
norm ||[4, E]A~1/2||,_. is bounded by (6.11), and using our previous
result on the simple commutator [¢~!4, E], we obtain again the contri-
bution O (#1+(@=#)/2(1=8)) (observe that there is a “loss” of 1/2 at one

end, A/%e4 but a “gain” of 1/2 at the other end, [e4, E].
The final integral in (7.3) is of course dual to the one we just
considered. We put everything together and we conclude therefore that

”[C_tA, E,E]”a—-vﬁ -0 (t1+(a—3)/2(1—5))

for § > a. This is our statement (Py').
To work out the proof of the general inductive step (7.2) we shall
introduce the following

Ky(t)=[e " Ey,...,E], k=0,1,..., t>0

and use the analogue of our previous formulas to decompose K(t) into
a number of integrals of the form

t
(7.4) Ip,q,:/ K,(.)A By, ..., EK.(..)ds
0
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where ¢ > 1, p + ¢ + r = k and where the combination “..,..” at the
two ends of the integral is as before either 2t — s,s or t — s5,t + 5. We
shall assume that (P;);<x—1 holds and we shall distinguishes two cases
in (7.4).

Case (i): ¢ > 2. Let

(7.5) | a=-’25+§%__—[2)5¢(k)=1

since we may suppose that k¥ > 2. I shall introduce o', 3’ € R such that

r a—a P B - B
. -4 272 < _P, PP
(7.6) = 2+2(1_5)_99(7‘), y 2+2(1_6)_<P(p),
g, o-p
== < =
(7.7) B' <a'4+qg—2 or equivalently Z:gggz

The compatibility of the above conditions will be examined shortly. It
is then possible to estimate

t
1p.q,rlle—p 5/0 1B (Ollgr—sll - Nlor—p 1 ()l e ds

where the middle term is bounded (because of (7.7)) and for the other
two terms we can use the inductive hypothesis. It is necessary in the
above to make sure that the integral converges at the two ends. Only
one of the two ends will be a problem, and which one of the two ends
will give trouble depends on the choice of combination “..;..”. To ensure
the convergence of the integral we must impose therefore the additional
condition

(7.8) z > —1 (respectively, y > —1)
(the “respectively” refers of course to the choice of “..;..”).

Assuming that the conditions (7.6), (7.7) and (7.8) are verified, we
obtain then that (c¢f. (7.5))

1Ip.grlla—p = O (+FY) = O (£*7¥F2) = O (¢%)
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provided that z < 1, which proves the statement (P;). To prove the
compatibility of our conditions observe that it suffices to find z,y € R
such that

2—¢gé
< z<
595 =51

z<o(r), y<ep)),
—1 <z, (respectively, —1<y).

1'+y+2261317

For indeed o', #' can then be determined to satisfy the three equations
(7.6) (since p+q+r =k).

The above conditions on (z,y, z) are clearly compatible. It suffices
to set

z=1 and (z,y)=(0,a—1) (respectively (a —1,0)).

Case (i1): ¢ = 1. We shall also assume without loss of generality
that p > 2. Indeed one of the two p or r is larger than or equal to 2,
since k > 3, and we can pass from one to the other by considering the
adjoint operator. We proceed then as follows

t
11p,q,rlla—s S/O 1K () lla—p T4, EJATY 2]l [ A2 K () | amnds

with the same meaning to the notation “..;..”. We shall choose the
~v € R so that

1
3:=£+ T <ep(r), <z,
2 2( ) 2
(7.9) _p, B=n
fy -7 < V=1
and
(7.10) —1 <z (respectively, —1 < y),

with the same meaning as before for the “respectively” (it depends on
the choice of “..;..” which is necessary to make the integral converge).
When (7.9) and (7.10) are verified we can integrate and we obtain the
required inductive step

p.grllamp =0 (t’”“"y‘l/?“) -0 (tk/2+(a—ﬁ)/2(l—6)) _
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To check the compatibility set

[NCRE

k o
m+y=§+————

1
2(1-4) 2 =Pk~

It is enough to choose z,y € R so that
1
:c<§, z<(r), y=a—z<1

and also
—1 <z (respectively, —1 < y)

for then v € R can be determined to satisfy (7.9).
The compatibility of the above z,y conditions is clear, indeed it
suffices to set © = 0 (respectively r = 0if a € [0,1/2] or z = a if a < 0).
In the following proposition we collect together some important
information obtained up to now.

Proposition. Let 0 € C with Re 0 <0, a € R, k =0,1,... Then for
commutators of length k we have

A%, E,E,...,Elllamatk(1—6)—2Re o(1—6) < C.

The proof was given in (7.1) for k > 2 and Re ¢ < 1. It is very easy
to see that the same proof works for k =1, Re 0 < 1/2 and Re 0 < 0,
k = 0. For Re 0 = 0, k = 0 the Proposition holds by (5.3). Observe
finally that the above estimate also holds for Re o = 1/2, k = 1 (¢f.
(6.12), and the remark a couple of lines after (6.4)) but we shall have
no use of the cases Re o > 0 in what follows.

8. General commutators and the classes S;’?a .

In this section A will denote a general linear operator 4 : C§° — D'
(to avoid necessary complications I shall also suppose, when necessary,
that A is “compactly supported” in the sense that there exists some
compact set I\ such that A(p) = 0if supp ¢ N K =0 and A(p) =0
outside I\, Vi € C§°). I shall denote as usual by E € S?,o and also by

ax =a=[AE,E,. .. El=]|.[AE),E],...]
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where k is the length of the commutators. The E’s are as usual E €
OPS) ; not necessarily all the same.
Our standing hypothesis in this section will be that

(8.1) llakl|la—a+sk—m < C, a€R, k=0,1,...

for some fixed 0 < § < 1, m € R. |- || and || - ||o—p refer to the
standard Sobolev norms.

To present the arguments in this section it is necessary to establish
a good set of notations. The basis of our reasoning is the classical
decomposition of unity

(82) 1=) #;(€), %o€Cs, o;(6)=pN(277¢), (eR™
j=1

for some ¢ € C§° with supp ¥ C {£: 1/10 < |{] < 10} and where the
power N will be important because it will allow us to decompose the
corresponding components into arbitrarily many factors. The N > 1
.will be chosen at the beginning and appropriately large. The partition
(8.2) will be used to decompose

(8.3) A* =% "2%E; + E .
i>1

In (8.3) and in what follows, I shall reserve throughout the notation
E; e S?,o for operators indexed by 5 > 1 that will satisfy several prop-
erties which will be enumerated below. It is important to understand
that although all the E;’s have these properties they are not in general
identical when they appear in different places. This notational conven-
tion gives us great flexibility in the arguments. Observe finally that E,
that comes from 1)y is special, and will often enough be ignored since
it never causes any trouble. All the properties below will be satisfied
uniformly in the indices when the case arises.

(i) Ej=¢;(D), suppe; C{¢: 27/K < [¢| < K27}
(the K > 1 can vary from place to place but does not depend on j).
(i) 2%E;¢€ St s
I shall also adopte the notation A; = 27,5 >0.
(iii) > 0jAFE; € S for arbitrary (o;)j>0 € [*°.
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This is an automatic consequence of (i) and (ii) and it implies that

(8.4) 1> 02 Eillgtasp <C, a,fER

(iv) Each e; and therefore each E; can be factored into as many
e;’s (respectively E;’s) as we need E; = E;E; ... E;.

This simply come from the large exponent N in (8.2).
(v) For arbitrary (o) € I°° and a, € R we have

(8.5) 1D oiXEifil SCY Nillars, fi€Co.

Indeed let F' = Y 0, \YE;f;, p; = A*tB f; we have APF =3 0,E;p;
(the new E; is of course different!) It suffices therefore to prove our
assertion for « = 3 = 0. But then || F|? = >k (EjEkpk, ;) and by
(i) we can estimate this by 3_ ||Eje;||?. This gives our assertion.

(vi) Using the fact that E; = E? (for a different E;!) we can
deduce from (8.5) (simply set f; = E;f) that

(8.6) 1Y oA Eifllf <C D NE i Flliss-
We also have
(8.7) S ONNEFIE < ClFlloss -

To see this, we set F, = ) 0;AYE;f so that [|[Fy|lg < C| flla+s, uni-
formly in o, by (8.4). If we take expectations over o; = %1, (8.7)
follows.

At this point let me recall that for +1 centered independent random
variables (;,&;,n;,... and h; j k... € X (=some Hilbert space) we have

yeon

(8.8) E| Y (GEimi ik ~ D ik, -

This is standard. (What is slightly less standard is that we have the
one sided inequalities for X = LP(Q2), 1 < p < 2. We have to make
essential use of this refinement if we want to develop the LP-theory of
these operators).
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The following terminology will now be used. We shall say that
T :C§° — D' is of smoothing order < n € R (or simply “is of order n”
if no confusion arises) if

(89) ITfllo < Clifllatn, a€R.

In this terminology our operators ay = [A,E,E,... E], k > 0 are of
order ord(ax) = m — ké. Clearly when T is of order n so is its adjoined
T*. We have then

(vii) Let ay =[A,E,E,..., E] be as above. Then for every fixed
g € R the following two operators (adjoined of each other)

(8.10) > ME[E;,...,Eja], Y M[E;,...,E;dE;
J J

are of order m + ¢ — (p + n)é. Here n is the number of E;’s inside the

brackets of (8.10).

Indeed from the above observations it follows that it suffices to
consider the first operator and from (8.6) it follows that it suffices to
prove that for all n and « we have

(8.11) > B Ejy- -, Ejyap) flla < ClFI2 g e (ntp)s
J

when f € C5° ,a € R, p =0,1,.... Here n indicates, as before, the
number of E;’s inside the bracket. To prove this estimate we consider

EC=ZC,~E,‘, EE=Z§1‘E,',...€S?’O

where (;,€;,... are independent +1 random variables as above. Taking
expectations and using (8.8) we obtain

> WEj,Esy- -, Esny ) fla < C(Slelp I1E¢, Ee, .- -, ap)flla

J1yeeadn v
S o “f“i—(p-{-n)&-i—m

where for the second inequality we use our hypothesis (8.1). The above
estimate contains (8.11).
We now come to the main estimate of this section:
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Let a=a, =[A,E,E,...,E], (p > 0) as before and let ay,...,ax
€ R (k > 0). We shall prove that the operator

(8.12) [A® A2 ... A®* a]= B

isof order a; + -+ ax —(p+ k)6 +m.
To prove this fact, I shall partition each A* as in (8.3) (and also
I =3 E;) and I shall write

B = Z ASY NS EE,,. .., Ej, q].

1,71,k

I shall decompose the above summation into two parts. The first comes
from terms for which ¢ ~ j; ~ ... ~ ji, t.e. equal up to a fixed constant.
The contribution we obtain then is

B = Z/\Z “Ei[E;,... E;qd

3

and using (vii) we see that B’ has the correct order. In the second
summation, since the j,’s are interchangeable (all the Ei’s commute !)
we may suppose that |j; —2| > C > 1. This gives the following contri-
bution (In the argument below I make essential use of the fact that the
FE}4’s commute. On the other hand even if the F}’s did not commute we
could make this argument work by considering higher commutators)

B"= > A E;,,.. By Y Bl Y AJE;d]
(8.13) J2yadk g [7—i|>C

= [S2,Ss,..., Sk, M|

where S, € S74, r=2,...,k and

(8.14) M= %" X'EiEj,q.
li-il>C

Using the fact that each E; can be written as EJN and also the fact
that E;E; = 0 for |7 —:| > C we deduce that the general term in the
summation (8.14) can be replaced by

ANE;[E;, Ej, . .., Ej, a|E;
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with as many E;’s as we need inside the brackét. We conclude therefore
that .
M= Y AP EiE;,...,EjdE;.
li—j|>C

Summing first over : and observing that 3, .- Ei = E — E; we
deduce that N

(8158) M = E(> A'[E;,...,EjaE) + > A'Ej[E;,...,Ej,dlE;
J J

but in the second summation we can absorb the E; on the right by
introducing an eztra commutator.

Putting together (8.13), (8.14) and (8.15) we finally see that it is
a consequence of (vii) that M and thus B" have as low an order as we
like (i.e. they are infinitely regularising. Indeed it is only a matter of
taking the length of the brackets in (8.15) high enough). This proves
our assertion.

Let us now consider arbitrary S; € OPS} ‘- The final claim that
I will be made in this section concerns (always under the hypothesis
(8.1)) the smoothing order of the following commutator

(8.16) Cp,=1[4,51,...,5]=[..[4,5],5]...5)],
(8.17) Smoothing order C, < )" nj; +m — 6k.

Here of course the smoothing order is defined as in (8.9). This statement
will be proved by induction on the length p. It clearly holds for p = 0.
I shall assume it to hold up to p—1, and proceed to prove the inductive
step.

Towards that I start by factorising each S; = EA™ = A™ E and
expand the commutators (8.16). What is obtained by that expansion
is a linear combination of terms

(8.18) PIA, T, T, ..., THQ + ...

where T1,T3,...,Tj = E, Ishall then say that ord T; =¢; =0 (1 <: <
7), and T, = A’ and say ord T, = t,, (j + 1 < r < k). Furthermore
P € OPSY,,Q € OPS] .

The iﬁlportant point is that p + ¢ + > t; < Y n;. This is obvious
because in the various monomials that appear in the decomposition of
C, there is no way at all that we can increase the total order of the
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pseudodifferentials. The first term in (8.18) has therefore the required
smoothing order by the corresponding statement on (8.12) (the reader
has to make here the distinction between the smoothing order and the
order of a pseudodifferential).

It remains to examine the remainder terms “...” in (8.18). These
are the terms for which the “principal commutator” has length p' < p,
and they look like

P[A,S},...,5,1Q

with p' < p. It should be clear what is ment by “principal commuta-
tor”: it is the commutator that contain A. All the other commutators
contract to P and () which are ordinary pseudodifferential operators.
We have again 3 ord S} + ord P + ord @ < ) n;. But more can in
fact be asserted, we have

(8.19) Yord S; +ord P +ord @ +(p—p') < 3Xons.

After a moment reflexion the reason for this should be clear. Indeed if
we have decreased the length of the “principal commutators”, say, be
one unit, this is because somewhere in the product we have bracketed
two S’s, [S}, Sk]. But this bracket makes us gain one unit in the total
order (I mean here the order in the sense of pseudodifferential calculus)
and so on.

From (8.19) it follows that the inductive step applies. Indeed in
the conclusion (8.17) we gain p — p' and lose —6(p —p') and since § <1
the inductive hypothesis gives us, if anything, a stroger estimate. This
completes the proof. '

If we put together everything that was done in this section we see
that we can reduce our criterion at the beginning of Section 0.2 to the
Beals criterion [3]. Since A is assumed to be “compactly supported”
we can, in fact, use the form of the Beals criterion given in [5], Chapter
I11.

The assertion (0.4) follows by the same criterion and the estimates
(Pr) of Section 7; the proof is therefore, if anything, easier. The as-
sertion (0.5) also follows from the criterion of Section 0.2. To see this
let us call CJ*, (m,p € R) the class of operators T as in (0.2) that
satisfy the condition (0.2). It is then a formal verification to see that

T, € C”,Tl.“, (¢ = 1,2) implies that T1'T, € CrTi‘Ij{'Z:zm}. If we combine

therefore our result A* € C?_;, (s € R) of Section 6, together with the
fact A" € S3% CCI" (n=1,2...), we deduce that A” €C)_ s for

Reoc=0,1,2,.... Complex interpolation gives then that A% € C2R¢ 7

(Re ¢ >0, 0 <6 <1). Our criterion does the rest.
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9. An application of a theorem of R. Beals.

We shall place ourselves here in the context of Theorem 5.4 of [3]
(¢f. also [4], [9] for the general setup). We set P = p“(z,D) with p €
S;‘:h g 2 polyhomogeneous symbol (¢f. Definition 18.1.5 in Hérmander,
vol. IIT). More general symbols in S}, m = 2,3. .. can also be treated
but we shall restrict ourselves to m = 2 for simplicity.

Following Beals we must impose on the principal symbol p, the
same conditions as in [3] (e.g. pm(z,§) belongs to the sector |Arg z| <
/2 — €g or the even less restrictive condition [3]) and also that P is
subelliptic with a loss of 1 derivative, i.e. that

(9-1) [ully < C([|1Pull +lull), ueCg®

for the usual Sobolev norms || - ||o and || - || = || - |[o. We shall suppose
also that the complex powers P?, (¢ € C) can be defined by say, a
ray of minimal growth (¢f. [9], p. 153). For simplicity we shall in fact
assume here that the symbol of P is p(z,{) + Ao with some large Ao
and p(z,€) > 0 and then all the above conditions are verified.

I shall show in this section how the results of R. Beals in [3], [4]
and [9] imply our basic estimate (0.1) very easily and in full generality,
for A = P as above.

To do this we introduce the (¢, ®) functions of p. 56 in [3] (with
m = 1) and consider the corresponding metric

s Wl _ 2, _Inl* \ _
gl,f(yan) - (‘92(1,’&-) + @2(:1:’6) =m (Iyl + 1+ |£|2> - mgO(y,T/)

(¢f. [10], Example 3, p. 378) with m = (£)2®~2(z,£) > 1 and the
uncertainty parameter h = (p®)™' = (£)(|p2| + (£))™' < 1. What
counts of course is that the symbol of P lies in the class S(®2;g) (This
is proved in [3] and here I swich freely from Beals to Hormander’s
notations).

The additional observation that we need is the fact that ()™ €
O(®, ¢) (with the notations of [3] and [9]) since R = &/ = (£), in other
words (£)™ is an admissible weight function (in Hormander’s terminol-
ogy [6], sections 18.4 and 18.5 for the classes S(m; g)) for the metric g.
This will allow us to exploit the “mixed symbolic” calculus

S(miig1) x S(ma;92) —  S(mima;g1 + g2)
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of Theorem [6], 18.5.5 and make a gain on the “order” of the commu-
tators. Le us be more explicit. We shall apply this Theorem 18.5.5
with
g1+ 92
G1=90, 92=9¢, —5 g

my; = ({)™, (m € R) and m; any weight function of g. As we just
saw both m;, m, are then continuous ¢ — (g1 + ¢2)/2 temperate weight
functions. As for the condition [6], (18.5.13) on g1, g, it is guarantied
here by [6], Proposition 18.5.7, which also gives us that

H = (hihe)'/? = (|p2| + (€))%,

The application of Beals theory ([3], [4], ¢f. Appendix at the end of the
paper) gives then that for all o € C we have

P? =g%(z,D), 4o € S((Ip2] + (€)% 7;9).
From this and [6], Theorem 18.5.5 we deduce that
[P?,5] = a“(2,D), a€S(()"(Ipz| + (€))7 77125 9)
for any S € OPST,. The application of [6], Theorem 18.5.5 can clearly
be iterated and we obtain
(9.2) Sol-.-[P?,51]...]Sk|Sk+1 = b“(z, D),
be S(E)2™ (Ipa] + () 7~/% )

for arbitrary pseudodifferentials S; € OPSTY, (0 < j < k+1).
To obtain our basic estimate (0.1) from (9.2) we must find a way
to prove that

(9:3) WAL= Wfllez + A" P™ fllzz . f € Co°

is an “admissible norm” (in the sense of [4]) for the space H((£)"(|p2|+
(€)™ 9), (n,m € R), (with Beals notations in [4]). That this is the case
for n = 0 is proved in Beals [3], [4] and the key to that is Theorem 3.7 of
[4] (one easily sees that the same argument givesn € R, m =1,2,...).

No doubt one can generalise Beals theory to obtain the above more
general result for arbitrary n,m € R. This will not be necessary here
however. Indeed from (9.2) and the above results of Beals we certainly
have the special case (since then n = ) n; = 0)

(9.4) IL1L2 ... Le(P7)f|lx < C||PRe7*2f) %,
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k=0,1,..., f € C5°, where I denote by L, ( =1,...,k)
L;(T)=[E,T], or(cx—cu)(T)

with E € 5 ; as usual, and cx(T) = A"*TA*, X = L? (T indicates an
arbitrary operator). At this stage we have to go back to Section 6 of
[1] where it was shown that (9.4) implies our estimate (0.1). (This was
done in Section 6 of [1] only for k£ = 2 but the proof is clearly general.
Observe also that this is essentially the same argument that is used at
the end of Section 8 to deal with the general commutator (8.16). The
reader should have no difficulty to adapt the argument here). Our proof
is complete.

10. The generalisation of the geometric theorem.

This section relies very heavily on the methods, ideas and notations
of sections 7,8 and 9 of [1]. What I shall do is to use the results of
the previous section to give the generalisation of the main geometric
Theorem of [1], Section 0 as was promised in Section 0.1.

Let M = a“(z,D) + A with 0 < a(z,€) € 57, and large Ao >0
satisfying the conditions of Section 9, and let L = 3 X7X; a subel-
liptic Hérmander operator or more generally an operator of the form
L=73%X:X;+ A% (0 <o <2) where 37 X7X; is again assumed to
be subelliptic. These operators were denoted by L = 2 Y'Y in [1],
Section 9, and the Y’s that we shall consider below are the Y’s defined
there. We shall further assume that the two operators L, M satisfy the
subellipticity estimates of [1], Section 7,

(10.1) [|flli-s S CUI+ L) fllx s [ flh-a < C (T +M)2f||x .

Our conditions on M imply that d < 1/2. We shall also assume that
d+ 6 <1 and we shall extend our Proposition in Section 7 of [1] in the
present setting. More specifically we shall prove [1], equality (7.2)

(I + L)/2e™™(I + L)"i/?||q_p = O (t(rx—ﬂ)/2(1—d)>  B>a,

for the above operators L and M. The norms || - ||« , || - ||a—pg refer
throughout to the classical Sobolev norms H,. The proof of [1], (7.2),
that I shall give below is very close in spirit to the proof given in [1],
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Section 7. Indeed it is in some sense dual to the proof there. Once
the [1], (7.2) has been generalised for our present operators we can
obtain the generalisation of the geometric theorem that was announced
in Section 0.1 exactly as in [1].

Before we start the proof of the estimate, we shall need to note an
easy algebraic identity

[, 9192 - yi]
10.2
(10.2) = Poilm Yoy s Yo()Woia1) -+ Yoiky » k=1
ij
for arbitrary indeterminates m; yi,...,yx and p,; € Z, where o runs

through the permutations of 1,2,..., k. This is easily proved by induc-
tion on k.

We shall also need to introduce the following notation: for Y7,Y53,
... € 81, determined by the operator L (or rather L as in Section 9 of
[1]) and k = 0,1,... I shall denote by

Ri(t)=Y3,Y;, ... Y e M(I 4+ L)™F/2,

There are of course several Ry’s for a fixed k and they depend on the
choice of 7;,. .., 1.

Our first step is to prove by induction on k that for all # > a and
k=0,1,..., we have

(10.3) |Re(t)]|a—p = O (t(a—m/z(l—d)) .

This statement for £ = 0 is contained in [8] (¢f. also Section 3 of [1]).

Our aim is therefore to assume that (10.3) holds for 0,1,...,k and
prove it for k£ + 1. Towards that we fix (21,...,2k4+1) which to simplify
notations we shall rename 1,2,...,k+ 1. We then develop in our usual
way

e™™MY .. . Yipl=L+1,

t
= / 6_(2t—3)M[M, Yl e Yk+1]8_8MdS
0

t
+/ e UmIMIM Yy .. Yigqle (F9IM s,
0
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This together with our identity (10.2) gives us a decomposition

[e™M,Ya . Yina (I + L)~ = 37,1V + 117
J

t
he :/ e~ CUIMM Y, Y| Resry(s) ds (I + L)™/?
0

and the analogous expression with the usual switch (2t —s) — t — s,

s — t+ s for 1;2). The Y;’s in the above formula have, of course,
undergone one more renaming (they really are Y, (;)’s for an appropriate
permutation o).

We shall factor [|1{”]la—g, (8 > @) and estimate it by

t
O A el 1 S A TR A

N Resa—5(s)llds [|(T+ L) 7772

which is an in Section 7 of [1] an appropriate cascade of || - ||,—s norms,
that unfolds as follows

I+ L) |lamatsa-8) < C,
[Rk+1-5(8)latj1-8)—atici-8) = O(1),
1M~ Y latia-8)—ajs < C
for the first estimate (c¢f. [1], [8]). The second follows from our inductive
hypothesis and to see the third we use the result of Section 9 together

with the fact that each Y; € OPS] ;. To estimate the first term in the
integral (10.4) we recall that for A > 0 we have for § > «

1M e M [lap < M /2M 5 plle™/2M ||ap

(10.5) -0 (t—A+(a—ﬂ)/2(1—d))
and

le™ ™M Mlamp < lle™ M llatara-a)—sI M lama+2r(1-a)
(10.6)

-0 (tz\+(a—ﬁ)/2(l—d)>

provided that 8 > a + 2A (1 — d) (since the factor ||M~?|| is bounded
(¢f. [1], [8])). We apply this to the first factor inside the integral of
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(10.4) and distinguish two cases j = 1,2 and j > 2. In the first case
(10.5) gives us

10.7 le= =M M2 o jsp
(10.7) Y ((2t _ S)—1+j/2+(a—j6—ﬂ)/2(1—d)) .

We multiply out and integrate and obtain
(10.8) ”L_(jl)”0—>ﬁ -0 (t(j(l—d—é))/l’(l—d)+(a—ﬂ)/2(1—d)) )

If j > 2 we use the estimate (10.6) to obtain (10.7) again and we obtain
also exactly the same estimate (10.8) for I](l) as long as the ezponent of
t in O(t °*P°"*™) of (10.7) is < 0. This however is always te case since
f>aand 0<d< 1.

The integrals IJ(-2) are estimated by the analogue of the integral
(10.4) where we replace (2t — s) by (¢ —s) and s by (t + s) on the
exponentials and Ri41—j(-). The cascade of || - ||,—, norms runs now
as follows

(I + L)—j/2||a—>a+j(l—6) <C,
[Bet1-5(t + $)llatia-6)—r+ii-8) = O(1),

by the induction hypothesis provided that v = a + ¢ > a. We also
have, just as before,

| M~1+2 (M, Y, o Yl -s)—y—js < C

To estimate the first term we have to distinguish again the two cases
j =1,2 and j > 2. In the first case we have

e =IMAL I s g

(10.9) -0 ((t _ S)—1+j/2+(7—ﬂ~j6)/2(1—d))

as long as > v —jé. Then since f > a we can choose v = 3 and after
integration we obtain

(10.10) ”I]('2)||CY—‘L7 -0 <t(j(1—d—&))/2(1—d)+(a—-ﬂ)/2(l—d)) _
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In the second case j > 2 we obtain the same estimates (10.9) and
(10.10) provided that (the left inequality below is to make the integral
converge)

J y—B—jé
o B R Yo )
(10.11) j(1—d—-9) a—p8 €

+ <0.

=S aTe Traca T2ao9)

At first sight it looks as if here we are in trouble. Indeed for 1-d—6 > 0
and j > 0, (10.11) is incompatible for € > 0. But of course we can get
round that difficulty simply by assuming that 1 —d — 6 = 0. This is
no loss of generality since we can allways increase the d and ¢ in the
definition of subellipticity of L and M without altering the validity of
the conditions (10.1). In that case d + 6 = 1 the inequalities are then
always compatible for some € > 0 since by our hypothesis 8 > a.

All in all we have therefore established that, under the inductive
hypothesis, we have

(10.12) [I[e™™, Y] ... Viga)(I + L)=%+D/2)| s = 0 (t(a-f”/?(l-d))

(provided that d + 6 <1).

At this stage we shall invoque the estimate (9.1) of [1], (where the
subellipticity of )  X7X; is apparently needed). This together with
(10.12) and the (standard by now, I hope) fact that

€7 flag = O (o= P120-)

establishes the inductive step and complete the proof of (10.3) in all
generality.

We shall now finish the proof of [1], (7.2). Assume that j = 2k is
an even integer, then

(I + L)%= Z/\ LY, MEL
p<k

and our estimate [1], (7.2) for & = 3 follows from (10.3). Equivalently
what we have proved is

e Xy — X5, j=1,2,...
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with our old notation X, = {f : (1 + L)*/2f € L?}. Duality and
interpolation completes the proof of [1], (7.2) for a = S.

This is good enough for our purposes and proves the analogue of
the proposition in Section 7 of [1]. We can however also prove [1],
(7.2) in full generality 8 > a by a slightly more sophisticated variant
of complex interpolation. This was explained in Section 7 of [1].

REMARK. One of the facts that was used in [1], Section 8, is that e~*£
acts on the spaces X, (a € R). This fact when a =2n (n =1,2,...)
is a consequence of the semiboundedness of A on X5, , and this was
proved in [1], Section 10. The general fact follows then by duality and
interpolation.

Contrary to what was asserted in [1], Section 10, on the other
hand, this actual semiboundedness of A on each X, (for some appro-
priate scalar product) does not seem to follow by interpolation. This
semiboundedness is however never used anywhere else so we do not
need to prove it.

Appendix on the Beals theory.

In this appendix, using the Beals theory [3], [4] and [9], I shall
outline a proof of the fact that the norm || f|| in (9.3) with n = 0 and
m = N/2, N =1,2,...) a half integer is an admissible norm for the
space H((|p2] + (£))™;¢). This fact is explicitely proved in the papers
of Beals. The point is however, that the direct proof that I give here,
only uses the basic definitions of the Beals theory and none of the more
sophisticated machinery developed by Beals. On the other hand this
special case (n = 0, m = N/2) is all that is needed for the proof of our
basic estimate (0.1). In other words we only need (9.4) for 0 = N/2 (a
half integer) and then if we inject that information in Section 6 of [1]
we can make everything work.

The first thing to observe towards that goal is that our basic hy-
pothesis (9.1) implies that

(A1) CIP+Dfll 2 (P +ah)*fll, feC5°

for all a, @ > 0. Indeed it suffices to prove (A.1) for a = 1,2,... we
can develop then (P +aA)® and we reduce the problem to proving that

(A2) [L1Le ... Lifl| < C(P + 1)*f]]
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where L; is either A= P+TorL; € Sffo and where if s is a the number
of A’s then Y n;+s < a. For s =0 (A.2) is a consequence of (9.1) (¢f.
[8]). We can thus use induction on s. The inductive hypothesis and the
fact that [A,ST] C S{’,'gl allow us then to commute and bring all the
A’s at the beginning of the product. (A.2) is thus reduced to

ITA*fll < CllA%Fll,  feCo

with T' € S7'5°, 0 < s < a. This is clearly a consequence of [8] (set
@ = A*f).

Having proved (A.1) let us denote Py = (P+aA)" (for some large
a>0,N =1,2,...). Our problem is to show that || ]|y = (Pnf, f)'/?
is a norm for the space H(m™/?;g) where we denote by

m = p + C(£) = p2 + C(§).

For simplicity we shall suppose here that the symbol of P is nonnegative,

p(z,£) 2 0.
The proof of this fact is an easy consequence of the existence of
the following two “parametrices”

Q+ =q%(z,D), g+ € S(mEN/%g)
(A.3) Py = Q%.Q4 mod-OPS(mNh?;g),
Q_Q4+ =1 mod-OPS(h*%;g)

where s > 1 can be chosen in advance and arbitrarily large. To con-
struct these parametrices let us denote by Ry = (m™)“(z, D), (N € R)
and let us observe that by standard symbolic calculus we have

R_nj2PNR_nj2 =1 mod-OPS(h;g).
This allows us to use the binomial (14 2)'/2 =1+ 2/2+... and write
R_njoPNR_njp =Y?  mod-OPS(h%yg), Y =Y* € OP5(1;9)
with arbitrary high s > 1. Similarly we have
R_nj2Ryj2 =1 mod-OPS(h;g)

and the Neumann series 1 — z 4+ 22 — ... allows us to construct a

parametrix RN/Q € OPS(mN/%; g)

R._N/QRN/Q =1 mod-OPS(h’;g)
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with arbitrarily high s > 1. Combining these two facts we obtain
Py = Ry, Y?Ryj,  mod-OPS(mMh?;g).

It follows thus that we can set Q4 = YRN/z =q%(z,D) in (A.3).
Observe now that ¥ = 1 mod-OPS(h;g) and so R_n/2Q4+ =

R_N/zYRN/z =1 mod-OPS(h;g). The same Neumann series 1 —z+

z2—. .. allows us therefore to construct in (A.3) the required parametrix

Q- of Q.
Once we have (A.3) we can write (with s > N/2)

(Prf, f) = IQ+ £ = (T£, ),
T € OPS(m™/?h*;g) C OPS((€)"/%; ).

It follows that
(TF, DI IRAVEFIIANAS|, - R = AZYATAZYY € OPS(159).
On the other hand (with obvious notations !) we have

[fllw < ClIQR-Q4fllm + Clifllmne , f€C°

(for any arbitrary weight function 7). If we set m = m™/2 and s > 1
large enough we obtain

(A.5) £ llmnre < C (1Q+£1 + I fllcgynra) -

But clearly also
(A.6) I Fllgynrz S ANANZANE fllgyniz < C AN

since A™N/2 € OPS((£)V/?%; g). Putting together (A.4), (A.5) and (A.6)
we deduce that

[ llmnrz < Clifllv,  feCo,

which is the desired estimate.
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