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Weighted Poincaré and Sobolev
inequalities for vector fields
satisfying Hormander’s

condition and aplications

Guozhen Lu

Abstract. In this paper we mainly prove weighted Poincaré inequal-
ities for vector fields satisfying Hérmander’s condition. A crucial part
here is that we are able to get a pointwise estimate for any function over
any metric ball controlled by a fractional integral of certain maximal
function. The Sobolev type inequalities are also derived. As applica-
tions of these weighted inequalities, we will show the local regularity
of weak solutions for certain classes of strongly degenerate differential
operators formed by vector fields.

Introduction.

Let Xi,...,X, be real C* vector fields satisfying Hormander’s
condition. Since Hérmander [H] proved the hypoellipticity of

L=X0+zm:X]2-,

=1
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many authors have studied the behavior of solutions to the general class
of differential operators

L= ZXJZ'+ Z fij[Xi,Xj]+Eijj + fo
i=1

,5=1 =1

with some conditions of smoothness imposed on f;j, f;, fo. In [Fo],
[FeP], [FeS], [FS], [JS], [NSW], [RS], [Sa], a complete description of
solutions to several particular cases of £ have been studied. A simpler
proof of the results of [FeS] can be found in [Chl]. An extensive study
has been made for the analytic hypoellipticity for operators formed by
vector fields. We refer the reader to [Ch2] and a lot of references therein.

In [RS], Rothschild and Stein linked these vector fields with the
left invariant vector fields on certain nilpotent Lie groups. Simplifica-
tion of this approach was given by Hérmander-Melin [HM]. In [NSW],
Nagel, Stein and Wainger studied the equivalence of several metrics and
pseudometrics and obtained a volume estimate for metric balls. In [J],
Jerison proved a unweighted Poincaré inequality.

This paper consists of two parts. One of the main parts of this
paper is to prove weighted Poincaré and Sobolev inequalities for vector
fields satisfying Hormander’s condition. As a byproduct, we also derive
_a unweighted Poincaré inequality with better exponent on the left side
of the inequality than that in [J]. Several estimates given by Jerison in
[J] play an important role here. A very crucial point in this present
paper is that we are able to obtain a pointwise estimate for any smooth
function over the metric ball controlled by a fractional integral of cer-
tain maximal function. The work of Jerison [J] is very helpful here in
order to get this pointwise estimate. The Sawyer-Wheeden condition
for weighted inequality simplifies the proof of our main theorems. All
these will be presented in Part I of the paper.

Various authors have studied the weighted Poincaré and Sobolev
inequalities for the special case X; = 0/0z; , we refer the reader to the
works by Fabes, Kenig and Serapioni [FKS] and Chanillo and Wheeden
[CW1] and references therein. A related situation was also considered
by Franchi and Lanconelli [FrL] and Franchi and Serapioni [FrS] for
nonsmooth vector fields.

The second part of the paper is to apply the weighted Poincaré
and Sobolev inequalities to study the local regularity of certain classes
of degenerate differential operators formed by vector fields. Precisely
speaking, we will show the Harnack inequalities of the following two
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type of differential operators

L= Z X (aij(z)X;)

and
m

L=—3" Xi(ai;(z)X;)

ij=1

where X is the adjoint of X; and the coefficient matrix A = (a;;(z))
is symmetric and satisfies the following:

m

cu(e) €7 < Y aij(z) &€ < cw(z) ¢

,7=1

for some weight w € A,(€2). Several fairly general mean value inequal-
ities for subsolutions to L and £ will be derived also. As an immediate
consequence, the Holder continuity of the solutions to L and £ will be
obtained. All these results will be presented in Part II of this paper.
We also remark out here that when the matrix A = (a;;) satisfies

m

w(z) [¢? < Z aij(z)éilj < v(z) €]

3,j=1

for certain pair of weights v and w, we can also show the Harnack
inequality by obvious modifications of the proof in the present work.

Part I: Weighted Poincaré-Sobolev inequalities for vector
fields satisfying Hormander’s condition.

1. The main theorems of Part I.

Let Q be a bounded, open and path-connected domain in R?
and let X;,Xs,...,Xm be a collection of € real vector fields de-
fined in a neighbourhood of the closure © of 2. For a multi-index

a = (1,22,...,t), denote by X, the commutator

(X, [Xigy ooy [ XK Xik ]y - - 5]
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of length |a| = k. Throughout this paper we assume that the vector
fields satisfy Hormander’s condition: there exists some positive integer
s such that {X4}|4|<s span the tangent space of R? at each point of Q.
Now let

XV = (X}, Xy,..., Xn}, X®
= {[Xl,Xz],. . .,[Xm__l,Xm]}, ceey etc.

so that the components of X(¥) are the commutators of length k. Let
Y1,Ys,...,Y, be some enumeration of XW . X)) IfY;is an element
of X, we say Y; has formal degree d(Y;) = j. For simplicity, we denote
d(Y;) by d;. Now we define the metric associated to the vector fields as
in [NSW].

Let C(6) denote the class of absolutely continuous mappings
¢ : [0,1] — § which almost everywhere satisfy the differential equa-

tion
q

$'(1) = a;(t) Y;(4(t))
1=1
with
laj(t)] < 8% .
Then define
o(z,y) =1nf{6 > 0: there exists ¢ € C(6) with ¢(0) =z, ¢(1) =y}
We then define the metric ball
B(z,6)={y € Q: p(z,y) < b}.

In [NSW], Nagel, Stein and Wainger proved the doubling property of
Lebesgue measure with respect to the metric balls defined as above,
i€
|B(z,26)| < C |B(z,9)]

where C is a constant independent of z € Q with B(z,26) C Q. Thus
(€, o) is a homogeneous metric space in the sense of Coifman and Weiss,
[CoW].

Let w(z) > 0 be a locally integrable weight function defined in €2,
and 1 < p < co. We say w is a doubling weight if w(2B) < Cw(B)
with C independent of the balls B C 2. We say w € 4,(R) if

[/Bw(m)dm] UB w(z)—l/(f’—ndx]p_l <C, |BJP,
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for all metric balls B C §). For an example of A, weights on the

Heisenberg group, see Subsection 2.3. We shall use the notation w(E)

to denote [, w(z)dz and |E| to denote the Lebesgue measure of set E,

and p(B) to denote the radius of the ball B throughout this paper.
Our main results are

Theorem A. 1) (Poincaré) Assume that E CC Q2,1 < p < ¢ < o0,
wy,wy are two doubling weights satisfying wy € A,(R), wy < wy and
the following condition

() e ()

for all metric balls I C ¢B C Q. Then there are positive constants
C, ro and some qo with p < go < q such that for any metric ball
B =B(z,r)CQ, z € E, and any f € C*®(B), the following inequality
holds

(ﬁB—) /B f - fB|ézow2)l/qo <Cr (wlzB) /32: |Xif|Pw1>1/p

provided 0 < r < rg, where C, ro depend only on the constants associ-
ated to the weights, E, and Q, and fp may be taken to be

1
f8=m/Bfw2-

2) (Sobolev) If we assume f € C§°(B), then we can take fp = 0 in the
above inequality.

When w; = wy = w € A,, we can have precise exponent on the
left side of the above inequalities.

Theorem B. 1) (Poincaré) Let w € A,(R2), 1 <p < oo, and E CC 2.
Then there ezist constants 1 > 0, C > 0, Q > 2, such that for any
metric ball B = B(z,r) CQ, z € E, and any f € C>=(B), the following
inequality holds

m

1 1/q 1 1/p
<ZU"Z§)/BIf~fB|qw> Scr(ﬁ)‘ Bz;lxiflpw>

1=
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provided 0 <r <ry, ¢q=kp, 1<k<Q/(Q—1)+6p, 6, >0, where
C, ry depend only on the A, constant of the weight w, E, Q, and 6,
only depends on p and the A, constant of w, fp may be taken to be

either . )
whi o wm

2) (Sobolev) If we assume f € C§°(B), then fp can be taken to be

0 in the above inequality.

In the special case w = 1, the above theorems can be improved
further as follows

Theorem C. 1) (Poincaré) Let E CC 2, 1 < p < Q, then there exist
constants o > 0, C > 0, such that for any meiric balls B = B(z,r) C
Q, z € E, and any f € C°(B), the following inequality holds -

<'—}13—‘ /B /- fB'q) Ve (Il%l /B 2:: lXifip) ”

provided 0 <r <ro, 1 <qg<pQ/(Q —p), where C, ro depend only on
E, Q, fp may be taken to be

fB=|—,f;—l/Bf.

2) (Sobolev) If we assume f € C§°(B), then the above inequality
kold for all1 < ¢ <pQ/(Q —p) and fp =0.

REMARK 1. The above @ is actually the homogeneous dimension of
the graded nilpotent group generated by the left invariant vector fields
corresponding to the lifted vector fields {X;} of {X;}. We will define

Q precisely later.

REMARK 2. From the proof of Theorem A, we see that other versions of
the weighted inequalities are available under weaker assumptions (e.g.,
removing w; < wy). Moreover, the Sobolev inequality in Theorem C is
probably already known.

As applications of the present article, we will prove the Harnack
inequality and local regularity of certain class of degenerate second
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order differential operators of vector fields (see Part II of the present
paper and [L1], [L2]). In Part II, we study the degenerate differential
operators

L= Xi(aij(z)X;)

ij=1
and ~
L==Y" Xiai(2)X;)
i,7=1
where X is the adjoint of X; and the coefficient matrix 4 = (a;;(z))
is symmetric and satisfies the following

m

(@) [P < Y aij(e) €5 < cw(z) €

1,j=1

for some weight w € Ay(2). The existence and size estimation of
fundamental solution to L will be treated (see [L1]). In [L2], we show
the Harnack inequality of the degenerate Schrédinger operator of the
form

m
> Xi(aii()X;) +V
1,7=1
for certain potential V satisfying an analogue of the Kato-Stummel
condition. The matrix A = (a;;(z)) here satisfies the same degenerate
condition as above.

The following is an outline of the proof of the Poincaré inequality in
Theorem A. We first prove a version of the Poincaré inequalities on the
homogeneous metric spaces (€2, 3) associated to the lifted vector fields
{X,} with extra variables. The important technique here is to obtain
a pointwise estimate for |f(§) — Cp| for £ € B with some constant
Cp, where B C Q is any metric ball. It is then possible to get control
|[f(€) — Cg| on the ball B by using the fractional integrals of certain
maximal function. This is the essential difference between our proof
and the one given by Jerison [J] in the unweighted case. In order to
derive pointwise estimates, we first obtain a pointwise estimate on the
graded nilpotent Lie group. The proof uses the scaling on the group, i.e.
group translations and dilations. In the case of the homogeneous space
(Q, 0) associated to the lifted vector fields, we will adapt this estimate
on the group. Once we have the pointwise estimate, we can apply
the Sawyer-Wheeden condition for weighted inequality on homogeneous
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spaces [SW] together with the A,-theory introduced by Calderén in
[Ca]. This leads us to a variant of the Poincaré inequality (Q, 0), which

(w—;‘g/ljlf—falqwz)l/q

(1.1) 1 m P 1/p
<Cr (wl(B) - (; | Xif| + lfl) wl)

for some constants C' > 0 and ¢ > 1 independent of f, B.

From the above inequality (1.1), we can easily obtain a variant of
the Poincaré inequality on the homogeneous space (§2, p) associated to
the original vector fields X,,..., X,,. Finally, by employing an argu-
ment based on Whitney’s decomposition in [K], and also in [J] we can
get the Poincaré inequality.

The proof of weighted Sobolev’s inequality in Theorem A is much
easier. The pointwise estimate of the function f with compact support
in a ball can be easily obtained by using the size estimate for the funda-
mental solution to the operator defined by taking the sum of squares of
vector fields (see [NSW] or [Sa]). The remainder of the proof proceeds
as in the Poincaré inequality case except that we do not need Whitney’s
decomposition. The proofs of theorems B and C are similar to those of
A and B.

We will adopt the following notations throughout this paper. Let
B = B, = B(z,r), then we use ¢B, B, or B(z,cr) as the ball cen-
tered at z, and with radius cr. C,c and Cy,C5,... will denote generic
constants and may differ at different occurences.

2. Preliminaries.

In the last section, we give a definition about the metric (Q, )
defined by vector fields Xi,...,X,,. We now give another equivalent
definition of metric defined in [NSW], we will use this alternate defini-
tion whenever necessary. We assume X1, ..., X, are C® vector fields in
Q2 C RY satisfying Hormander’s condition and define Y; and d; = d(Y;)
as in the introduction.

We first introduce a simplification of notation. Let ¢ € E C Q
and I = (¢1,t9,...,tn) be fixed. We shall relabel the vector fields
{Yi; hicj<q by setting U; = Y;;,1 < j < N, and by letting Vj, 1 <
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J < g¢— N, be some enumeration of the remaining vector fields. Let
u = (uy,ug,...,uy) € RY, we define

N
Bi(z,6) ={y € Q:y=exp()_u;j - Uj)(z), with |u;| < 67U},
j=1

Thus Bj(z, ) is exactly the image of the box {u € R : |u;| < §4Ui)} =
Q(6) under the exponential map.
We denote d(I) = d;, +--+d;, where d;; = d(Y;;) is as in [NSW].

2.1. Analysis on nilpotent Lie groups.

We now review some definitions and useful results associated with
graded, nilpotent Lie groups following Folland [Fo], Rothschild and
Stein [RS], and Jerison [J].

Let G be a finite-dimensional, graded, nilpotent Lie algebra. As-
sume

g: @‘ig:]‘/ia

and [V;,V;] C Viyjfori+5 < s, [V;,V;] = 0fori+j > s. Let
Yi,...,Y, be a basis for Vi and suppose that Y;,...,Y,, generate G
as a Lie algebra. Thus we can choose a basis {Y};}, for 1 < j < s,
1 <12 < mj for V; consisting of vectors of the form Y, for some multi-
indices a of length j. In particular, Y;; =Y;, 1 =1,...,m and m = m;.

Let G be the simply connected Lie group associated to G. Since the
exponential mapping is a global diffeomorphism from G to G, for each
g€ G, thereisy = (y;;) ERM, 1 <i<m,;, 1<j<s, N£Zj=1m]-,

such that
= exp() _ ¥i;Yij) -
Thus we define a homogeneous norm function |- | on G by
9l = (O lyis[P/9)H 2.
Let é; be a dilation on G defined by
bey = (Hyij)1<i<m; 1<ji<s

for each t > 0. It is easy to see that é; is an automorphism of G for
each ¢t > 0. Lebesgue measure dy is the bi-invariant Haar measure of
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G and the Jacobian of &;, J&, is equal to t9, where Q = Z;zl Jmj is
called the homogeneous dimension of G, which is usually greater than
dim G = N. We notc that the homogeneous norm |- | on G satisfies the
following

(1) lu| >0 for u € G and |u| =01if and only f u =0,
(i1) u — |u| is continuous on G and smooth on G\{0},
(i) [6u(w)| = ¢ Ju
(iv) Juel < C(Jul + o)),
(v) Cillu|| < |u| < Cy |Ju||*/* for |u| < 1 and || - || is the usual
Euclidean norm on G.

For f € C*(G), and g € C§°(G), we define the convolution on G
by

(F*g)(z) = / f(ay™)g(y)dy = / f(w)aly~ z)dy .
Denote
Lf(z) = 9f (81 2).

The following lemma is due to Jerison [J].

Lemma 2.1. (Jerison) a) For every multi-index a, there exist differ-
ential operators Do, 1 <1 < m, such that

Yo(f* ) =D (Yif)* Dia¢
=1

for all f € C°(G) and ¢ € C§°(G).
b) There exist differential operators D® 1 < i< m, such that for
any ¢ € C(G), the function ¢ = D@ ¢ satisfy

m

0 :
(5)(F + 1) =D (YVif) + Lp™.

i=1

Now let ¢ : G x G — R* be defined by o(z,y) = |zy~!|, the
homogeneous norm of zy~!. We denote by B(z,r) = {y € G : o(z,y) <
r}, the ball centered at z and with radius r. We note that (G,p) is a
homogeneous metric space in the sense of Coifman and Weiss [CoW].
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2.2. Lifting of vector fields.

In this subsection we recall some results of Rothschild and Stein

[RS].

Theorem 2.2. (Rothschild-Stein) Let X4,..., X, be C* vector fields
on a C*® manifold Q of dimension d such that the commutators of
length < s span the tangent space at £ € . Then in terms of new
vartables, tyy1,ta+2,...,tN, there exist smooth functions Agi(n,t) de-
fined in a neighbourhood U of £ = (£,0) € QxRN-4 = Q such that the
vector fields X given by

3 N P
X=X+ Z /\kz(n,t)a—t
I=d+1 !

Xi} and their commu-

—[Xj,X,-] and the

are free up to step s at every point in 0, i€

A
tators have no linear relations except that [X,-,Xj]
Jacobian identity.

Theorem 2.3. (Rothschild-Stein). Let X1,...,Xm be vector fields on
a manifold Q, & € Q such that

a) Commutators of length < s span the tangent space.
b) {X«} is free up to step s at &.

Choose {X'jk}, commutators of length < s, determining a system
of canonical coordinates (ujr) around &y by

(uji) > exp(Y_ ujeXk)(bo)-
Let G be the free Lie group of step s on m generators and G be its
Lie algebra. Then there 1s a basis {Y;x} of G and neighbourhoods V of

o € Q and U of 0 € G with the following propertities
(i) There ezists a mapping © on V x V to U such that

O(¢,7) = eXP(Z ujrYir) €U

where 7 = exp(>_ Uijjk)(E)-
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(ii) For each fized £, the mapping
i = Og(i7) = O(€,7) = (ujx)

is a coordinate chart for V centered at €.
(iii) Furthermore,

(O)+(Xa) = Ya + ES
where Ef; 18 a differential operator of local degree < |a| —1 .

Define 3 3
o(&,7) = |0(&,7)] -
Thus from [RS], we can see that § : Q x ! = R* is a pseudometric on
Q2 (we shall shrink Q if necessary). We note that the Lebesgue measure
of the ball [B(¢,r)| ~ r@, where Q 1s the homogeneous dimension of G,
and B({,r) is the metric ball in (€, 5). Thus (£2, ¢) is a homogeneous
space in the sense of [CoW].

2.3. A, weights on homogeneous spaces.

In this subsection, we are going to review the theory of A, weights
on homogeneous spaces introduced by Calderén [Ca]. We will also
discuss the relation between A4, weights on (£, ¢) and (Q, 3).

Let (X, p) be the homogeneous space and u the doubling Borel
measure such that

o(z,z) < K (o(z,y) + o(y, 2))

and

0 < p(B(z,2r)) < A p(B(z,r)) < o0

for z,y,z € X, r > 0. A and K are called the metric constants of
(X,0). We note that both Vitali and Whitney type covering lemmas
hold as proved in [CoW]. We say the weight function w(z) > 0, belongs
to class A, = A,(X) if

[/B w(w)d“} [/B w(z)~ M=V, P

1
< C, |BJ], forl<p< oo
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or

/ w(z)dr < C,, |B| essinf w(z), forp=1
B ) z€B

for all balls B, where |B| = u(B). We call Cy, the A, constant of w.
We refer to [Ca] for proofs of the theorems that follow.

Theorem 2.4. If w € Ay, p > 1, then w € A, for some 1 < pg <p
and py depends on p, Cy,, A and K.

Theorem 2.5. If w € A,, then w € Aw, t.e. for every e > 0, there
ezists 6 > 0, such that of E C B is any subset with |E| < 6|B|, then
w(E) < ew(B).

We define the Hardy-Littlewood Maximal function in homogeneous
spaces as follows

1 .
5 L Wl

the above supremum is taken over all balls B centered at z. We then
have

M f(z) = sup

Theorem 2.6. If w € A,, p > 1, then ||[Mf| 2 <C | fllLs, -

We now discuss the relations between A, weights on metric spaces
(R, 0) and (2, ). As before we denote Q=QxR, I=N-d, N =
dim G. We also denote by B,(£) the ball of radius r and centered at

€ in Q for the metric associated with vector fields X1, ..., X, where
E=(61)eQ, £€Q, teR.
Now let w(€) be a function defined in 2, we define a new function
in Q by 5
w() = w(¢,1) = w(f)
forE=(6,8) €, €€Q.

Lemma 2.7. If w(€) € A,(Q), then w(€) € A,(Q), forp>1.
PROOF. Let B = B(§,r) C Q, £ = (£,t), £ € Q, then B C B x R! for

B = B(¢,r). We consider the case p > 1 first. By Lemma 4.4 in [J], we
have

[ (6 = [ wiepn, dede
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< [ ([ xpat) de

Similarly,

(/B u;(g)ﬂ/(m)déy—l <C (%>p_l (/B w(ﬁ)‘l/(p—ndﬁ)p_l

Since w(¢) € A,(12), then

(/B w(E)d{) (/B w(g)—l/(p-l)dﬁ)p_l <c.
(/B u";(é)df> (/B d;(f)—l/(p—l)dg)p_l <cBp.

This shows w(€) € 4,(Q). For the case p = 1, we note

T\
éw@%SCQH>L (6)de

< C |B| essi ‘
< C |B| e%selélf w(§)

Thus,

< C |B| essinf w(£).
£EB -

The last inequality is because £ € B implies ¢ € B. Thus % € A;(f).

We conclude this section by giving an example of A, weights on
the Heisenberg group. Let H?¢ be the Heisenberg group (of degree d),
i.e. the nilpotent Lie group whose underlying manifold is C? x R with

coordinates (z1,...,24,t) = (z,t) and whose group law is
(2,t)- (2", t")=(z+ 2, t+t +2Im(z- 7))

- d =
where z-7' =}, 2, Z;.

We define the group dilations on H? by 6,(z,t) = (rz,r%t) which

satisfy
6 ((z,) - (2',t") = é:(2,1)6- (2, 1),
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and we also define the homogeneous norm p by

p(z,t) = (12 + [t7)"7*,  with 2P =z 2.
Thus the function p-satisfies p(6,(z,t)) = rp(z,t). We define the dis-
tance between two points u = (z;,t1) and v = (22,t2) by p(u,v) =
p(u™!-v). Given ug = (20,t0) € H?, the Heisenberg ball centered at
ug with radius r is given by

B (uo) = {u=(zt) € H*: p(u,up) < r}.

Let 2 = z +1y. Then, zy,...,24,¥1,...,y4,t are real coordinates on
H?. Set
0 g 0 0
Xj=—+2yj—, Vi=——-22,— ) =1,...,d.
I 5, Vi YT gy e T b

Then Xi,...,X4,Yi,...,Y, generate the Lie algebra of H% These
vector fields satisfy Hérmander’s condition of step 2. The homogeneous
dimension of H? is Q = 2d + 2.

We now let w(z,t) = p(z,t)%, then it is easy to show that w is
locally integrable on H? for a > —@Q. We can also check that there are
constants ¢y, ¢; independent of ug = (29,%9) € H? and r such that

1 (p(ug) +7)°r? < /B - w(uw)du < ¢z (p(ug) +1)*r<.

Thus w(u) = w(z,t) = (|z|* -{—152)1/4 is doubling if @ > —Q and w €
A,,(Hd) if and only if —Q < a < Q(p — 1) for p > 1. Furthermore, we
can also show w € A;(H?) if and only if —Q < a < 0.

3. Pointwise estimate on the homogeneous space (Q,3) with
extra variables.

We first prove the pointwise estimate |f(y) — Cg| for f € C*°(B)
on the graded nilpotent Lie group G defined in Subsection 2.1. We are
going to use the same notation as used there.

Let (G, o) be the homogeneous metric space with Lebesgue measure
as its doubling measure defined in Subsection 2.1, i.e. o(z,y) = [z 'y],
where | - | is the homogeneous norm on G. Let B = B(z,r) = {y €
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G : o(z,y) < r} be the ball in G and Yi,...,Y,, be the left invariant
vector fields which generates the Lie algebra G of G. Then we have the
following

Lemma 3.1. Gwen any ball B = B(z,r) C G, then there ezist positive
constants Cy,Cy and Cs, such that for any f € C°°(C3B), the following
holds

i [Yif(2)]
lf(y) - CZI S Cl CuB W{— dz

for any y € B, where Cy and Cs are independent of y, B, f.
PRrOOF. Step 1. We first show the lemma for the special case B =
B =B(0,1)={yeG:ly| <1}

Let ¢ € C§°(G), ¢ >0, supp ¢ C By, and denote L;¢(z) =194
(6;-1z). Thus by Lemma 2.1 b), we have for y € B;

I(f*)(y) — fly)l = l/o1 %(f * Iz¢)(y)dt'

[ Y ne¥wa

<cy [ [ I0n@neO )| de
m 1 1

SC;/O E/IZ_lylsJ(Y}f)(z)]dzdt

m o 1
- C; /lz-lylg (50)E) /|z—1y| @

<c Sim [(Yif)(2)] dz
lo-tyj<1 |27ly|@7!
<c iz |(Yif)(=)

|z|<e |Z—1y|Q_1

The last inequality above is due to |z| = |yy~'z| < ¢ (|y| + |y~ z]|) < c.

On the other hand, we note B; C B = {y : ||y|| < ¢}, the Euclidean
ball in G centered at the origin and with radius c. We denote by V the
usual Euclidean gradient. We also recall dim G = N. Then by Lemma
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2.1 a) and the well-known result in [FKS], we have

(F* )W) -~ = _(f x 8)(2) dz

Bl /3
V(o) .
SO o Tz —gvt @
Yalf + )

R B llz—yl|¥ 1

() * Dind)2)]
<€) ;/ = yIv

But,
(Yif) * (Diad)(2) = /G(Yif)(w)(Dia¢)(w_lz)dw

<C |(Yaf)(w)| dw .

w=1z]<1

Now because |w™1z| < 1 and |z| < ¢ implies |w| < ¢, thus the integral
above is bounded by

C |(Yif)(w)| dw .

|w|<e

Thus we obtain

(F» ¢>(y)—|—Bl / (f * 8)(z)dz
(% f)(w)]
<CZ//w Tz =y n-1 e

[<e Ilz -

~0%. foe. U i) posene

<cy /MSC (%) ()] doo

since
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is uniformly bounded for y € B; C B. Note further |w™'y| < ¢ (jw™!|+
ly|) < ¢, the integral above is bounded by

3" / IwHw)

i—1 Y Iw|<Le Iw qu !

Therefore, we have proved

,f(y) = [(FroNe | <

AN
’BI ZE:I/w|<c Iw le !
for y € B .

Step 2. For the case B = B, = B(0,r) = {y : |y| < r}, we define the
function f.(w) = f(6,w), thus by the result in Step 1, we will be done
for this case.

Step 3. Now we consider the general case B = B(z,r) = {y € G :
|z71y| < r}. We define a function f,(z) = f(zz) for |z| < r. By Step
2, the lemma will follow.

Thus this completes the proof of Lemma 3.1.

We now are going to derive the pointwise estimate for |f(¢) — Cp|
over the metric ball B in (Q, 0), where (Q, 0) is the homogeneous space
with the metric associated with the lifted vector fields X1, ..., Xm. We
will set M f to be the Hardy-Littlewood maximal function for f in the
space (2, 5) (see Section 2). Throughout this section, and Section 4, we
drop the tildes from X;, 5, Q, €, etc. The main result of this section
is the following

Lemma 3.2. Given any ball B(&,7), & € E CC Q, any function
f € C*®(cB), there ezist constansts C,c and Cp such that for any

£EeB

fe)-cal<c Ml 'é {71)31{|>xw](n> dn

where C and ¢ are independent of f, B and €.

Now we let g, be the metric defined by vector fields r X7, ..., r X,
and denote by B, (t) the ball of radius ¢ relative to this metric. Then
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the volume of the ball [B,(t)| ~ (rt)?. We will need the following
lemma from [J].

Lemma 3.3. Let ¢ € C§°(G), supp¢ C {y : |y| < 1}. For h(§), & €
RY =R? x RY, r > 0, define

Mh(€) = / B L$(671 0 (7, £))r=2dy |

Then,

) ZMh©O =Y [rXbLeO 5 000, ) dn
i=1 .

+ / h(m)KT(€,m)r=2 dn
and |K7(&n)| < crt™?, supp{K7} C {(&n): or(é,n) < ct}.
G) XL MRE) =Y / rXih(n)ia(671 0 O(n, €)= d
=1

+ [ o P myr=2 dn
and |F3(&,n)| < er, supp{Fy} C {(&,n) 0 or(&n) < c}. (The func-
tions ¢() = DWg  ¢. = Dind for some differential operators Diq,
DO s defined in Lemma 2.1.

PROOF OF LEMMA 3.2. Define h(€) by f(&) = g(€)h(&), where g(&) =
§(€,0), g € C is defined by the pull-back

(67 00¢)™")" (r~%dny) = §(&, ry)dy

and ¢ is bounded above and also bounded below from 0 on B(¢,7) x {y :
ly| < 1} for € in a compact subset of  (see [J] also). Then

(3.4) S IXh(E) < C O IXFEOI+ 1)) -
=1 i=1
Since lim;—o M;h(€) = h(€)g(€) = f(£), we have

Mih(€) — £(€) = / = Mh()di
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1 m )
= / / Z rXih(n)L¢® (671 0 O(n,&)) r~2 dndt
0 i=1

1
+/0 /h(n)Kf(f,n)r"Q dndt
= I+11,

and we have

m

1
mgc// > | Xih(n)|t~9r =2 dndt
0 Jo(e,m<rt iz

<C > [ Xik(n)| (tr)~9r dtdn
e(§,m)<r ;= t>o(&m)/T

<c[ S ixbleen @ dn.
9(5:71)57" =1
By (3.4), the inequality above is
o(é,m<r e(§,m)

> im [ Xif ()] + 1 f(n)] dn |
B(&p,cr) Q(ﬁ,n)Q_l

<C

Since |K{(&,n)] < Crt™%, supp{K]} C {(6,n) : or(&,7) < ct}, we
obtain

1
I < C/ / h(n)rt~@r~Qdndt < C Md i
) 0 Jo(¢,m)<ert o) " B(go,cr) 0(&,m)971 7

Hence,

S S+ )l

Mih(€) — C
MA(E) = 7O < B(£&,Cr) e(§,m)!

for £ € B(&o,r). Since any function is bounded above almost every-
where by its maximal function, thus

M, 1Xaf I+ 1) xes) () dn
B(é0,Cr) o(é,m)@1

(3.:8) [My(§) — (I <C
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Next, we want to estimate |M;h(£) — Cp| over the ball B = B(&,r)
for some constant C'g which is independent of £ € B. The basic idea is
to apply the corresponding estimate on the group obtained in the last
section.

Let F(y) = Mih ((67" 0 ©g, )" (y)) for |y| < 1, where 67! 0 O¢,(€)
= y. It is easy to see that 6! 0 O¢,(B(&o,r)) is comparable to the unit

ball {y: |y| <1} C G. Set 67! 0 O (n) = z. Thus by Lemma 3.1, we
have

\ >imy [YiF(2)|
Fly)—C1| £ C : dz .
| (y) 1[ = l2)<c lz_.lle_l

Now we note that |z~ 1y| &~ r~1p(£,n) and that
(67" 0O,), (rX:) = Yi+ rEf"

where Ef”’r is a vector field on G of weight < 0 whose coefficients are
C? norm bounded for some p and r < ry for some rq (see [FeS]). Thus

Y;F(z) = rX;Myh(n) — rE{ T F(z).
We note that
XM h(n) = X; / h(C)é (67 0 O(C,m)) =2 d¢
- / Xh(Q)g (67 0 O(¢,m) 1= dC

where X ¥ is the adjoint of X; with respect to d(. Since X} differs of
—X; by a bounded function, we then have

[ XTR(O] < C (1X:R(O] + [R(O]) -

Now,

0(¢, &) < K(o(¢,m)+ e(n,&)) <cr.
Thus

| XM h(n)| < Cr=@ / o (RO DX (€)d6
oG, )T

< CMI(|Xih| + [R])xcp](n)-

On the other hand, if we note z = 67! 0 ©¢,(n), then

ESTF(z) = ES" Myh(n) = /h(()Ef”*'q& (671 0O(¢,m)) r~dC.
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Keeping in mind that the above derivatives Ef"’r are taken with respect
to z and 7 is a function of z, and also recalling E~*" is a vector field on
G of weight < 0, then |ES*"¢ (671 0 ©((, 7)) | is bounded for all r < ry.
Thus,

|ES" My k()| < Cr“Q/ h(¢)d¢ < C Mhx 5](n)-

e(¢,m<r

Hence,

[YiF(2)| = [(rX; = rE )My h(n)| < Cr M{(IXih| + |h])x.5](n) -
Note

271y |97 !~ o(€,m) 9T O
and
(6710 ©g)™")" (r™Vdn) = §(£o, 6,2) dz
Further, |z| < ¢ implies p(n, &) < c¢r. Thus
P ST MO+ D)) o,
r=Q+lp(¢,n)~QH 7

SC/ >izi M[(lXih|$_llhl)XcB](77) dn
Jo(€o,m)<er o(&,m)
M3, [Xsh| + [hD)x.5](n)
o-1 dn.
o(€o,n)<cr Q(f,"])

tMmm—cusc/

e(€o,m)<cr

<C

Thus by (3.4) again,

MISE VXf | £ 15Dl

3.6) |Mih(&)—C1| L C :
( ) | ' (6) 1' - o(&o,m)<Lcr 9(6777')@_1

Now,

|£(6) = Cal < [Myh(§) — F(E)] + |Mh(E) — Ci|

Applying (3.5) to the first term and (3.6) to the second, we get our
lemma.
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4. A variant of the Poincaré inequalities on homogeneous
spaces with extra variables

In this section, we are going to prove a variant of the Poincaré
inequalities on the homogeneous space (Q, 0). The proofs adapt the
Sawyer-Wheeden condition for the weighted inequality of fractional in-
tegrals on homogeneous spaces [SW]. This proof is much simplier than
that in the author’s thesis [L1]. As in last section, we will drop the
tildes. We first state thesc results.

Theorem 4.1. 1) Let 1 < p < g < oo and assume w; € Ay(S2), wy a
doubling weight satisfying the following condition

(4.2) %1%(;0_;((1%>1/q30<5:—((1%>w

for all metric balls I and B with I C ¢B C 2, where p(B) s the radius
of the ball B and ¢ 1s as in Lemma 3.2. Then there 1s a positive constant
C such that for any balls B = B(&,r) with cB C Q and f € C*(cB),
the following inequality holds

w)  (mm . If—fB!"wzy/q

1 m P 1/p
SCT<w1 5 /., <; |A,~f|+1f|> w)

where fg may be taken to be

1
Jo = wz(B)../B fu.

2) In the case w1 = wy =w € A, and p > 1, the q in (4.3) can be
taken as ¢ = kp for 1 <k < Q/(Q — 1) + 6, for some 6, > 0 and fp

can be taken as ) )
— [ f or ———/ fw.
| B /B w(B) Jp

3) In the case wy = wy = 1 and 1 < p < Q, the above q can be
taken as 1 < ¢ <pQ/(Q —p) and fp can be taken as

fB=|—;7|/Bf-
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PROOF OF THEOREM 4.1. We define the fractional integral

TF(E) = /Q F()K(€,m) dn

where K(¢,n) =1/0(§,7)97" .
Given a metric ball B C 2, we will show for certain pair of weights

¥ and W, that

(4.4) ITfllLe,5) < C [IfllLe(cB,)

for all f > 0 and supp f C ¢B, where

1/p
1 fllLz(s,5) = (/S f”ﬁ)

and p < gq. By Theorem 3 in [SW], if 9, % are doubling weights and the
following condition holds

(45 (0 ( / 6(5)015)1” ( / wl'ﬂ’(s)ds)l/pl <c,

for all metric balls I C ¢B C 2, then (4.4) holds. ¢(I) in the above
expression is defined to be

1
1) =sup(K(&,): €€, elén) = 30D} ~ iz

where p(I) is the radius of the ball I and |I| =~ p(I)%.
We let

ws L o(BYY By
w(B) M T T B

6: 'Ll)],

where w; and wj are doubling weights, o(€) = wy (€)', 1/p +1/p' =
1. Then (4.5) is equivalent to

wo)  ADEL(eO)T (A
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Thus by (4.4) and Lemma 3.2, we have

(o [ 17-Calrun ) < GBI (B 75(3) ¥ )p(B)

5 [ (m ZIX A1+ 151 xen) "

for all f € C=(cB). If assume wy € A,, then |B|~ w;(B)/?a(B)!/?' <
C. Furthermore, by Theorem 2.6 the expression on the right side of
(4.7) is bounded by

m P 1/p
cp(B)(wlzB) | (Z |Xif|+|f|> w) .

We also note that (4.2) is equivalent to (4.6) when w; € A,. This shows
the first part of Theorem 4.1.
When w; = wy = w € Ap(£2), we note that (4.2) is equivalent to

Since |B| & p(B)?, |I| ~ p(I)? and A, C D, (doubling of order p), i.e.

(4.7)

P
w(B) < C(I|II3|I> w(I), forany I CcB Cf}

then the assumption that w € A,(2) implies that (4.8) holds if ¢ is
chosen so that (Q(1/p—1/q))™ = p, t.e. ¢ =pQ/(Q — 1). Actually,
since w € A, implies w € A, for some py < p by Theorem 2.4, it
follows that ¢ can be chosen slightly larger than p @/(Q —1). Thus the
second part of Theorem 4.1 follows by Hélder’s inequality.

When w; = we = 1, (4.8) is further equivalent to

o) (11 7
(%9 25 (5 < (ia)
We note that |B| =~ p(B)? and p(I) < cp(B), thus (4.9) holds if p <

q < pQ/(Q—p), which implies the third part of Theorem 4.1 forp < ¢ <
pQ/(Q — p). For 1 < ¢ < p, the result follows by Hélder’s inequality.
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5. A variant of Sobolev inequalities on the original spaces

(Qv 9) *

The main purpose of this section is to show the variant of Sobolev
inequalities on the homogeneous space ({2, p) associated to the original
vector fields Xy, ..., X,,. We start with the pointwise estimate for any

function f € C§°(B), and B C Q2.

Lemma 5.1. Given any ball B = B({y,r), o € E CC Q, any f €
C§°(B), there exists a constant C > 0 independent of f, B, £ € B such
that for € € B,

oAem) (g
fensc [ FE (S 1xstn + 1) i

ProoF oF LEMMA 5.1. Let us consider the second order differential
operator L = " X?. By the result in [NSW], there is a unique

=1

fundamental solution G(&,7) to L with

XG(E )l < Crgr e

Thus for every f € C°(B), we have
f6) = [ SoxFCEm I = [ 3 XG(E X S
=1 =1

Note that X is the adjoint of X; with respect to n and that

(X7l < € (IXaf ()] + [ F()]) -

Hence we have the following

m

, o(&,m) _
N [ mm st (L Pl +1ml)

Then the lemma follows.

By the above lemma we can show the following theorems.
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Theorem 5.2. 1) Let 1 < p < ¢ < 0o and assume wy € Ay(Q), ws @
doubling weight satisfying the following condition

for all metric balls I and B with I C ¢B C Q, where p(B) is the radius
of the ball B. Then there are positive constants C and ry such that for
any ball B = B(&y,7) C Q, r <1y, and any f € C§°(B), the following
inequality holds

(o2tz Jy e2) e <w123) /. (2 Xifl+ lfl)pun) v

2) In the case that w; = wy = w € Ay and p > 1, the above g can
be replaced by ¢ = kp with 1 <k < Q/(Q — 1) + 6, for some 6, > 0.

3) In the case that wy = w, =1 and 1 < p < Q, the above ¢ ranges
1<¢<pQ/(Q-p)

PROOF OF THEOREM 5.2. The proof is basically similar to the one
in Section 4. Thus we adapt the same notations of v, w, I, B, o(§)
and just indicates the substantial difference. We define the fractional
integral

TF(E) = L FE (€,m) d

where K(&,1) = o(§,n)/|1B(n, o(§,n))|-
We note here ¢(I) will be

' I
$(I)=sup{K(£.n): &mel, o(f,n) > : ,,(I)}zelg_,)

o=

where p(I) is the radius of the ball 1.
But the Sawyer-Wheeden condition here (inequality (4.5) in Sec-
tion 4) is still equivalent to

p(l) |B| (wz(f) )”q (o(I) >/
64 o3 1 \w(B)) \oB)) =€
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for all balls I C ¢B. Under this condition we have by Lemma 5.1 and
Theorem 3 in [SW],

(o [ 1) < COBI wa(B)7o(B) ) (B)
B

’wz(B)
- <;02—B) / (Z Xif1+ Ifl) w>

(5.5)
for all f € C°(B). If assume w; € A,, then |B|~lw;(B)/?o(B)1/?" <
C. We also note that (5.3) is equivalent to (5.4) when w, € A,. This
shows the first case of Theorem 5.2.

When w; = wy = w € A4,(£2), (5.3) is equivalent to

We note when the ball B is small, say p(B) < rg, there is some N-tuple
J such that for any ball I C ¢B C 2 we have

1/p

(I~ p(D", B~ p(B)*,

where d(J) < @ is the length of the commutator X ; (see Section 2 or
see [NSW]). Since A, C D, (doubling of order p), i.e.
1BI\*
w(B)<C —m— w(I), forany I CcBC,

then the assumption that w € A,(Q2) implies that (5.6) holds if ¢ is
chosen so that (d(J)(1/p — 1/q))" = p, i.e. g = (d(D)p/(d(J) - 1)).
Actually, since w € A, implies w € A,, for some py < p by Theorem
2.4, it follows that ¢ can be chosen slightly larger than d(J)p/(d(J)—1).
By noticing that

Qp d(J)p .
Q-1 < -1 since d(J) < @,

thus case 2 of the Theorem 5.2 follows.
When w; = w, =1, (5.2) is further equivalent to

o )=o)
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We note again that |B| ~ p(B)¥Y), |I| =~ p(I)*Y), and p(I) < cp(B),
thus (5.7) holds if d(J)(1/¢—1/p)+ 1> 0. But

1 1 1 1
Q(——;)-i—lgd(.])(g—;)—{—l, since p < gand d(J) < Q,

[~

and Q(1/¢—1/p)+1>0for 1 <q <pQ/(Q — p), thus the third case
of Theorem 5.2 follows for p < ¢ < pQ/(Q — P). For 1 < g < p the
result follows by Holder’s inequality.

6. Proof of the main theorems.

This section is devoted to the proof of the main theorems in this
paper, theorems A, B and C. The proof of Poincaré inequalities is based
on the variants of Poincaré type inequalities on the homogeneous space
(Q, o) proved in Section 4. The basic technique is an argument by
Kohn (see [K]). This method was further developed and applied to the
proof of unweighted Poincaré inequality for vector fields by Jerison (see
[J]). We first prove the following variants of Poincaré inequalities on
the homogeneous space (€2, ) associated to the original vector fields

X1, Xom -

Lemma 6.1. 1) Let 1 < p < ¢ < 0o and assume w; € A,(Q), wy a
doubling weight satisfying the following condition

for all metric balls I and B with I C cB C ), where p(B) is the radius
of the ball B. Let E CC 2, then there 1s a positive constant C such that
for any balls B = B(&,r) with £ € E, ¢cB C Q and f € C>(cB), the
following inequality holds

1 l/q
(wz(B) /B = fBP“”)

sm(wlgB) [B(§|xif|+|f\)pwl)l/p

where fp may be taken to be

1
o= [ fun
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2) In the case that w; = wy = w € Ap, the above ¢ in the inequality
can be taken as ¢ =kp with 1 <k < Q/(Q — 1) + 6, for some 6, > 0,
and fp can be taken as

wh o B

3) In the case that wy = wy, =1 and 1 < p < Q, the ¢ can be taken
as 1< q¢<pQ/(Q —p) and fp can be taken as

fB:T%_I/Bf'

PROOF OF LEMMA 6.1. Let B = B(&,r) and B = B((&,0),7). Define
tﬁi(é) =w(&,t) = w(€) (¢ = 1,2) as in Subsection 2.3, then by Lemma
2.7, w; € Ay(Q). It is also easy to check that (4.2) holds for w; and
wy. We also define f(€) = f(£,t) = f(€). Then f is a function on.
B(&,r)xR! that is independent of t € R and X; f X, f. Consequently,
by Theorem 4.1, there are constants C = C(f, B) and ¢ > 1, such that

1 . NV
g o
(wz(m(eo,m,m ot oy (6 7 Cl1E2(8) s)

SCT( .

w1 (B((&o,0),c7))
f (S 1FE)+ 1))’ wl(s”)dé)l/p.
B((&0,0),cr) N izy ’

Note B(£,r) x {0} C B((£,0),7) C B(é,7) x R and d€ = d¢dt, also
note ; (B((go,()),r)) ~ |Blwi(B)/|B| (i = 1,2), thus integration with

respect to t and an application of Lemma 4.4 in [J] yields the following

1 c J 1/q
- X B .
(’LUQ(B({O,T)) /B(En,r) lf(é') ’ w2(§) f)
1

(wl(B(ﬁo,CT))
1/p
Lo (Erncrsnaleios

<Cr
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for some constant ¢ > 1 independent of f and B. Then the first part
of the lemma follows.

By using the corresponding cases in Theorem 4.1, we can prove the
other two cases of the lemma in the same way.

6.1. A Whitney decomposition.

In this subsection we will recall the Whitney decomposition in met-
ric spaces (2, p). We first give an alternate definition of the metric on
. An admissible path v is a Lipschitz curve v : [a,b] — § such that
there exist functions ¢;, a <t < b, with > ¢;(¢)> < 1 and 7'(¢) =
S ci(t)Xi(y(t)) for almost every ¢ € [a,b]. We define a metric asso-
ciated to X;,..., X by 0(§,7) = min{b > 0 : there exists v : [0,5] —
such that v(0) = £,v(b) = n}. Obviously, this metric is equivalent to
those defined before. Throughout this subsection and the remaining of
this section, we always use this definition of the metric.

For a ball B = B(€,r), we denote B' = B({,2r),B" = B({,4r)
and B* = B(£,10r). We shall also denote the radius of B by p(B). We

also recall the doubling condition
(6.3) |B(¢,2r)| < A|B(& )|, €€ECCQ.

Now we recall some results proved by Jerison [J].

Lemma 6.4. (Whitney decomposition). Let Ey = B(&;,r;), then there
s @ pairwise disjoint family of balls F and a constant M depending only
on the doubling constant in (6.3) such that

(1) En= UBET B,

(ii) B € F implies 10*p(B) < p(B,d E;) <103p(B),
where p(B,0Ey) 1s the distance in the metric p from B to OF,.

(iii) #{Be F:neB*} <M.
(#S 1is the number of elements in the set S).

For B € F. define vy as an admissible path from the center of B
to & (the center of E;) of length < r;. Denote the subset of E; defined
by the image of yp by vp as well. This path may not be unique,
but will be fixed throughout this subsection and next one. Denote
F(B) ={A € F: ANy # 0}. The following has been proved by
Jerison [J].
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Lemma 6.5. (Jerison) Let B € F, then

(i) There are no elements of F(B) of radius less than 10~ 2p(B).

(i1) For any r, #{A € F(B) : r < p(A) < 2r} < M, a constant
depending only on the metric of Q0.

(iii) #F(B) < Clog(r1/p(B))

Lemma 6.6. Let w be o doubling weight in (2, 0), then there ezists
some € > 0 such that for any A € F and any r > 0,

(B)

w(B)<C (2 w(A),

5 m@=o (i)
r<p(B)<2r

where A(F)={Be€F:Ac F(B)}.

PROOF. The proof follows by using the argument for the unweighted
case in [J] and in view of the doubling condition on w.

We also need the following lemma.
Lemma 6.7. Let w € D,(Q2), i.e. doubling of order p, and ¢ < 1. For
cy > 0, there ezists c; = ca(c1,w,q) such that for every pair of balls

B,, B, in the metric space (2, o) satisfying |B;| < ¢1|B1 N Bs| and any
f such that [, |f — fB;|"w < A for j =1, 2, we have

/ = faltw < s A.
B, U B2

The proof is easy and we omit it here.
By applying Lemma 6.7 and a well-known covering lemma argu-
ment, we can show the following

Lemma 6.8. 1) Let wy, wz,p,q be as in (6.2). Given any { € E CC
Q, v >0 with By, = B({,4r) C Q and f € C°°(By,), we have

1 l/q
(wzwr) /B =1 B"q“’?)

m P 1/p
5C"<w1(3) o (Z Xif|+|f|> w1>

=1
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where B, = B({,7), By = B(£,27) and C independent of B and f.
2) In the case that wy = wy, = w € A, and p > 1, the ¢ in the
above inequality can be replaced by ¢ =kp with1 <k < Q/(Q—-1)+6,
for some &, > 0.
3) In the case that wy = wy = 1 and 1 < p < Q, the above

inequality holds for 1 < ¢ <pQ/(Q — p).

The proof is easy and well-known and we refer the reader to the
final subsection for a more crucial argument.

6.2. Proof of the main theorems.

We first like to remark out that the Sobolev inequalities in Theorem
B and C follow immediately from Theorem 5.2. Indeed, we note that

Thus by Lemma 5.2 and Minkowski’s inequality, Sobolev’s inequality
in Theorem B follows if

P<q< (%Mp)p

and r = p(B) small. For ¢ < p, it follows from Holder’s inequality.
We can argue similarly to show Sobolev’s inequality in Theorem C. We
now turn to prove Theorem A, and Poincaré’s inequalities in theorems
B and C. It should be pointed out here that an analogue of Lemma
6.9 below has been proved by J. Fernandes [Fer] in their context. This
kind of argument seems well-known now and one may also find it in the
various places in the paper by C. Gutiérrez and R. Wheeden [GW]. We
need such a lemma here to show the Poincaré inequality for the two
weights case. We modify the proof given in [Fer] or [GW]. We recall
again that Q C RV,

Lemma 6.9. Assume (6.2) holds for doubling weights wi, wa and
1< p<q< . Then there are 19 > 0, o > 0 and some qo with
p < go < q such that
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for all metric balls I C ¢ B C 2 prowided p(B) < rg.

PROOF. Since wy; € D, (doubling of order ), then w, € RD, (reverse
doubling of order v). Thus we have for all I C ¢B C Q,

wald) 5 ¢ (—w—y

wz(B) ~  \|B|
and 0 i ,

w3

s =c(im)

By Theorem 7 in [NSW], there is an N-tuple J, depending on B, such
that |I| ~ p(I)?Y), |B| = p(B)*Y) for all I C ¢B C Q provided
p(B) < 1y for some rqg > 0. The above d(J) is the length of the
commutator X ; (see Section 2) and N < d(J) < Q.

If we select a < v(1 —p/q)N, then a < v(1 —p/q)d(J). By (6.2),
we have

wo() _ (wzu) )”/" (wzm >/

wa(B)  \wy(B) or(D)
<o(4R) m (=0) ™ (22)
<o (BT D ARy
<o (AT il ()T

Thus,

w2(B) p(I)

Therefore, by noticing we(I) < ¢ wy(B) and a@ < v(1 —p/q)N, Lemma
6.9 will follow if we select p < qo < ¢ satisfying

v P o p
1-Za-BH 2 £
u( q) pN g
which implies
p o p
1——(1-=)+ - < =
( q) pd(J)
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As an easy consequence, we have
Corollary 6.10. Assume (6.2) holds for doubling weights wy, w, and

1 <p<gqg< . Then there are o > 0, a > 0 and some qo with
p < qo < q such that

(e ()" () o (2™

for all metric balls I C ¢cB C §) prowided p(B) <y .

We like to remark out that we do not know how big g above can be.
The only information is that ¢g is some number less than ¢. However,
when w; = wy, = w € A, or w; = wy = 1, we will be able to know the
precise range of g. We first show the following two lemmas.

Lemma 6.11. Assume w € A,(2), p > 1. Given any two balls I and
B with I C ¢B C Q, and 6, = p(I), 62 = p(B), we have the following

() Gm) =

provided thatp < ¢ < pQ/(Q —1)+b,, for some 6, >0, and p(B) < rg
for some rg > 0.

Lemma 6.12. Assumc p > 1, then for any two balls I and B as in
Lemma 6.11, we have the following

'51> ( 1 >l/q—1/P

- — <C

<é2 | B

provided that 1 < ¢ <pQ/(Q —p) and p(B) < ry for some rog > 0.

PrROOF OF LEMMA 6.11. Since w € A,(2) implies w € Ap,(§2) for
some pg < p, and noting that I C ¢B, then we have

() =<(m) "

Thus an casy calculation shows by noting that |I| < ¢|B],

_]—11)1/@ w([))l/fl—l/l’ c
(6-13) <1B| (+55 =
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provided that p < ¢ <pQ/(Q — 1) + 6, . Reasoning as before, there is
an N-tuple J such that for §; < rq,

d(J d(J
1|~ 627 |B|~ 60,

|I| 1/Q~ 8 d(J)/Q
1Bl) T \& '

Since 6; < cébq, d(J) < @, we obtain

d(J)/Q
M co(h .
52 - 62

Therefore, by (6.13), it completes the proof.

Hence,

The proof of Lemma 6.12 is similar and we do not present it here.
Now we prove the following two corollaries which will be needed when
we prove the Poincaré inequalities for the case of equal weights and
unweighted case.

Corollary 6.14. Let 61, 63, I, B, w be as above, then

8 8y 1-1/q w(I) 1/9-1/p
el = _— <
(52> (log 51) w(B) =¢
provided p < ¢ < pQ/(Q — 1)+ 6, for the same 6, in Lemma 6.11.

PRroOF. It is sufficient to show that

implies
1-1/q 1/q—1/p
él log i ___w(I) <G,
(52 61 w(B)
for ¢ < qo -
Since g < qq, there is some € > 0 such that
1 1 1 1
—_— e —_— = —— - + 3
9 P 9 P
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We note since w € 4, C Ao, then by Theorem 2.5 there is 7 > 0 such

that ,
—<C|l—=) <C|—= .
w(B) =~ \IB[) T \é

(g_:) (log %)l_l/q (g(%)”q-l/p

1—1/q _— |

2(%>(b8%> (5%%) /(;w(%%>
<G <1Og§_j)1‘1/9 (i—:)end(h e

since §; < cés.

Then,

Corollary 6.15. Let 6,, §2, I, B, w be as above, then

1 85 1-1/q ]Il 1/¢-1/p
il = — <
(&) (=52) () =c

provided 1 < ¢ <pQ/(Q — p).

The proof of Corollary 6.15 is similar to that of Corollary 6.14.
We recall that the inequality in Lemma 6.8 is equivalent to

/);lf — fB|fw, < Cp(B)qwg(B)wl(B)'q/P

m 'I/P
( /2 OB Ifl)”w1>

for p < ¢ and wy, w; satisfying (6.2).

(6.16)

Now we are ready to prove the following Poincaré inequality for
two weights (i.e. Theorem A).

Theorem 6.17. Let 1 < p < q, wy,w, satisfy (6.2), w; € A,, and
E, = B(&1,71) be as in Lemma 6.4. We also assume here that w; < ws.
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Then there are constants C_> 0, ro > 0 and some qo as in Lemma 6.9
such that for any f € C®(Ey),

1 1/q0
— o 99,
(wz(El) /E f = fe.] )

1/p
st(E1)< - L. 3 X w>

11—

provided p(Ey) < ro, where C and rq are independent of the ball Ey and
the function f.

PRrROOF. Choose By € F such that & € By. Write fo = fpr, and order
elements of F(B) = {A;, As,..., A} such that A; = B,...,A; = By
and A} (A, # 0, all k. Note that 24) C A} and (6.16) also holds
by replacing g by g¢o, then apply (6.16) to f — fo yields

|[f — fay|w,
;' *

q0/p
< Cp(Ar)"wa(AxJwr (Ar) /7 ( / O X1+ 1f - fol”)wl)

Icll

Moreover, Ag, Ag+1 have comparable radii and volumes and A} [ 4} 11
contains a ball of comparable radius to those of Ay and Ag4;. Thus,

/1"UA” ’fA” - ng+1 "’0 et

k41

L e ey
1lluAll IIUAV/

k41 k41

< Cp(Ar)™wa(Ar)wi (Ax) /7

m p ‘IO/P
(/A " (; X,-fl—l-!f—fg[) w1> .

Hence,

/ \f — folTows = / = fB,,+Z(fA~—fAk+l
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< 9ot (/ |f — fBr|*ws +Z/ |fay = fay, |q°“’2>

’U)Q(B)

< (901 70 go/p 2217/
<Cl Zp(Ak wa(Ar)w: (Ag)~ oa(Ar)

(L(

m P q/p
(Z |Xif|+lf*fo|> wl) :

Summing over B € F,

s~ foltun < Y- [ 1f = foltun

BeF

<Y > gEmepae A

)
BEF AEF(B) 4)

m P q0/p
(/A (ZlXifl+|f*f0|) wl) .
=1

By Lemma 6.5 and 6.6,

wa(A)wy(A)79/P

> (#F(B))* 'wsy(B)

=y ) (HF(B))™ " wa(B)

k=1 BEA(F)
2=k p(A)<p(B)/100< 27 B+ 54

i (108 (55 <A>>)qo_1 2 (4)

=¢ <I°g p<A>>qo ).

By Corollary 6.10

l/\

o—1
p(A)T0w,(A)w; (A)~9/P (log (A))

:<1°g p&>) o u11<é41)>_q0/p
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. (;’((;l))) " (E1)®ws(Exws (By) /7
< Cp(Er)"wy(E, )wl(El)_%/}’,
Thus,
/ If — fol?°w2
Ey
= Z P(A)quZ(A)wl(A)—qo/p (log T1 )qo—
AEF ‘ p(A)
“ P g0/p
. (/A (Z Xif|+ 1 ~ fof) w)
< C > p(Er)Pwy(Ey)wy(Ey)~e/?
AEF
= P q0/p
' (/ (Z |Xif’ + lf - fo|> w1>
A* \i=1
< Cp(Er) " wa(Er )wi (Er)~%/?
q0/p

- (Z /. @ !Xifl+lf—fol>pw1_.> ,

AEF
since ¢go/p >1
< Cp(Er)®wy( By ywy (Ey)™90/?

- (/E (i 1.1 +|f—fo|)pw1>

The last inequality above is because all A*, for A € F, have bounded
overlap by Lemma 6.4. Thus by Minkowski’s inequality

1/q0
( . |f—fol"°wz>

q0/p

w2(Ey) JE,
m P 1/p
< Cp(Er) (ﬁ (Z |Xz‘fl> w1>
1 1/p
+ Cp(Er) (w_1(—E1—) . |f — fol”w1> -
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We recall that (6.9) implies

for any E; C ¢ D C 2. Since the center &; of the ball By = B(&;,r1) is
in E CC Q, we can always pick the ball D C  such that p(D) > ¢;.
We note w; € A,(Q2), then

IDIP Jp D -

p—1 ~1

(/ w—l/(p—l)) < (/ w—x/(p—n)p .
D Q

Thus w;(D) > ¢;. The above ¢; and ¢, are independent of the ball E;
but only dependent on E, §2 and w;. We also note that

since

p(D) < c3, wa(D) S w(K).

Thus
p(El)l_"/”wz(El)l/“ <C wl(El)l/q" ,

this is equivalent to

w 1/g0
o (BB <o

and this further implies that

w 1/q0
p(Er) (w_j%%%) < Cp(Ey)*/?.

By noting that w; < w, and p < qo, and applying the Holder inequality,
we have

1 » 1/p
(wl(El) E I = fol wl)

1 . 1/‘]0
s (w](El) [E, | = fol? w1>
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< (om L ‘f"'“’“‘”)l/qo (?wu‘%)/

Therefore,

w8 (75 1f- foval)wo

1/90
|f’f0|q°w2> .

s Cp(El)a/p (wz(El) E

Thus if p(E,) is small enough, say Cp(E;)*/? < 1/2, we have

1 . 1/q
(wz(El) E. I = Jol w2)

m P 1/p
scp(En(wl(lEl) i (Z |X,-f|> w)

The proof of Sobolev’s inequalities is even simpler since the inte-
grals on both sides of the inequality in Lemma 5.2 are over the equal
ball and thus we do not need the above covering lemma argument. The
proof of Poincare’s inequalities in theorems B and C is similar to the
proof given above if we apply corollaries 6.14 and 6.15. The detailed

proof can be found in [L3].

REMARK 3. Since Jerison-Kohn’s argument only works for metrics, the
Poincaré inequalities in theorems A, B and C only hold for metric balls
B. If the balls B are pseudometric balls, such as By(z, 6), the Poincaré

inequality will have the following form

<*U%B)/B|f—f3|qw2>l/q

< Cp(B) (;%B—) /| (Z |Xz-f1> wl)

for some constant ¢ > 1.

1/p

On the other hand, the Sobolev inequalities hold for both metrics

and pseudometrics.
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REMARK 4. The reason for not having the Poincaré inequality for
qg =pQ/(Q — p) in Theorem C is due to Corollary 6.15. We can see
this when we do the above covering lemma argument. It is hoped that
this inequality should be true for ¢ = pQ/(Q — p).

Part II: The local regularity of solutions to certain classes of
degenerate differential operators formed by vector fields.

This part studies Harnack’s inequalities and several general mean-
value inequalities for the solutions to the following degenerate differen-
tial equations

L= X!(ay(z)X;)

i,j=1

and
m
L=-Y" Xi(aij()X;)
i,5=1
where Xi,...,X,, are vector fields satisfying Hormander’s condition,

and X is the adjoint of X;. The coeflicient matrix A = (a;;(z)) is
symmetric and satisfies

clu(z)[€F < (A€, €) <cuw(z)lE)?, £€R™

where w(z) € A2(Q) is as defined in Part I. The Holder continuity of
the solutions will also be derived.

7. The main theorems of Part II.

Let © ¢ RY be a bounded, open and connected domain, and let
X1,...,Xm be C™ real vector fields, in a neighbourhood of , satisfying
Hormander condition. Let X be the adjoint of X;, we will consider
the differential operators

m

L= Xi(z)(aij(z)X;(x)),

17.]:1

and
m

L==" Xiz)(ai;(z)X;(z))

i,j=1
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where the coeflicients a;; are measurable, real-valued functions whose
coefficient matrix A = (a;;) is symmetric and satisfies

(7.1) " lw(z) |E[* < (AE,€) < c w(z) [,

(-,-) denotes the usual dot product, and w € A,(2) is a nonnegative
weight function as defined in Part I.

Our main aim here will be to derive the mean value and Harnack in-
equalities for suitably defined weak solutions of L and £. Many authors
have studied such equations, we refer the reader to the following work:
[De], [EP], [K], [M], [N], [GT], [FKS], [CW2], [St]. The situation consid-
ered there was for the case when X; = §/0z; and m = N. The Harnack
inequality for differential operator £ when the matrix A = (a;;(z)) is
the identity one follows from the work of fundamental solutions by
Sénchez-Calle [Sa], Nagel-Stein-Wainger [NSW]| or Sanchez-Calle and
Jerison [JS]. A related situation was considered in [Bon], [F'S] and [FrL].

We now recall the Poincaré and Sobolev inequalities in the partic-
ular case p = 2. By Theorem B and the Remark 3 in Part I for the
metric ball By C 2 we have

Poincaré Inequality. Let w € A3(Y) and E CC 2, then there ezist
constants rg > 0, C > 0, 6 > 0, a > 1, such that for any metric

ball B = By(x,r) with aB = By(z,ar) C Q, = € E, and function
f € C®(B), the following inequality holds

1/q
(z;(%) [is- fBIQw<y>dy)
. 1/2
<cor <w(13) [y |Xifv2w(y)dy)
b ;=

provided 0 < r < rg, ¢ =2k, 1 <k <Q/(Q—1)+6, where C,rg
depend only on the A, constant of the weight w, E, Q, and fp may be
taken to be either

]—;—, /B fw)dy or ﬁ_,,) /B f(wyw(y)dy.

By Theorem B in Part I again, for any metric ball B € Q we also
have



WEIGHTED POINCARE AND SOBOLEV INEQUALITIES FOR VECTOR FIELDS 411
Sobolev Inequality. Let w € A2(2),E CC R, then there ezist con-
stants rg > 0, C > 0, § > 0, such that for any metric ball B =

B(z,r) C Q, = € E as above, and any function f € C§°(DB), the fol-
lowing inequality holds

1 . 1/‘1
<z;® [ w(y)dy)
" 1/2
1
<Cr (w ) /B ;|Xif|2w(y>dy>

provided ¢ =2k, 1 <k < Q/(Q—-1)+6, 0 <r < ry, where C >
0, ro > 0 only depend on the Ay constant of the weight w, E,C).

(7.3)

REMARK 5. The above constant @) > 2 is the homogeneous dimension
of the graded nilpotent group G corresponding to the lifted vector fields
{X;} of {X,} (see Part I).

Throughout this part, w is always assumed to be in A,(f2), and
all integrals are Lebesgue integrals. We also use the notations X f =
(X1 fyeo o X ), 1XFL = (50, 1X:F12)"%. We also fix ¢ > 2 on the
left sides of inequalities (7.2) and (7.3) and denote ¢ = 20 for some
o > 1. For the definitions of solutions, subsolutions and supersolutions,
and the associated function @ to the function u, see Section 8.

Now we state the main theorems in this part.

Theorem 7.4. (Mean-Value inequality) Given B = Bjy(zo,h) C 2.
Let w € H(B) be a nonnegative solution of Lu = 0, and @ be the
function in L2 associated to u. Then there exist positive constants c
and d depending only on the parameters in (7.1) and (7.3) such that for
any ball B = Bi(z,h) C @, and for 1/2 < a <1 and —oo < p < o0,
we have

c 1
N . 1 20/(0=1) __* aPw .
et S ma I

Theorem 7.5. (Mean-Value inequality) Let u be a subsolution of Lu =
0 belonging to H(B). Let @ be the function in L2, associated with u.
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Then there ezist constants ¢ ‘and d such that for 1/2 < a < 1 and
0<p< oo,

1
. ity <C —— [ (a*t)?
(esii’upu ) _Cw(B)/l;(u Yw

where C < ¢/(1 —a)? if p > 2 and < '°8C/P) j(1 —a)? if 0 < p < 2,
and ¢, d are independent of u and B.

Corollary 7.6. If in the theorem above u 13 a solution, then the con-
clusion holds with ut replaced by ||, i.e. for0<p < oo, 0< a <1,

1
ess sup ﬁPSC—/ a|Pw ,

where C 15 as in the Theorem 7.5 above.

Theorem 7.7. (Harnack inequality) Let u be nonnegative solution of
Lu = 0 belonging to H(2B) for a ball B = B(z,r) with 2B C Q,r <1y
for some ro > 0. Let @ be the function in L2, associated with u, then

esssup @ < c essinf @,
B B

with ¢ independent of u and B .

As an easy consequence of Theorem 7.7 and following the proof
of continuity of solutions given by Moser [M], we can also obtain the
Holder continuity of solutions to L.

Theorem 7.8. (Hoélder continuity of solutions) Let u be a weak solution

to L. Let B = B(zg,7), 7 < 1o with B C Q. Then for 4, and some
a >0, and z,y € B(zo,7/2), and any p > 0,

1/p
o (eley\® 1 i
la(z) —a(y)| < ¢ ( r ) (“’(B(l‘oﬂ")) B(zo,7) | |Pw)

with ¢ = ¢(p) independent of u and B .

The Mean-value and Harnack inequality for the operator £ will
also be proved in this part. Since the statement is the same, we do not
present here (see Section 10).
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We conclude this section by proving the existence of a cut-off func-
tion relative to certain metric balls. Before we do so, we first review
some basic results in [NSW].

Let Y7,...,Y, be an enumeration of the vector fields Xj,... ,Xm
and its commutators. Given any N-tuple I = (21,...,in), let U;
Y;;,1<j <N and {V} N be the remaining ¢ — N vector fields. Let
d(U ,d(V;) be the degrees of vector fields U; and Vj respectively, i.e.
the length of their commutators. For u € RN, v € Rq‘N, set

g—N
z = exp(vV) —exp( v]V])

J=1

®,(u) =exp (uU +vV)(z)
and define

Bi(z,2,6) = {y € Q: y = exp(ulU + vV)(z) with |u;| < §4Ui)}

In the sequel, we denote d; = d(U;),1 < 3 < N. We also denote
Bi(z,2,6) by Br(z,8) when v = 0 € RI™N. Then by [NSW], one has

the following theorem.

Theorem 7.9. (Nagel-Stein-Wainger) Let E CC 2 be compact. Then
there ezist 0 < my < my < 1, 89 > 0 such that of x € E, then there ezists
an N-tuple I = (11,...,in) such that for any 6 < &g, the following
properties hold

(i) B(z,n26) C By(z,2,m6) C B(zx,9).

(i1) There is an open neighbourhood of y = ®,(u) on which &, has
an inverse map ¥ = (¥y,..., U y) so that locally ;(®,(u)) = u;. Then
we can regard VUy,..., VN as coordinate functions near y. Moreover,

(7.10) U/(T4)| < ¢ 64U = ¢ gde—di

fory € Bi(z,2,0), where U; =Y, .
(iii) Let X; = S, ally, then

(7.11) la}| < c6h?

fory € B(z,m26) and 0 < 6 < & .
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The inclusions in (i) were proved in Theorem 7 in [NSW], while
(i1) and (iii) were proved in Theorem 6 in [NSW].

We now prove the following lemma concerning the existence of
cut-off functions.

Lemma 7.12. Foranyz € E CC Q, 0 <13 <1y < &g, and I as
chosen in the above theorem, then there 1s a ¢ € C§°(Bi(z,r3)) such
that '

¢$=1 on Bi(z,r),

and

N
Xl =) |Xi¢| <

=1

where ¢ 1s independent of the balls B but only depends on E CC 2.

C
To —T1

PROOF. Let ¢;(t) be 1 for |t| < (r1/r2)%, and 0 for |t| > 1, ¢; € C§°
and |¢}| < ¢/(1 — (r1/r2)%), 1 < j < N, where d; = d(U;),U; =
Yi,,I = (¢1,...,in) as before. Now let

#(y) = ﬁ 8 ()

T2

where y = exp (Z]N=1 u; Uj)(z), uj = ¥j(y). Then by (7.10), |Ui(¥;)]
< Cry~" on Bi(z,ry). Let X; = 1, al Uy, then by (7.11),

]aﬁ[ < Crg'_l on By(z,r3)

Now it is easy to verify ¢(y) satisfying the following

() ¢(y) = 1 on Bi(z,r1) = {y € Rz y = exp(L L, wU;)(@), luj]
< rld(U’)} )

(i) ¢ =0 outside Bi(z,r)={yeR:y= exp(Z;-V:l u;Uj)(z),

d(U;)
luj| <ry 7}

(i) | X6 (y)] < —— |

rg —T

The assertions (i) and (ii) are trivial. To prove (iii), note

N N

vists) = Y (I #)@i) = ST 6 6k (S ) 2z Uilwa)
2 2

k=1 j#k k=1 j#k
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Thus,

k=172 1

1 de—di _ ’"2 pod
,UI¢(y)l<Zl /1"2)'1" d,, r2k CZ dy r di T2 -

Hence

N
1Xi8] <Y lall|Uig]
I-.lN
(113) <oy Y
dk 1
= CNZ

__7"1

We note,

dr—1
bt =(ra— ) Z rg eI > (g =) Tt

Substituting this inequality into the expression (7.13), we see that (7.13)
is bounded by C(ry —ry)~!. This proves the lemma.

The rest of this part is organized as follows: In Section 8, we
first define the Hilbert spaces with respect to the vector fields and also
define the weak solutions to Lu = 0. Harnack’s inequality is proved
for nonnegative solutions for the opgrator L. In Section 9, Mean-value
inequalities will be stated for general solutions and subsolutions to Lu =
0 and Holder’s continuity will be derived. In Section 10, the Harnack
inequality for the operator £ is proved.

8. Harnack’s inequality for solutions to L = X*(a;; X;5).
) ] =1""1 ]

We begin this section by introducing the space H(2). For u €
Lip;(Q), define

(8.1) Tk =[2(AXu,Xu)+/(;u2
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where Xu = (Xju,..., Xnu), w € A2(Q,0). Note

(8.2) Hu”3~/ |Xu|2w+/u2w
Q Q

where [Xu| = (3, |X;u|)"/?. We also define
(8.3) a(u,¢)=/<AXu,X¢)+/ udw.
Q Q

for u, ¢ € Lip;(Q).
Using the fact that

(Az,y)| < (Az,2)'/*(Ay,y)'/?

we can show that a(u, ¢) is an inner product on Lip; (), so that || - ||
is a norm on Lip;(€2). We also note for any ¢ > 0,

(54) (A2, )| < 5 (42,2) + 5 (4y,y)

N ™

Let H = H(2) be the completion of Lip; () under || - ||, 5.e. H is formed
by adjoining to Lip;(Q) elements u = {ux},ux € Lip;(Q), which are
Cauchy sequences with respect to || - ||. Lip;(Q) is contained in H by
considering {ux} with all uy = u € Lip;(Q). If given u = {u;} and
¢ = {¢x} in H, it is easy to see that a(uk, i) is convergent, and we
can define

a(u, @) = Jim a(ux, éx), [ull = lim fus] . -

Thus, H becomes a Hilbert space with inner product a(u, ¢) and norm
Jull = a(u,u)!/2.

We note from (8.2) that if u € H,u = {ux}, then both {Xwu;} and
{ux} are Cauchy sequences in L2 (). Consequently, there exist ¢ € L?,
and a vector & € L% such that ux — @ in L2 and Xuy — @ in L2,
We also note that any equivalent sequence gives rise to the same 4 and
@ by (8.2). We shall refer to @ as the function in L? associated
with u.

Now define

ag(u,¢) = /Q(AXu,ch) for u, ¢ € Lip1(Q),
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llullo = / (AXu, Xu) on Lip;(Q) .
. Q

Then

fullo ~ [ 1Xul.
Q

If u={ux}and ¢ = {¢i},u,¢ € H, let ag(u,¢) = limg_—.00 ao(uk, ¢r).
Then

lao(u, ¢)| < ao(u,u)'’* ag(¢, 4)'/?
and

a(u, @) = ao(u, @) + L ddw.

Although || - ||o is not a norm on Lip;(Q), it is still easy to check || - |o
is a norm on Lipg(§2) since X;,...,X,, satisfy Hormander condition.
(Xiu = 0 implies Xqu = 0 for any commutator X, and thus u/dz; =0
for each 7, thus u is constant and thus u = 0.)

Let Hy = Ho(2) be the completion of Lipo({2) under || - |lo. Thus
ao(u,u)]/2 is a norm on Hj, and we still denote ||u|jo = ao(u,u)l/2 for
u € HQ.

Let u € H, u is said to be u > 0, if ux > 0 for all k for some {uy}
representing u. Note that if @ is the function in L2, asssociated with u,
then @ > 0 a.e. if u > 0. Now we can give the definition of solution to

L.

Definition 8.5. u € H(Q) is said to be a solution of Lu =3 - X}
(aijX;) = 0 if for any ¢ € Hy(Q2), we have ag(u,¢) = 0. u € H(Q) is

said to be a subsolution if
ao(u.6) <0, forall $>0, ¢ € Ho(Q).
u 18 said to be a supersolution if

ao(u,8) >0, forall >0, ¢€ Ho(R).

For fixed ¥ € H, —ap(7¥,-) is a continuous linear functional on Hy.
Thus by Riesz representation theorem, there is a unique F' € Hy such
that ao(F,¢) = —ao(¥, ¢) for all ¢ € Hy. Thus, u = F + ¥ will solve
uniquely the Dirichlet problem Lu = 0 with u = ¥ on 02 in the sense
that u — ¥ € Hy and ao(u,¢) =0 for all ¢ € Hy .
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Lemma 8.6. Given B = By(zo,h) C Q. Let u € H(B) be a non-
negative subsolution of Lu = 0, and G be the function in L% associated
to u. Then there exist positive constants ¢ and d depending only the
parameters in (7.1) and (7.3) such that for 1/2<a <1l andp > 2,

c 1
esssup ) < —mmm = —— wPw .
(st < = ||

PROOF. For # > 1 and 0 < M < oo, define Hp(t) = P for t € [0, M]
and H,,(t) = M? + BMP~(t — M) for t > M. Note H, (t) exists for
all t and bounded for each fixed M since H! (t) = ftP~! for t < M
and equals to SMP~! for t > M. Let u = {ux},us € Lip;(B),ur >0,
lux — uj]| — 0, and for each fixed M, define

bu(a) = (o) | " H (et

for n € C§°(B) to be chosen later.
Now ¢y € Lipo(B) and ¢ > 0. Further,

(8.7) Xk =n"H! (ur)*Xux +2 nXn /0 H' (t)%dt.
Computation now shows that,
el = [(aXér, X )
= [P Hiatu) (A, X)
+ 4/7)3H}W(uk)2 (Ak Hj\,,(t)2dt> (AXug, Xn)

ug 2

+4]n2 (/ H}‘,I(t)2dt) (AXn, Xn)
0

=TI+ II+1III.

Then we can show as in [CW2] that each of I, I and I1I is bounded and
thus ||¢x||o is bounded. Then there exists a weakly convergent sequence,
¢k, — ¢ € H. Since u € H, and |ag(u, ¢)| < ao(u, w)2a9(¢, ¢)'/? <
lu|| ||#]lo, it follows that ag(u,-) is a continuous linear functional on H,.
Thus

ao(u, ¢) = limao(u, ¢x; ) = limag(uk; , Px; ) -
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Since u is a subsolution, ag(u, ¢) < 0, and to continue further, we distin-
guish the following two cases lim ag(u; , #x; ) = 0 and lim aq(ug; , #x;) <
0. We will set ao(ux;,dx;) = ék;. For simplicity, we drop the sub-

scripts for Uk; ¢k,- and 6kj. From (8.7) and noticing that Hj,(u)Xu =
X Hp(u), we obtain

6 =a(u,d) = /(AXu,Xu)nzH;W(u)z
) + / (AXu,Xn)2n /0 H. (t)%dt
= / (AXH,, (u), XH,, (u))n?
+ 2/(AXu,Xn)n/:H§W(t)2dt.
Since [ Hb(t)2dt < u(Hj(u))?, thus
/ (AXH,, (v), XH,, (u))n?
= —2/(AXu,Xn)n/0qu’u(t)2dt +6
<2 /|<AXHM(u), u(H' (v))* Xn)|+6.
By (8.4), the expression above is
<e /(AXHM(u),XHM(u)>772 + é /(AXn,Xn)u2H;4(u)2 46
Taking ¢ = 1/2, we have
/(AXHM(u),XHM(u))n2 < 4/(AXn,X77)u2H]’W(u)2 +26.
Thus
(8.9) /IXHM(u)|2n2w < c/|X77|2u2H)'w(u)2w +cé.

In the case lim §;; < 0, we simply drop the term § above. Proceeding
further note,

X (nH yy (u))w = |(X0)H yy (u) + 1 X Hy, (u) P

(8.10) <2 (|Xq|*H,, (u)*w + n*| X H,, (u)|*w) .
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Hence by (8.9) and (8.10) and using the estimate H,, (u) < uH, (u),we
have

[1xE @ < [P E @)
(8.11) +c/|Xn|2HM(u)2w+c|5[
< c/|Xn|2u2H1'w(u)2w +clé| .
Now recall that h is the radius of the ball B, given 1/2 < s <t < 1,

taking 0 <5 < 1,7 = 1on sB,n = 0 outside tB, and | Xn| < ¢/(t—s)h.
Thus by the Sobolev inequality (7.3) and together with (8.11),

(tm /, '"HM(“)'qw)l/q

<cth (w(j;B) / ] 1X(nHM<u>|2w)1/2

/2
N 1 2, 2! 2 !

1/2
8.12 _ 1 2,2 2
(8.12) < cthW(/tB | Xn|*u?H!, (u) w)

+cth ’1/2

1
——|é
w(tB)l/zl

cth 1 1/2
< ZHI 2
= w(tB) 2 (t — s)h (/m” ) “’)

cth /
+ ol
So,
1 1/q
H, (u)|?
(8.13) (w(SB) /SBI s (1) w)

ct 1 1/2 cth
< 2 ! 2 61/2 .
<7 (amy [ mcers) + gy

Recalling that u = uy; — @ € L2, and § = é;; — 0, and using a further
subsequence if necessary, we may assume that ug;, — u a.e. Now

juH,, (u) = aH, (@) <2 (ju—al*|H, (u)]* +|a]*|H,, (u) - H, (@)]%) .



WEIGHTED POINCARE AND SOBOLEV INEQUALITIES FOR VECTOR FIELDS 421

Thus ug; H) ux, — @H, (@) in L%. Consequently, as j — co the right
side of (8.13) converges to

(w3 [, ﬁzﬂ?(a)zw)]/z

Since H,,(uk;) — H, () a.e., by applying Fatou’s lemma on the left
side of (8.13), we obtain

(s e

ct 1 172
< ~2 1 ~\2
<7 (o [, mmr)

Now letting M — oo, using @’ x(z<py < Hp(@) for the left hand of .
(8.14), and @ H}, () < aBaf~! = BuP for the right hand of (8.14), we

obtain
1 s\ _ctp (1 s \?
(w<sB> L “’) Sios (w(tB) L )w) |

Applying Moser’s iteration argument to the inequality above, we get

c 1 1p
27 < ”
s 0= =50 (g /)
for p > 2 (see [CW2]).

We now show the following meéan-value inequality for nonnegative
solutions when —oo < p < 00, i.e. Theorem 7.4 stated in the introduc-
tion.

ct
t—s

(8.14)

Theorem 8.15. With the same notation and hypothesis as in Lemma
8.6, ezcept that now u is a nonnegative solution and —oo < p < oo, we
have
esssup uP < —c—(l + |p])2”/("'1)—1—/ uPw .
oB “(1-a)l w(B) Jp

PROOF. The case p > 2 follows from Lemma 8.6. So it is enough to
consider —oo < p < 2. Let u = {ug},ux € Lip;(B),ux > 0, |lug—u;|| —
0. By considering ux + 9,60 > 0, and letting g — 0 at the end, we
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may assume that ur > €9 > 0. Let 5 be as in Lemma 8.6, n > 0, suppn
C B,—00 < 8 <1, and define ¢ = nzuf, then as checked in [CW2],
we can show that ||¢g||o is bounded for all k. Now pick ¢, — ¢ € Ho,
then ao(uk; , d; ) — ao(u, ¢) = 0, that is,

/(AXukj,XqSkj) =6, — 0.

Note that
Xi; = n*BuP ™ Xug, + 2 n(Xn)uf,

and for f # —1,

1 (-
X(uff“)/z) _Btl e D2 ¥y,
If we drop the subscripts, we have

6= /(AXu,XqS)
- /(AXu,n25u/’—1Xu>+ /(Axu,zn(xn)uﬂ>
_ LB/ (B+1)/2yy _2B_
= [rax o, xuorrn) 2y
2
+ / (AX (uPHD/2) Xn) (ﬂ—+—1)2nu(ﬁ+1)/2.
Thus,

; i : /(Ax(u(ﬂﬂ)/?),X(u(ﬂ+1)/2)>n2

p+1
=== /(AX(u(ﬂ“)/z),Xn)u(ﬁ'*'l)/zn .

Applying (8.4) with e = |B/(f+1)|, —co < B <1, B #0,—1, we have
_|__ﬂl_ o (B+1)/2 (B+1)/2\\,.2
Gy | AX AT, X (@O )y
< B+ £ [laxorrm, xn i)y

1
il B+1
+ 5 /(AXn,Xn)u
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|ﬂ + 1[ [5| + 2}ﬂlil_ 1| (AX(u(ﬂ+])/2),X(u(ﬂ+1)/2)>7]2
+ —’ir;, | faxn, xpu+,
Thus,
|ﬁlf—|1| /(AX(u(ﬂH)/?)’X(u(ﬂ+1)/2)>,72
8.16
=8 4 '
Now note

(817)  [X(qui)/2)Pw < 2(|XnPul+ 4 P [XulBHD/)2

Thus from (8.16) and (8.17) we get

11 2
(L)

18]
Taking n =1on sB,0<7n <1,supp n C tB,|Xn| < c¢/((t — s)h),1/2
<s<t<1, we have

+1 B+1
/ |X(77u(ﬂ+1)/2)|2 < I,B | +1 / |X7’]|2uﬂ+1w+l ||5| )
tB 18l tB 4

By Sobolev’s inequality (7.3),

1/q
(B+1)/2q
(am [, '“’)

<cth( /|X(nu(ﬂ+1)/2)|2w)l/2
B w(tB) Jip

cth 18+ 1\°
<ot | (G )+

/2
1 B+1 1B+1] "
1 Bl
(t—s)?h? [Bu YT

Jixmes e < [ixaru+io+ L.
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Letting k; — oo,

1 1/q
<w(sB> /SB [al*+0f “’)
ct (18+1] >( 1 ~1B+1 )1/2
St—s( E w(tB)/,B'“' w) o

Using Moser’s iteration argument (see [GT] or [CW2]), the lemma fol-
lows.

Lemma 8.18. Let u be a nonnegative solution such that u > ¢ for
some e > 0. For 1/2 < a <1, define k = k(a,u) by

1 .
logk = w(aB) /;B(logu)w

then for A > 0,

w({z € aB : |log — l > A} < i ———w(aB).

)/\
PROOF. Let n =1 on aB, and supp n C B,,|Xn| < c/a(l —a)h, h

is the radius of B, B, = aB, and a is the constant given in (7.2). Let
u = {ur},ur > ¢ >0, and let ¢ = n%/u;, then

Xor = —nzu,:quk + 277u;1X17 .
It is easy to check that ||¢|lo = [(AX ¢k, X@x) is bounded for all k.

Thus there is a subsequence ¢r; — ¢ weakly in Hy, i.e.
ok, = /(AXukj,X¢kj) —0
If we drop the subscripts,
6= /(AXu,XqS) =— /(AXu,Xu)u_zn2
+ 2/(AXu,Xr;)u_1

Thus,
/(AXu,Xu)u_2772 =2 /(AXu,Xn)u"ln -4.



WEIGHTED POINCARE AND SOBOLEV INEQUALITIES FOR VECTOR FIELDS 425

From this we get
J1axogu), X(og uyye?
<2 [(4X(ogw), X(logu))!/*(4Xn, Xn)!/ % + I8
< 6/(AX(logu),X(logu))n2 + -(‘1; /(AXn,Xn) + 16| .
Taking ¢ = 1/2,

/(AX(log u), X(logu))n? < 4/(AX77,X77) +214] .

Thus,
[1xoguPurt < f1xnP0 + el
Then,
r 2 c
(819) LGBIA(IOgU)I WSmLBw+C]6I

By Poincaré’s inequality (7.2), for ¢ replaced by 2, and together with
(8.19),

1 1/2
. _ 2
(w(aB) /;Bllogu avyp log ul w)

(1 —la)ah <LaB w>1/2 i léw?] '

Note @ > 1 is a constant, 1 > a > 1/2, by the doubling property of w,

cah
~ w(aaB)/?

/‘;B |log u — avep log ul*w < (ﬁ + c|6|) w(aaB)'/? .

Recalling u = uy;, 6 = ;, taking limits and noticing that ug > ¢ >0
implies 4 > ¢ > 0.

Moreover, |loguy; —logi| < (|ug; — u|)/e. Thus logug; — logu
in qu since ug; — U in L% . Therefore,

1
a vy p(log Uk,) = w(aB) /B(log Up; Jw — log k
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and
1 c 1

log i — log k|*w < )
w(aB) /aB[ ogi — logk[w < (1 - a)? w(B)'/?

Thus by Chebishev’s inequality, for A > 0,

u 1 u

w zEaB:log—->/\>§—/ log —|w
(1 log 71> 3) <5 [ j1og {1
c

1 i, \'* ,
<~ log - | g :
<3 (/anl og k' w) w(aB)'/* < 1 _a)w(aB)

The lemma that follows is a variant of Bombieri’s lemma for ho-
mogeneous spaces.

Lemma 8.20. If f > 0, w a doubling measure, B = B(z,r) and there
are constants ¢, d such that

c 1 1
i essstnf”ﬁ—————-—/ Pw for0<p< —,
@ B (t—=s)w(tB) Jip f d P 7

(ii) w({aB:logf>A})g“T“w(B).

Then there exist constants C, D such that

CY
ess su <exp| —— ) .
B pf < ex ((1—‘1)">

The proof of the above in the ball B = By is exactly as the original
Bombieri’s lemma (see [Bom]).

Finally we can derive the following Harnack’s inequality, z.e. The-
orem 7.7, by applying Theorem 8.15, Lemma 8.18 and Lemma 8.20.
Since the proof is easy, we omit it here.

Theorem 8.21. (Harnack inequality) Let w € A,, and let u be non-
negative solution of Lu = 0 belonging to H(2B) for a ball B = B(z,r)
with 2B C Q, r < rg for some rq > 0. .Let 4 be the function in L
associated with u, then

esssup 4 < ¢ essinf @,
B B

with ¢ independent of u and B.
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9. Mean value inequalities for general solutions and subsolu-
tions, and Hélder’s continuity.

In the last section we proved the mean value inequalities for non-
negative subsolutions to L. The mean value inequalities for general
solutions and subsolutions can also be obtained by the similar method.
Since the proof is arguing as in [CW2] for the case X; = 0/0z; and
m = N, we do not present the proof. Thus in this section, we state the
following results first.

Theorem 9.1. (Mean-value inequality) Let w € A; and v be a subso-
lution of Lu = 0 belonging to H(B). Let @ be the function in L2, as-
sociated with u. Then there exist constants ¢ and d depending only the
parameters in (7.1) and (7.3) such that for 1/2 < a <1 and0 < p < oo,

~ + P
(esi%up aty < w(B)/(u Yw,
where C < ¢/(1—a)? if p > 2 and < 186G/P) /(1 —a)d if 0 < p < 2.

Corollary 9.2. If in Theorem 9.1 u is a solution, then the conclusion
holds with at replaced by |@], 1.e. for0<p < oo, 0 < a <1,

esssup |4 < C —— [u|”w ,
«B

w(B)

where C as before.

Theorem 9.1, which is stated in Section 7 as Theorem 7.5, can be
proved as in [CW2] or [GT].

Corollary 9.2, which is stated in Section 7 as Corollary 7.6, is just
an easy consequence.

We now make the following additional assumption

If u is an element of H(B) whose associated
function u satisfies ¢ > 0 a.e. in B, then u > 0,

*)

i.e. u is the limit in H(B) of a sequence
{ux} with uy € Lip(B) and ux > 0in B.
We define the oscillation over B(z, h) of a bounded @ by

osc(z,h) = osc(z h) = esssup @ —essinf @ .
B(z,h) B(z,h)
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As a consequence of Corollary 9.2 we will obtain the Holder continuity
of solutions to L, i.e. Theorem 7.8. We will follow the method of Moser
[M].

Theorem 9.3. (Holder continuity of solutions) Let u be a weak solution

to L. Let B = B(zo,r), v < rg with B C Q. Then for i, and some
a >0, we have for any z,y € B(zo,r/2), and any p > 0,

. 1/p
a(z) — u ¢ o(z,y) 1 aPw
=) — ()| < ¢ (£22) <w(B<zo,r)> S )

with ¢ = ¢(p) independent of u and B.

ProoF. By Corollary 9.2, the function @ associated to u is essentially
bounded on each ball B with 2B C Q. Let B, = B(zg,h) and let M
and m be respectively the essential supremum and infimum of @ over
By, and let M' and m' be these bounds over Bj. Since M' — 4 and
%@ —m' are nonnegative a.e. in By, it follows from the assumption (*)
that M'—u > 0 and u —m' > 0. Since M’ —u and u — m' are solutions
in H(B), Harnack’s inequality (8.12) implies that

M —m<c(M —-M), M-m'<c(m-m').

Adding the above two inequalities gives rise to

(9.4) osc(zog, h osc(z,h).

)< €

2 c+1
Since ¢ — 1 < ¢+ 1, by iterating (9), and applying (9.2) and in view of
the metric p, the Holder inequality of 4 will follow.

10. Harnack’s inequality for solutions to £=—Z;"j=l

X,'(a,'ij).

In this section, we will prove a Harnack inequality for the operator
L=—- Z?j:l Xi(ai ;jX;). The difference between £ and L is that there
are lower order terms in £. So it is a little more complicated to treat the
operator L. However, the method used above does apply to £. Hence
we will be as brief as possible and just point out the essential difference.

Throughout this section, we make the following hypothesis: € is small
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enough so that the Poincaré and Sobolev inequalities hold on some ball
By containing .

We note that any v € Lipg(§2) can be extended to a function in
Lipo(By) by setting u = 0 outside Q. From the Sobolev inequality on
the ball By, it follows that Hy C H, and it is also possible to associate
with each u € Hy a pair (4,d) such that if u = {ux}, then ux — @ in
L2 (even LY) and Xuy — @ in L2 .

We now introduce several notations and definitions. Through-
out this section, we will denote by X} the adjoint of —X;, X*u =
(Xfu,...,Xru), and X} = X; + b;, where

We also let b = (b1,...,bm). Then there is a constant A > 0 such that
ST <AL

=173 =
Definition. u € H(Q) 1s said to be a solution to L if
/(AXu,X*qS) =0, for every ¢ € Ho(R2) ;
Q
u € H(Q) 13 said to be a subsolution to L if

/(AXu,X*¢) <o, for every ¢ > 0,6 € Ho(R2) ;
Q

u € H(Q) is said to be a supersolution if —u i3 a subsolution. We also

define
ay(u, @) = /Q(AXu,X*qﬁ).

We note that
at(u,d) = ao(u, ) + A(AXU,BQS) :
Since a(u, ¢) < a(u,u)'/? a(4, $)'/?,

’/(AXU,Eé)‘ < /(AXu,Xu)1/2(AE¢, Bp)1/?
Q Q
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< ey ([ ¢2w)1/2
< o) lulo ([ 1w )

< C(A) llultll#llo -

Then we can see that af(u,-) is a continuous linear functional on Hy

for fixed u € H.
Lemma 10.1. Given B = Bj(zo,h) C Q. Let u € H(B) be non-
negative subsolution to Lu=0, and @ be a function in L? associated to

u. Then there exist positive constants ¢ and d depending only on the
parameters in (7.1) and (7.3) such that for 1/2 < a <1 andp > 2,

(esssup )P <

B ”‘(l—a w(B)/

PROOF. For 8 > 1 and 0 < M < oo, define H,,(t) as in Section 8. Let
u = ug, ug € Lipy(B), ux > 0,||ux — uj|| — 0, define also

Uk
¢k = 772/0 H, (t)%dt, for n € C§°(B) to be chosen later,

then ¢r € Lipo(B) and ¢x > 0. As in Section 8, ||¢k||o is bounded for
all k and fixed M. Then there is a subsequence ¢;, weakly convergent
to ¢ in Hy. Thus aj(u, ¢, ) — ao(u, d). Let 6; = aj(ux;, 4x;) and drop
the subscripts, then

6 =aj(u,d) = /(AXu,Xu)nzH]'W(u)2
+2/(AXu,Xn>n(/oqu’w(t)2dt)
+/(AXu,I;)n2(/Oqu’w(t)2dt) .

So,

0< /(AXHM(U),XHM(U)MZ

=2 /(AXu,Xn)n(/Ou H,, (t)%dt)
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- /(AXu,g)nz(/uH;,(t)2dt) +6
0
< 2/[(AXu,Xn)nuH;{(u)2
+ / (AXu,b)n?uH!, (u)? + 16|
=2 [((AXH, (), ull, (X))
+ [AXH, (), ulf}, )B) i + 18]
€ /(AXHM(U),XHM(u))n2
+ 7 [taxn Xop? B, (?
+ -;- /(AXHM(u),XHM(u))n2
+ —/ 2H' (u)?n? + 6] -
Taking ¢ = 1/2,
/(AXHM(u),XHM(u))n2 < c/|Xn|2u2H;,(u)2w
+ C/quJ'w(u)znzw + 16| -
Note that
X (nH,, (w)* <2 (1Xn[*Hy (u)w + n*| X H,, (u)*w) -
Thus by noticing that H,, (u) < u H, (u), we have
JXaH P < C [IXafi, e+ C [ H, @b+l

Taking n > 0,7 = 1 on sB, |Xn| < ¢/(t — s)h, supp n C tB, for
1/2 < s <t < 1, then by Sobolev inequality (7.3)

(za5 /., InHM(U)I*’W>1/q
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<cth( gz [ :X(nHM(u>>|2w)1/2 .

Therefore

(w(im Ly 'HM(“”")I/q
= w(flg)hlﬂ <(t _ i)zhz /;B u? Hpy(u)’w

1/2
+ [ Hyro+Clel)
tB

C 1 1/2
< 2 ] 2
<7 <w(sB) /w“ Hy(w) “’)

Ch v o \2 Ch 12
+ (w(tB) /tBu Hy(v) w) t w(sB)1/2 |67/

Letting k; — oo, and noticing h < ry, t —s < 1/2, we obtain

(;é_f’—) /33 ]HM(a)]‘I>l/q = tfs (;(t%) [B(ﬁﬂfw(ﬁ)fw)m :

The remaining details of the proof are the same as that in Section 8.

Lemma 10.2. Let u be a nonnegative solution and —oo < p < 0o, then
(esssup ﬁ)p < __C____(l + 'pl)2a/(o—1)___1__/ apw
B T (l-a) w(B) Jp

where ¢ and d are two constants only depending on the parameters in
(7.1) and (7.3).

PROOF. The case p > 2 follows by Lemma 10.1. Now consider —oco <
p < 2. Let u = {ux}, ux € Lips(B), ux > 0, ||ux —uj|| — 0. By
considering uy + €9, €9 > 0 and lettin% €g — 0 at the end, we may
assume u; > g9 > 0. Define ¢, = nzuk,—oo < B <1,supp n C B,
then ||¢|lo is bounded in k. So we can pick a subsequence ¢x; — ¢ in

Hy, and then
aa‘(uk'j,qﬁkj) — ag(u,¢) =0.
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Note if we drop the subscripts,
Xk, = X i, + gy, = n*Buf ' X + 2 X’ + by*u?

and
X (uFD/2) = ﬂ_zﬂ.u(ﬂ—l)/ZXu _

Then for 8 # —1, we have
§= /(AXu,X*qS)
_ / (AXu, X ) + / (AXu,B4)
= /(AXu,XuWﬂuﬂ-l +2 /(AXu,Xn)nuﬂ-f— /(Axu,z?)nw
%)Zﬂnz
qu(ft1/2

= /(AX(u(ﬁ‘H)/z), X (uP1)/2)) (

2
+ 2/(AX(u(ﬂ+l)/2),Xn)ﬂ —

N /(AX(u(ﬂH)/Z), B) 2 er 2y

Then

B+l
4

_ /(Ax(u(ﬂﬂ)/?)’Xn>u(ﬂ+1)/2n

ﬂ_f—-i /{AX(u(ﬂ‘”)/z),X(u(ﬂ+1)/2))772 =

- % /(AX(u(ﬂH)/2)g>u(ﬂ+l)/2n2 .
Applying (8.4) withe = |B/(B+1)|,—00 < < 1,8 #0,—1, then
/|<AX(U(B+1)/2),g)lu(ﬁﬂ)/?n?
< -g/(AX(u(ﬁ‘H)ﬁ),X(u(ﬂ“)ﬂ))nz + _21; (AI_;, i,’)uﬂ+1n2

and

/|<AX(u(ﬂ+1)/2),Xn>|u(/3+1)/2n < _;_/(AX(u(ﬂH)/z)’X(u(ﬂ+1)/2)>n2
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1
il B+1
+2€ /(AXn,Xn)u .

Thus
1161 (B+1)/2 (B+1)/2Yy, 2
2B +1] (AX (u ), X (u nn
<cC lﬂ|;|1| (/lxnlzuﬁ+1w+/uﬂ+1n2w)

by noticing that I(Ag, g)| is bounded above. For 1/2 < s <t < 1, we
pick n € C§°(tB) as before, then

18] / (B+1)/2)2 2 1B+ 1] 1 / B+1

A [ ixy w<C

EESA e TR o P
18+ 1)

8 + 1]
18] Jis 181

+ C —— uPtlw + C
If we note that h < rg,t —s < 1/2, then

6] -

C 1B+ 12
(B+1)/2y2,2,, < B+1
/lX(u )Inw"(t—s)2h2 A /tBu w4+ Cg |6].

Note that
| X (uPHD2)n 2w < 2(|XnPuf+ + 2| X (uPHD/2) o

and by Sobolev’s inequality

1 (B+1)/ i
X +1)/2\|2
(w(SB) /sB X (u ) w>
1 l/q
< ( / |nu(ﬂ+1)/2|q)
~ \w(sB) Ji
1 1/2
<th / X (nutftD/2 2w>
(e [ prm
1
<th

1/2
18+1\° 1
T w(tB)!/? ( 1B ) (t — s)2h? [Buﬂ+lw+cﬂ'6|}

1/2
< c 1 |,3+1| / uﬂ+lw + Cﬂ l6,1/2
t—sw(sB)/? Bl \Jip w(tB)1/2
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Recall that u = ux;,6 = §;,6; — 0, let kj — oo and proceeding as in
the proof of Theorem 8.15, we are done.

Lemma 10.3. Let u be a nonnegative solution to L such that u > ¢
for some e > 0. For 1/2 < a <1, define k = k(a,d) by

1 N
logk = :U—(EE—) /‘;B(log d)w .

Then for A > 0,

w({z € aB: llog%I > A} < (1—_601)—/\ w(aB) .

PROOF. Let n, ¢x as in Lemma 8.18. Then
X*¢r = —nPup  Xug + 2 qup ' Xn + bor .

As in Lemma 8.18, ||#k||o is bounded for all k£, and there is ¢ € H such
that ¢y, — ¢ in Hp. Thus

bk; = ag(uk;, $k;) — ag(u,¢) =0
we drop the subscripts again,
/(Axu,xu>u—2n2 = 2/(AXu,Xn)u_177
+/(Axu,5u-1n2) —6.
Thus
J1ax(og ), X togu)r®
<2 [{AX (log ), X(log ) /*(4Xn, Xn)' /%
+ /(AX(log u), X (log u)) /2 (AX5,5)/*n? + |6]

<< [tax(ogu, X(ogujot + 7 [(4Xn,Xn)
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+5 Jiaxtogu), Xaoguwyt + 5 [(48Byr? +16l.

N O

Taking € = 1/2, we obtain

%/(z‘lX(logu),X(logu))r]2 < 2/(AX77,Xn)
1 .
+ 3 /(Ab, byn? + 16 .
Then

[1xtogwiwit <c [Ixafw+c [ruclo

c
[
< az(t—s)2h2/3w+C/Bw+C|6|'

This follows that
/ | X (log u)lZw < —-—C w(B) + |6]
aB - (1 - a)2h2

by noticing that h < rg and t — s < 1/2. By Poincaré’s inequality with
g replaced by 2,

1 1/2
(w(aB) /MB |logu — avap logu|2w>

< Cah (w(iB) /.,B |X(logu)|2w)1/2 .

The remaining details of the proof are the same as that in the proof of

Lemma 8.18.
We now derive Harnack’s inequality by applying Bombieri’s lemma.

Theorem 10.4. (Harnack inequality) Let u be a nonnegative solution
to Lu = 0 belonging to H(2B) for a ball B = B(zo,r) with zo € E CC
Q and 2B C Q,r < ro. Let @ be the function in L2 associated to u.
Then there are constants C depending only on the parameters in (7.1),
(7.2) and (7.3) such that

esssup 4 < C essinf 4 .
B B
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REMARK. It is easy to see the mean value inequalities for the general
solutions and subsolutions to £ also hold. Since the proof is also a
modification of that in the case of the operator L, we do not present
the details.
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