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Introduction and results.

Let 2 be a C*°-domain in C". It is well known that a holomorphic
function on 2 behaves twice as well in complex tangential directions
(see [GS] and [Kr] for instance). It follows from well known results (see
[H], [RS]) that some converse is true for any kind of regular functions
when  satisfies

p The tangent space is generated by the Lie brackets of
(P) real and imaginary parts of complex tangent vectors.

In this paper, we are interested in the behavior of holomorphic
Hardy-Sobolev functions in complex tangential directions. Qur aim is
to give a characterization of these spaces, defined on a domain which
satisfies the property (P), involving only complex tangential deriva-
tives. Our method, which is elementary, is to prove pointwise estimates
between gradients and tangential gradients of holomorphic functions
and, next, to use them to obtain the characterization of Hardy-Sobolev
spaces for 1 < p < oo. To give precise statements, let us introduce some
notations.
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202 S. GRELLIER

Write Q = {r < 0}, where r is a C*° function satisfying dr # 0 on
o0 = {r = 0}.

Define the holomorphic complex normal vector field

N= Z « 07 6z]

and the (holomorphic) complex tangential gradient of order k of wu,
{Vhu}, as follows. It is the vector {L; sju : I,J € {1,...,n}¥} where

or 0 or 0 ..
Li’j—6_a6_47_—<9z_ja_m’ z,]E{l,...,TL}

and L]’J = Li1,jl .. 'Lik,jk when I = (il,... ,ik),J = (jl,.. . ,jk)-

The family {L;; : %,j5 € {1,...,n},1 # j} gives a total system of
complex tangential vector fields on 0 (respectively on 02, = {r =
—e}, 0<e<eg).

For z in Q near 052, we set

Ci(z) = max{l@gr(L,-,j,mﬂ (z): 4,5,k l€{1,...,n},i #£j,k#1}.

It is known that C; is different from zero on 052 if and only if 2 satisfies
(P).

Denote by é(-) the distance to the boundary 0Q2. We use the fol-
lowing mean-value operator for z in 2 near 02

MeanQ(Z)(u) = /Q( ) [u(O) 4V (¢)

1
Q=)

where ()(z) is a polydisc centered at z whose size is ¢ §(z) in the complex
normal direction and /cé(z) in the complex tangential ones, ¢ chosen
so that, in particular, Q(z) C 2.

Now, let us state our pointwise estimates.

Pointwise estimates. Let k € N, 0 < p < oo. For each zy € 09,
there ezist a neighborhood V(zp) and a constant C such that, for every
holomorphic function g in  and every z € V(zo) N Q2

(1) 8(2)¥/? |Vhg(2)" < C Mean®)(|g]P),
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Ca(2)*8(2)"? | Vg ()]
< CMean®® (8"/2 |Vhg|” + Rest*(g)7)

where

k—1
Rest'(g) = 6'2(Y. Y 0@ /%) |vivg|

r=0 1<j+r<(k4r)/2
i>0

k-1
> > O |Viveg] ).

T=0 (k4r)/2<j+r<k
iZo

Inequality (1) is what we call the direct estimates. Such an estimate
is implicit in some works but is not explicitely written (see [GS] and
[Kr]).

Inequality (2) is the new estimate we prove; it says that, up to
a rest, the complex tangential gradient controls all the gradient. It is
what we call the converse estimates.

The main terms in these estimates are homogeneous in the follow-
ing sense: each derivative of order r in the complex tangential directions
appears with a factor 67/2 and each one in the other directions with a
factor 6". In the remaining terms, they appear with a smaller factor.
Compared with the usual mean-value property of holomorphic func-
tions, these pointwise estimates show that V%g behaves as a complete
gradient of order k/2. Obviously, by the mean-value property and
inequality (1), we can majorize Rest*(g) by the mean-value of §?/2|g|?.
However, for technical reasons, we will need this complicated form of
Rest*(g) (in order to be able to apply Hardy inequalities for example).

Now, we give the precise definition of the Hardy-Sobolev spaces.
We will identify a small neighborhood of 8Q in Q, with 8Q x [0, so].
More precisely, we choose a map & : 9Q x [0, so[— Q such that
o & is a diffeomorphism of 9§ x [0, s¢[ onto a neighborhood Q2 N U
of 0Qin Q,
o &((,0) = ( for every ( € 092,
o 6(®((,t)) ~tfor every ( € O and every 0 < t < s¢ .
For 0 < p < oo and k € N, the holomorphic Hardy-Sobolev space
HY () is defined to be the space of holomorphic functions g which
satisfy

sup |ng 0 ®(-,t)| € LP(09),
0<t<so
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We will see that this definition does not depend on the choice of the
function @ .

To state our main theorem, we need some other definitions.

We know, by [NSW] for instance, that we can define a non-isotropic
metric d(-,-) on 9 which satisfies d(p,¢) ~ |p — ¢|* + |(Im N,,p — ¢)|
(see [S1]).

We define the following quantities for every smooth function u and
every aperture a > 0.

e The maximal admissible function:

for every ¢ € 02, Mu(¢) =sup {|u(z)|: 2z € A,(()}

where A,(() denotes the admissible approach region
Ao(Q) ={®(n,t): ned,0<t<sg, dn,()<at}.

© The admissible area function:

v 1/2
for every ( € 0Q, Slu(()= / u|? 69 s} .
Aa() é

e The Littlewood-Paley function:

s 1/2
for every ( € 09, Gq(u><<>=(/ !uo@(fﬂlz“%) |
0

e The non-isotropic maximal operator on 0:

1
for every ( € 092, Mf({) =sup ———
( ) t>0 |Bd(C,t)| Bd(¢,1)

|f|do
where B%((,t) is a non-isotropic ball on 9, defined with the aid of the
metric d, centered at (, of radius ¢.

Since d is a metric and defines a space of homogeneous type, the
non-isotropic maximal operator on 0 is bounded from LP(9f2) into
itself, for every 1 < p < oo and is of weak type (1,1) (see [S1]).

Before stating our results in terms of complex tangential deriva-
tives, we recall some known results about Hardy-Sobolev spaces (where
Sq and G stand respectively for S2 and G°).
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Auxiliary Theorem. Let a be a fized aperture, k € N. For every 0 <
p < oo and every holomorphic function g, the following are equivalent:

(1) g€ HU(Q)

(2) Sa(6VFElg) € LP(09)
(3) G(§V*+1g) e LP(09)
(4) Ma(VHg) € L(5Q)

and the corresponding norms are equivalent.

Now, we can state our main result describing H%(Q) only in terms
of complex tangential derivatives.

Main Theorem. Let a be a fized aperture, k € N. For every 1 < p <
oo and every holomorphic function g, the following are equivalent:

(1) gemH®)

(2) Sa (6VV§~kg) € LP(0N)
(3) Ma (V29) € LP(09)

(4) sUPgycsy, |V2T’°g| € LP(0R2)

and the corresponding norms are equivalent.

REMARK. The results of Main Theorem are true for a larger class of p.
We will give later the details and precise statements. For instance, it
follows from our results the following corollary.

Corollary. Let a be a fized aperture. For every 0 < p < oo and every
holomorphic function g, we have

g € HP(Q) if and only if ||Sa(6V79)|

Lr(aQ) < ©O.

For the unit ball in C”, a characterization of Hardy-Sobolev spaces
in terms of complex tangential derivatives is given by Ahern and Bruna
in [AB]. But, in this particular case, it is easier since the complex tan-
gential derivatives of holomorphic functions are also harmonic. In the
case of strictly pseudoconvex domains, Cohn gives a characterization
of Hardy-Sobolev spaces H} with p > 1 in terms of maximal function
of complex tangential gradients of order 2k. But his proof uses the
representation of the Szego kernel given by Kerzman and Stein and, so,
needs pseudoconvexity (see [Co]).
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Our method is to use the pointwise estimates essentially to show
that one can define the Hardy-Sobolev spaces in terms of the admissible
area function of ordinary gradients as well as in terms of the admissible
area function of complex tangential gradients. Then, for the other char-
acterizations, we adapt, when it is possible, the method of [F'S]. The
technical difficulties are due to the fact that, for a holomorphic function
g, V&g is no longer holomorphic nor harmonic, but we can show that,
locally and up to a rest, it satisfies some mean-value properties analo-
gous to the ones satisfied by holomorphic functions. When the technics
of [FS] do not work, as far as we know, we use a trick which consists in
writing VX.g as the sum of the solution of a Dirichlet’s Problem with
data AV%.g and a harmonic function -the idea being that the harmonic
part is the principal term and the other part a rest. To estimate this
rest, we prove an estimate on the Dirichlet’s problem in mixed L? norms
with weight.

In a previous paper (see [G1l]), we gave analogous pointwise es-
timates in the more general context of domains of finite type and we
applied them to characterize Lipschitz, Besov and Sobolev spaces of
holomorphic functions. These estimates allow to generalize some of the
results of Main Theorem to domains of finite type. But, as we are not
able to deal completely with this case, we restrict ourselves to the case
of the (P) property. For more details on finite type domains, see [G2].

1. Pointwise estimates.
1.1 Preliminaries. Change of coordinates and polydiscs.

Let zg € 0. As dr(zy) # 0, we can assume that Or/0z; # 0 on a
neighborhood V/(zg) of z5. We shall need the following lemma which is
well known (see [C] for instance).

Lemma 1.1. For each z € V(2¢) N, there ezists a polynomial biholo-
morphism ®, from C" to itself such that

1) The coefficients of ®. are C° with respect to z and the jacobian
of @, is uniformly bounded from both side for z € V(z).

2) The defining function p =10 ®, of Q, = ®;1(Q) satisfies

oQ)=r(z) +ReCr+ Y- aia(2) GG+ O (1Gllcl +1¢T)

3,k=2
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where (' = (C2,...,Cn)-
3) There exists a constant ¢ on V(z¢) such that the polydisc R(z)
defined by

R(z) = {c €C™: |Gl<cé(z), Y IGI*< 05(2)}
k=2

is included 1n Q,. So

Q(z) = 2. (R(z)) C Q,
and there ezist €1,C3 > 0 such that

Pc,(z) CQ(z) C Pe,(2)
where

Po(z)={CEC™: |z =N SCé(2), |2 =P <Cé(2)}.

4) Cy(z) @ max {|a; x(2)|: j,k € {2,...,n}} for every z € V(z).

REMARKS. This lemma allows to estimate p and its derivatives; it
shows that, since g is C*°,

ZIN L 92 gy_1
—(0)=0 forj=2,...,n, acl(0)—2,

a¢;
8%p %o )
——(0) = —(0) = a; f Jk=2,....n.
aC]6Ck( ) ) aC]aCk( ) a]yk(z) or j n

Let us denote by Q¢(z) the set

o.({cecm: lal<t Y16l <1)).
k=2

It is shown in [NSW] that, for every n € 09, Q¢(n) N N is comparable
with the “tent”

B(n,t)={2€QnU: d(n(z),n) <t 68z)<t},
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where 7 denotes the projection on 92. This allows to see that there
exist ¢;,cp,c3 > 0 such that

&7 (Q(®(n, 1)) € BY(n, ext)X]eat, est[
(It suffices to remark the two following properties:

e 7€ Q(@(n,é’t)) for some constant C: so, Q(®(n,t)) C Qc,¢(n) for

some constant c;,

o 6(-) ~ton Q(2(n,1)).)

PROOF. There exists a biholomorphism
0.(0) =(z1 +do() 1 + Y di(2) ¢
=2
+ Z dgyk(z)CjCka 22 + 421 -y 2n + Cn)

J,k=2

such that o(¢) = r o ®.(() takes the given form; explicitely
1/ 0r ! j or ~1or
do(2) =3 (a—(z)) , di(z2) = ('a—zl‘(z)> -(%7(2)»

82

ik (2) = —do(z)[a 2( 2)di (= ) d(2) + 55— 5o ()
+6fa ( )dk(z)+ o (2)]

Properties 3) and 4) follow from a direct computation.

Our aim, now, is to show that, after this change of coordinates,
Vg, for g holomorphic, is, locally and up to a rest, a function which
satisfies some mean-value properties.

Let z € V(z9) N Q. Let us consider the family

p_ 020 000
B 641 5(: agl aCI

of complex tangential vector fields in §2.. Since by assumption 9p/9¢; #
0 on a neighborhood of 0 € €;, the family L} for i € {2,...,n} gives
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a total system of complex tangential vector fields in a neighborhood of
0 € ©,. We need the following technical lemma which allows to write
locally the field L' = L4** .. L! ** as a sum of a field with coefficients

which are almost harmonic and a rest. As before, we write { = ((1,¢’)

where (' = ((2,...,(n)-

Lemma 1.2. Let K = (ky,...,kn) € N*71. On the set

R(z) = {c €C: (1] <cé(2), ) |Gl* < c&(z)} cQ.,

k=2
we have
k;
+ Restf};»l

n

" =1]

=2
_ K K
= F + Restlk-l

19 = -\ o
39~ (Z a,-,,(z)(,) 3

=2

where Resty stands for

. HItIR|
K _ .
Resty = E b],R ag{a(R

1<i+IRI<k
R<K

with C®(Q;)-functions b; r, 1 < j+|R| < k, which satisfy the following
properties: they are uniformly bounded and +f (2j +|R| —k+1)/2 > 0,
b; r(0) = 0 and, for every ( € R(2), |b;r(C)] < C ()@ +IRI=k+1)/2

for some uniform constant C.

PRrROOF. We will give the proof in C? to simplify.

By convention, we will denote by O, any regular function defined
on §2,, uniformly bounded, satisfying, if r > 0, O,(0) = 0 and, for every
¢ € R(z), |0-(¢)] £ Cé(2)" for some constant C. Let

I'=-2_—-_22°

06186 920G

be a complex tangential vector field in 2,. We can show by induction
on k that there exist some constants ¢; ., 1 <j +r < k, such that

k 3’"""'"‘9) oitr

1k _ )
3D D PN | | fustac Y Prasy

1<j+r<k Ex j i=1
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where E} jr denotes the set of couples (m;,n;), 2 =1,...,k, which are
in alphabetical order and satisfy E:;l m; =k—j, ELI ng=k—r
with m; +n; > 1.

When j + r = k, necessarily, there are j couples which are equal
to (0,1) and r couples which are equal to (1, 0). So, the corresponding
terms get the following form

oY (ég) i
28! 0C, aFracs
But, we know by the Taylor expansion of p given in Lemma 1.1 that,
for ¢ € R(z),
Jdo 1
O—Q(C) =5+ 01/2(€)

and

8 2 ()& +01(¢) = O1/2(€) -
C2
This allows to see that the terms of order k take the form given in
the lemma. Let us look at the terms with j +r < k. Since p is a
C> function, the coefficients are uniformly bounded on V(z). So, it
suffices to consider the case when 2j + r > &k and to show that, in this
case, the corresponding coefficients are equal to zero at the origin and
are bounded by C §(z)(37+7—%+1/2 on R(z).

So, let j,r fixed with j +r < k and 2j +r > k. Let us denote by J
the number of couples (m;,n;) with m; equal to zero. As Y m; =k—j,

necessarily J > j. Assume that m; = --- = mj = 0, necessarily n; > 1
for ¢ < J. Let us denote by K the number of couples (0,n;), + < J with
n;=1. Wehaven; =---=ng =1 and

——r_Zn,—Ix—{— }: n; + Z n;>K+2(J-K).

J=K+1 j=J+1

So, K >2J—k+r>2j—~k+r. So,if K 225 —k+r+1, the corre-
sponding coefficient which is known to be a O/, (as there are at least
K factors 9p/d(s), is bounded by C§(2I=k+7+1)/2 and is equal to zero
at the origin since, by assumption on the indices, K > 1. Otherwise, if
K <2j —k+r +1 then, necessarily J = j, K = 27 — k + r and there
exists at least one couple (0,n;) with n; = 2 for K +1 <2 < j (since
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otherwise all the n;, for K +1 < < j, should be strictly bigger than
2 and we would have

k
k—r= E n;
=1

>K+2(J-K)
=2—k+r+2(k—-j—-r)=k—r,

which is impossible).

So, we use the fact that 829/9¢Z () = Oy2(() for every ¢ € R(z).
This gives that the corresponding coefficient is a O(k41)/2 and so, is
equal to zero at the origin and is bounded by C§(7=¥+7+1)/2 since there
are K = 2j — k + r factors 8p/9(, and at least one 829/9(2 .

In the new system of coordinates, near the origin, 8/9¢; ~ L}, this
allows to show the following corollary.

Corollary 1.3. For every l € N, every K € N*~! and every function

u € C=(R2;), we have, on R(z)

o't 1Ky ,ROu
W  GiHRIGHKI bC—lj '
R<K
PROOF. Lemma 1.2 allows to write on R(z)
IKl glK K1 K
(3—5) % =r'" 4 |J[Z=0 O(é(z)qkl_umz)3———d“"a‘l”l'a<"
+ Rest{};-l_lf,

and we can assume that do/0(; # 0 on R(z). So, this allows us to
estimate each derivative |9"1Kly/ 8(118(’1([ in terms of |L' Koty /A¢
and of derivatives either of order strictly less than [ + |K|, or of order
with respect to (' strictly less than |K].

Applying successively this estimate, we obtain the lemma.

Now, we are going to see that, for f holomorphic in Q,, FKf
satisfies some mean-value property. Let us give the following definition

(¢f. [AB] and [G1] for instance).
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Definition. Let 2 be an open set in C*. Let K = (k1,...,k,) be a
multi-indez of integers. A function F € C*(Q) i3 called (AB) g if

k'F

a:_k. =0, fO'r‘j=1,...,n.
3]

a¢;

To simplify, we will assume that K is fixed in the following and we
will write (AB) instead of (AB)g. For every ¢ € C, r > 0, we denote
by D((,r) the disc {z € C: |z — (| < r}. Then, we have the following
lemma (see [AB]).

Lemma 1.4. For every L,M € N", 0 < p < oo, there exists a constant
C such that, for every (AB) function F in §2, every ( = ((1,...,(n) € 2
and every r = (r1,...,7a) € (]0,+00[)" with D(C1,m1) X -+ X D((nyTn)
C Q, we have

olL+imip  |P

actacM

C

|F|PdV.

So, for f holomorphic, FK f is an (AB) function. This allows to
prove the following result for example which gives a mean-value prop-
erty with rest for V&V'g.

Corollary 1.5. For every I,k € N and every holomorphic function g
in Q, we have, for every z € V(zo) N,

6(2)"/*H |VEVg| (2)
< C' Mean®(® (5"/2“ ]V’%Vlg| + ¢! Restk(Vlg)) .

(Rest® has the same meaning as in the Pointwise Estimates).

PRrROOF. It suffices to consider the case [ = 0. The general case follows
replacing g by V'g.
We set f = g o ®,. Since, by assumption, the family

I Op 0O do O

z:'afl‘&:—'azbz, i €{2,...,n}

gives a total system of complex tangential vector fields in a neighbor-
hood of 0 € Q,, each iterated complex tangential vector field of order
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k at 0 is obtained as a linear combination with smooth coefficients of
L' at 0, where K e N*~! 1 < |K| <k.

So, to estimate V%.g(z), we have to estimate L’ K f(0) for every
KeN1withl1<|K|<k.

To simplify, we will only estimate L’ f f(0) and we will write L'f f=
FF¥ + Rest}.

By Lemma 1.2, we have

Qﬁf. aj+rf
act ) \ t 2 \aaar©® )

1<2j+r<k—1

L'}f(0) < (

1<2j+r<k—1

j+r
:C(lpikf(o)|+ 2 :gfagr(w)

Now F} f is an (AB) function since f is holomorphic and so, by Lemma

14,

Now, we will show that, after a change of coordinates, §(2)*/? >
Rest¥ f is bounded by Rest*(g). By Corollary 1.3, we have on R(z)

aj+rf
a¢a¢r

|2 £(0)] < € Mean®® (!Ff“f + >

1<2j4r<k-1

< CMeanR® ('L’ffi + Restff) .

s
1 a(f

k-1
Rest! f < C’(Z Z

r=01< +r<(k+r)/2

+ kz—:l Z 6(2)(2j+r—k+1)/2

r=0 (k+r)/2<j+r<k

it
¢

).

This inequality allows to conclude.
1.2. Direct estimates.

We are going to prove the following theorem.
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Theorem A. Let Q2 be a C*™ domain in C*. Let k € Nl e N*, 0 <
p < co. For every zy € 0N, there exist a neighborhood V' (2o) of zo and
a constant C such that, for every holomorphic functions g in Q and
every z € V(2z9) N Q, we have

(1) 8()"/2 |Vhg(2)]" < CMean?@)(|gP).

l
(2) 6(z)k/2HP |V!VEg(2)[F <CMea.nQ(z)< Z[wg]”)

=1

PROOF. Let z € V(z). Weset f(¢) = g(®.(¢)), then f is holomorphic
in Q, =®71(Q).

In order to show the first part of Theorem A, we will apply Cauchy
Formula to f. Since f is holomorphic, by subharmonicity property of
fP, we have, for every j € N, every R € N*~! and every p > 0

1

aJ+lle
= (cé(z))n+1+pGHIRI2) /lcu, g esion IF(OF dV(C).

a¢iac'®

520 )

The domain of integration is R(z). In order to conclude, we recall
that each iterated complex tangential vector field of order k at 0 is
obtained as a linear combination with smooth coefficients of L'* at 0,
where K € N*~! 1 < |K| < k. Furthermore, by Lemma 1.2, r'¥ f(O)

is almost equal to (1/2)|h|3|1‘|f/0C'k(0). More precisely, for each
K € N*7! we can write, with the help of Lemma 1.2, that

20| <c (‘ ac'F (0)‘ 2 SZ;ZI'{*(O)D

1<2j+|R|<|K]-1
<C (5(2.)—IKIP/2 + Z 5(2)—p(j+|R{/2))

1<2j+|R|<| K] -1

1
* (|R(z)| R(z) ]f|PdV>

A-lKz [ 1
=T (lR(z)l .

IfI”dV> .

This allows to conclude for the first part of Theorem A.
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To show the second part, it suffices to apply the preceding result
to the derivatives of g and then, to use the first part of the following
elementary lemma.

Lemma 1.6. For every [,k € N and every u € C*°(Q), we have

V'Vl < |VEV|+O( Y VRV

1<t
0<r<k—-1

ViV < [V'Vhe|+0( Y [VEVIu])
where the O are uniform on V(z).

1.3. Converse estimates.

We are going to show the following theorem.
Theorem B. Let Q be a C>® domain in C*. Let k € N0 < p <
co. For every zy € 0N, there ezist a neighborhood V(zy) of zp and a

constant C such that, for every holomorphic function g in ) and every
z € V(2z0) N Q, we have

Ca(2)78(2)"? |V¥g(2)|" < C Mean® (8"7/2 [Vhg[” + Rest*(9)7)

where

k—1
Rest'(9) = 8'/2()° Y 0@+ |V Vig]

r=0 1<j+r<(k+r)/2
i>o0

k—1
3 Y o) [Vl ).

=0 (k+r)/2<j+r<k
iZo

PROOF. As before, for every z € V(z) fixed, we set f(() = g(®.(()).
We begin with the following lemma.

Lemma 1.7. Let Q be a C* domain in C*, let k € N and 0 < p < oo.
For each zy € 0N, there ezist a neighborhood V(z9) and a constant C
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such that, for every z € V(z9) N2, there exists a transverse vector field
M,, with M,r(z) = 1, such that, for every holomorphic function g in
Q, we have

Ca(2)k?6(2)k? | MEg(z)|” < C Mean®® (5kr/2|v§g|P + Restk(g)”)
where Rest¥(g) take the form given in Theorem B.

PROOF. We write L'S f(¢) = F¥f(¢) + Rest! f(¢) for ¢ € R(z), where
10 ¢ o\"
k S - (2)C)—
Fi f(() - <2 0C1 ;al,'(z)clacl) f(() .
Since f is holomorphic, F¥ f is an (AB) function. Furthermore

O*Fkf ¢ O
L=(0) = (—a;(2)) =—=(0), l=2,...,n.
aak () ( ,I( )) aclk()

So, Lemma 1.4 allows us to deduce that, for [ =2,... n,

P

517 asa()17 | S L0 < OMean™ ()
1

< CMean™™ (|L'SfP + (Rest! 7).

Then, summing on ¢ and [, we obtain

P

k
Col2)kP6(z)0/? —Z—C—fk‘w)

< C Mean®(® (i (|L'ff|p + (Restff)p>) .

=2

And we estimate Rest? f as in the proof of Corollary 1.5. In the ordinary
system of coordinates, this gives

or —k kg
(30) 50

< C'Mean®®) (6(z)kp/2|V§~g|p + Restk(g)p) -

p

Ca(2)"6(2)*?




COMPLEX TANGENTIAL CHARACTERIZATIONS OF HARDY-SOBOLEV SPACES 217

Lemma 1.7 follows with
or 19
Mz = (-éz_l(z)) 8_21 .

In order to conclude for Theorem B, we remark that there exists a
constant C' such that, for every z € V(zg), we have

Vi)l < cf{iMigz)l+ Y VAVl + Y Vg2l
Stk 1<5<k—1
But, by Corollary 1.5, we can estimate each |V3.V7g(z)| by its mean-
value on (z), disregarding some remaining terms. This allows to see
that the terms

Y SHVEVIg()+ D 8(2)F[Vig(2)

j4r=k 1<j<k—1
r>1 ==

can be majorized by C Mean®?(*)(Rest*(g)).

REMARK. The estimate of Theorem B is intrinsic: explicitely, if @’,} is
a tangential gradient defined with the help of another defining function
7, then the right member of the estimate defined with the help of these
V is equivalent to the one defined with the help of V.

We will assume now that 2 is bounded in C"; so, the estimates of
Theorem A and B are uniformly true on Q@ N U, where U is a neigh-
borhood of 92 sufficiently small such that the projection on 92 is well
defined. Furthermore, if Q satisfies (P), we assume U sufficiently small
so that Cj is uniformly bounded from below on @ NU. In this case, we
obtain the following corollary.

Corollary. Let Q be a bounded C*° domain satisfying (P). For every

0 < p < oo, k €N, there ezists a constant C such that, for every
holomorphic function g in Q and every z € QN U, we have

6(z)kP|VEg(2)]P < C Mean?(® (5k”/2lV’f~g|P + Restk(g)p) :
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2. Hardy-Sobolev Spaces.

In the following K will denote a compact set contained in the
complement of QN U.

2.1. Proof of the Auxiliary Theorem.

We give the main ideas and references for the proof of this theorem,
which follows from standard methods but which is nowhere explicitely
written (as far as we know).

Assume that k = 0 to simplify. The equivalence between (1) and
(3) is well known from Fefferman-Stein work and is valid for harmonic
functions (see [FS]). We have to prove that (1) implies (4).

For every 0 < p < oo, every ®(n,t) € A,((), we have, by subhar-
monicity of |g|P/?

lg 0 ®(n,1)[P/* < C Mean®®m0)(|g|P/2)
lg 0 ®(n', )P/ 2do(n')ds

IN

oo
1Q(®(n, )| Jo-1(0(a(n,t)))

¢ ' 27
—— sup |go®(n',s)|P ?do ,
|B4(C, ct)| Jpage ety 0<s<so | () ()

|

since if ®(n,t) € Au((), the projection of @~ (Q(®(n,t))) on IN is
contained in B%((, ct), for some constant c.

So,

MJMW%OSCM<Swlw¢hﬂWﬁK%

0<s< 39

where M is the non-isotropic maximal operator. We conclude by the
L2-continuity of the operator M.

The fact that (2) implies (3) follows from a similar argument. For
p > 2, (3) implies (2) is true for any kind of regular functions (see
Lemma 2.5 further on) and follows from an argument of duality and
from the L?-continuity of the non-isotropic maximal operator for ¢ > 1.
It remains to prove that (4) implies (2) when p < 2. The proof of
Fefferman-Stein can be adapted in this context. We postpone this proof
as we shall adapt the method of Fefferman-Stein in a more general
context for Theorem D. We can also see [B1] and [B2].
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REMARK. As an immediate consequence of the equivalence between

sup |ng o @(-,t)[
0<t<so

and ||Sa(5vk+19)”u(am’

Lr(892)

we obtain that the spaces H%(2) are independent of the choice of the
map @, and that different choices of @ yield equivalent norms.

2.2. Admissible area functions.

First, we give an auxiliary result which can be proved by the same
method as in the case of classical area functions (we do not give the
proof because the method will be largely used in the following, we can
also see [CMS] for instance).

Lemma 2.1 Let Q be a C?-domain in C". For every apertures o, 3 > 0,
every 0 < p < oo, every ¢ € R,

|58 (u)|l s a0y and Hsg(u)l L (89)

a. equivalent for every regular function u defined on .
Now, we need a particular Hardy Inequality.

Lemma 2.2. (A Hardy Inequality on a region over a graph). Let R be
a region over a graph in QNU, R given by

3~Y(R) = {(n,1) € OQxX]0,50[: t > ()}

for some function ¢.
Let ¢ > 0. There ezists a constant C such that, for every mesurable
function u on 2, we have

k-1

dv A% ;
2 +2k 7k, |2 2
Jf o s o [[ o9t T+ Z 19l

=0

PROOF OF LEMMA 2.2. First, we recall the usual Hardy-inequality:
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Let p > 1. For every q > 0, there ezists a constant C such that,
for any positive, mesurable function v defined on R*, we have

/ wyap® < C/ #9 (to(t)y 3
0 t 0 t

where V(t) = [ v(s)ds fort>0.

In order to obtain the lemma, for each n € 0N, we apply this
inequality with p = 2 successively to the function

Vn(tl) = [ /; lv,,(t)'dtdtkdtz
1 k

dk
= (B(n,t) i ¢() St < 5o,

0 otherwise.

where v, (t) =

Integrating over 012, this gives the result.

We are going to prove, now, that the admissible area functions of
different orders are equivalent. This equivalence follows from standard
arguments and from an appropriate Hardy Inequality.

Theorem 2.3. Let Q be a bounded C*° domain in C". For every
holomorphic function g, every k € N, every 0 < p < oo, every ¢ > 0
and every aperture o > 0

k7k
15&(9ILr(a0) and “S«z(‘S v 9)||Lr(an)
are equivalent, modulo an error of ||g||L2(k) -
In [S2], Stein gives this result for p = 2 and harmonic functions in
R". For general p, the corresponding result for harmonic functions in

R™ follows from equivalent definitions of H? (see [CT] for instance).

PrOGF. The proof will be given in two steps. The first step is devoted
to show that

”ng(akvkg)”[,p(ag) S c (”Squ(g)”LP(BQ) + ||g“L2(K)>

and the second to the converse inequality.
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First inequality. In this part, we are going to show that, for every
¢ € 09, every a > 0, there exists # > a such that

S1(8*V*9)(¢) < C (SHa)(€) + gz ) -

Lemma 2.1 will allow to conclude that, for every 0 < p < oo,

158(6*7%9) | o0y < € (ISUDlI o0y + l9llz2cx0)) -

This inequality follows easily from the fact that, since g is holo-
morphic in 2, for every z € QN U,

8(2)**|V*g[*(2) < C Mean®®)(|g?).

So, it suffices to choose f sufficiently large such that, for every z €
Aa(€), Q(z) C Ap(C).

Converse inequality. In order to show the converse inequality, we are
going to distinguish three cases: p=2,0<p < 2andp > 2.

1. Case p = 2. This case is the simplest one since

||5§(9)||22(an) Z/L §9(2)]9(2))? o ({C € O : z € Aa(C)}) ;Xl((zz))

= [/ a Pk

where R, is the set UccanAa(¢) =2 NTU. So

av
12(9)IIz2(00) =~ / l91*8%
QnU

and it suffices to apply Hardy-inequality to conclude.

2. Case 0 < p < 2. We use again ideas of [FS] and [CT]. The proof
will be given in two parts.

2.1. First part: For every A > 0 and every 8 > a > 0, let E (= E’\)
be the set of points of Q2 where S'Z,(&kvkg) < A. Now, let E; (= E(,\)
be the points of E of relative density 1/2; more precisely Ej is the set

{C € 80 : for every ball B¢ containing ¢, o(E N B%) > %U(Bd)} .
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If x is the characteristic function of D (= D’\) = E° (complementary
of E), then

Do(=D()\)=E§:{CGBQ: M(x)>%},

where M is the non-isotropic maximal operator. Thus, there exists a
constant ¢ such that o(Dy) < co(D).
We are going to prove the following lemma.

Lemma 2.4. Under the assumptions of Theorem 2.3, there ezists a
constant C such that

S9(g)%do < C </ sg(akvkg)zda+/ jgy2dv).
E K

Eo

PRrROOF. We have

()= [ S19)do
Eo
3 . Ao . dV(z)
= [[[ @ o e € B = € AOD) g s

d
<c [ ol
Ra

where we denote by R, the set Ucep,Aa((). Observe that

1 (Ra) = {(n,t) € 00x]0,s0[: t> %d(n,Eo)}

(where d(n, Ey) = inf¢cg, d(n,()) and apply Lemma 2.2 in order to
obtain

dv dv
JI o< o ([[ ot + [1arav).
Ra Ra K

since, by assumption ¢ > 0. So, we have

S1(g)2do < C ( / / o2k kg Y | / ig|2dV) .
Ey Ra 6 K
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Now, it is sufficient to observe that z = ®(5,t) € R, if and only if
d(n,¢) < at for some ¢ € Ey. But then z = ®(n,t) € Ag(w) whenever
d(¢,w) < (B — a)t. Thus

c({weE: z€ Ag(w)}) > a(E' N B¢, (B — a)t))
> 2 o(BY(C (B o)

in view of the definition of Ey. So, the later quantity exceeds Ct™ ~

Cé(z)™. So,

(*) SC( //;z S |VE ()20 ({fw € E: z € Ag(w)}) 5—(3}%

| loPav)

50(/ 5;(5kv’°g)2da+/ |g|2dV>.
E K

2.2. Second part: We conclude from Lemma 2.4 as in [FS] that,
when 0 < p < 2,

IS4 Lo (any < C (14" VD) o (aqy + 9llz2x) ) -
(09)

Let us give the proof once for all for completeness.
Observe that

o ({Si(g) =2 A} <o(D)+o ({¢C€Ey: Si(9)(C)=A})
<o(D})+ 35 [, Si(o)ido.

Then, we write
1S8(0) 2 o = 7 / N=lo ({54(g) > A})dA
0

<p [ ¥o(D}ar

tp / A= / S1(9)? dord

o (3Q) M?
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< C(p/ AP=15(D*) d)
0 .
+p / Ap=3 / S5(65V*g)? dodA
M EX
+ gl 22 MP ™2 + o(22) M7 )

< 0 (536 5%, 0y + i

P
L?(89)

(by choosing M = ||g||12(k))- Lemma 2.1 allows to conclude.

3. Case 2 < p < co. First, it follows easily from the usual Hardy-
inequality in L?(0,so) that, for every ¢ > 0 and every ( € 0,

GI(9)(¢) < C (GU(6*V*9)(O) + llgllz2(x)) -

So, for every 0 < p < oo,

167 )l com) < € (1G9 V* )| ooy + 92210 -
Now, since for every function u € C*°(Q) and every ( € 09,
G?(Mean?(u))(¢) < C (S4(w)(¢) + llullz2x))

for some o > 0, we have

167z om) < € (IS4l oo + 9l )

for every holomorphic function g and every 0 < p < co. So, it remains
to show the following lemma.

Lemma 2.5. For every a > 0, every 2 < p < oo, every u € C(Q)
and every g € R, there ezists a constant C such that

||SZ(")||Lp(aQ) <C ”Gq(u)”LP(aQ)'
PROOF. As in [S2], we use the fact that

I1SL ()1 2s a0y = 1S4 | 10200
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2
= sup [ S1(0)0(0)do()

where the supremum is taken over all the functions v € L?' (99), with
2/p+1/p' =1 and ||v]| (99) < 1.

/ S1(u)(¢)o(C)do(C)
onN

dt
= q 2 o ¢ o d d
C/z;n L-‘(Aa(c))t i (n’t)tn+l a(n)v(¢)do(()

= ” U20 i v (o8 ﬁ g
—c [ [T onroamy (t,, L, w0 (0) % don)

<c / Mo(n)G?(u)(n)?do(y),
N

where M is the non-isotropic maximal operator,

IA

C“M”“Lp'(an) ”Gq(u)Hi»(aQ)
C”””L»'(an) ”Gq(“)“i»(am
ClIG* (W)l Zr (o0

IA

IA

by the L?'-continuity of the non-isotropic maximal operator.

2.3. Proof of the first part of Main Theorem.

We are going to prove the following result.
Theorem C. Let Q be a bounded C*®-domain in C" satisfying (P),
a > 0 be a fized aperture and 0 < p < oo. For every holomorphic

function g in Q, every ¢ € R, k,l,r € N with g+ k+ 2] > 0 and
qg+2r >0,

|sace+z+otvty)|

Si(6/7+1V'Vhg)|

Lr(8Q)’ ‘ Lr(3Q)’

and 15&(8"V" )l L (a0)

are equivalent, modulo an error of ||g||L2(K)-
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These results are also true for any permutation of V and Vr in a
product V!VE.
As an immediate application, we obtain the following corollary.

Corollary. Let Q be a bounded C*°-domain in C" satisfying (P). For
every 0 < p < oo, every k € N and every holomorphic function g, we
have

g€ HE(Q) if and only if llS;Zk(5j+I/2VjV£_,1g)|

< oo
L?(892)
for every 1) € N with 7 +1/2 > k.

In particular for [ = 2k and j = 1, this corollary gives the equiv-
alence between (1) and (2) of Main Theorem and for £ =0, [ =2 and
J = 0, this gives the corollary stated in the introduction.

ProoF oF THEOREM C. We are going to show that

are equivalent, under the assumption that ¢+2r > 0 and ¢+2l+% > 0.

In order to obtain the last equivalence of Theorem C, we just have
to use Lemma 2.2 which allows us to write V!V%.g as the sum of V4 V'yg
and of terms involving smaller derivatives like V5.V7g, with 0 < r <
k—1and 1 <j < (the terms involving smaller derivatives are smaller

than HSZ(‘SrVTQ)”Lp(aQ) )-

So, let us show this equivalence.

k/241gk ! T
Syt HVEg)|| o and ISAEY70)l s an)

First inequality. We are going to show that

|sa(6/+1vA-vg) < C (IS4 V9l s o) + lgllzz) )

Lr(0%2)

under the assumption that ¢+ k+ 21 > 0 and g+ 2r > 0. As before, we
will distinguish the cases p =2,0<p <2 and p > 2.

The case p = 2 is the simplest one as before. Since it follows easily
from the results of [G1], we will not repeat the proof here.

1. Case 0 < p < 2. In view of the proof of Theorem 2.3, it is
sufficient to prove the following inequality, the second step being the
same as in the proof of Theorem 2.3.



COMPLEX TANGENTIAL CHARACTERIZATIONS OF HARDY-SOBOLEV SPACES 227

There exists ¥ > a such that

[ syetvhvlgds < ( /E SY(67V"g)Pdo + l|9||2Lz(K))

with E, Eo corresponding to S4(6"V7"g). This inequality will follow
from the following lemma.

Lemma 2.6. Let k,l,r € N, g€ R with ¢+ 2l +k >0 and ¢+ 2r > 0.

Then, for every a > 0, there ezist B > a and a constant C such that,
for every Ey C OS2 and every holomorphic function g in 2, we have

// sat2itk |V’7€~V1g|2 %

T T dV
<c ( [ areniorar S+ ||g||izm) ,
Ry

[, s

rier 2 AV
<c ( [ srmiar 4 nguizm> ,
Rp

where Ry = Ucep, Aal(().

PROOF. We only give the proof for [ = 0. The general result for the first
inequality will follow applying the result with [ = 0 to the components
of V'g, changing ¢ into ¢ + 21 and using the same method as in the
proof of Theorem 2.3. For the second inequality, we use Lemma 1.6 as

before.
Let us apply the Hardy Inequality of Lemma 2.2, this gives

JL o 1vhl

- - 2 dV
<c([f[ ot |9hal Tt ol ).

under the assumption that ¢ + &k > 0.
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Now, we apply successively the results of Theorem A and the Hardy
Inequality of Lemma 2.2 to the terms involving derivatives less than r

in order to obtain
r 2 dV
Z/ A " —+ ||9||L2(K))

// 59K |Vhg |2-C-l-K<C
J=1
Y
SC( J[ snw 9127+ugu%zm>
8

since, by assumption, g + 2r > 0.

2. Case 2 < p < co. As before, we will only consider the case
1 = 0. We have, by Lemma 2.5,

<C HGq(akﬂv;g)

|sae*2v4a)|

L?(89) L?(89)

But, by Hardy inequality in L2(0, so), we have, for every ¢ € 0,
G1(8*/2V9)(() < C (GI(8**+7"VEg)(C) + Clgllzcio)

< c(sg(&’ ; IV7g|)(¢) + Hgllm(m)

by Theorem A, smce for every function u € C*°(2) and every ¢ € 09,
there exists @ > 0 such that

G*(Mean?(u))(¢) < C (SL(w)() + llull2(x)) -

So, by Theorem 2.3, we obtain the result.

|sas29%9)| . <€ (1546 V"Dl uo om) + lgllzzaio) -

Lr(8%)

Converse inequality. We want to show that,

+ ||!JHL2(K)> ,

q(STIT < q(sk/2+1gk 7!
538"V 9)llLr(a0) < € (HS"(& ViV g)HLP(BQ)

under the assumptions that ¢ + k + 2/ > 0 and ¢ + 2r > 0. We only
consider the case | = 0. For general [, we use the same method as
before.



COMPLEX TANGENTIAL CHARACTERIZATIONS OF HARDY-SOBOLEV SPACEs 229

By Theorem 2.3, it suffices to show that

+ ||9||L2(K)) .

S840l 10 0my < (|20 759)]

Lr(59)
We begin with the following lemma.

Lemma 2.7. Under the assumptions of Theorem C, we have

126 7* )| 0oy < ©([[ S8+ ho)

Lr(89)
+ (1587 (8*V*9)|| 11 (50 IlgllLZ(K))-

PROOF. 1. Case 0 < p < 2. Lemma 2.7 will follow from the following
estimate.
There exists v > a and a constant C such that,

[ suervtopas <o [ syevhordo
Eo E
+ / ST (8*V* )2 do + (1910
E

where
E= {sg“(a"v"g) < X and SI(6*/2Vhg) < A}

and E is the set of points of E of relative density 1/2. As in the proof
of Theorem 2.3, we will denote by Dy and by D the complements of Ey
and E respectively; then o(Dg) < co(D) by the non-isotropic maximal
Theorem.

The preceding inequality will follow from the following estimate.

There exists ' > 8 > a such that

// 6q+2k|vk |2dV
<C // 891k | vk g |2
Rp

dv
+ //;z 5q+2k+1lvkgl2T + ||g|liz(k-)).
ﬂl
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Let us prove this inequality. By Theorem B, we have

dv
<o f[ sivherss
A
av
4 / / 59[Rest* () - + llgll2c) )
Rp

Let us estimate the remaining term. We are going to show that it is

bounded by
dv
c (// 5"+2k+llvk9|2—6— + HgHsz(K)) :
Ry
We have

()= [ / 6q|Restk(g)|2%‘i

<¢( / gk+a ]vivgglz%z
R 1<]+r<(k+r)/2
: : dv
2j+r+14g |giyrg|? 22
/ A 5 V7 V5g|* —).

B (k+r)/2<]+r<k

By Hardy inequality of Lemma 2.2, we have

el 5. o

Rs 1<j+r<(k+7)/2

// grh+rHI+e |y yr g 2 dV .
Rp (k+r)/2<]+r<k 6

Then, by Theorem A, we obtain

(%) <C // 25k+q+2(k DT |Vl ,2 v
R

8 1<]+r<(k+‘r)/2 =1

§2k+1+q 24V
+//RZ VY| )

B l=1
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< C/ 5q+2k+1 Ivkg|2 v .
- 5

So, we obtain the good estimate.
Using this inequality, we obtain Lemma 2.7 by the same method
as in the proof of Theorem 2.3 when 0 < p < 2 since

Ec {s1(8*?Vhg) <A}, EcC {85+ (5"Vg) <2}

and

o(D) < o ({STH(6*V*g) > A}) + 0 ({sg(skﬂv';g) > A}) .

2. Case 2 < p < o0o. We have

154(6*V*9)|| 1o oy < C1GHE* V59| 1o o0y -

But, by Theorem B, we have, for every ( € 012,
G1(8*T*9)(¢) < C (S1(6*/2V9)(C) + SA(Rest*(9))(C) + lgll o)) -

We estimate the remaining terms llsg(Restk(g))|ILp(aQ) by Theorem
2.3 and the first inequality we have just proved, in order to obtain

.

1G4 V* ) Lo ag) < C(HSz(W““V?g)”LP(BQ)

+ |SE (6 V4 9) | ooy + N9l 20 )
Lemma 2.7 follows.

END OF THE PROOF OF THEOREM C. It remains to show that Theorem
C follows from Lemma 2.7. We distinguish two cases.

1. Case ¢+ k > 1. Observe that, since §(z) < s¢ on Ay(() for
every ¢ € 092,

15271 (*V*9)| o omy < 50’ 1S4Vl s o0y

So, we apply Lemma 2.7 in Q. = {®((,t) € Q, t > ¢} to g (which
belongs to C*°(€2.)). Reducing s¢ if necessary, we get

154,e(6*V* )| 1 o0., < € (

5167295, o * ol )

Lr»(6%.)
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where S . denotes the admissible area function corresponding to (2.
We want to let ¢ — 0.

Using Fatou’s Lemma, it is sufficient to show that, for ¢ small
enough,

S1.(8*2Vhg)| | <c||suet2vkg)

Lr(8%.)

Lr(8Q)

We have

» av p/2
= / / s |Vhg|' 22 ) do.
Lr(89.) Q. Aa(Ce) 55

Now, for { = ®((,e) € 0., Aa(() C Ap(¢) for some B > o and
obviously, 6. < 6. This allows to conclude.

$1,6(6/2V9)|

2. Case ¢+ k < 1. We are going to use the method called “boot-
strapping”. Without loss of generality, we can assume that

|sas*2v49)

< 00
L?(89)

Then, in particular, for any p sufficiently large such that k + o > 1,

|sa(s*/2v4a)

<
Lr(892)
and by the preceding result

”53(6kvk9)”m(an) < oo.

Now, choose ¢ = g + m with m € N. Then, we apply Lemma 2.7 in

order to obtain
“Sg—l(‘skvkg)“[,p(an) < 0.

Now, we repeat the same argument as long as the index of the weight
in S, is different from gq.

As a corollary of Theorem C, we obtain the following.

Corollary 2.8. Let Q be a bounded C*°-domain in C", satisfying (P).
For every 0 < p < oo, for every a > 0, every k,l € N and ¢ € R with
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q+k+2l > 0, there ezists a constant C such that, for every holomorphic
function g in Q, we have

“G‘l(él‘”‘/ZV'Vﬁg)‘

LP(89)

<cC (”53(6"”‘/2V’V§~g)” + ”9”L2(K)) :

Lr(892)
PRrROOF. As in Corollary 1.5, we write
621+k(z)|VIV’q’wg|2(z) < C' Mean®?®® (521+k|V’V§~g|2
+ 6 [Restk(vlg)}2 )
So,

fors 9 53a1].,, < © (Jste oot

Lr(8%) —

LP(0%2)
+[|52(8"Rest* (V)| . (o0 )

So, it suffices to estimate the remaining term by Theorem C. We obtain
l k {
||Sg(6 Rest®™(V g))“Lr(aQ)

< Csi? (Hsg(&”"/"’v’v%g)ll + llgllLZ(K)>-

Lr(8Q)

2.4. Admissible area and maximal functions.
In this paragraph, we continue the proof of Main Theorem.
Theorem D. Let Q be a bounded C*°-domain in C" satisfying (P), a

be an aperture > 0. For every 0 < p < oo, there exists a constant C
such that, for every holomorphic function g, we have

1S0(69V56)]| 10y < C (IMa(T50)| oy + Iellzca0) -
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As an immediate application of this result, we obtain that (3) im-
plies (2) in Main Theorem.

PRrROOF OF THEOREM D. The proof of Theorem D will follow the same
lines as the corresponding one of Fefferman-Stein (see [FS]). The dif-
ferences are due to the fact that V%.g is no longer holomorphic or even
harmonic in Q2 although ¢ is holomorphic.

First, we assume that ¢ € C®°(Q) and we are going to show the
following a priori inequality:

||Sa(6VV‘§~g)|[LP(BQ) <C (“Mu(v%g)”uwm + ”9“L2(K)) .

Let us assume this inequality proved. Then, it remains to show
that this inequality is still valid for general g. We apply this inequality
in §2, to g holomorphic in £2. One can verify that the constant involved
is independent of € > 0. We want to let € — 0 in the inequality. Let us
observe that, for (. = ®((,e) € 0., Aa((c) C Ap((), for some S > a.
This allows to show that

”Ma(vl%g)“m(an;) <C “Mﬂ(vag)”Lp(aQ) .

Now, we just have to apply Fatou’s Lemma and the following usual
result (see [FS] for instance).

Let 0 <p < oo and a, B > 0. There ezists a constant C such that,
for every function u on

[Maulls50) < C ”Mﬁu”Lp(aQ) :

So, let us show the a priori inequality. As in the preceding, we are
going to distinguish three cases: p = 2,0 < p < 2, p > 2. As the case
when p = 2 is the simplest one and follows the same line as the case
when 0 < p < 2, we will only consider the cases 0 < p < 2 and p > 2.

1. Case 0 < p < 2. In the following, it will be convenient to have a
defining function for  which is harmonic near Q2. We choose a point
zg € K and denote by § the Green’s function for 2 with singularity
zo. Thus, é is harmonic in Q \ {z¢} and é(z) is comparable with the
distance to the boundary, for z € 2N U.
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Let A and € be any real positive numbers and E be the set
{Ced0: Ma(VEg)XQ) S A, STHE'VH1g)(Q) < Cle,50) A}

for some v > a and C(g, so) = (€2 + s9) /2.

Let Ey be those points of E of relative density 1/2, Dg, D their
complements. We are going to prove the following lemma which gives
a “good A” inequality of a new type.

Lemma 2.9. Under the assumptions of Theorem D, there exists a
constant C' such that, for every e > 0

/ Sa(6VVEG)2(2)do(2) < C((—lg +1)A20(D0)
E, €
A
+ [ o ((Ma(Tho) 2 1))
0
+(52+30)/ STR(EFHIVEg)2(2) do(z)
E
Hlolra)-
PROOF. We denote by R, the set U,cp, Aa(z) and

Iy, = / Sa(8VVEG)(O)do(C) .
Ey
Then
Ig, =//R 8|VVhg*(2)o ({C € Eo : z € Aa(()}) ?,/,Ej)

<C / /R IVl ()aV ().

We write that
2|VVEg|?* < 2|A(Vhg) - Vig| + A|VEg|?

and, following the method of Fefferman and Stein, we will estimate

// 6 A|VE.g|2dV
Ra
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by applying Green’s Theorem (we recall that é is a Green’s function for
). Let us denote by dé the surface measure on OR,. So, we obtain

In, <C ( / / §|VEg - A(VEg)|dV
Ra

6|V§~g|2 . 06, _k 2,.
+ (/ak,,&—_al’ da—/akaalvr_pgf do
=(1)+(2)+(3),

where 0/0v denotes the outer normal derivative on OR,,.

1.1. Estimate of the first term (1). As g is holomorphic in 2, we
have AVkg = [A, VE]g and so,

AVEg <C Y ViV,

0<j<2
0<r<k-1

Now

(1) < //R 6IVEgl S |VIVEgldV

<i<2
0<r<k—1

1/2
<(J[, sroerotorar)
Ra

(/R &r Y |viv;g[2dv)l/2

0<j<2
0<r<kE~-1

for every pu > 0. Let us apply Lemma 2.6 with 0 < p < 1, in order to
obtain

W< C(so [[ avgp+ [ lopav)
'R—ﬁ A’

for some 8 > a.

1.2. Estimate of the second term (2).

@<cC /a  8[VVhel[Vheldo,
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We split OR, into three pieces Ry = F U FEo U FDo where
"1 (F)C o x {s0}, @' (FE)CE,

and

&1 (FP°) c Do x (0,30).

(2)§C(L+AEO+LDO).

First, we have trivially

So, we write

[ 819943l 949145 < Clolacry -
Then, as d6 < C do along FFo U FPo we have
/F 6 |VVEg||Vhg|dsd =0  textsince FE° c 0Q.
. .
For every € > 0, the last part is majorized by
<C (iz/ |VEg|2ds +62/ 52|vv§g|2d&) :
€? Jrpo FDo

As M, (V%g) < X on E, we deduce that
1

62 FD

1 C
k1274 2 - 2
0 |Vigl?ds < 62/\ /FD0 do < 62/\ a(Dy) .

We are going to prove now that, under the assumptions of Theorem D

dv
52/ 82|V Vhg|?ds < 0(52 // 5k+2|Vk+1g|2T+/ |g|2dV).
FDo R K

This will follow from the fact that, by Corollary 1.5,
2
[VVAg[2(¢) < CMean?© (lvvw + [57+/2Rest* ()] ) ,

and the fact that

/ 6§ Mean®(|f)?) dé < c// 812V,
Ry Rp
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for some [ sufficiently large. Then, we apply Lemma 2.6 in order to
obtain the result. So

C av
(2) S 5 \o(Do) +C (62 // gHr2|vitigl— +/ Ig|2dV> :
Rp K

1.3. Estimate of the third term. The third term is majorized by

(3)50/ |Vlfrg|2d&s0(/+f +f )
R« F FEo FDo

A
<C (/ |g|2dV+/ ta({Ma(V%g)2t})dt+/\2a(D0)> ,
K 0

since M4(V%g) <X on E.

To conclude for Lemma 2.9, it suffices to remark that, as in the
proof of Theorem 2.3,

// 6k+2|V’°+Ig|2d—V§/S;"(é"“Vng)zda,
Rs 6 E

for some v > 3.

1.4. Let us prove now the a priori inequality in case 0 < p < 2.

12(6VVE9) 1 (a0
- p/ M 1g ({S.(6VVhg) > A}) dA
0

< p/ N =15(Dy)d\ + MPo(0Q)
0

+p / e /E 54 (6VVEg)2(()do(¢) dA

M

IA

C((si2 + 1)p/0°° NP1g(D)dA + MPo(90)
+ (62 + So)P /M°° /\p—3 /E S;k(6k+lvk+1g)2(c) dU(C)d/\

oo A
+p/M /\”_3’/0 to ({Ma(Vhg) > t})dtdA
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2 p—2
T gy M )

< C((Elg + 1) ( ||M,,(V'%g)“i,(am

1 _
+ sy IS746 9 41917, omy )

+ MPo(0Q)
+ |19l Z2 gy MP 2

(€% 4 s0)

Clesoy? ||S;k(6k+1vk+1g)|!L,(aQ)),

since
o(D) < o ({Ma(Vrg) = A}) + 0 ({STF(E*HVH1g) > Cle,50)A})

By Theorem C and under the assumptions of Theorem D, we have
—k k1 gk+1 c
”S,, (6 Ty g)“LP(aQ) <C (HS“)‘(évag)”Lp(aQ) + ”g”L"’(K)) :

So, it is sufficient to apply Lemma 2.1 and to choose ¢ and s sufficiently
small and M = ||g||;>(x) in order to conclude that, for ¢ € C*°(Q)
holomorphic in 2 , we have

||Sa(6vv”;’g)”[,p(ag) < C (”Ma(vljc"g)”l,p(ag) + ”9”142(1\')) .

2. Case 2 < p < oo. In this part, we will use an auxiliary result on
Dirichlet’s problem. This will be proved in the appendix since we did
not find any reference. We need the following definitions.

e We denote by Lf,p‘2)(Q) the space of all functions u on § such that

uo® € L? (99; L*(]0, so[, t°dt))

with the induced Banach norm on L? '2)(9)

2

So p/
ol gy = [ ([ Twoatcoped)” ano).

e We denote by W',i;(p‘z)(ﬂ), 1 € N, the space of all functions u such
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that .
Diu € LPD(Q) for || <1,

where D’u denotes the distribution derivative. We define a Banach
norm on W& (Q) by

. 1/p
el oy = (D0 1Dl )

l71<t

e For [ € N, we denote by V;’ﬁ(”‘”(ﬂ) the closure of D(Q) in
Wci;(P'z)(Q) )
e For [ € N, we denote by Wa_l;(p’z)(Q) the dual space of
WD), 1/p+1/p' = 1
Now, we can state our result.
Theorem on Dirichlet’s Problem. Let 1 < p < oo, Q be a bounded
C*®-domain and A be a differential operator of order 2, strongly elliptic,

with smooth coefficients. For every smooth function v defined on 2, let
u be the solution of the problem

Au=v mn
u=20 on 0N.

Then, for every —1 < § < 1, there exists a constant C independent of
v such that

" [V 0 ®(z, )40t " do(z)
N 0

<c (||v||W9_1;<,,,2)(Q) +sup |u|p) .

To prove our estimate, we have to majorize, for g € C°°(§),

sup |V'7°~g|
0<t<sg

k)

[|Sa (5vv§"9)”m(aa) by
L?(8Q)

then the a priori estimate will follow.
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First, we are going to show that

”G (5VV'7°~g) |ILP(69)

<o

The desired estimate will follow since

sup |V§~g|

0<t<sg + 3(1)/2 ”SO’ (6VV§"9) ”LP(aQ)) .

Lr(8Q)

152 (69 V29)]| < C||G (8VVig)|

Lr(89Q) Lr(3Q2) *

We write Vg = (Vfl}g)o + (Vé‘ag)h where (V’}g)o is the solution of the
problem
{ Aw = A(VEg) inQ,

w=20 on Of2.

We know that such a solution exists in C*°(Q2) (since g € C®(Q) by
assumption).

So,

”G (6vv§"g) “L»(an) S ”G (5V(V§~g)0) ”LP(BQ)
+ ”G (6V(V’}g)h) ”Lp(an) :

2.1. Estimate of|’G(6V(V§~g)h)||LP(aQ) . It is well known that
the Littlewood-Paley function of a harmonic function is majorized, in
LP-norm, by the LP-norm of its trace on the boundary. So, we have

||G(6V(V§g)h)||”(am < “I(v%‘])””m(am

<|l sup |Vig|

0<t<sg

L?(8Q)

since, by assumption, Vg = (VXg), on 0Q and g € C=(Q).

2.2. Estimate of”G(&V(V'»}g)O)HLP(BQ) . As g is holomorphic in
Q,
A(Vig) = [A,Vilg, |A(VEg)| < C Vvl

with A
| < C Z IV!Vig|

0<j<1
0<r<k—1
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and we can apply the Theorem on the Dirichlet’s problem. For every
0<f<1

”G (5V(V§9)0)”m(am = S(()l—B)/? ”Go—l (5V(V%g)0)”u(an)

= Sf;l_m/z(/aQ (/00 IV(V’%g)o|2t9dt)p/2da)l/”

_ * . /2 \1/
< cs "”2(/ (/ 3 |V]V§«g|2t0dt)p do) ’
o2 “Jo (G
0<r<k—1
+ Cllgllzzx)
_ g0 p/2 1/
< Cs! "W(/ (/ > IVHVRgP ) da) ’
Joa Moo 1Ty
+ CllgllL2(x),

(by Hardy inequality in L?(]0, so[)),

8 k
< Cs(()l_e)/z(/aQ (/0 OMeanQ(]Z:;|ng|2)t9+k_’dt)p/2da)

+ Cligllezcry
(by Theorem A),

- Csé“””z(Hsz“‘(ilvfg|>H
j=1

1/p

wiomy HgIle(K))

IA

C‘S(l)/2 (”Scr(évvg’g)”l,p(ag) + |,9”L2(K')) y
(by Theorem 2.3).

2.5. Admissible and radial maximal functions.
We are going to show the following theorem.
Theorem E. Let Q be a bounded C>®-domain in C", satisfying (P).

For every 0 < p < oo, every k € N, every a > 0, there ezists a constant
C' such that, for every holomorphic function g, the following holds

+ “9||L2(K)> :

sup |V§~g|

0<t<sg

”Ma(v!}g)”m(am <C (
L?(0RQ2)
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As an application, we obtain that (4) implies (3) in Main Theorem.
Lemma 2.10. Let ! > 0, a be a fized aperture. There ezists a constant

C such that, for every function u € C*°(2), we have, for every p > 0,
every ¢ € 0N

Ma (8u]) (¢) <CM, (6

Ou
50|) ©+Cuplul

Ou

Mo (81ul) () <CM, (84|22

)<<>+0sup|u|,
K

where 0/0v denotes the normal derivative on OS).

PROOF. Let ( € 0Q2. We assume that

Ou

I+1
M (6 ov

Jo=c.

For every ®(n,t) € A,(¢), we have

S0
|u o ®(n,t)| :'/ %uo@(n,s +t)ds—uo¢(n,so+t)‘
0

1+1 | Ou 1 ds
<M, (8 ay)(o | o

+ C'sup |u|
K

(since ®(n,s +t) € Ax(¢)UK)

) @+ supua)

PROOF OF THEOREM E. As in the proof of Theorem D, we are going
to prove an a priori estimate. Explicitely, for g € C*°(2), we are going
to show that

<C (t"Ma <5’+1

sup ’V’%g’
0<t<sg

+ IIQIILP(K)> -

||Ma(]v!}g|)“LP(BQ) <C <
L?(59)

For general g, we apply the preceding inequality in Q. and we let
¢ — 0 as before.
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So, let us assume that ¢ € C°°(Q). By Lemma 1.2, after a change of
coordinates, we can write, around any point of Ag((), each component
of V&g as a sum of an (AB) function and of a rest 6~ ¥/2Rest*(g). This
allows us to show that, for every ®(n,t) € A4(¢)

Vg 0 (n, )|

C

<o
(2 )] Joa(n,)
C

1R Jowme

/2
+ |67/ Rest*(g) o a(n,1)|

C k p/2 '
L sup |V3igo®(n',s do(n
|B4(n,t)| Jpa(y,e) 0<s<so Ve ' 5)] ()

C
+ = sup
|B(n,t)] JBa(y,t) 0<s<so

|Vhg[P/? av

/2
|6_k/2Restk(g)’p dv

/2
6/ *Rest*(g) 0 (", )| do(n')

/2
+ yé'k/zRestk(g) o ®(n,t) "

So, we obtain, by the L?-continuity of the non-isotropic maximal oper-
ator

k N\|IP k ’
[Ma(VT9) | 1s00) = ”M"(ng)p/z‘ L2(89)
) P
<c(|| sup [Vhal| 4| sup 157H*Rest¥(g)
0<s< 39 LP(9R) 0<s<30 Lr(59)
i . P
+ [ Mas= Rest* @) )
P P
<]z, 1Vhal| |+ [|[Mato Rt )] )
0<3< 3 Lr(6Q) Lrem

So, it suffices to estimate HMo,(é"‘/zRestk(g))]]’2?(69) in terms of
”Ma(vl”}g)”u(an) with a small constant.

MC,(é‘k/zRestk(g))SC(Ma( 3 |varTu|)
1<j+r<(k+r)/2

+Ma( Z 5j+(r+1—k)/2|vjv5,u|)) .
(k+7)/2<5+r<k
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Let B be chosen so that if z € A,((), Q(z) C Ap((). We apply succes-
sively Lemma 2.10 and Theorem A in order to obtain, for every u > 0,

M, (5_k/2Restk(g)) <C (Mﬂ( Z 5k—u—j—-r/2lvkg|)

1<j+r<(k+r)/2

+Mg( Z 5<k+1)/2lvkgl))

(k+7)/2<j+r<k
<C My (8007270 ).
So, we have to estimate
M (8440274195 g1) 11 o0y

in terms of

’Ma(vé‘g)”m(am

with a small constant.
By the converse estimates of Theorem B, we have, by choosing
p<1/2,
(+) = My (85407270 7%g )
<c <M., (8/27#1%g]) + M., (871 =972 Resti ()] ) + sup yg|>

<C (33/2_”/‘47 (1V5gl) +s9"* M, (5(k+”/'2—"lvkyl) + sup Iyl) :
K
Then, we choose s sufficiently small in order to obtain
”Mﬂ (6(k+1)/2—plvkg|)|

1/2— k
sC (50/ ! HM”(lngl)”Lp(an) + HgHLP(l\’)) .

Lr(092)

Inserting this inequality in the estimate of

HMQ(é_k/ZRcstk(g))’

Lr(89)

we are able to conclude, reducing again sq if necessary, that, for g €

C=(Q)

sup |V§1g’

+ gl e iy | -
0<t<so L7(9)

||Ma([\7’7°~g|)|[”(am <C (
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2.6. End of the proof of Main Theorem.

In this paragraph, we are going to show the following theorem.
Theorem F. Le.t Q be a bounded C*°-domain in C", satisfying (P).

For every1—1/(2n+1) < p < oo, every k € N, there ezists a constant
C such that, for every holomorphic function g in 2, we have

< C|Sa(6VVED| 1o o) + gl L2 -
L?(0%Q)

sup |Vhg|
0<t<sp

As an imimediate corollary of this theorem, we obtain that (2)
implies (4) in Main Theorem.

PROOF OF THEOREM F. In this part, we will use theorem on Dirichlet’s
problem stated in paragraph 2.4.
We want to majorize

sup }VkTgl
0<t< 3o

LP(8Q)

As before, we are going to prove Theorem F only for g € C“(ﬁ).
We write Vg = (V%g)o + (V’r}g)h where (V’%g)o is the solution of the

problem
{ Aw=A(VEg) inQ,

w=0 on 0N .
So,
sup |Vhg| <|| sup |[(VEg)ol
0<t<sg LP(69) 0<t<sgp LP(0Q)
+1| sup [(VE9)s|
0<t<s0 LP(3Q)
=(1)+(2).

First, for every 0 < § < 1, we have

|(V59)0 0 ®(n, 1) S/ |V(V59)0 0 ®(n, )| ds + sup g
0
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_ %0 2 ds\/?
<Csg 70 (/ [V(Vi9)o © &(1,5)| SM‘;)
0
+ sup |g]|
o

<Csg' "GP (EV(VEg)o)(n) + sup lg]-
So,

sup |(Vig)o|
0<t<sgo

(1) =

L?(8%)
<C (sgl-a)/z ||G9‘1(6\7(V'r_°pg)0)||“(39) + ”gHLP(K)> .

It is well known that, for harmonic functions, the LP-norm of

the radial maximal functions are majorized by the LP-norm of the
Littlewood-Paley functions. So,

sup |(Vg)s| < CIGEV(VEN| 1o o0y

0<t<3g

(2)=

o(sm)

and we obtain

(2) < € (|[G6VVED Ly any + 552 16 (EV(V59)0) | 1 50y )
< C (15659 o oy + 582 16 (69 (VE)0) | 11 om)

by Corollary 2.8.
So, it remains to estimate ||G9_1(5V(V’7‘1g)0)“u(8m. Since in the
proof of Theorem D, we have shown that, when 2 < p < oo,

3((11_9)/2 ||G9—1(5V(V§1g)0)“1,p(am

1/2
< € (5?1526 V59| 1o omy + 9z »
it is sufficient to consider the case 0 < p < 2. We are going to show

that
”Gﬂ_l (6V(V§"g)°)“u(an)

is bounded by

sup lvl}gl
0<t<so

Lr(89)
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whenl—-1/2n+1)<p<2.
First, let us give the following lemma.

Lemma 2.11. Let u be any continuous function defined on Q. Then,
for every a > 0, every ¢ > p > 0 and every 8 > 0 satisfying 0 >
n/p —n/q, we have

”Ma(‘seu)”Lq(aQ) < o ”Ma(u)”LP(aﬂ) .

PROOF. The proof is based on the atomic decomposition of spaces
of homogeneous type (see [AN]). We will denote by TP the space of
all continuous functions u on §2 such that M,(u) € LP(OQ) with
norm [ullre = [[Ma(u)llpsa9)- For every E C 0Q, we define the
tent over E to be the subset E of 9Q x (0,s0) by 992 x (0,s0) \ E =
U{A(¢), ( € 02\ E}. A non-negative function a on 99 x (0, s¢) is an
atom over B? if a vanishes outside B? and if a < o(B%)~'. The atomic
decomposition Theorem can be formulated as follows.

Theorem. ([AN]). There is a constant C such that, for every u € T?,
there are a sequence of balls {Bf = BY(z;, 6j)}, a sequence of atoms a;
over B? and a sequence {\;} of positive numbers such that |uo ®| <
Y Ajaj on 02 x (0,s0) and > Xj < ||ul|p.

Let u € TP with ||u|lr» < 1, then |[u[? € T?, so by the preceding
theorem, there are a sequence {a;} of atoms and a sequence {};} of
positive numbers such that |u o [P < 3" Aja; on 9Q x (0,s9) and
S A < u|ly» < 1. Thus, we have

(Ma(8lul)]” < Ma(8%1ul?) < (30N Ma(6%las)))
So

[Ma(& D) ogony = [ Mal(6" [l [| 1oss a0
< Z Aj ]|Ma(50p|‘1j|)||1,q/p(an)

and it suffices to see that

||Ma(69"!aj!)||“,,,(ag) <C.
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But
”Mo‘(éap |ajl)||Lq/P(BQ) < 5? U(B_;'i)—l U(B;'i)p/q

since 6(z) < cé; on éf This allows to conclude, since a(B}-i) ~ 87,

1. Estimate of HG""1(6V(V'7‘19)0)“LP(BQ) when 1-1/(2n+1) <p <
2. As g is holomorphic in 2, A(VEg) = [A, VE]g, ‘A(Vé’ag)l < C|Vo|
with .
p<C Y [ViVhgl

0<j<1
0<r<E-1

and we can apply the result of the theorem on Dirichlet’s problem.
Forevery 0 < 6 <1

() = [6° 6V (T50)0)l| 1 o0y < [1G° 6V (T59)0)] 1o oy

where ¢ > 1 will be chosen later. Then, we can apply our result on
Dirichlet’s problem to obtain

(+) < C(/an (/0 ; |va;g|2t9dt)”2da)1/q

0<r<k—-1

+ C |9l 2 (k)
So q/2 1/q
< c(/ (/ > IVFVEg 2 ar) " do)
92 *JO0 ger<k-1
+ Cllgllz2x) »

(by Hardy inequality in L2(]0, so[)),

k
%o : q/2 1/q
<C / / Mean® Vig|2)tb+k—1q¢ do
(L. (] (]_;l ) ) do)
+Cligllzz k) 5

(by Theorem A),

<C (Hsg_k(ékvkg)”[lq(aﬂ) + ”gl'LZ(K)) ,
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(by Theorem 2.3).
So, we obtain by Theorem C

158748 V49| agomy < € (I1S8(TED 1o(om) + o)

So we have, for every 0 < ¢ < 1,

q/2 /g
ol [ (Masvha) ([ e ) 4
1) Aa(¢) ot

+ Cllgllz2(x)

(with 8 = 6/2 — ¢),

IN

C (5 | Ma(8® 1V o oy + I9ll 220

C (55 | Ma(T59) | 1 omy + 920

IN

by choosing ¢ such that Lemma 2.11 holds with 8/2 — ¢ > n/p —n/q
which is possible if 1 —1/(2n + 1) < p < oo (since we can choose § — 1
and ¢ arbitrarily close to 0). But, by Theorem E, we have

o (Vh Vi
[Ma( Tg)”u(an) < C( ojilfsol 9|

LP(8%)

+ ||g||L2(K)> :

So, we obtain an a priori estimate for every 1 —1/(2n+1) < p < o0
and every holomorphic function g € C*°(Q)

sup |Vig|
0<t<3s0

¢ (l|s"(5vvl7c"g)”Lp(an) + ||9||L2(K)) .
Lr(89)

3. Appendix: Dirichlet problem in mixed Sobolev Spaces with
weights.

Let us recall the result we are going to prove.

Theorem on Dirichlet’s Problem. Let 1 < p < 0o, Q be a bounded
C>®-domain and A be a differential operator of order 2, strongly elliptic,
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with smooth coefficients. For every smooth function v defined on 2, let
u be the solution of the problem

Au=v n §,

u=20 on 0.
Then, for every —1 < 6 < 1, there exists a constant C independent of
v such that

2

K |Vu o &(z,t)|%t%dt & do(z)
[219] 0

<C (]]v||W9-1;(p,z>(Q) + szp |u|l’> )

The proof follows the same line as the one given by Grisvard in his
book for the usual problem (see [Gr]). By routine arguments (partition
of unity, change of coordinates, freezing of coefficients) it suffices to solve
the problem for the Laplacian and for smooth functions with compact
support in

F= {(;1:',1:,,) : 2 eR"1N0<z, < so} CRY, so fixed.
Explicitely, we just have to show the following lemma.

Lemma 3.1. Let1 < p < co. Then, for every —1 < § < 1, there
ezists a constant C such that, for any smooth function u with compact
support in F', we have

30 p/2
2.8 , ,
,/]Rn—1 (/0 |Vul wndil'n) de' <C (”Au”wg—l;(p,Z)(F) + s1;;p lu > .

PROOF. Let u be any smooth function with compact support in . We
denote by v the function Au. Assume that v belongs to Wo_l’(”’m(Rz);

then there exists vy, véj) € L(ep’z)(Rf‘l_), with compact support in F,
such that

v=1v; + Z DjvéJ)
=1

. (J)
with [oll -1, 2 Notllggponny + 2 1087 gp g -
|J|=1
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Then, u can be written as the sum of two functions u;, u; satisfying

{ Aup=v; inRY, { Auy =Y, 52, D7y inRE,

u; =0 on {z,=0}, u =0 on {z, =0}.

We will only estimate the term corresponding to u, since the other term

is better.
An argument of symetry allows us to write

“2('73,’2:") =[R" [E(z' i Yn) — E(ml -y o+ Yn))
+

J
’ Z Djvé )(y'» yn)dyldyn s
=

where F is the normalized fundamental solution of Laplace’s Equation.
We can assume that u, is smooth with compact support in F.
By Green’s Theorem, we have

uz(z',zn) :/ z D’ [E(x' =y 2n—yn) — E(z' =y, 2n + yn))
BY |J1=1

J
05y yn)dy' dyn

so, for |[K| =1

DEuy(2',z,) =/ Z DK“H[E(z' — Y Zn — Yn)
R} J=1

— E(@' =y, 2n + ya)] 05" (¥, yn)dy' dyn
=S (D*E+V{W + DFE V'),
[n|=2

where V.;M and V’g") are zero outside R}. It is usual to see that
K =3’|,=2 D"E is a Calderén-Zygmund kernel. We are going to show

that the corresponding operator is bounded from L?(dz’', L?(z8dz,))
into itself for every —1 < 6 < 1. Assume it is done, then we obtain

8o /2
/ (/ |Vu2|2zzd$n)p dz'
re-1 \Jo
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So 2 /2
§ : (J)’ 4 P !
<
C - (A ) IL‘ndiBn) dz

|J|=1
< Clplly-1em

and this gives the result.

So, it remains to show that a Calderén-Zygmund kernel K defines
a bounded operator from LP(dz', L?(z®dz,)) into itself, for every —1 <
0 <1 and every 1 < p < 2: the result for general p follows from duality.
Let us give the proof for completeness.

First, it is easy to see that the weight z¢ belongs to the class of
Muckenhoupt (A;z), for every —1 < 8 < 1. This implies the continuity
of the operator from L%(z%dz,dz') into itself. It remains to show (see

[S2]) that

VK| < -2
jz'|"

where K(z') is the operator defined by

w(z',t—s)
((t—s)2+ |$:|2)ﬂ/2
for h € L*(z%dz,), where w is homogeneous of order 0 and ||V K]||

denotes the norm, from L%(zfdz,) into itself, of the corresponding
operator which satisfies, for every h € L?(z8dz,) and every t € R,

K(z')h(t) = /K(m',t — s)h(s)ds = / h(s)ds

|V K(z')h(t)| < c/ ( _8)2+| ,|28))<n+1>/2 h(s)ds .

So, by homogeneity, it suffices to show that ||k|| < C, where k is the
convolution operator with kernel 1/(¢241)("+1/2 acting on L?(z%dz,).

It is well known that, for every t € R, every h € L*(zldz,),
k(h)(t) < C Mh(t); where M denotes the maximal Hardy-Littlewood
operator. This finishes the proof since M is bounded in L?(z8dz,) as
z% belongs to (A3).
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